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Abstract

Background: Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human

cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus

events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new

method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of

SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit

instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy

number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased

null distribution by applying an SCA-exclusive permutation scheme.

Results: We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART,

CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods

in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then

apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number

data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with

previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and

associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore,

SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may

warrant further studies.

Conclusions: Supported by a well-grounded theoretical framework, SAIC has been developed and used to

identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of

cancer genomes. Open–source and platform-independent SAIC software is implemented using C++, together

with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use.

The source code and documentation are freely available at http://www.cbil.ece.vt.edu/software.htm.

Background
Somatic copy number alterations (CNAs) are common

genetic events in the development and progression of

various human cancers, and significantly contribute to

tumorigenesis [1,2]. The coverage of CNAs in tumors

varies from a few hundred to several million nucleotide

bases, consisting of both deletions and amplifications

with highly complex patterns [3,4]. Recent advances in

oligonucleotide-based single nucleotide polymorphism

(SNP) arrays have made it possible to detect regional

amplifications and deletions with high resolution on a

genome-wide scale [5,6]. A critical challenge in the

genome-wide analysis of CNAs is to distinguish between

the “driver” mutations that allow the tumor to initiate,

grow, and persist, and the “passenger” mutations that

represent random somatic events accumulated during

tumorigenesis [1,3,7]. Identification of these “driver”

alterations can provide important insights into the cellu-

lar defects that cause cancer and suggest potential diag-

nostic, prognostic, and targeted therapeutic strategies

[1,7,8].
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By studying a sufficiently large collection of cancer

samples, Significant Copy Number Aberrations (SCAs),

defined as significantly recurrent CNAs that affect the

same region in multiple tumors, are widely considered

as informative surrogates of “driver” mutations that may

help pinpoint novel cancer-causing genes [3,9]. Past

studies have detected many SCAs in a wide range of

cancer types, with an impressive coverage of many

known oncogenes and cancer suppressor genes [1,2,7].

Several methods for finding regions of SCAs using

CNAs data have been described in the literature, where

the task of distinguishing between sporadic CNAs and

SCAs is largely a statistical significance testing. Two

reviews with qualitative comparison of different methods

have been published [10,11]. Despite the use of differ-

ent algorithms, a common theme in these methods is

that they often adopt a four-step strategy: (1) detect

CNAs and separate deletions and amplifications; (2) de-

sign and calculate ensemble test statistics associated

with a genomic locus; (3) construct and/or estimate the

probability distribution of test statistics under the null

hypothesis; (4) perform multiple testing on a pool of

genomic loci.

Significance testing for aberrant copy number (STAC)

starts by converting the normalized log-ratios into a bin-

ary matrix, with zeros indicating no change and ones

indicting losses and gains [12]. STAC then proposes two

statistics (footprint and frequency) to define regions of

SCAs while adjusting for multiple comparisons, where

the null hypothesis is that the detected CNAs from

single-sample analysis are the realizations of random

CNA placements whose probability distribution is gener-

ated by permutations on CNA segments [13]. Genomic

Identification of Significant Targets in Cancer (GISTIC)

works on the real-valued step function of log-ratios that

allows GISTIC to exploit both the type (amplification/

deletion) and amplitude of CNAs [1,3]. Using a semi-

parametric permutation assuming independence between

probes, GISTIC calculates a score that is based on both

the amplitude and frequency of CNAs at each probe

position and subsequently identify regions of SCAs,

where amplification and deletion CNAs are handled

separately, and armed-level and focal CNAs are further

analyzed independently [14]. Aimed to correlate infor-

mation from neighboring probes with the amplitude and

frequency of CNAs at each probe position, Kernel Con-

volution – a Statistical Method for Aberrant Regions

detection (KC-SMART) uses varying-width kernel func-

tions to calculate the testing statistics from the original

log-ratios across multiple samples, producing the kernel

smoothed estimate (KSE) at each locus by locally

weighted regression [15]. SCAs are selected based on a

permutation-generated null distribution and Bonferroni

correction. To substantially reduce computational bur-

den in analyzing high-resolution and large-population

data, correlation matrix diagonal segmentation (CMDS)

identifies SCAs based on a between-chromosomal-site

correlation analysis directly using the raw intensity ratios

across all samples [16]. CMDS uses a correlation statis-

tics to detect SCAs with a standard normal null distribu-

tion whose parameters are estimated directly from the

data and adjusts for multiple comparisons by false dis-

covery rate.

Existing methods have several limitations. When work-

ing with unprocessed raw intensity ratios [13,15,16],

most methods are oblivious to noise clutter that can sig-

nificantly confound estimation of the null distribution

about true yet sporadic CNAs [9,17]. Furthermore, these

methods cannot distinguish between contributions of

amplifications and deletions to the calculated overall test

statistics that may affect the power to detect SCAs.

While some effort has been made to incorporate correl-

ation among neighboring probes into the test statistics,

most methods assign a score to, and test the significance

at, each individual probe locus [14,15]. In addition, while

it is widely accepted that CNAs signals at adjacent

probes are highly correlated [9,13-15], the assumption

of probe independence is often adopted in construct-

ing and learning the null distribution, probably for

mathematical convenience [3,16]. Moreover, existing per-

mutation experiments using multiple samples cannot

distinguish between the contributions of sporadic CNAs

(obeying null distribution) and actual SCAs (deviating

from null distribution) to the estimation of null distribu-

tions, resulting in theoretically conservative estimations

especially when the number of true SCAs participating

in the permutation is large.

We now report Significant Aberration in Cancer (SAIC),

a carefully motivated method for accurately identifying

SCAs using CNAs data from multiple samples. To dis-

tinguish between different biological roles of CNAs types

and between noise and sporadic CNAs, we use discre-

tized CNAs data and separately analyze copy number

amplifications and deletions. By exploiting the intrinsic

correlation among consecutive probes, we calculate and

assign a score (test statistics) to each CNA unit instead

of each single probe, based on both the amplitude and

frequency of CNAs within the unit. To accurately esti-

mate the null distribution governing sporadic CNAs, we

perform random positional permutations on CNA units

that preserve correlations inherent to the copy number

data. More importantly, to minimize the unwanted par-

ticipation of true SCAs in determining the null distribu-

tion [3,14], we iteratively detect SCAs and estimate an

unbiased null distribution by an SCA-exclusive permuta-

tion scheme.
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We tested SAIC on extensive simulation data sets,

observing significantly improved performance with larger

areas under the Receiver Operating Characteristics (ROC)

curves and higher sensitivities at acceptable low false dis-

covery rates, as compared to four popular peer methods

(GISTIC, STAC, KC-SMART, and CMDS). We then ap-

plied SAIC to four real benchmark data sets, successfully

identified the majority (84%) of previously reported SCAs

harboring regions associated with well-known tumor-

causing genes, and more importantly, detected some

novel SCAs partially validated by the presence of known

cancer-related genes.

Methods
Data format and definitions

Preprocessed log-ratio data are stored in a numeric

N×M matrix X. Each entry xnm represents DNA copy

number (in log2-ratio) for sample n at probe m, where

each row Xn corresponds to copy number for nth sample

at M probes. Copy number amplifications and deletions

are analyzed separately. We use the indicator function

to divide matrix X into two matrices X=Xamplification+

Xdeletion, where

Xamplification ¼ I xnm ≥ θamplification

� �

� xnm
� �

;
Xdeletion ¼ I xnm ≤ θdeletionð Þ � xnmf g;

ð1Þ

with θamplification and θdeletion being the pre-specified

thresholds. For brevity, we focus all subsequent discus-

sion on Xamplification and make comments on Xdeletion

when necessary.

Definition 1

Any copy number probe m whose associated copy num-

ber is amplified or deleted in at least one of N samples is

called a CNA probe.

To exploit correlations inherent in copy number data,

we first merge consecutive CNA probes into CNA

regions, leaving the gaps consisting of only non CNA

probes, see Figure 1. Within each CNA region, the

Pearson correlation coefficient ρij between CNA probes i

and j is then calculated for i 6¼ jf g 2 M:

ρij ¼

P

N

n¼1

ðxni � �xiÞðxnj � �xjÞ

ðN � 1Þsisj
; ð2Þ

where �xi, �xj, si and sj are the estimated means and stand-

ard deviations of copy numbers at probes i and j across N

samples, respectively. If ρij is less than a pre-specified

threshold θρ, a breakpoint occurs between probes i and j.

Definition 2

A sequence of consecutive CNA probes with no break-

points is defined as a CNA unit, denoted by u (k, L) with

k being the starting probe index and L being the length

of the CNA unit.

Intuitively, a CNA unit consists of a sequence of

highly correlated consecutive CNA probes. Figure 1

illustrates the concepts of CNA region and CNA unit,

where two CNA regions contain 10 and 3 CNA probes,

respectively, and the first CNA region is further split

into three CNA units due to two breakpoints within the

CNA region.

Summary statistics and significance assessment

Units that exhibit high or low average copy number are

of interest, so it is natural to examine summary statistics

for each unit. SAIC identifies significant aberration units

through two steps. First, the method calculates a statistic

(U score) that incorporates both the frequencies of oc-

currence and the amplitudes of the CNA probes within

the unit, leading to the unit summary statistics given by

Uk; L ¼
1

LN

X

N

n¼1

X

kþL�1

l¼k

xnl: ð3Þ

Second, the method assesses the statistical significance

of each CNA unit by comparing the observed statistic to

the U scores that would be expected by chance.

Figure 1 An illustration on how CNA units are defined. Left: Consecutive CNA probes are merged into two intervals, with the first interval

containing probes 1–10 and the second interval containing probes 14–16. Right: Each of the two intervals is split into CNA units according to the

correction coefficients between CNA probes defined by Eq. (2), e.g., the first interval is split into three independent CNA units.
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Sporadic CNA units often occur throughout the gen-

ome, so a null distribution for Uk, L under the hypothesis

that no SCAs are present, can be estimated by randomly

permuting the overall pattern of presumed all-sporadic

CNA units across the genome [3,9,12,15]. Though vari-

ous permutation schemes can be adopted, due to differ-

ent rates of CNA and different percentages of normal

tissue contamination in tumor samples [18], permuta-

tion of CNA units across rows/samples should be

avoided. As aforementioned, permutation should be per-

formed on CNA units (instead of single CNA probes)

that preserve correlations inherent to the copy number

data, even if the CNA units are sporadic [3,9,15]. An-

other subtle but conveniently ignored issue is the differ-

ent background rates of CNA units with varying lengths

[1]. Short CNA units occur at a frequency inversely

related to their lengths and long CNA units occur ap-

proximately 30 times more frequently than would be

expected by the inverse-length distribution. This obser-

vation is seen across all cancer types, is applicable to

both copy gains and losses, and is supported by the cal-

culated genome-average background rates for CNAs as a

function of length [1]. These considerations motivate

our carefully designed SAIC permutation scheme.

Let L denote the integer set containing the lengths of

all the observed CNA units in X, K denote the integer

set containing the starting probe indices of all the

observed CNA units in X, and X(t) be the random pos-

itional permutation of X for t= 1,2,. . .,T, with T being

the total number of permutations. We now describe our

method for analyzing CNA units for evidence of signifi-

cant alteration in cancer, where we account for the dif-

ference in background rates between CNA units of

different lengths by considering them adaptively.

Algorithm 1

Assessing the statistical significance of Uk, L

(1)Perform T random within-row positional

permutations X(1), X(2), . . ., X(T) of the data matrix X

on CNA units;

(2)Compute the value of summary statistic Uk; L X tð Þ
� �

for each permuted data set t= 1,2,. . .,T, and for each

starting probe k ¼ 1; 2; . . . ;M � Lþ 1 and each

length L 2 L;

(3)Calculate and assign a P-value to each observed

CNA unit u (k, L) for k 2 K based on the extreme

right-hand tail probability given by [9,19]

P Uk; L Xð Þ
� �

¼

1þ
P

T

t¼1

I max
k 0

Uk 0; L X tð Þ
� �

≥ Uk; L Xð Þ
� �

T þ 1
; ð4Þ

where I �ð Þis the indicator function.

The empirical P-values on Xdeletion are calculated by

the extreme left-hand tail probabilities and reversing the

inequality in Eq. (4). Both definitions produce P-values

that are easy to interpret, and the “max” operation auto-

matically adjusted P-values for multiple comparisons

across CNA units thus controls the family-wise error

rate [9].

In algorithm 1, it is important to note that when we

generate a randomly permuted dataset based on the

observed data, we do not re-define the CNA units but

re-use the already-defined CNA units. Specifically, in

each permutation, we randomly place the already-

defined CNA units over the whole genome or each

chromosome within each sample, and calculate the sum-

mary U score for each length of CNA units. Thus, inde-

pendent of the unit length, the observed CNA units

will always be retained (implicitly) in the permuted data-

set. Moreover, when the number of permutations is

sufficiently large, the p-values of observed CNA units

can be accurately estimated. More precisely, to assess

the p-value associated with an observed CNA unit of

length L, we calculate the U scores for any consecutive L

probes (probes do not need to reside within the same

unit) across the genome, and compare the maximum

score with the score of the observed CNA unit.

Iterative estimation of unbiased null distribution

One important issue concerning Algorithm 1 is the pres-

ence of true SCAs (departing from null distribution) in

cancer genomes that presumably contribute high copy

number deviations to the estimation of overall null dis-

tribution (governing only sporadic CNAs), potentially

reducing power to detect less-extreme SCAs due to the-

oretical conservativeness [9,14]. Loss of power is parti-

cularly critical in real-world applications where the

number of true SCAs in cancer genomes may be large.

Thus, to minimize the unwanted participation of true

SCAs in determining the null distribution, we iteratively

detect SCAs and estimate an unbiased null distribution

by applying an SCA-exclusive permutation scheme. SAIC

assesses the ‘new’ SCAs conditional on having found the

‘existing’ SCAs, successively correcting for true SCAs in

order to better dissect and detect SCAs. Specifically, the

CNA units associated with the ‘existing’ SCAs are masked

as zeros after each iteration, resulting in a new data set X-

SCAs in which already-detected SCAs becomes null.

Algorithm 2

Assessing iteratively the statistical significance of Uk, L

(1) Perform Algorithm 1;

(2) Check whether ‘new’ SCAs are detected. If ‘yes’,

continue; if “no”, stop and re-calculate the P-values

for all SCAs using truth converging null distribution;
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(3) Mask the CNA units associated with newly detected

SCAs as zeros and let X ¼ X�SCAs, then go to step (1).

It has been shown experimentally that additional

power to detect SCAs can be gained by removing the

effect of newly detected SCAs after each iteration [9].

However, an iterative SCA-exclusive permutation

scheme raises another subtle yet critical issue concern-

ing the convergence of null distribution learning and

potential bias due to the expected false positive SCAs

under the truth-converging null distribution. Fortu-

nately, based on the careful design of Algorithm 2, the

following theorem shows that, if we apply a significance

level α0 ¼ α= 1þ αð Þ where α is the targeted false positive

rate (FPR), an unbiased estimation and detection results

can be readily obtained using Algorithm 2 (see formal

proof in Appendix A).

Theorem 1

Suppose that Algorithm 2 is used to iteratively detect

SCAs and estimate truth converging null distribution.

Let α be the targeted FPR and α0 ¼ α= 1þ αð Þ be the sig-

nificance level used to detect SCAs. Then an unbiased

truth converging null distribution can be obtained toge-

ther with a theoretical FPR α.

SAIC algorithm and data preprocessing

Figure 2 shows the flowchart describing the entire SAIC

algorithm. Our algorithm begins with two data prepro-

cessing steps [18]. First, the extracted raw copy number

signals from CEL files are normalized using benchmark

methods such as dChip (DNA-Chip Analyzer) [20,21].

Second, the normalized copy number signals are seg-

mented into CNA regions using existing single-sample

analysis methods such as CBS (Circular Binary Segmen-

tation) [22,23]. The preprocessed log2-transformed

ratios are subsequently analyzed by the novel algorithm

described here.

Results
In the absence of definitive ground truth about the

recurrent CNAs in the cancer genomes, the validation of

a new method for detecting SCAs is always problematic

[9,13,16,18,24]. We first validate SAIC on multiple real-

istic simulation data sets and then proceed to evaluate

the method using real CNA data sets. All data sets

were analyzed according to the algorithm described in

Figure 2. We tested SAIC and the four peer methods

(GISTIC, STAC, KC-SMART, CMDS) on realistic simu-

lation data sets. Comparative performance was based on

the ground truth in terms of detection power [18] and

the Receiver Operating Characteristics (ROC) curves

[16]. When applied to real CNA data, we compared and

discussed biological plausibility of the implicated SCAs,

and examined relative SCAs coverage between SAIC and

GISTIC on benchmark data sets using Venn diagrams.

To assure a meaningful and differential comparison, we

emphasized experiment suitability when choosing algo-

rithm parameter settings. For example, the algorithm par-

ameter settings cannot be too “simple” (if there are only a

few arm-level SCAs, all methods may perform equally

well) or too “complex” (if there are many weak focal

SCAs, no method will perform consistently well) [14].

Simulation studies

Multiple simulation data sets with definitive ground

truth and various design or parameter settings were gen-

erated based on the modified benchmark models pro-

posed in [9,16,18,24] and as used to assess various

performance characteristics [9,16,18]. We first assessed

the family-wise type 1 error rate (FWER) whose accuracy

is crucial for methods that detect SCAs based on their

P-values. If the FWER is either too conservative or too

liberal, the P-value loses its intended meaning and does

not reflect the actual false positive rate. Thus, we can-

not control how many false positives are detected by

setting a P-value based threshold [25]. A large number

of simulated null data sets (under the null hypothesis

that no recurrent CNAs are present) were generated

based on the realistic model proposed in [9] and subse-

quently analyzed with SAIC; results are presented in

Table 1. Algorithm 2 was repeated 10,000 times, and the

observed FWER was estimated by the proportion of at

least one Uk, L (X) in X that was significant at α= 0.05

level [9]. Values of the observed FWER in Table 1

(0.0497) suggest that SAIC is almost perfect when com-

pared with slightly conservative values (0.0452) by sim-

ilar method [9].

We then assessed the detection power of SAIC as

compared to GISTIC. Based on the simulation model

proposed in [18], we generated 100 simulation data sets

under each combinatorial parameter setting, resulting in

a total of 1,900 simulation data sets, where each data set

consists of N= 40~ 80 samples and each sample con-

tains M= 5,000 probes. To replicate the effect of inevit-

able normal cell contamination [18], the copy numbers

at every probes are simulated by a mixture of normal

and tumor genomes, where the normal cell fraction λ is

randomly drawn from a normal distribution N μλ; σλð Þ
with μλ and σλ being the mean and standard deviation

of normal cell fraction in the sample. Each sample con-

tains two sporadic CNA regions, one deletion and one

amplification randomly drawn from integer sets {0, 1}

and {3, 4,. . .,8}, respectively. Each data set contains two

recurrent CNA regions that are contributed from a frac-

tion of samples according to a specified frequency ω,

one deletion and one amplification similarly designed

as aforementioned. The length of both sporadic and
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recurrent CNA regions is randomly assigned from 150 to

250 probes, realistically reflecting the estimated back-

ground rate of focal CNAs in a typical cancer sample gen-

ome [1]. To equally assess the power in detecting deletion

or amplification SCAs, we calculate the detection power

of SAIC or GISTIC as the rate of successfully detecting

inserted, deleted or amplified SCAs across 100 data sets.

Table 2 summarizes the comparative detection power of

SAIC and GISTIC for a total of 19 parameter settings

across 1,900 data sets. These comparative experimental

results consistently show that SAIC outperforms GISTIC

with significantly increased detection power in 18 out of

19 simulations.

We further assessed the overall performance of

SAIC, measured by both sensitivity and specificity via

ROC curves, as compared with the four peer methods

(GISTIC, STAC, KC-SMART, CMDS). Based on the

modified benchmark model proposed in [24], we gener-

ated 100 simulation data sets under each combinatorial

parameter setting, where each data set consists of N= 50

samples and each sample contains M= 5,000 probes.

The log-ratios at every probe are simulated by a mixture

Figure 2 Schematic flowchart of combined SAIC algorithms 1 and 2.
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of normal and tumor genomes, with the normal cell

fraction λ being randomly drawn from a uniform distri-

bution U 0:2; 0:8ð Þ . Zero-mean Gaussian noise is then

added to each sample with three levels of standard devi-

ation σ randomly drawn from uniform distributions

U 0:2; 0:4ð Þ , U 0:4; 0:6ð Þ , and U 0:6; 0:8ð Þ . To make the

simulations more realistic, for each simulated sample

genome, we insert 2 to 10 randomly located background

CNA regions with the lengths varying from 10 to 50

probes. There are three ‘amplification’ (L= 30, 20, 10)

and one ‘deletion’ (L= 20) ground truth SCAs embedded

in each of the simulation data sets with a baseline fre-

quency ω= 0.1. The copy numbers associated with amp-

lification SCAs are 3, 4 and 5, and deletion SCAs are 0

and 1. In our simulation software, we use two para-

meters βL and βω to modify the length and frequency of

these SCAs. Other parameter settings include θρ= 0.75,

θamplification= 0.1 and θdeletion=−0.1 (default setting by

GISTIC and CBS) for defining CNAs probes and units.

Based on the estimated true positive rate (TPR) and cor-

responding FPR at different significance levels, Figure 3

presents ROC curves of SAIC and peer methods derived

from the simulation studies. These comparative experi-

mental results consistently show that SAIC outperforms

the peer methods in terms of larger areas Az under the

ROC curves or increased sensitivity at low FPR. More

simulation studies are given in Additional file 1, where

we report the power in detecting the boundaries of

SCAs by these methods, and once again, showing out-

performance of SAIC as compared to the peer methods

[3,14].

Application to four real cancer copy number data sets

We applied SAIC to four real cancer copy number data

sets and identified many SCAs that encompass estab-

lished or potentially novel cancer ‘driver’ genes. The data

sets are from ovarian cancer [26,27], prostate cancer

[8,18], lung adenocarcinoma [1,7], and glioblastoma

[1,3]. Due to their distinct biological functions in cancer

development, SAIC analyzes separately chromosomes 1–

22 and chromosome X/Y. To account for the different

background CNA rates across chromosomes, we identify

SCAs by performing SAIC on individual chromosomes.

Other parameter settings include T= 1000 and α= 0.05

(theoretical significance level or FPR/FWER). To provide

a somewhat independent verification, we compared the

SCAs detected by SAIC with what reproduced by GISTIC

on lung adenocarcinoma and glioblastoma data sets that

have been previously reported [3,7].

Results on the ovarian cancer data set

Our in-house ovarian cancer data set consists of N= 63

tumor samples [26-28]. Copy number signals were

acquired using the Affymetrix Human Mapping 250 K

Sty SNP Array platform [1]. Each sample contains a total

of 238,230 probes across the whole genome. Other algo-

rithm parameter settings include θρ= 0.95, θamplification=

0.263 (2.4 copies) and θdeletion=−0.322 (1.6 copies) [14].

The genome-wide landscapes (via -log10 P) of recurrent

or sporadic CNAs observed in the data sets are given in

Figure 4, where amplifications and deletions are separ-

ately shown (left and right sides). SAIC detected several

SCAs (both amplification and deletion), many of which

are biologically plausible and include known oncogenes

(e.g., KRAS, CCNE1 and CCND2) and tumor suppressor

genes (e.g., CDKN2A and CDKN2B) [26,27,29,30]. Full

lists of the genes covered by these SCAs are given in

Additional file 2 (ST 2). SAIC also identified many other

cancer driver genes within individual chromosomes (ST 3),

such as SKIL, CDK4, PIK3CA, PTEN, FGD4, FGFR1.

Results on the metastatic prostate cancer dataset

Our in-house prostate cancer data set consists of N= 55

clustered metastatic tumor samples, obtained from 13

prostate cancer patients. Copy number signals were

acquired using Affymetrix Genome-Wide Human SNP

Array 6.0 [8,18]. Each sample contains a total of

1,868,857 probes across the whole genome. To discount

the potential bias due to imbalanced subject-cluster sam-

pling [8], we chose to analyze the N= 13 representative

Table 2 Power to detect SCAs by SAIC and GISTIC in

simulation studies

N=60, ω=0.2, μλ=0.6, σλ = 0.15 0.2 0.25 0.3 0.35

GISTIC 89% 86% 79% 74% 72%

SAIC 96% 94% 86% 86% 82%

N= 60, ω= 0.2, σλ= 0.25, μλ = 0.4 0.5 0.6 0.7 0.8

GISTIC 83% 81% 82% 72% 79%

SAIC 93% 91% 87% 79% 74%

ω= 0.2, σλ= 0.25, μλ= 0.6, N= 40 50 60 70 80

GISTIC 58% 73% 79% 86% 89%

SAIC 65% 83% 87% 93% 94%

N= 60, σλ= 0.25, μλ= 0.6, ω = 0.1 0.15 0.2 0.25

GISTIC 30% 58% 80% 92%

SAIC 37% 72% 87% 97%

Table 1 Empirical type 1 error rate for simulated data

sets under the null hypothesis

Null simulation model Empirical FWER
at α = 0.05 level

Copy number data 0.0488

Clumped copy number data (25%) 0.0500

Clumped copy number data (50%) 0.0493

Clumped copy number data (75%) 0.0505
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samples and to detect global recurrent CNAs by SAIC.

Other algorithm parameter settings include θρ= 0.95,

θamplification= 0.263 and θdeletion=−0.322, the same as

used in analyzing ovarian cancer data. The genome-wide

landscape of recurrent or sporadic CNAs observed in

metastatic prostate cancer data is given in Figure 5,

where SAIC detected 15 amplification SCAs (318 genes)

and 21 deletion SCAs (756genes). Full list of the

genes covered by these SCAs are given in Additional

file 3 (ST 4). Many of these genes are cancer related

(e.g., EGFR, BRCA2, TP53, ATBF1, MYC and RB1). In

individual chromosome analysis of the data set, SAIC

Figure 3 Comparative performance of SAIC and four peer methods (STAC, GISTIC, KC-SMART, CMDS) on realistic simulation data sets,

quantified by the partial ROC curves (north-west) (TPR: true positive rate; FPR: false positive rate). The results are the averages calculated

based on 100 replications under each of various parameter settings.

Figure 4 Genome-wide landscapes of recurrent or sporadic CNAs derived from 63 ovarian cancer samples. Amplifications and deletions

are displayed on the left and right sides, separately, where dashed lines correspond to the significance level α = 0.05 for calling SCAs.

Yuan et al. BMC Genomics 2012, 13:342 Page 8 of 14

http://www.biomedcentral.com/1471-2164/13/342



identified many other SCAs involved with cancer driver

genes, such as PTEN (ST 5).

Results on the lung adenocarcinoma and

glioblastoma datasets

The lung adenocarcinoma data set consists of N= 371

tumor samples, publicly available at http://www.broad.

mit.edu/cancer/pub/tsp [7]. Copy number signals were

acquired using Affymetrix 250K Sty SNP Array, where

each sample contains a total of 216,327 probes across

the whole genome [7]. To assure the general compar-

ability of the results produced by SAIC and GISTIC, we

adopted similar algorithm parameter settings used by

GISTIC for detecting focal SCAs: θamplification= 0.848

and θdeletion=−1.15, in addition to θρ= 0.9. The genome-

wide landscape of recurrent or sporadic CNAs observed

in lung adenocarcinoma data is given in Figure 6, where

SAIC detected 23 amplification SCAs and 26 deletion

SCAs (after combining some of 98 recurrent CNAs

within the same cytobands). Full list of the genes cov-

ered by these SCAs is given in Additional file 4 (ST 6).

The Venn diagram in Figure 7 reveals the numbers of

common and distinctive SCAs detected by SAIC and

GISTIC. It can be seen that SAIC successfully detected

most (87% amplification and 75% deletion regions) of

the SCAs that have been detected by GISTIC, while also

revealing many additional SCAs (10 amplification and

23 deletion regions) [7]. In addition, the result from

within-chromosome analysis of the data set is listed in

Additional file 4 (ST 7).

The glioblastoma data set consists of N= 141 tumor

samples, publicly available at http://www.broad.mit.edu/

cancer/pub/GISTIC, where each sample contains a total

of 115,593 probes across the whole genome [3]. Once

again, we adopted the similar algorithm parameter set-

tings used by GISTIC for detecting focal SCAs. The

genome-wide landscape of recurrent or sporadic CNAs

observed in glioblastoma data is given in Figure 8, where

SAIC detected 15 amplification SCAs and 30 deletion

SCAs (after combining some of 67 recurrent CNAs

within the same cytobands). Full list of the genes cov-

ered by these SCAs are given in Additional file 5 (ST 8).

The Venn diagram in Figure 9 reveals the numbers of

common and distinctive SCAs detected by SAIC and

GISTIC. It can be seen that SAIC successfully detected

most (88% amplification and 75% deletion regions) of

the SCAs that have been detected by GISTIC, while it

also revealed many additional SCAs (8 amplification and

27 deletion regions) [3]. In addition, the result from

within-chromosome analysis of the data set is listed in

Additional file 5 (ST 9).

The common SCAs regions (e.g., 7p11.2, 12p12.1,

9p21.3, etc.) are highly consistent with previous reports,

and largely encompass well-known oncogenes or tumor

suppressor genes. For example, EGFR (epidermal growth

factor receptor) is an oncogene within 7p11.2 whose

Figure 5 Genome-wide landscapes of recurrent or sporadic CNAs derived from 13 metastatic prostate cancer samples. Amplifications

and deletions are displayed on the left and right sides, separately, where dashed lines correspond to the significance level α= 0.05 for

calling SCAs.
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mutations or amplifications have been shown to con-

tribute to uncontrolled cell division (a predisposition for

cancer) [31]. Many additional SCAs regions (e.g., 8p23.2,

21q22.2) contain or adjacent to disease-related genes (e.g.,

CSMD1 and TMPRSS3) and may warrant further study.

Discussion
SAIC is similar to many peer methods in that it assesses

statistical significance of SCAs using a permutation-

based null distribution [9,12,14-16]. However, in contrast

to the existing procedures, the CNA units used by SAIC

preserve the essential correlation structures of serial

probes whose estimated average correlation coefficient

can be as high as 0.985 [32]. Moreover, by automatically

adjusting P-values for multiple comparisons [33,34] and

iteratively re-estimating the null distribution exclusive of

detected SCAs [9], SAIC can preserve the intrinsic false

positive rate, without compromising detection power

to resort to sometimes overly conservative schemes

[3,14-16]. Theoretic analysis and extensive experimental

results show that SAIC preserves both type 1 error and

detection power, see Tables 1–2. Furthermore, the novel

concept of CNA unit and associated scoring and permuta-

tion scheme neatly parallels many considerations in the

revised GISTIC2.0 [14], for example, serial probes covering

driver events should be more highly correlated than probes

covering only passengers and thus more likely to identify

the target genes. The flexible length-adaptive significance

Figure 6 Genome-wide landscapes of recurrent or sporadic CNAs derived from 371 lung adenocarcinoma samples. Amplifications and

deletions are displayed on the left and right sides, separately, where dashed lines correspond to the significance level α = 0.05 for calling SCAs.

Figure 7 Venn diagram on the numbers of common and distinct focal SCAs detected by SAIC and GISTIC in the lung

adenocarcinoma samples.
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assessment of CNA units via Eq. (4) automatically accounts

for distinct background rates according to their lengths

and thus more likely to detect independent SCAs.

As for the θamplification and θdeletion parameters in the

SAIC algorithm, there is no general guideline about how

to select their values [14], since different types of cancers

usually have different rates and magnitudes of background

CNAs [14,26,35]. In addition, various degrees of normal

cell contamination [18] and intratumor heterogeneity

[35,36] occur in many samples and these further compli-

cate the selection of parameter values. Practically, lower

thresholds were used to define broad (arm-level) CNAs

while higher thresholds were used to define focal CNAs

[3,14]. A newly proposed strategy is to apply joint

magnitude-length thresholds [14] and to correct normal

cell contamination using BACOM [18]. Since our main

objective here is to identify focal CNAs, we have largely

adopted the same strategy used in [3,14], i.e., we used rela-

tively higher thresholds to define focal CNAs for subse-

quent analyses. Specifically, based on the observation that

the magnitude of CNAs in ovarian and prostate cancers is

relatively low, we used relatively lower and commonly

used thresholds (2.0 ± 0.4), i.e., 2.4 copies for amplification

and 1.6 copies for deletion. In contrast, on the datasets of

lung adenocarcinoma and glioblastoma, we applied rela-

tively higher thresholds (2.0 + 1.6, 2.0–1.1), i.e., 3.6 copies

for amplification and 0.9 copies for deletion, that are simi-

lar to the thresholds used by GISTIC algorithms [3,14].

Figure 8 Genome-wide landscapes of recurrent or sporadic CNAs derived from 141 glioblastoma samples. Amplifications and deletions

are displayed on the left and right sides, separately, where dashed lines correspond to the significance level α = 0.05 for calling SCAs.

Figure 9 Venn diagram on the numbers of common and distinct focal SCAs detected by SAIC and GISTIC in the glioblastoma samples.
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Similar situation occurs to the selection of θρ in defin-

ing CNA units [9]. Lower values of θρ often produce

longer CNA units while higher values of θρ often pro-

duce shorter CNA units. It has been reported that the

average successive probe correlation of the segmented

data can be as high as 0.985 [9,32]. In our experience

in analyzing real cancer datasets, a value of θρ taking

between 0.7 and 0.95 would be a suitable choice.

It is important to note that the general conclusion on

the relative performance of our SAIC and peer methods,

at least based on the extensive simulation studies, remains

largely true. We have used the same parameter values in

all methods so that a fair comparison on their relative per-

formances can be assured. Based on our analysis of real

datasets using current parameter settings, it appears that

SAIC performs well when compared to peer methods. In

addition, the results of extensive simulation studies, per-

formed under a variety of probe correlation schemes,

show that SAIC preserves well the expected type 1 error,

even when the probes follow non-stationary correlation

structures similar to those found in real data [9].

SAIC currently can perform either genome-wide (except

X/Y chromosome due to its distinct biological role) or

chromosome-based CNA unit permutations. In the appli-

cation of SAIC to real cancer data sets, we performed

genome-wide, autosome-based, and X/Y-chromosome-

based permutations. The combined results from using dif-

ferent permutation schemes contain more SCAs that may

involve novel cancer driver genes. By exploiting the novel

concepts of CNA probe, CNA unit, and multiscale permu-

tation, experimental results show that SAIC can accurately

detect the boundaries of SCAs with different lengths, see

Additional file 1.

We have also performed simulation studies (data not

shown) that indicate that detection power of SAIC can be

further improved by correcting for normal tissue conta-

mination using a recently developed BACOM method [18].

However, the current version of BACOM requires paired

tumor-normal sampling, availability of two-channel signals,

and existence of deletion CNAs. Thus, we leave the com-

bination of SAIC and BACOM as an extension for future

research.

Conclusions
We have presented a novel approach to accurately detect

significant recurrent CNAs in cancer genomes which

is both statistically-principled and which, as illustrated

by real examples, can be very effective at revealing SCAs

within data. The concepts of CNA unit and iterative per-

mutation are relatively simple to interpret, yet still con-

vey considerable novel mathematical insights into data

structure and bias correction.

It is worth noting that there are three novel fea-

tures associated with SAIC. First, we define CNA unit

to capture the intrinsic correlation structure in copy

number data. Second, we perform iterative SCA-exclusive

permutation to produce an unbiased null distribution.

Third, we apply SAIC to real cancer copy number data-

sets and detect most previously reported SCAs covering

well-known cancer genes.

Two important pending issues with the present algo-

rithm are the expected significant impact of intratumor

heterogeneity and normal cell contamination [18,35,36].

We are currently investigating applications of BACOM

based normal cell correction [18] and hierarchical

bi-clustering that optimize critical steps such as the

selection of various thresholds and identification of

subtype-specific copy number alterations.

Appendix A
Proof of theorem 1. Let α’ be the significance level used

in each iteration to detect SCAs in Algorithm 2. Under

the truth converging null distribution, we have

Pr SCAðrÞ¼ 0yes0 SCAðr�1Þ¼ 0yes0
�

�

�

¼ α0; ðA�1Þ
�

for iterations r ¼ 1; 2; . . . ;1 since SAIC assesses the

‘new’ SCAs at the rth iteration conditional on having

found the ‘existing’ SCAs at the (r-1)th iteration.

Considering

Pr SCAð2Þ¼ 0yes0
� �

¼ Pr SCAð2Þ¼ 0yes0; SCA
ð1Þ
¼ 0yes0

� �

¼ Pr SCAð2Þ¼ 0yes0 SCAð1Þ¼ 0yes0
�

�

��

� Pr SCAð1Þ¼ 0yes0
� �

¼ α0 � α0 ¼ α02:

ðA�2Þ

Therefore for the rth iteration,

Pr SCAðrÞ¼ 0yes0
� �

¼ Pr SCAðrÞ¼ 0yes0; SCA
ðr�1Þ

¼ 0yes0; . . . ; SCAð1Þ¼ 0yes0
� �

¼ Pr SCAðrÞ¼ 0yes0 SCAðr�1Þ¼ 0yes0; SCA
ðr�2Þ

¼ 0yes0; . . . ;
�

�

�

�

SCAð1Þ¼ 0yes0
�

� Pr SCAðr�1Þ¼ 0yes0 SCAðr�2Þ¼ 0yes0;
�

�

�

SCAðr�3Þ¼ 0yes0; . . . ; SCAð1Þ¼ 0yes
�

� . . .

� Pr SCAð2Þ¼ 0yes0 SCAð1Þ¼ 0yes0
�

�

�

Pr SCAð1Þ¼ 0yes0
� ��

¼ Pr SCAðrÞ¼ 0yes0 SCAðr�1Þ¼ 0yes0
�

�

��

� Pr SCAðr�1Þ¼ 0yes0 SCAðr�2Þ¼ 0yes0
�

�

�

� . . .
�

� Pr SCAð2Þ¼ 0yes0 SCAð1Þ¼ 0yes0
�

�

�

Pr SCAð1Þ¼ 0yes0
� ��

¼ α0 � α0 � α0⋯α0 ¼ α0r: ðA�3Þ
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The rationale behind the above derivation is that

SCAðr�1Þ¼ 0yes0 already implies SCAðr�2Þ¼ 0yes0; . . . ;

SCAð1Þ¼ 0yes0. In other words, we have

Pr SCAðrÞ¼ 0yes0
� �

¼Pr SCAðrÞ¼ 0yes0; SCA
ðr�1Þ

¼ 0yes0; . . . ;
�

SCAð1Þ¼ 0yes0
�

and

Pr SCAðrÞ¼ 0yes0 SCAðr�1Þ¼ 0yes0; SCA
ðr�2Þ

¼ 0yes0; . . . ;
�

�

�

�

SCAð1Þ¼ 0yes0
�

¼ Pr SCAðrÞ¼ 0yes0 SCAðr�1Þ¼ 0yes0
�

�

�

:
�

Let α be the targeted FPR, we have

α ¼
X

1

r¼1

Pr SCAðrÞ¼ 0yes0
� �

¼ α0 þ α02 þ . . .þ α0r þ . . .

¼
α0

1� α0
; α0 < 1ð Þ:

Accordingly, we have α0 ¼ α= 1þ αð Þ: ðA�4Þ

Additional files

Additional file 1: Table S1. Comparative detection rates of ground

truth SCA boundaries by STAC, GISTIC, KC-SMART, CMDS, and SAIC for

simulation data sets under various model parameter settings. The results

are calculated based on 100 replications for each of the parameter

settings and using p-value (or q-value) cutoff threshold <0.05.

Additional file 2: Table S2 and Table S3. Details about the implicated

SCAs and full list of genes covered by these SCAs, derived from the

ovarian cancer data set.

Additional file 3: Table S4 and Table S5. Details about the implicated

SCAs and full list of genes covered by these SCAs, derived from the

prostate cancer data set.

Additional file 4: Table 6 and Suplementary Table 7. Details about

the implicated SCAs and full list of genes covered by these SCAs, derived

from the lung adenocarcinoma data set.

Additional file 5: Table S8 and Table S9. Details about the implicated

SCAs and full list of genes covered by these SCAs, derived from the

glioblastoma data set.
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