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ABSTRACT

Motivation: Clinical diseases are characterized by distinct
phenotypes. To identify disease genes is to elucidate the gene–
phenotype relationships. Mutations in functionally related genes
may result in similar phenotypes. It is reasonable to predict disease-
causing genes by integrating phenotypic data and genomic data.
Some genetic diseases are genetically or phenotypically similar.
They may share the common pathogenetic mechanisms. Identifying
the relationship between diseases will facilitate better understanding
of the pathogenetic mechanism of diseases.
Results: In this article, we constructed a heterogeneous network
by connecting the gene network and phenotype network using the
phenotype–gene relationship information from the OMIM database.
We extended the random walk with restart algorithm to the
heterogeneous network. The algorithm prioritizes the genes and
phenotypes simultaneously. We use leave-one-out cross-validation
to evaluate the ability of finding the gene–phenotype relationship.
Results showed improved performance than previous works. We
also used the algorithm to disclose hidden disease associations
that cannot be found by gene network or phenotype network alone.
We identified 18 hidden disease associations, most of which were
supported by literature evidence.
Availability: The MATLAB code of the program is available at
http://www3.ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip
Contact: yongjin.li@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Elucidating the inherited basis of human disease involves
linking genomic variation to clinical phenotype. Establishing this
relationship, however, can be challenging for several reasons, the
pleiotropy of genes, the genetic heterogeneity of diseases and the
limited number of cases (Giallourakis et al., 2005).

Most current efforts at disease–gene identification involving
linkage analysis and association studies result in a genomic interval
of 0.5–10 cM, containing up to several hundreds of genes (Anne
et al., 2002; Botstein and Risch, 2003). These candidate genes
need to be further investigated to identify disease-causing genes.
A number of methods have been proposed to prioritize candidate
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genes based on different kinds of genomic data, such as sequence-
based features (Adie et al., 2006; López-Bigas and Ouzounis, 2004;
Turner et al., 2003), functional annotation data (Freudenberg and
Propping, 2002; Perez-Iratxeta et al., 2002) and protein interaction
data (Köhler et al., 2008; Xu and Li, 2006).

These algorithms typically prioritize candidate genes based on
their similarity to known disease genes. Though these methods
perform well, they still have some limitations. The first limitation
comes from the incompleteness and noise of genomic data sources.
Some integration algorithms have been proposed to solve this
problem (Aerts et al., 2006; Linghu et al., 2009; Li and Patra,
2010). The other problem is the ambiguous boundary between
different diseases. Clinical disease often encompass a variety of
phenotypes and biological mechanisms, making it difficult to define
the boundary between diseases. Traditionally, diseases have been
categorized on the basis of pathophysiology or on etiology, but often
these characterizations break down and more ad hoc approaches
aroused, resulting in the celebrated debate between splitters and
lumpers (McKusick, 1969). The ambiguous boundary between
different diseases prevents the direct inference of gene–disease
association. For example, the Leber’s congenital amaurosis (LCA)
turns out to be highly heterogeneous on a molecular basis, but
these molecular subtypes appear clinically homogeneous (Traboulsi
et al., 2006). Using all the LCA genes to prioritize a list of genes
responsible to a subtype of LCA may not be correct.

Most recently, two algorithms have been proposed to identify
gene–phenotype relationship instead of finding the gene–disease
relationship directly (Lage et al., 2007; Wu et al., 2008). Their
assumption is that similar phenotypes are caused by functionally
related genes (Oti and Brunner, 2007). Lage et al. (2007) assign
candidate gene to protein complexes and then rank these complexes
using phenotypic data. Finally, candidate genes are ranked based
on the phenotypes associated with the protein complexes. Wu
et al. (2008) employ the regression model, named CIPHER, to
quantify the concordance between the candidate gene and the target
phenotype. Candidate genes are then ranked by the concordance
score. CIPHER performed better than Lage et al. (2007) on the
overlapped benchmark data (Wu et al., 2008).

In this work, we propose a RWRH (random walk with restart
on heterogeneous network) algorithm to infer the gene–phenotype
relationship. We connect the gene network and phenotype network
by gene–phenotype relationship and constructed a heterogeneous
network. Then, we extend the random walk with restart (RWR)
algorithm to the heterogeneous network, using the target phenotype
and corresponding disease genes as seed nodes. In the prioritization
of candidate genes, we attempt to make better use of the
phenotypic data. On benchmark dataset the proposed algorithm
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performed better than Wu et al. (2008). We also compared with
RWR on gene network only (Köhler et al., 2008), and achieved
much higher AUC (area under the curve) value.

The RWRH algorithm is inspired by the co-ranking framework
(Zhou et al., 2007). It ranks phenotypes and genes at the same time.
If we set seed nodes as genes and phenotypes associated with one
disease, the top ranked phenotype is selected as the most similar
phenotype to the query disease. Therefore the disease associate with
this phenotype should be the most similar to the query disease. We
use this algorithm to disclose the relationship between diseases and
found 18 disease associations that cannot be found by gene network
or phenotype network alone. Most of these disease associations were
supported by various types of evidence.

2 METHODS
In this section, we first introduce various data source used in this work. And
then we give detailed description of heterogeneous network construction
method and propose the algorithm of RWRH.

2.1 Data source
The protein–protein interaction (PPI) data were derived from Human Protein
Reference Database (HPRD; Peri et al., 2003). HPRD contains manually
curated scientific information pertaining to the biology of most of the
human proteins. Disease-related phenotype can be interpreted as a textual
description of a disease’s detectable outward manifestations. Same as
previous works (van Driel et al., 2006; Wu et al., 2008), a phenotype entry
was defined as an MIM record. We excluded the records with the prefix
‘∗’ and ‘∧’. Because the prefix ‘∗’ refers to the record of disease gene, and
‘∧’ refers to the obsoleted record. The phenotypic similarity was calculated
using MimMiner (van Driel et al., 2006). Gene–phenotype relationship were
obtained from the OMIM database (Hamosh et al., 2005), extracted using
BioMart (Smedley et al., 2009). Disease category information was taken
from a manual classification concerning the physiological system affected
(Goh et al., 2007).

2.2 Construction of the heterogeneous network
Three types of data sources are represented by three networks, namely
gene network, phenotype network and gene–phenotype network. In the gene
network, two genes are connected if the proteins they encode interact with
each other according to the HPRD database. The phenotype network is a
k nearest neighbor (KNN) graph presentation of the phenotypic similarity
matrix, which is calculated using MimMiner (van Driel et al., 2006). Each
phenotype entity is connected with its five nearest neighbors, and the edge
is weighted by the corresponding similarity score. The gene–phenotype
relationship is represented as a bipartite graph. Edges in the bipartite graph
connect the phenotype entity with the relevant genes. We construct the
heterogeneous network by connecting the gene network and phenotype
network using the bipartite graph. A simple example of the heterogeneous
network is illustrated in Figure 1.

Suppose AG(n×n), AP(m×m) and B(n×m) are adjacency matrix for gene
network, phenotype network and the bipartite graph, respectively, where n
and m represent the number of genes and phenotype entities. The adjacency

matrix of the heterogeneous network can be represented as A=
[

AG B
BT AP

]
,

where BT represents the transpose of B.

2.3 RWRH
RWR is a ranking algorithm (Köhler et al., 2008). It simulates a random
walker, either starts on a seed node or on a set of seed nodes and moves
to its immediate neighbors randomly at each step. Finally, all the nodes in

Fig. 1. Illustration of the heterogeneous network. The upper subnetwork
is phenotype network, and the lower network is gene network. They are
connected by the gene–phenotype relationship. This figure is inspired by Wu
et al. (2008).

the graph are ranked by the probability of the random walker reaching this
node. Let p0 be the initial probability vector and ps be a vector in which the
i-th element holds the probability of finding the random walker at node i at
step s. The probability vector at step s+1 can be given by

ps+1 = (1−γ)MT ps +γp0, (1)

where M is the transition matrix of the graph. Mij is the transition probability
from node i to node j. The calculation of M is described later. The parameter
γ ∈ (0,1) is the restart probability. At each step, the random walker can return
to seed nodes with probability γ .

After some steps, the probability will reach a steady state. This is
obtained by performing the iteration until the difference between ps and ps+1

(measured by the L1 norm) fall below 10−10. The steady-state probability
p∞ gives a measure of proximity to seed nodes. If p∞(i)>p∞(j), then node
i is more proximate to seed nodes than node j.

Let M =
[

MG MGP

MPG MP

]
be the transition matrix of the heterogeneous

network, where MG and MP are intra-subnetwork transition matrix and MGP ,
MPG are inter-subnetwork transition matrix. Let λ be the jumping probability,
that is the probability of the random walker jumping from gene network to
phenotype network or vise versa. It regulates the reinforcement between two
subnetworks. If λ=0, the genes and phenotypes are ranked independently.
As seen from Figure 1, not all the genes are connected to phenotypes. When
the random walker is in the gene network, he can jump to the phenotype
network or stay in the gene network. If he is on the node connecting to
phenotypes, he will jump to the phenotype network with probability λ, or
move to other nodes in gene network with probability 1−λ. Otherwise, he
cannot jump to the phenotype network and will only move to other nodes in
the gene network. The transition probability from gi to pj can be described as

(MGP)i,j =p(pj|gi)=
{

λBij/
∑

j Bij, if
∑

j Bij �=0
0, otherwise.

(2)

Similarly, the transition probability from pi to gj can be described as

(MPG)i,j =p(gj|pi)=
{

λBji/
∑

j Bji, if
∑

j Bji �=0
0, otherwise.

(3)

The element of MG at i-th row and j-th column is p(gj|gi), the probability
of the random walker transition from gi to gj . It is defined as

(MG)i,j =
{

(AG)i,j/
∑

j(AG)i,j, if
∑

j Bij =0
(1−λ)(AG)i,j/

∑
j(AG)i,j, otherwise.

(4)
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The element of MP at i-th row and j-th column is the probability of the
random walker transition from pi to pj . It is defined as

(MP)i,j =
{

(AP)i,j/
∑

j(AP)i,j, if
∑

j Bji =0
(1−λ)(AP)i,j/

∑
j(AP)i,j, otherwise.

(5)

Let u0 and v0 represent the initial probability of gene network and
phenotype network, respectively. The initial probability of gene network
u0 is constructed such that equal probabilities are assigned to all the seed
nodes in the gene network, with the sum of the probabilities equal to 1.
This is equivalent to letting the random walker begin from each of the seed
nodes with equal probability. Similarly, the initial probability of phenotype
network v0 is given. The initial probability vector for heterogeneous network

is represented as p0 =
[

(1−η)u0

ηv0

]
. The parameter η∈ (0,1) is used to weight

the importance of each subnetwork. If η is 0.5, two subnetworks are equally
weighted. If η is above 0.5, the random walker prefer to return to the
phenotypic seed nodes; therefore, the phenotype is given more importance.

We plunge the transition matrix M and initial probability p0 into the
iterative equation [Equation (1)]. After some steps, the steady probability

p∞ =
[

(1−η)u∞
ηv∞

]
is obtained. Then genes and phenotypes are ranked based

on the steady probability u∞ and v∞, respectively.

3 EXPERIMENTS AND RESULTS
In this section, we first compare the proposed RWRH algorithm
with CIPHER (Wu et al., 2008). Then, we investigate the effect of
parameters. After that, we compared the algorithm with RWR on
gene network only (Köhler et al., 2008). Finally, we identified some
hidden disease associations.

3.1 Comparison with CIPHER
To compare with CIPHER (Wu et al., 2008), we used the same data
and the same evaluation measures as CIPHER. The gene network
contains 34 364 interactions between 8919 genes. The phenotypic
similarity matrix between 5080 phenotype entities are calculated
using MimMiner (van Driel et al., 2006). There are 1428 gene–
phenotype links between 937 genes and 1216 phenotype entities.

We use leave-one-out cross-validation to examine how well the
algorithm recovers the gene–phenotype relationship. In each round
of validation, we remove a gene–phenotype link. The phenotype and
the rest of disease genes related to this phenotype are used as seed
nodes. We defined the candidate gene set as the held out disease gene
and the 99 nearest genes in the chromosome. We use the random
walk algorithm [Equation (1)] to rank the candidate genes. If the
held-out disease gene is ranked as top 1, we consider it a successful
prediction. We use the number of successful predictions as a measure
to compare different algorithms. We set γ =0.7, λ=η=0.5, and
successfully ranked 814 known disease genes as top 1. It is much
better than CIPHER. There were 709 and 765 success predictions
for CIPHER-SP and CIPHER-DN, respectively. The result is shown
as LOO1 in Table 1.

Some phenotypes already have experimental validated disease
genes, but no susceptible chromosomal locus has been newly found.
Therefore no candidate gene is available. In this case, genome-
wide scan is needed to find genes likely to be involved in the
phenotype. Similar to the above experiment, each time we remove
a known gene–phenotype link and use the phenotype and the rest
of disease genes associated with this phenotype as seed nodes. In
this experiment, all the genes in the gene network except seed genes

Table 1. In comparison with CIPHER

Algorithms LOO1 LOO2 ab initio

RWRH 814 245 201
CIPHER-SP 709 153 140
CIPHER-DN 765 165 157

LOO1, locus and several related genes are known; LOO2, locus unknown, but no related
genes are known; ab initio, locus unknown, no related genes are known, but phenotype
is known.

are used as candidate genes. Finally, 245 disease genes are ranked
top 1. In contrast, only 153 disease genes have been ranked at the
top by CIPHER-SP and 165 disease genes by CIPHER-DN (LOO2
in Table 1).

The genetic mechanism of some phenotypes is totally unknown.
No known disease genes or suspectable chromosomal locus have
been found related to this kind of disease phenotype. Identifying
causative genes for this kind of phenotype from the whole-genome
is called ab initio prediction (Wu et al., 2008). In the gene–phenotype
bipartite graph, 1216 phenotype entities are connected to 973 disease
genes. For each of these 1216 phenotype entities, we remove all the
links from this phenotype to disease genes and use this phenotype
entity as seed node to run the random walk algorithm [Equation (1)].
If one of the disease genes associated to the phenotype is ranked
top 1 among all 8919 genes in the gene network, we consider it a
successful prediction. As seen from Table 1, there are 201 successful
predictions by our algorithm, while CIPHER-SP and CIPHER-DN
successfully predicted 140 and 157 cases, respectively.

3.2 Effect of parameters
There are three parameters in our algorithm γ , λ and η. The
parameter γ is the restart probability. It has been shown that this
parameter only has slight effect on the results (Köhler et al., 2008).
In this work, we fix γ at 0.7.

The parameter λ is the jumping probability. It controls the
reinforcement between gene network and phenotype network. Large
λ introduce more mutual dependence of rankings between genes
and phenotypes. To investigate the effect of this parameter, we set
various values of λ ranging from 0.1 to 0.9. The performance of the
algorithm is measured using three measures mentioned in the above
section. Results are shown in Table 2. The performance is improved
with the increase in λ value. When λ ranges from 0.5 to 0.9, the
performance becomes stable. If the λ value is too big, the random
walker jumps between gene network and phenotype network based
on the structure of bipartite graph. But the topological structure
of gene network and phenotype network cannot be well utilized.
In the extreme case, if λ = 1, the random walker will not reach
any of the nodes outside the bipartite graph (nodes only in gene
network or phenotype network). Therefore, we suggest to select the
λ value from 0.5 to 0.9. The performance at λ < 0.5 is comparatively
poor, but still much better than CIPHER. Results suggest that the
RWRH algorithm successfully captures the mutually reinforcing
relationship between gene network and phenotype network.

The parameter η controls the impact of two kinds of seed nodes,
seed phenotypes and seed genes. If η is 0.5, two subnetworks are
equally weighted. If η is above 0.5, the random walker prefers to
return to the seed phenotypes; therefore, the structure of phenotype
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Table 2. Effect of λ value

λ LOO1 LOO2 ab initio

0.1 789 196 192
0.3 804 217 196
0.5 814 245 201
0.7 815 257 203
0.9 811 261 203

Table 3. Effect of η value

η LOO1 LOO2

0.1 808 239
0.3 813 241
0.5 814 245
0.7 817 242
0.9 820 244

network play a more important role in the prioritization of disease
genes. To find the effect of η value, we run the RWRH algorithm
with different η values, and calculate the first two measures using
leave-one-out cross-validation. As seen from Table 3, the algorithm
performs slightly better when η is above 0.5. It shows that phenotype
network should be given more importance.

3.3 Comparison with RWR on gene network only
To further highlight the importance of phenotype network, we
compared the performance of RWRH with RWR on gene network
only (Köhler et al., 2008). In RWR algorithm, for one phenotype,
at least two genes are required to perform leave-one-out cross-
validation. Therefore, in this experiment, only phenotypes associated
with at least two disease genes were considered. We obtained
168 phenotypes in total, associated with 470 disease genes.

For each disease gene, we defined the artificial linkage interval to
be the set of genes containing the first 99 genes located nearest
to the disease gene according to their genomic distance on the
same chromosome. We performed leave-one-out cross-validation
for each disorder. In each round of cross-validation, we held out
one disease gene and remove the link between this gene to the
phenotype entry. The rest disease genes and the phenotype entry
were used as seed nodes. The held-out gene and all the genes in
the artificial linkage are ranked by the RWRH algorithm. We use
the receiver operating characteristic (ROC) curve to compare two
algorithms, which plots the sensitivity versus 1−specificity subject
to the threshold separating the prediction classes (Aerts et al., 2006).
Sensitivity refers to the percentage of disease genes that were ranked
above a particular threshold. Specificity refers to the percentage
of non-disease genes ranked below this threshold. As shown in
Figure 2, the curve of RWRH algorithm is above RWR with
gene network only. It suggests that the RWRH algorithm obtained
both higher sensitivity and higher specificity; therefore, it is better
than RWR on gene network only. The AUC value of the RWRH
algorithm is 0.96, which is much higher than RWR on gene network
only (0.92).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Fig. 2. ROC curve of RWR and RWRH.

3.4 Predict new disease gene of Alzheimer’s disease
Alzheimer’s disease is the most common form of progressive
dementia in the elderly. It is a genetically heterogeneous
neurodegenerative disorder. There are 16 disease phenotypes (MIM
Record) for Alzheimer’s disease, 12 of which with prefix ‘%’. We
use the proposed RWRH algorithm to predict new disease genes
for these 12 phenotypes. The target phenotype is used as seed node
to run the RWRH algorithm. Top 5 ranked candidate genes have
been selected. Results are shown in Supplementary Table S1. Three
examples of the novel prediction are given below.

The first example is MIM 6 11 073 and the corresponding
suspectable region is on chromosome 8p12-q22. There are 241
candidate genes in this locus. The second ranked gene is PRKDC.
It encodes an enzyme, DNA-dependent protein kinase catalytic
subunit, also known as DNA-PKcs. Deficits in DNA-PKcs render
neurons vulnerable to adverse conditions of relevance to the
pathogenesis of neurodegenerative disorders such as Alzheimer’s
disease and stroke (Zhang et al., 2007).

MIM 6 08 907 describes the phenotype of late onset familial
Alzheimer’s disease. Wijsman et al. (2004) applied the Bayesian
Markov chain Monte Carlo (MCMC) linkage analysis methods to
an analysis of late-onset Alzheimer’s disease. They identified strong
evidence of a late-onsetAlzheimer’s disease locus on 19p13.2. There
are 199 genes in this region. The fourth ranked gene is LDLR
(low-density lipoprotein receptor). Its ligand ApoE is the major
genetic modifier of the age of onset of Alzheimer’s disease (Herz,
2009). The fifth ranked gene is PIN1. It has been identified as the
molecular partner of Tau and amyloid precursor protein (APP), the
key factors of Alzheimer’s disease (Takahashi et al., 2008).

MIM 6 09 636 describes the phenotype of early-onset familial
Alzheimer’s disease and the corresponding suspectable region
is 7q36. There are 87 genes in this region. The third ranked
gene is CDK5. It has been proposed that relative resistance to
phosphatases might be a common feature of CDK5 substrates and
could contribute to the hyperphosphorylation of CRMP2 and Tau
observed in Alzheimer’s disease (Cole et al., 2008).

3.5 Disclose hidden disease–disease associations
With the cumulated data in OMIM, people’s view of human
disease is being changed (Oti et al., 2008). Diseases sharing
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similar phenotypes may be related to dysfunction of a regulatory
network, such as a signaling pathway or a biochemical module,
as has been demonstrated for Noonan syndrome (MIM 1 63 950)
and related disorders (Gelb and Tartaglia, 2006). Therefore disease
association analysis is of great importance for our understanding of
the common physiology and pathophysiology of cellular networks
shared by diseases. Dysfunction in these common cellular networks
or pathways may lead to similar phenotypic consequences (Robinson
et al., 2008). Diseases are usually linked into a network for searching
of common pathogenetic mechanisms shared by similar diseases.
Some groups link diseases together based on their phenotype overlap
(van Driel et al., 2006; Oti and Brunner, 2007) or clinical diagnosis
records (Rzhetsky et al., 2007). This method has two limitations.
On the one hand, it may be affected by the standardization and
quantification of phenotypic description (Biesecker, 2005). On the
other hand, those disease–disease associations that can be easily
detected at the molecular level but not at the phenotypic level will
be missed. Some others try to find the genetic overlap between
diseases. Diseases are linked together if they share disease genes
(Goh et al., 2007) or metabolite (Lee et al., 2008), or even biological
pathways (Li and Agarwal, 2009). This method is limited by the
relative paucity of knowledge of disease-causing genes and the
incompleteness and noise of genomic data.

As described in Section 2.3, the RWRH algorithm ranks genes
and phenotypes at the same time. In this section, we use the RWRH
algorithm to identify disease associations. The disease category and
disease ID are obtained from Goh et al. (2007). Each disease is
represented as a group of disease phenotypes (MIM Record). If
we start from the phenotypes and genes associated to a disease,
phenotypes of the most relevant disease should be ranked at the
top. Therefore the association between diseases is found. Since the
RWRH algorithm successfully captures the mutually reinforcing
relationship between gene network and phenotype network, it may
find some hidden associations that cannot be found by gene network
or phenotype network alone. We try to disclose the hidden disease
associations using the following procedures. In the first step, for
one disease di, we set the seed nodes as the disease-associated
phenotypes and disease genes. Other phenotypes are ranked based
on the ranking score, i.e. the steady probability in v∞ described in
Section 2.3. In the second step, the top ranked phenotype is selected
out. Subsequently, if this phenotype is not linked to any phenotype
of di in the phenotype network, we find the disease dj , the top-ranked
phenotype it belongs to. Finally, the association between di and dj
is found, and there is no overlap phenotype between di and dj .

We found 122 disease associations sharing no phenotype. We
further filtered out the disease association pairs sharing disease
genes. There are 18 disease associations left, which are shown
in Supplementary Table S2. Among these 18 disease associations,
12 disease pairs have been classified in the same disease class.
Especially eight of these disease pairs are metabolism diseases.
In the human disease network constructed by Goh et al. (2007),
metabolism diseases were not well connected. We can disclose these
relationship, because in the RWRH algorithm phenotype similarity
information and gene interaction information are complementarily
used. We also found two disease pairs, which are actually subtypes
of the same disease, but classified into different disease classes.
Diseases 1130 and 72 are two subtypes of oculocutaneous albinism.
One is classified as ophthamological disease and the other is
classified as dermatological disease (Goh et al., 2007). The other

example is Diseases 1325 and 315. Disease 1325 is classified
as ‘multiple’, and disease 315 is classified as Connective tissue
disorder. In addition, there are interactions between two sets of
disease genes from these two diseases. The association between
Bartter syndrome and Gitelman syndrome is supported by recent
literature. Type III Bartter syndrome is clinically and biochemically
overlapping with Gitelman syndrome (Knoers and Levtchenko,
2008).

4 CONCLUSIONS AND DISCUSSIONS
In this article, we integrated gene network and phenotype
network to identify gene–phenotype relationships. We constructed
a heterogeneous network by connecting the gene network and
phenotype network using known gene–phenotype relationships
obtained from OMIM (Hamosh et al., 2005). Then we extended
the RWRH algorithm. The performance of RWRH algorithm is
significantly better than CIPHER (Wu et al., 2008) and RWR method
using only gene network (Köhler et al., 2008). It suggests that the
RWRH algorithm effectively captures the complementarity between
gene network and phenotype network. Another advantage of the
RWRH algorithm is robustness to the parameters. Results change
slightly with the values of three parameters ranging from 0.5 to 0.9.

We also showed the ability of RWRH algorithm to disclose
hidden disease associations. We identified 18 disease associations
that cannot be found by gene network or phenotype network alone.
Most of them are supported by various types of evidence. Using
RWRH algorithm to integrate gene network and phenotype network
would be a promising way to identify disease–disease relationship,
because both the gene network and phenotypic data are noisy and
incomplete and the RWRH algorithm well captures the dependence
between two data sources.

Recently, genome wide association studies (GWAS) have been
generally used to detect allelic variations that affect susceptibility to
complex diseases. A number of bioinformatics algorithms have been
proposed to identify disease-related single nucleotide polymorphism
(SNP) from GWAS data, including gene-set-based approach (Wang
et al., 2007), text-based approach (Raychaudhuri et al., 2009)
and pathway-based approach (Eleftherohorinou et al., 2009). The
RWRH algorithm can also be used to prioritize candidate genes
obtained from GWAS data. We start from the selected candidate
SNPs. Candidate genes are seemed as the neighboring genes of
selected candidate SNPs. After prioritization, both disease gene and
the corresponding SNP can be obtained.

The proposed RWRH algorithm relies on the topology of
the heterogeneous network, therefore the low-quality of gene
network, phenotype network and gene–phenotype network may
limits its performance. The PPI network suffers both high false
positive and false negative. Integrating multiple data sources
may overcome this limitation. There are some possible integration
strategies: (i) to construct a gene functional network by combining
multiple genomic data sources (Linghu et al., 2009); (ii) to construct
a gene network based on each data source, and then run RWRH
algorithm to get a ranking list of candidate genes, finally combine
multiple rank lists in to one (Aerts et al., 2006; Li and Patra, 2010);
(iii) to construct a heterogeneous network including information
of multiple genomic data sources, which means there are possibly
more than one links between two genes, and the transition matrix
[M in Equation (1)] is determined by multiple data sources.
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The phenotype network is also problematic. The similarity between
two phenotypes entities are calculated based on the text description
in OMIM (Hamosh et al., 2005). But OMIM does not use a
controlled vocabulary and is heavily underannotated (Oti et al.,
2009). Recently, the ontological description of OMIM phenotypes
has been proposed (Robinson et al., 2008). With the availability of
well-annotated phenotype data, a higher quality phenotype network
may be obtained by using suitable ontological similarity measure.
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