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Abstract

Genome-wide interaction-based association (GWIBA) analysis has the potential to identify novel susceptibility loci. These
interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS). However,
no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a
major barrier for application. Here, we developed a fast, multi-thread/parallel program named ‘‘pair-wise interaction-based
association mapping’’ (PIAM) for exhaustive two-locus searches. With this program, we performed a complete GWIBA
analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases.
We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was
specific for Crohn’s disease, with a Bonferroni corrected P,0.05 (P= 0.039). This interaction was replicated with a pair of
proxy linked loci (P= 0.013) on an independent dataset. Five other interactions had corrected P,0.5. We identified the allelic
effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent
dataset (P= 1.0961027). Through a local validation analysis that evaluated association signals, rather than locus-based
associations, we found that several other regions showed association/interaction signals with nominal P,0.05. In
conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results
provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of
handling very large GWAS datasets that are likely to be produced in the future.
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Introduction

Recent genome-wide association studies (GWAS) have identified

many common genetic variants associated with common diseases.

This has rapidly expanded our knowledge of the genetic

architecture of these diseases. For example, the Wellcome Trust

Case Control Consortium (WTCCC) study [1] and other large-

scale GWASs (including meta-analyses) have discovered many

susceptibility loci for common diseases, including coronary artery

disease (CAD) [2], Crohn’s disease (CD) [3,4], type 1 diabetes (T1D)

[5], and type 2 diabetes (T2D) [6]. However, compared with the

successes of single-locus approaches, the achievements of interac-

tion-based approaches, which seek susceptibilities that derive from

gene-gene interactions, have lagged behind [7,8]. Thus, gene-gene

interactions that are largely undetected may explain some of the

heritability of common diseases [9]. Most reported interactions are

currently found through candidate approaches, which incorporate

prior biological knowledge. Moreover, very few interactions have

been confirmed in an independent population.

Genome-wide interaction-based association (GWIBA) analysis

uses markers to conduct genome-wide screens without prior

candidate selection. In addition, GWIBA incorporates interaction

effects among genetic variants. Many interaction-based methods

for GWIBA are currently available, including a logistic regression-

based method [10]; in addition, several methods have been

recently developed [11–15]. However, no studies on real data have

successfully identified novel disease-associated loci. Two studies

reported non-significant results on small datasets [11,14]; several

studies with the WTCCC dataset reported problematic interac-

tions [12,13,15], and those were found to be probable false

positives in this study. Thus, the GWIBA methods have identified

very few new loci convincingly, and none of the detected

interactions have been replicated to date. In addition, the

computational time was a major barrier for GWIBA analyses on

large-scale GWAS datasets. Most previous studies resorted to

stochastic searches, or partial search strategies based on biological

knowledge [12–18]. Until recently, genome-wide association

studies have followed the traditional single-locus approach and
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have investigated gene-gene interactions only through candidate

approaches.

In this study, our main aim was to discover novel susceptibility

loci by identifying interaction effects in a GWIBA analysis with the

large-scale WTCCC dataset [1]. We also aimed to confirm these

novel loci in independent datasets. To that end, we identified

several novel susceptibility loci with replication/validation evi-

dence, and the results provide new insights into the genetic

architecture of common diseases.

Results

Identification of Gene Interactions
We performed a complete GWIBA analysis with validation

analyses. We started with the WTCCC dataset [1], which

contained ,2,000 cases for seven diseases and ,3,000 shared

controls (Materials and Methods). The quality-controlled

WTCCC data were used as input for the ‘‘pair-wise interaction-

based association mapping’’ (PIAM) program, and we performed

an exhaustive two-locus search for each disease (Materials and

Methods). We used the single-locus likelihood ratio test (LRT) p-

value (561027) as a cutoff value for incorporating the single-locus

effects in the PIAM searches. The cutoff value was based on the

significance threshold set by WTCCC for single-locus analyses.

This prevented the marginal effects of a few loci from dominating

the interactions. The computation was performed with the PIAM

program running in parallel on computer clusters.

In the initial search, we used the cases and the shared controls of

the WTCCC data to screen single-nucleotide polymorphism (SNP)

pairs that passed a p-value threshold of P,50/L, where L was the

total number of two-locus combinations for each disease. The

threshold allowed SNP pairs with p-values that were 1,000 times

larger than the significance level of 0.05/L. During the calculation,

the distributions of two-locus statistics were evaluated with the

approximate statistical distribution method in PIAM (Materials

and Methods), which generated genome-wide two-locus quantile-

quantile plots (Figure S1). We obtained 2,570 SNP pairs for seven

diseases at these screening thresholds (Table S1A), after excluding

20,968 SNP pairs within the major histocompatability complex

(MHC) region for rheumatoid arthritis (RA) and T1D (Table S1B).

Although many SNP pairs had rather significant p-values, there

were an overwhelming number of false positive results observed.

We found that the initial SNP quality control performed by the

WTCCC was not sufficiently stringent for the interaction searches,

due to sparse data and poor genotyping quality. The sparseness of

the data was due to the constraint that we used two-locus genotype

interaction analyses, instead of the single-locus analysis applied by

the WTCCC; this relative sparseness of data conferred a higher

sensitivity to genotyping errors. Therefore, a stringent additional

SNP quality control was applied (Materials and Methods). A total

of 1,392 SNP pairs passed this additional quality control (Table

S1C).

After the initial search, these 1,392 SNP pairs were tested with

the expanded controls to gain greater statistical power (Materials

and Methods). We retained 634 SNP pairs that gave Bonferroni

corrected P,0.5 (Table S1D), according to the numbers of

available two-locus tests (Table S2).

Among the results from the 634 SNP pairs, we observed two

major types of problematic results, irrespective of the SNP quality

control. The first problem was that we found many ‘‘interactions’’

between known susceptibility loci with large marginal effects.

These ‘‘interactions’’ might have resulted from marginal effects,

according to the two-locus LRT tests that incorporated both

marginal and pure interaction effects. To control for this problem,

we used a strategy similar to BEAM [19], where we compared the

two-locus p-values with the single-locus p-values. The second

problem was that we found 88 SNP pairs with linked SNPs (Table

S1E); most of these gave quite significant p-values, but were

identified as artificial associations that could be separated into two

types, one was a batch effect and the other was a genotype

clustering problem. These artificial associations were due to sparse

data and genotyping artifacts. Later, we found that some

previously reported interactions were probably these kinds of

artificial associations [12,13,15] (details in Discussion). Therefore,

a stringent result filter was applied to filter out these false positive

interactions (Materials and Methods). Thus, we removed 536 SNP

pairs with excessive marginal effects, and 85 SNP pairs with the

two kinds of artificial associations. Within the 88 SNPs pairs with

linked SNPs, 3 pairs were not affected by artificial associations;

therefore, these interactions were considered true haplotypic

associations. These 3 SNP pairs were located in regions known

to be associated with CD, thus, we did not present these results in

detail here, except in the corresponding regional signal plots

(Figure S2) and odds ratio (OR) tables (Table S3). Finally, 10 SNP

pairs with unlinked SNPs remained qualified (Table S1F).

After the result filtering, the simultaneous searches identified an

interaction between rs7522462 (on C1orf106) and rs11945978 (on

TEC) for CD with a Bonferroni corrected P,0.05, and another

five pairs of regions associated with CAD, CD, T1D, and T2D

with Bonferroni corrected P,0.5 (Table 1; Figure 1). Among the

above six pairs of regions, the interaction between rs7522462 and

rs11945978 for CD, and the allelic effect of rs6470733 (close to

SLC7A13) for CAD were replicated by proxy linked SNPs. In

addition, we validated one pair of interacting regions around

rs153423 (near SPRY4) and rs748855 (on NOD2) for CD, one

single region around rs1501540, and one pair of interacting

regions around rs11731175 and rs11236365 (on SLCO2B1) for

T2D, all with nominal P,0.05, through local validation analyses

(Materials and Methods; Table 1; Figure 2). We then performed

Author Summary

Recent studies on the genetic basis of common diseases
have identified many loci that confer disease susceptibility.
However, much of the heritability of these diseases
remains unexplained. Loci involved in gene–gene interac-
tions are considered cryptic, because they confer suscep-
tibility, but may not generate a detectable signal on their
own. These interactions may account for the ‘‘missing
heritability’’ of common diseases. Theoretically, these
interactions can be identified with the genome-wide
interaction-based association analysis. But, in reality, very
few gene–gene interactions have been identified with that
method, and most were based on prior biological
knowledge. Here, we applied a parallel computing
technique that facilitated the identification of multiple
new cryptic susceptibility loci involved in common
diseases. We applied stringent control for false positives,
and we validated our findings with independent datasets.
This study demonstrated that interactions between gene
loci could be successfully identified with the genome-wide
interaction-based approach. With this approach, we also
identified cryptic loci with moderate single-locus effects.
The identified loci and interactions merit further investi-
gations for fine mapping and functional analyses. Our
results extend the current knowledge of common diseases
for future studies in genetic mapping. This approach is
applicable to current and future genome-wide association
datasets.

Genome-Wide Interaction-Based Association Analysis
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the three-locus conditional searches based on the six pairs of SNPs

listed in Table 1; this did not produce any significant results.

We did not identify any interactions for bipolar disorder (BD),

hypertension (HT), or RA, according to the significance thresholds

and result filtering applied (except the interactions within the

MHC region for RA). In fact, a single-locus analysis did not

identify significant results for HT, and only one significant locus

was associated with BD, but this has not been replicated to date

[1,20]. This may indicate that the quality control and result

filtering we performed was effective for removing random false

positives and artificial associations.

Within each SNP pair in Table 1, the SNPs were independent

in the controls and dependent in the cases (Table 2). The SNPs in

Table 1 showed good genotype clustering (Figure S3), and did not

present any significant deviations from Hardy-Weinberg equilib-

rium (HWE, P.0.05). Note that the corrected two-locus p-values

in Table 1 were only corrected within each disease.

CAD
Only one pair of interacting loci was associated with CAD. The

SNPs were rs9397512 and rs6470733, located at the intron of

SYNE1 and 7 kb downstream from SLC7A13, respectively. Note

that this interaction only gave a moderate corrected p-value of

0.380. However, this pair of regions generated wide, block-like

interaction signals (Figure 1), with strong linkage disequilibrium

(LD) (Figure S4, plotted with Haploview [21]). For this interaction,

when the rs6470733 genotypes were paired with the TT genotype

stratum of rs9397512, the effects were in the opposite direction

compared to those observed when the rs6470733 genotypes were

paired with the CC and CT strata (Table 3). The highest OR

relative to the most common homozygote combination (2.95) was

higher than the OR under the assumption of an additive effect of

the two loci (1.95). The two loci also showed moderate single-locus

allelic effects, especially rs6470733.

In order to validate the association of the two loci identified for

CAD, we used the online results of the German MI Family Study

(GerMIFS) [2], which included 875 cases and 1644 controls

(Materials and Methods). Surprisingly, we found that rs13262822,

which was 1.5 kb downstream from rs6470733 and had an

r2=0.90 (based on the WTCCC shared controls), showed a rather

significant allelic effect with a trend test P=1.0961027 (Table 4).

In addition, rs13262822 showed an allelic effect in the WTCCC

data with a trend test P=1.8161023 and an association in the

same direction. Therefore, the allelic effect of the original SNP,

rs6470733, was replicated by its proxy SNP rs13262822, in strong

LD. Interestingly, in the GerMIFS data, the minor allele

frequency (MAF) of rs13262822 was a bit larger than that in the

WTCCC data, and the OR of 1.39 was much higher compared to

the OR of 1.16 reported in the WTCCC. The previous paper did

not identify the rs13262822 locus because the trend p-value of

rs13262822 in the WTCCC data marginally failed the 0.001

threshold before the combined analysis [2]. At this time, the online

result from the GerMIFS data is not sufficient to confirm the

marginal effect of rs9397512 or the interaction effect. SYNE1 was

previously suggested as a potential mediator of cardiomyopathy,

because it showed muscle-specific inner nuclear envelope expre-

ssion and a physical interaction with lamin A/C [22]. Further-

more, a recent study suggested that SYNE1 was involved in the

pathogenesis of Emery Dreifuss muscular dystrophy through

skeletal muscle cell destruction [23], which emphasized the

functional role of SYNE1 in muscles. SLC7A13 is a cationic amino

acid transporter, and two early studies showed that cationic amino

Table 1. Identified gene interactions.

Disease SNP Chr

Nearest

Gene

Trend

p-value
Validation of

allelic effect

Pure

interaction

p-value
Validation of

interaction

Two-locus

p-value
(expanded)

Test

numbers

Corrected

p-value
(expanded)

CAD rs9397512 6q25.2 SYNE1 5.6861023 Unavailable 1.5461028 Unavailable 8.82610212 4.3161010 0.380

rs6470733 8q21.3 SLC7A13 9.1861024 PPR=1.0961027

CD rs7522462 1q32.1 C1orf106 2.3661025 Meta-analysis 5.0361026 PPR= 0.013 8.90610213 4.3361010 0.039*

rs11945978 4p12 TEC 0.016 PPR=0.047

CD rs153423 5q31.3 SPRY4 3.2161023 Not significant 4.2861025 PLV=0.034 3.36610212 4.3361010 0.146

rs748855 16q12.1 NOD2 2.6361027 Known region

T1D rs7310460 12p13.31 CLEC2D 9.4361024 Meta-analysis 1.0961028 Unavailable 5.87610212 4.2961010 0.252

rs2302270 12q24.32 - 0.673 -

T2D rs1501540 1p34.3 - 2.2461024 PLV=0.022 2.1361027 Not significant 1.92610212 4.2661010 0.082

rs7359782 18p11.21 C18orf58 4.5161023 Not significant

T2D rs11731175 4q35.2 - 0.115 - 1.68610211 PLV=0.029 7.00610212 4.2661010 0.298

rs11236365 11q13.4 SLCO2B1 0.715 -

Six pairs of SNPs that represented interacting loci. Chr: chromosome and cytoband information. Nearest Gene: When the nearest annotated gene was .500 kb away
from the SNPs, it was not listed. The trend p-values were obtained with the shared controls. The validation of allelic effect for loci with original trend p-values.0.05 is
not presented. Validation status: Unavailable, data unavailable for validation; PPR, p-value of the proxy replication; Meta-analysis, susceptibility locus found by meta-
analysis studies after the WTCCC study; Not significant, validation was not significant (P.0.05); Known region, a susceptibility region that was known at the time of the
WTCCC study; PLV, p-value of the local validation. The last five columns contain the interaction results. Pure interaction p-values were obtained with the shared controls.
Two-locus p-value (expanded): two-locus LRT p-value according to the search situation, and the two-locus p-values and the corresponding corrected p-values for the
final significance were obtained in the expanded control analysis.
*Bonferroni corrected P,0.05. Because all of these loci were obtained in the simultaneous searches, in which the two-locus tests took account of all effects of
the two loci, therefore the main effects and the interaction effects were examined in the validation analyses, and the following criterion was used to determine the
validation status of each locus: (1) if the pure interaction effect was validated (i.e. P,0.05), both of the loci and their interaction effect were validated, irrespective of the
validations of the main effects; (2) if the pure interaction effect was not validated, then the validation status of a locus was determined by the validation of its main
effect.
doi:10.1371/journal.pgen.1001338.t001
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acid transporters may be related to atherosclerotic lesion

formation by regulating L-ornithine transport and polyamine

synthesis in vascular smooth muscle [24,25]. Thus, these two genes

may be involved in different, but related aspects of CAD

pathogenesis. This could explain the statistical interaction between

the two regions.

CD
Two pairs of interacting loci were associated with CD. The first

interaction was between rs7522462, which is in the region of

C1orf106 gene, and rs11945978, which is in a newly identified

region of the TEC gene. The C1orf106 region was previously

identified in a meta-analysis after the WTCCC study, which

Figure 1. Regional signal plots of the interactions in Table 1 with WTCCC data. SNPs within 100 kb of the most significant SNP pairs are
shown. For each panel, the upper left plot is the color key for the interaction signal plot at the lower right; the lower left and upper right plots are
single-locus signal plots with gene annotations. These plots are aligned by chromosome positions in Mb, which are based on NCBI build 36. The red
dotted lines and the red dot in the middle indicate the position of the most significant pair of SNPs in the corresponding regions. The solid black dots
in the single-locus signal plots denote the trend test p-values (values indicated by the numbered axes) and the colored images in the interaction
signal plots denote the pure interaction p-values (values indicated by the color key in the upper left box); these were obtained with the shared
controls and transformed by a negative logarithm.
doi:10.1371/journal.pgen.1001338.g001

Figure 2. Regional signal plots of the interactions observed in validation datasets. The signal plots of three interactions for CD and two
interactions for T2D are shown. The interactions were observed in the IBDGC non-Jewish population data and the GENEVA Diabetes Study data,
respectively. The format of this figure is similar to that described in Figure 1; the red dotted lines and the red dot in the middle indicate the positions
of the originally identified SNP pair. Two other red dotted lines for each single-locus signal plot and the red box in the interaction signal plot were
added to indicate the regions used for the local validation tests; the blue dotted lines indicate the p-value thresholds of 0.05. (The interaction
between rs7522462 and rs11945978 was replicated by proxy SNPs; therefore, its local validation was disregarded).
doi:10.1371/journal.pgen.1001338.g002
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included data from both the WTCCC and from the national

institute of diabetes, digestive, and kidney diseases (NIDDK)

inflammatory bowel disease genetics consortium (IBDGC) [4].

This interaction gave a Bonferroni corrected P=0.039. The

interaction signal showed a clear block that extended over several

tens of kb (Figure 1). In the IBDGC data, a weak interaction signal

also appeared at the corresponding regions (Figure 2). For this

interaction, the single-locus effect of rs7522462 varied significantly

among the genotype strata of rs11945978, which indicated the

interaction (Table 3), and the effect of rs7522462 was strongest in

the rs11945978 CC stratum.

Validation analysis with the IBDGC data supported the

interaction between rs7522462 and rs11945978 (Materials and

Methods). We selected proxy SNPs in the IBDGC data instead of

the original SNPs, according to HapMap [26] CEU r2 values. For

rs7522462, two proxy SNPs were in moderate LD: rs296533,

which is 16 kb upstream, with an r2=0.44, and rs296547, which is

10 kb downstream, with an r2=0.79. For rs11945978, the proxy

SNP rs2089509 showed perfect linkage disequilibrium (LD) in the

HapMap CEU population. The allelic effects, interaction effect,

and combined effect of the proxy SNP combination of rs296533

and rs2089509 were replicated in the IBDGC non-Jewish

population data (rs296533 trend P=0.020, rs2089509 trend

P=0.047, pure interaction P=0.013, two-locus P=0.001). The

ORs showed trends similar to those in the WTCCC data,

particularly in the CC genotype stratum of rs11945978 (corre-

sponding to the GG genotype stratum of rs2089509) (Table 5).

The trend P of rs7522462 stratified by rs11945978 CC, and the

trend P of rs296533 stratified by rs2089509 GG were 2.0561028

and 1.3561023, respectively. The risk alleles of rs7522462 and its

proxy, rs296533, and the risk alleles of rs11945978 and its proxy,

rs2089509, comprised the major haplotypes according to the

HapMap data. This indicated the same association direction in the

WTCCC data and the IBDGC non-Jewish population data.

Although the interaction between rs296533 and rs2089509 was

not significant in the IBDGC Jewish population data (with quite a

small sample size), the interaction showed a similar pattern (Table

S4). Nevertheless, the downstream proxy SNP, rs296547, had a

larger r2 value of 0.79 and the interaction was not significant in the

IBDGC data. This may be explained by the small sample size and

the LD difference between the HapMap data and the IBDGC

data for the marker loci and the causing loci. For SNPs that were

either ungenotyped in the WTCCC or in the IBDGC non-Jewish

population data (rs7522462, rs11945978, rs296533, rs2089509),

the corresponding genotypes were imputed (Materials and

Methods). We found a consistent interaction between rs296533

and rs2089509, which was significant in both the IBDGC non-

Jewish population data (P=0.013) and the imputed WTCCC data

(P=0.015), and they showed a similar interaction pattern (Table

S4). A previous study found that the expression of TEC was up-

regulated upon T-cell activation, and Tec overexpression in

lymphocyte cell lines was sufficient to induce phosphorylation of

phospholipase C gamma and activation of nuclear factor of

activated T cells [27]; moreover, over-activation of T cells is a

typical feature of CD.

The second interaction for CD was between rs153423 and

rs748855, which gave a corrected P of 0.146. The latter SNP lies

in the early identified NOD2 gene [1]; the former SNP is located

about 100 kb upstream from the SPRY4 gene, and the association

signal extended fairly close to the gene (Figure 1). The two-locus

pattern showed that rs153423 was epistatic to rs748855, because

the most common rs153423 genotype (AA) masked a considerable

single-locus effect of rs748855 (Table 3). Locus-based replication

for this interaction failed, and local validation of the interaction

with the IBDGC non-Jewish population data indicated a

nominally significant interaction (P=0.034; Figure 2). A previous

study showed that SPRY4 suppressed vascular epithelial growth

factor-induced, Ras-independent activation of Raf1 [28]; more-

over, another study suggested that vascular epithelial growth

factor-A signaling was related to CD through angiogenesis [29].

T1D
Only one pair of interacting loci was associated with T1D. The

SNPs, rs7310460 and rs2302270, interacted with a moderate

corrected P of 0.252. The 12p13.31 region around rs7310460 was

previously found in a meta-analysis study conducted after the

WTCCC study [5]. This region harbors many immunoregulatory

genes, including CLEC2D. In contrast, rs2302270 is mapped to an

intergenic region. The association signal for the interaction effect

extended about 100 kb for both regions with clear borders, and it

included the previously suggested CD69 gene [5] (Figure 1). The

association pattern showed that rs2302270 was epistatic to

rs7310460 (Table 3). We currently have no available data to

validate the association of the rs2302270 region or the interaction.

T2D
Two pairs of interacting loci were associated with T2D. The

first interaction was between rs1501540 and rs7359782, which

gave a corrected P of 0.082. The rs1501540 SNP is mapped to a

region with no annotated genes, and rs7359782 is located 238 kb

upstream of C18orf58. The interaction signal was very narrow;

however it was not restricted to a single SNP (Figure 1). The

Table 2. Tests for SNP independence in the interactions observed in the case and control groups.

Simulation 1 P Simulation 2 P Simulation 3 P

Disease Interaction Case Control Case Control Case Control

CAD rs9397512, rs6470733 0.0015 0.3224 0.0015 0.3288 0.0015 0.3314

CD rs7522462, rs11945978 0.0027 0.0577 0.0022 0.0588 0.0022 0.0568

CD rs153423, rs748855 0.0273 0.2240 0.0283 0.2300 0.0267 0.2271

T1D rs7310460, rs2302270 0.0020 0.1675 0.0033 0.1633 0.0021 0.1613

T2D rs1501540, rs7359782 0.0021 0.5032 0.0025 0.4957 0.0022 0.5002

T2D rs11731175, rs11236365 0.0020 0.1453 0.0023 0.1480 0.0020 0.1492

Each row represents one gene-gene interaction listed in Table 1. Chi-square tests of 3 by 3 contingency tables were used to determine whether two SNPs were
dependent in the case group or in the control group. For each test, 10,000 Monte Carlo simulations were used to obtain the p-value; each test was repeated 3 times for
both the case group and the control group. The tests were performed with the R statistical software (http://www.r-project.org/).
doi:10.1371/journal.pgen.1001338.t002

Genome-Wide Interaction-Based Association Analysis
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Table 4. Comparison of rs13262822 associations in the WTCCC CAD data and the GerMIFS data.

Study

Minor/risk

allele

CC/CG/GG

counts in case

CC/CG/GG

counts in control

Case/control

frequency of

minor allele Trend P OR (95% CI)

WTCCC C/C 183/752/986 195/1148/1593 0.362/0.326 1.8161023 1.16 (1.06,1.27)

GerMIFS C/C 58/448/229 144/683/745 0.552/0.395 1.0961027 1.39 (1.22,1.59)

OR (95%CI): Odds ratios with 95% confidence intervals.
doi:10.1371/journal.pgen.1001338.t004

Table 3. OR tables for the SNP pairs shown in Table 1.

CAD rs6470733 CD rs11945978

rs9397512 AA AG GG rs7522462 CC CT TT

OR CC 1 1.52 (1.24,1.87) 1.52 (1.05,2.20) OR GG 1 0.64 (0.54,0.76) 0.97 (0.75,1.27)

CT 1.33 (1.10,1.60) 1.21 (0.99,1.47) 2.95 (2.16,4.02) GA 0.77 (0.64,0.92) 0.64 (0.53,0.77) 0.64 (0.47,0.86)

TT 1.81 (1.43,2.28) 1.43 (1.10,1.86) 0.87 (0.49,1.54) AA 0.32 (0.22,0.48) 0.78 (0.56,1.08) 0.44 (0.23,0.81)

OR1 CC 1 1.52 (1.24,1.87) 1.52 (1.05,2.20) OR1 GG 1 0.64 (0.54,0.76) 0.97 (0.75,1.27)

CT 1 0.91 (0.76,1.09) 2.22 (1.65,3.00) GA 1 0.83 (0.68,1.02) 0.83 (0.61,1.13)

TT 1 0.79 (0.59,1.06) 0.48 (0.27,0.86) AA 1 2.43 (1.49,3.96) 1.36 (0.66,2.79)

OR2 CC 1 1 1 OR2 GG 1 1 1

CT 1.33 (1.10,1.60) 0.80 (0.65,0.97) 1.94 (1.25,3.01) GA 0.77 (0.64,0.92) 1.00 (0.82,1.22) 0.65 (0.45,0.94)

TT 1.81 (1.43,2.28) 0.94 (0.72,1.23) 0.57 (0.30,1.10) AA 0.32 (0.22,0.48) 1.22 (0.88,1.70) 0.45 (0.23,0.86)

CD rs748855 T1D rs2302270

rs153423 AA AG GG rs7310460 GG GA AA

OR AA 1 0.97 (0.83,1.14) 0.71 (0.57,0.90) OR TT 1 0.62 (0.48,0.79) 0.62 (0.30,1.31)

AG 1.76 (1.43,2.16) 1.08 (0.88,1.31) 0.70 (0.51,0.97) TA 1.12 (0.96,1.32) 1.27 (1.04,1.53) 0.82 (0.48,1.41)

GG 1.14 (0.69,1.90) 0.29 (0.12,0.70) 1.39 (0.66,2.92) AA 0.89 (0.72,1.10) 1.59 (1.22,2.09) 3.79 (1.56,9.21)

OR1 AA 1 0.97 (0.83,1.14) 0.71 (0.57,0.90) OR1 TT 1 0.62 (0.48,0.79) 0.62 (0.30,1.31)

AG 1 0.61 (0.48,0.78) 0.40 (0.28,0.56) TA 1 1.13 (0.94,1.34) 0.73 (0.43,1.25)

GG 1 0.26 (0.10,0.70) 1.22 (0.50,2.95) AA 1 1.79 (1.33,2.39) 4.24 (1.73,10.4)

OR2 AA 1 1 1 OR2 TT 1 1 1

AG 1.76 (1.43,2.16) 1.11 (0.91,1.34) 0.98 (0.68,1.41) TA 1.12 (0.96,1.32) 2.05 (1.58,2.65) 1.31 (0.53,3.24)

GG 1.14 (0.69,1.90) 0.30 (0.13,0.72) 1.95 (0.91,4.17) AA 0.89 (0.72,1.10) 2.58 (1.87,3.55) 6.07 (1.93,19.1)

T2D rs7359782 T2D rs11236365

rs1501540 CC CT TT rs11731175 TT TC CC

OR GG 1 0.92 (0.75,1.13) 1.27 (0.90,1.79) OR GG 1 1.23 (1.02,1.46) 1.06 (0.69,1.63)

GA 0.97 (0.81,1.16) 0.82 (0.68,1.00) 0.59 (0.42,0.84) GT 1.14 (0.98,1.32) 1.28 (1.06,1.55) 0.89 (0.54,1.48)

AA 0.79 (0.62,1.00) 0.73 (0.56,0.96) 0.03 (0.00,0.21) TT 1.83 (1.43,2.35) 0.33 (0.20,0.56) 0.19 (0.02,1.51)

OR1 GG 1 0.92 (0.75,1.13) 1.27 (0.90,1.79) OR1 GG 1 1.23 (1.02,1.46) 1.06 (0.69,1.63)

GA 1 0.85 (0.71,1.01) 0.61 (0.43,0.86) GT 1 1.13 (0.93,1.37) 0.79 (0.47,1.30)

AA 1 0.93 (0.69,1.26) 0.04 (0.01,0.27) TT 1 0.18 (0.10,0.32) 0.10 (0.01,0.83)

OR2 GG 1 1 1 OR2 GG 1 1 1

GA 0.97 (0.81,1.16) 0.90 (0.73,1.10) 0.46 (0.29,0.73) GT 1.14 (0.98,1.32) 1.05 (0.85,1.30) 0.84 (0.44,1.60)

AA 0.79 (0.62,1.00) 0.80 (0.60,1.06) 0.02 (0.00,0.17) TT 1.83 (1.43,2.35) 0.27 (0.16,0.46) 0.18 (0.02,1.47)

This table facilitates the interpretation of the statistical interactions. The statistics were obtained with the shared controls. For each SNP pair, there are three odds ratio
tables: the OR, OR1, and OR2. Each OR table has 9 odds ratio values for 9 genotype combinations. 95% confidence intervals are shown in parentheses. OR: odds ratios of
the two-locus genotype combinations, relative to the most common homozygote combination. OR1 and OR2: odds ratios of one of the two SNPs, where the samples
were stratified by the genotypes of the other SNP; the interaction is indicated by different odds ratio values of one SNP between different genotype strata of the other
SNP.
doi:10.1371/journal.pgen.1001338.t003
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interaction and the region around rs7359782 failed in the

validation analysis. However, the region around rs1501540

showed large allelic effects and was validated in the GENEVA

Diabetes Study data with the local validation strategy (P=0.022;

Figure 2). In contrast, we did not detect any SNPs that were both

significant and in the same direction in the two populations.

Interestingly, we found that the significant SNPs in each dataset

showed different frequencies between the two populations

(MAF=0.27 in the WTCCC data, MAF=0.14 in the GENEVA

data, with respect to the most significant SNPs in the associated

region of each dataset, rs1501540 and rs302001); but, within each

population, the significant SNPs showed similar frequencies.

The second interaction for T2D was between rs11731175 and

rs11236365, which gave a corrected two-locus P of 0.298. Neither

of the SNPs showed obvious marginal effect (trend P and

genotypic LRT test P.0.05). The rs11731175 SNP lies within a

region where the nearest annotated gene is more than 500 kb

away, and rs11236365 is mapped to the SLCO2B1 gene (Figure 1).

The association pattern clearly showed that rs11731175 was

epistatic to rs11236365. The GG and GT genotypes of

rs11731175 masked the effect of rs11236365 (Table 3). However,

when the genotype of rs11731175 was TT, rs11236365 showed a

very strong effect. Moreover, the ORs of the TT and CT

genotypes of rs11236365 relative to the most common homozy-

gote combination were 1.83 and 0.33, respectively. It appeared

that the C allele of rs11236365 provided a strong protective effect

against T2D. The exact replication of this interaction with the

GENEVA Diabetes Study data was not significant. Local

validation of the interaction was nominally significant

(P=0.029), and the interaction signal was very close to the

original signal (Figure 2). SLCO2B1 is an organic anion

transporting polypeptide, and one of its substrates, dehydroepian-

drosterone-sulfate (DHEA-S, a direct metabolite of DHEA) [30],

was found in several early studies to increase insulin sensitivity in a

T2D mouse model [31,32], in rats [33–35], and in humans [36].

Discussion

Recent studies on the genetics of common diseases have

revealed a lot of susceptibility loci and produced many tools for

data analyses. However, the GWIBA approaches, which are

prospective methods for discovering novel interacting loci, had not

succeeded in identifying convincing interactions. In the present

study, we developed an effective GWIBA approach that facilitated

the discovery of novel loci. First, we used the parallel search

program, PIAM, and implemented a simple statistical method and

an optimized algorithm for detecting interactions. This could

complete two-locus exhaustive searches on large-scale GWAS data

in a short time. Second, in addition to the initial search, we used

expanded controls with large sample sizes to gain statistical power

for detecting interactions. Third, the results were carefully

examined, and we found the artificial associations as well as the

‘‘interactions’’ with excessive single-locus effects. Finally, we

employed independent datasets to validate the detected interac-

tions; moreover, we introduced the ‘‘local validation’’ method for

the validation of interactions between populations, where

confounding factors may affect the consistency of the observed

interactions.

Implications for the Genetic Architecture of Common
Diseases
In Table 1, two regions were previously identified through

meta-analysis studies. One region associated with CD, the

C1orf106, which did not achieve significance in the WTCCC

study, was subsequently identified in a meta-analysis study that

included the WTCCC data and the IBDGC data [4]. We

identified this region by including only the WTCCC data that

showed corrected p-values,0.05. Also, the region on 12p13.31

that was associated with T1D was previously identified in a meta-

analysis study of T1D [5]. These results demonstrated that this

GWIBA approach enhanced the power of detecting loci with

moderate single-locus effects; it also implied that some known

susceptibility loci with moderate single-locus effects might be

interacting with other loci. Moreover, we reasoned that interaction

effects could increase the overall effects of loci that only showed

marginal effects, and there were very few examples of large-effect

common variants for common diseases [9]; therefore, we

speculated that interactions of common variants may prefer to

reside on loci with moderate to small single-locus effects. This

hypothesis could explain a common phenomenon that there was

seldom any significant interaction detected by the means of

investigating interactions among loci with certain marginal effects

after the single-locus analyses [1,4,5,8].

Our exhaustive searches revealed several two-locus associations,

where both the individual loci exhibited relatively small single-

locus effects. The most extreme case was the interaction between

Table 5. Comparison of OR tables between two datasets for one CD interaction.

CD (WTCCC) rs11945978 CD (IBDGC) rs2089509

rs7522462 CC CT TT rs296533 GG GA AA

OR GG 1 0.64 (0.54,0.76) 0.97 (0.75,1.27) OR GG 1 0.69 (0.47,1.02) 0.60 (0.35,1.05)

GA 0.77 (0.64,0.92) 0.64 (0.53,0.77) 0.64 (0.47,0.86) GT 0.94 (0.63,1.39) 0.69 (0.47,1.03) 0.55 (0.30,1.01)

AA 0.32 (0.22,0.48) 0.78 (0.56,1.08) 0.44 (0.24,0.81) TT 0.19 (0.08,0.43) 0.57 (0.32,1.02) 0.87 (0.28,2.68)

OR1 GG 1 0.64 (0.54,0.76) 0.97 (0.75,1.27) OR1 GG 1 0.69 (0.47,1.02) 0.60 (0.35,1.05)

GA 1 0.83 (0.68,1.02) 0.83 (0.61,1.13) GT 1 0.74 (0.49,1.11) 0.59 (0.32,1.09)

AA 1 2.43 (1.49,3.96) 1.36 (0.66,2.79) TT 1 3.03 (1.19,7.70) 4.67 (1.23,17.8)

OR2 GG 1 1 1 OR2 GG 1 1 1

GA 0.77 (0.64,0.92) 1.00 (0.82,1.22) 0.65 (0.45,0.94) GT 0.94 (0.63,1.39) 1.01 (0.67,1.51) 0.91 (0.44,1.90)

AA 0.32 (0.22,0.48) 1.22 (0.88,1.70) 0.45 (0.23,0.86) TT 0.19 (0.08,0.43) 0.82 (0.46,1.49) 1.45 (0.44,4.79)

Comparison of OR tables between the interaction of rs7522462 and rs11945978 in the WTCCC data with the shared controls (left) and the interaction of the proxy SNPs,
rs296533 and rs2089509 in the IBDGC data (right). The legend to this table is the same as that of Table 3.
doi:10.1371/journal.pgen.1001338.t005
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rs11731175 and rs11236365 for T2D. Neither of the SNPs showed

obvious marginal effect, but they exhibited an excessive interaction

effect. This suggested that some interactions might be missed by

using methods based on single-locus analysis or interaction-based

approaches with non-exhaustive search strategies. On the other

hand, we searched for genetic interactions associated with seven

diseases and observed only one pair of loci that fell within that

extreme situation. Theoretically, because the allele frequency of

genetic loci often varies among different populations, it is relatively

unlikely that marginal effects of the interactions will be obscured in

all populations.

We have noticed that although some loci (or their good proxies)

could not be replicated, the corresponding regions showed

apparent association/interaction signals in the validation data.

The signals were unlikely to be observed by chance given the local

validation p-values. The replication failure for these loci was

unlikely to simply result from insufficient statistical power; because

unlike the replicated interaction for CD, we did not identify any

consistency of the OR values between the datasets for these loci

(data not shown), while the signals were observed. In addition, the

signals were unlikely to be affected by genotyping artifacts, because

multiple loci were considered and the data were initially quality-

controlled. To our knowledge, tens of loci have been identified for

some common diseases, but no interaction between exact loci has

been confirmed in independent populations to date, despite of the

fact that many of the loci are in the same pathway. Based on these

observations, one plausible hypothesis is that the genetic

heterogeneity may affect the consistency of the interactions. We

speculated that many disease-causing interacting loci for common

diseases might reside among rare variants that have large effects,

and these rare variants could vary in frequency between

populations, or they could be on adjacent, but distinct loci

between populations. This could appropriately explain the lack of

consistently observed interactions for common diseases in current

GWASs that used common-variant markers.

The Need of a False Positive Control for Interaction
Analyses
In this study, we found an overwhelming number of false

positives, including artificial associations, in the raw results. The

problem of false positives was more severe in our two-locus

analyses than in the single-locus analyses, because our two-locus

genotype combinations had insufficient sample sizes, which made

them very sensitive to the artificial genotyping errors that were

widely present in GWAS data. In addition, sparse data caused

inaccuracy on asymptotic tests. Therefore, the results of two-locus

analyses require careful examination, and particular attention

must be paid to incredibly small p-values.

In the raw results with linked SNPs, we identified two kinds of

artificial interactions; the batch effect (Figure 3) and the genotype

clustering problem (Figure 4). Note that, although these kinds of

observations were exaggerated by LD, and therefore, were previously

considered as LD effects [8] (rs2532292), they were, in fact, caused by

genotyping artifacts (Figure S5). Thus, interactions with unlinked

SNPs, particularly SNPs with low MAFs, also require careful

examination. In some previous studies, we found probable false

positive results of the same kinds. For example, in two previous works

[12,13], we conducted experimental searches on the WTCCC RA

data without any quality control procedures; all the interactions that

were outside the MHC region contained unqualified SNPs, according

to theWTCCC study. Careful examination showed that many of these

results were SNP pairs with linked SNPs, which were probably artificial

associations of the two kinds mentioned in this study. Only one result

was not affected by unqualified SNPs; but, when this was tested with

quality-controlled samples, we observed a sharp decrease in signifi-

cance. Moreover, a recent study [15] tested a new program on part of

theWTCCC data and reportedmany interactions; however, almost all

those results were interactions with linked SNPs that showed extremely

significant p-values. We observed a large overlap between those

reported SNPs and the SNPs that were filtered out in this study. In

particular, two of the SNPs that were reported in that study (rs1065705

and rs1420247) were confirmed in this study to be affected by artificial

genotyping errors (Table S1E). We also found that three regions,

PLXNA2, PTPRT, and PPM1A that were reported to be ‘‘associated’’

with multiple diseases in the WTCCC data were extremely unlikely to

be true interactions; in particular, we found that the PPM1A region,

with the most significant p-value, was ‘‘associated’’ with all diseases

except BD, and the association was probably a false positive.

Therefore, we suggest that careful false positive control procedures

should be adopted in future GWIBA studies to avoid misleading results

and unnecessary endeavors in subsequent replication analyses.

Limitations
There are a few limitations of this study. First, although GWIBA

permits agnostic searching without the need for prior biological

knowledge, it loses substantial power due to the penalty introduced by

multiple testing corrections for the huge number of potential pair-wise

interactions. Therefore, candidate-gene methods should not be

discarded, because they offer promising, well-powered detection of

interactions based on biological knowledge. For example, a previous

study performed a partial search on genes within certain biological

networks and obtained some significant interactions [18]. Second, the

contingency tables used for fast computing could not incorporate

continuous covariates. However, these might be very important in

some genetic analyses. This problem might be partially addressed by

incorporating the covariates after an initial screen for interactions with

a loose threshold. Third, we had to compromise for the huge

computational issue by using general tests that assumed no specific

geneticmodels; this resulted in decreased power compared to a test that

conforms to a certain specific model. Furthermore, detection of high-

order interactions was restricted to the conditional search, in order to

conserve the computational time. Fourth, two-locus associations should

be interpreted with caution when the single-locus effect of one SNP is

very large; validation analyses should be performed to further confirm

pure interaction effects. Fifth, the non-pseudoautosomal region of the

X chromosome was not included in this analysis due to the imbalanced

proportions of males and females between the case and control groups;

however, many susceptibility loci of common diseases may reside on

the X chromosome. This problem might be addressed by stratifying

the contingency tables with a sex covariate, and then removing the

corresponding female individuals with heterozygote genotypes for the

tested SNPs on the X chromosome. Finally, this method provided

inflated test statistics to detect SNPs with low MAFs, which were

removed from the analysis. The removal may have caused us to miss

low-frequency variants with relatively large effects, and these loci may

be more valuable than common variants with smaller effects [37].

These issues require further studies to be fully addressed. Thus, we do

not unreservedly recommend the approach used in this analysis for

detecting genetic interactions. Rather, we recommend further impro-

vements to this method, and the use of other methods when approp-

riate. Nevertheless, we would like to emphasize that the procedures

described here are important for ensuring the reliability of interactions.

Computational Efficiency of PIAM for Future Large-Scale
GWAS Datasets
We implemented PIAM with a multi-thread/parallel program,

rapid tests for two-locus interactions, optional two-stage strategies

for interaction searching, fast algorithms for collecting contingency

Genome-Wide Interaction-Based Association Analysis
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tables with a binary genotype coding method [38], and an intrinsic

CPU instruction for new types of CPUs. These components made

PIAM capable of handling very large GWAS datasets that are

anticipated to be commonly available in the future. For example,

the WTCCC2 study will include much larger numbers of SNP

markers and sample sizes for the identification of susceptibility loci

with moderate single-locus effects and interactions. We estimated

that, for a dataset with up to 1,000,000 SNPs and 10,000 samples,

PIAM could complete an exhaustive, two-locus search within 6

days with one computer equipped with a modern quad-core,

3.0 GHz, desktop CPU and 4 G of memory; this speed could be

multiplied with parallel computing on multiple computers.

Figure 3. Batch effect observed for SNPs rs1343295 and rs7543540. (A) For each two-locus genotype combination, a genotype code is shown
in the upper left corner of each cell. NN denotes missing genotypes. The distribution of RA cases (left bar) and controls (right bar) in each genotype
combination is shown with the number of observations indicated above the bars. The samples are mainly distributed on the diagonal of the genotype
combinations, where two SNPs are in LD. Note that many genotype combinations are sparse. An excessive number of cases relative to controls was
observed for the genotype combination TC for rs1343295 and TT for rs7543540 (code 4), which primarily caused the association.
(B) Genotype combination codes (1–10) of samples were plotted against the plate and well numbers of samples in 96-well plates. Codes 1–9 denote
the nine non-missing genotypes shown in (A). Samples withmissing genotypes were grouped in code 10. The vertical line separates cases (left) and controls
(right). The 59 cases of one particular genotype combination (code 4) were not evenly distributed among the wells, but severely aggregated. (C) Cluster plot
for RA cases. The coordinates denote the allele intensities of the first SNP in the title (rs1343295) and the 10 colors denote the 10 genotype combinations of
the two SNPs. The genotype clustering of 59 cases (plotted in cyan circles) are ambiguous between heterozygotes and homozygotes for rs1343295, and
genotypes were considered heterozygotes. In fact, the genotypes of these 59 cases should probably be considered homozygotes, and then no association
would exist; however, the batch effect produced this artificial error due to the low-quality genotyping and subsequent artificial clustering.
doi:10.1371/journal.pgen.1001338.g003
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Prospective
This GWIBA approach can be used routinely, in addition to

single-locus analyses in future genome-wide association studies. It is a

promising approach for the discovery of novel loci with interaction

effects, which may provide important insights into common diseases.

By combining various approaches, we could greatly accelerate the

discovery of the genetic architecture of common diseases.

Materials and Methods

The WTCCC Data
The initial data were obtained from the WTCCC (http://www.

wtccc.org.uk/). This dataset comprised ,2,000 samples each for

seven diseases (BD, CAD, CD, HT, RA, T1D, and T2D). For half

of these samples, there were ,3,000 shared control samples from

Figure 4. Genotype clustering problem observed for rs6578234 and rs7827545. The legend to this figure is the same as that for Figure 3,
except that the associated disease is HT, and the population was divided into two cohorts (C and D). The description of (D) is the same as that for (C), except
that the 1958 birth cohort control samples were plotted in (D). (A) The situation here is similar to that shown in Figure 3A, with an excessive number of cases
compared to control; in the genotype combination of AG for rs6578234 and CC for rs7827545 (code 4), 109 cases and only 1 control were observed.
However, the batch effect did not occur, because all the plates showed association signals for this combination (B, genotype combination 4). Instead, a
fourth cluster is observed in both case and control groups (C and D); the pattern in the two groups is the same, but the genotypes were assigned different
codes for cases and controls by the genotype calling algorithm CHIAMO. The genotypes of rs7827545 of the 109 HT cases were called homozygotes
(C, indicated in cyan, code 4), and the genotypes in the controls were called heterozygotes (D, indicated in pink, code 5). In fact, the genotypes of rs7827545
of the 109 cases should probably be considered heterozygotes, as in the controls, and no association should exist. We do not know the cause of the fourth
genotype cluster, because the clustering pattern could not be explained by multiple clusters of copy number variation.
doi:10.1371/journal.pgen.1001338.g004
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the 1958 birth cohort (58C); for the other half, there were control

samples from the National Blood Service (NBS). Genotyping was

performed with the Affymetrix GeneChip Mapping 500K Array

Set. Genotypes were called with the CHIAMO algorithm with the

parameter ‘‘posterior probability less than 0.9’’ set to ‘‘missing’’.

The non-pseudoautosomal SNPs on the X chromosome were not

included, because the general genotypic test was used in PIAM,

and the male/female proportion was imbalanced between the

cases and controls. Quality control for the samples and the SNPs

was performed as described in the WTCCC. In addition, we

excluded SNPs that were significant in the single-locus association

analysis, but showed poor clustering according to the WTCCC.

After trimming, 459,075 SNPs remained for each disease, and the

corresponding data were used as input for the two-locus exhaustive

searches.

Pair-Wise Interaction-Based Association Mapping (PIAM)
We developed a fast, multi-thread/parallel program named

‘‘pair-wise interaction-based association mapping’’ (PIAM, avail-

able at http://www.ihs.ac.cn/xykong/PIAM.zip) to search for

susceptibility SNPs with interaction effects in a set of genome-wide

SNPs. PIAM is based on a two-locus logistic regression model and

the likelihood ratio test (LRT). For the logistic regression model,

the additive effect of a SNP was represented with a variable that

was coded 0, 1, and 2 for homozygote, heterozygote, and the other

homozygote (e.g., AA, AB, BB), respectively. We added another

variable for the heterozygote effect that was coded 1 for hetero-

zygote and 0 otherwise. Therefore, two variables were used for the

general effects of one SNP. The interaction was modeled by the

multiplication of variables between SNPs; thus, four terms were

used for each pair-wise interaction. The interactions can be

interpreted by their deviation from the restricted model without

the interaction terms. The restricted model only considers the

additive effect between the two loci on the log odds ratios, that is,

the multiplicative effect between the two loci on the odds ratios.

The full two-locus logistic model considers all possible effects of the

two loci. Accordingly, the deviation between the two indicates the

significance (or relevance) of the interaction.

A previous study proposed the use of a full, two-locus, logistic

regression model and evaluated its statistical power [10]. However,

when all the SNP pairs were tested with the LRT, and the null

model (with only one intercept term) was compared to the full

model of two SNPs (with an intercept term and eight terms for all

the effects of two SNPs and their interactions), as previously

proposed, there were excessive results associated with the single-

locus effect of a single SNP. Therefore, for practical use, we

modified the previous approach with the following strategy. First, a

single-locus LRT for the general effect of each SNP was

performed. Then, a family-wise-significant, single-locus, p-value

threshold was used to divide the whole set of SNPs into two

subgroups. One subgroup was small and significant (subset A with

n SNPs) and the other subgroup comprised the remainder of SNPs

(subset B with m SNPs). Then, we performed three types of

searches:

(1) The epistatic search. For each of the n(n21)/2 combinations

of SNP pairs within subset A, we used the 4 d.f. LRT of the

logistic regression model comparison (a restricted model

without four interaction terms compared to the full model of

two loci) to test for a pure interaction effect.

(2) The conditional search. For each of the n6m SNP pairs

between subsets A and B, we used a 6 d.f. LRT to test for

marginal and interaction effects of the SNP in subset B that

were conditional on the presence of the SNP in subset A. For

this, a submodel was compared to the full model (the

submodel contained two terms for the SNP in subset A and

one intercept term).

(3) The simultaneous search. For each of the m(m21)/2 SNP

pairs within subset B, we used an 8 d.f. LRT to test for all the

effects of the combination of two SNPs. For this, we compared

the null model to the full model.

For the conditional and simultaneous searches, the LRT

statistics were calculated by the G2 test with contingency tables

for fast computing. This method was equivalent to the LRT for the

logistic regression models, but it did not estimate the parameters.

In addition, the genotypes were transformed to a set of binary

values to accelerate the collection of contingency tables, as

proposed by a recent study [38]. For the simultaneous search,

we also implemented in PIAM the previously proposed two-stage

strategy [10,39]. The Bonferroni correction was used for N
multiple tests, where N was the total number of tests for all search

situations. Missing genotypes were addressed by removing the

corresponding individual. After the exhaustive two-locus search,

the conditional search was extended to high-order interactions.

For example, conditional on an existing two-locus interaction, the

full two-locus model was compared to a full three-locus model by

adding another locus; this resulted in an 18 d.f. LRT test.

Approximate Statistical Distribution
The huge number of statistics (up to 161011) generated in this

study would be extremely computationally demanding to handle

directly. Therefore, to check the overall distributions of the

observed two-locus test statistics, we implemented the approximate

statistical distribution method in PIAM. First, very small,

continuous intervals (e.g., 0.001 in length), were predefined for

the LRT statistics; a maximum value of the statistic was set to be

that with a corresponding p-value equal to 0.01/L, where L was

the total number of comparisons; thus, the last interval was the

maximum value to infinity. During the computation, PIAM

recorded the number of statistics within each small interval, rather

than the exact value of the statistic. When applying the statistics to

the quantile-quantile plot, the statistics were treated as equal to the

lower bound of the corresponding interval; therefore, the error of

the statistic was controlled below 0.001. This method can also be

used to handle p-values transformed by a negative logarithm. The

approximate statistic distributions can further be used in various

multiple test correction approaches. This method can, and should,

be adopted in other GWIBA studies in the future to obtain the

overall statistical distributions, similar to the single-locus analyses.

Additional SNP Quality Control
We found that the initial SNP quality control performed by the

WTCCC was not sufficiently stringent for our interaction analysis.

That control yielded an abundance of extremely significant

interaction results, but these were subsequently identified as false

positives, due to sparse data and/or poor genotyping quality. The

sparse data were introduced by comparing the two-locus

genotypes for the interaction analysis to the single-locus analysis.

These relatively sparse data were more sensitive to genotyping

errors. To avoid that problem, an additional, more stringent SNP

quality control was applied. We removed any SNPs with a missing

data rate that was .2% of the cases or controls, with a MAF,0.1

in the controls, or with a HWE p-value,0.001 in the controls. The

removed SNPs with high missing data rates typically showed poor

genotype clustering; the low frequency SNPs often yielded an

inflated two-locus LRT statistic, due to sparse data (at least one

expected cell count ,5 in the two-locus contingency table for

Genome-Wide Interaction-Based Association Analysis

PLoS Genetics | www.plosgenetics.org 12 March 2011 | Volume 7 | Issue 3 | e1001338



current sample size, assuming HWE for both SNPs with either or

both MAFs,0.1); and a deviation from HWE in the control

population was probably due to genotyping errors. After applying

this additional SNP quality control, the test numbers changed for

the Bonferroni correction, due to the removal of SNPs.

Expanded Control Analysis
To improve the detection of true interactions that may not

initially achieve significance within the cases and shared controls,

we applied the expanded control analysis, as performed in the

WTCCC study. The enlarged, ‘‘expanded control’’ was used for

each disease to test pairs of loci with interactions that passed

moderate screening p-value thresholds (50/L in this study, where L
was the total number of two-locus combinations) in the initial

analysis with the cases and shared controls, but did not necessarily

achieve significance (i.e., a Bonferroni corrected P,0.05). In the

expanded control analysis, the final statistical significance was

evaluated. The expanded control for a certain disease was the

combination of the shared control and some other disease cohorts.

For BD, the expanded control group included the shared control

plus the CAD, CD, HT, T1D, and T2D groups. For the three

autoimmune diseases (CD, RA, and T1D), the expanded control

included the shared control plus all other disease cohorts, except

the autoimmune disease cohorts. The same was true for the three

metabolism-related diseases CAD, HT, and T2D. These expand-

ed controls were the same as those used in the WTCCC study.

Note that, associations caused by diseases other than the disease of

interest could be avoided in this expanded control analysis,

because the first stage screening with the shared control required a

low p-value.

The expanded control analysis was not an independent

replication of the initial analysis; therefore, a genome-wide

multiple test correction should also be used when testing the

interactions retained in the initial analysis. For convenience, we

used the same test numbers for correction in the expanded control

analysis as those used in the initial analysis. That is, the two SNP

subsets (subsets A and B) were the same as those in the initial

analysis; therefore, the subset division was not based on the single-

locus p-value of the expanded control. This is similar to the ‘‘joint

analysis’’ strategy [40] of single-locus analyses in GWAS.

However, an additional problem we encountered was the

possibility that some SNPs in subset B might not pass the

561027 p-value threshold in the initial analysis, but could pass it in

the expanded control analysis. These SNPs had to be removed to

avoid associations that were caused by a single-locus effect only.

An alternative strategy could be to determine different subsets A

and B for the expanded control analysis. These would be chosen

according to the single-locus p-value threshold of the expanded

control. Then, the corresponding search situation and the

appropriate numbers of multiple tests would be used in the

expanded control analysis.

Result Filtering
First, some interactions detected by tests that incorporate

marginal effects may result from marginal effects alone, without

any pure interaction effects, and we used a strategy similar to

BEAM (the hierarchical significance declaration procedure) [19]

to address this problem. We compared two-locus p-values with

single-locus p-values, as follows. For SNP pairs obtained in the

simultaneous search, we compared the corrected two-locus p-value

to the more significant corrected single-locus p-value of the two

SNPs; for SNP pairs obtained the conditional search, we

compared the corrected two-locus association p-value to the

corrected single-locus p-value of the SNP in subset B; we removed

SNP pairs that had two-locus p-values that were less significant

than the single-locus p-values. The p-values in the expanded

control analysis were used for these comparisons. In addition, we

also removed SNP pairs with any SNPs that did not pass the

561027 p-value threshold in the initial analysis, but passed the

threshold in the expanded control analysis.

Second, we examined all SNP pairs that were located within

1 Mb of each other. Two kinds of artificial associations were

found; one was a batch effect and the other was a genotype

clustering problem. The batch effect was severe aggregation of

samples of some individuals with particularly high risk, two-locus

genotypes, in the 96-well plates. The genotype clustering problem

was observed on genotype clustering plots; this manifested as an

ambiguous extra cluster (beyond the normal three clusters) that the

genotype calling algorithm classified differently between the case

and control groups. SNP pairs with either of these problems were

removed from the analyses.

Third, we further checked the regional interaction signals to

avoid artificial associations due to errors in genotyping a given

SNP. Only results with consecutive interaction signals were

retained; i.e., an elevated interaction signal could be observed

on at least two nearby SNPs from both regions. No results were

excluded based on this check in this study.

Validation Analysis of CAD
We used the online analysis results of the German MI Family

Study [2] (http://www.cardiogenics.imbs-luebeck.de/) to test for

allelic effects in order to validate the pair of regions that we had

associated with CAD. We did not have access to the individual-

level genotype data from that study to validate the interaction. The

genotyping platform was the Affymetrix GeneChip Mapping

500K Array Set. The SNPs were quality-controlled; only SNPs

with a trend test P,0.001 were shown on the website. We sear-

ched the website for any SNPs that showed significant single-locus

effects within 50 kb of the loci. Because only SNPs with trend p-

values,0.001 were shown, we could not check the regional signals

or validate the interaction, due to the lack of individual-level

genotypes.

Validation Analysis of CD
The NIDDK IBDGC data (phs000130.v1.p1) [3] was accessed

from the National Center for Biotechnology Information (NCBI)

database of genotypes and phenotypes [41] (dbGaP, http://www.

ncbi.nlm.nih.gov/dbgap/) to validate the interactions for CD. The

dataset was stratified into two populations, the non-Jewish

population stratum, which comprised 513 cases and 515 controls,

and the Jewish population stratum, which comprised 300 cases

and 432 controls. The genotyping platform was the Illumina

HumanHap300 Genotyping BeadChip. The SNPs in the

association result file (pha002847.1.IBD.analysis.tar.gz) were

selected by removing SNPs with call rates ,0.9 in cases or

controls and SNPs with HWE p-values,0.001 in the controls.

Thus, a total of 305,345 SNPs was used as the validation SNP set.

Two subsequent strategies were used for this validation analysis:

the proxy replication strategy and the local validation strategy.

First, proxy replication was implemented; because a different

genotyping platform was used for the IBDGC data compared to

the WTCCC data. SNPs in LD with the original SNPs were

selected for proxy replication. The measurement of LD was based

on the r2 values from the CEU population data (Phase III release

#2) of the International HapMap Project [26] (HapMap, http://

www.hapmap.org/). The MaCH imputation method [42] was

then used to impute ungenotyped SNPs for validations between

the WTCCC and the IBDGC datasets. Interactions were
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considered valid when they could be replicated by proxy SNPs.

The reference haplotypes for MaCH were obtained from the

HapMap CEU population (Phase III release #2).

Second, ‘‘local validation’’ was used when the locus-based

replication (e.g., proxy replication) failed. In this local validation

method, all SNPs in the validation dataset within 50 kb of the

original loci were tested for allelic effects (by the trend test) or pure

interaction effects (by the 4 d.f. LRT test). This method was based

on the notion that confounding factors might affect the consistency

of the interactions between the original data and the validation

data. The significance was evaluated under the null hypothesis

that none of the SNPs (interactions) in the 100 kb region (pair of

100 kb regions) was associated with the disease. In addition, the

p-values of the SNPs (interactions) should form a uniform

distribution for SNPs that were independent; moreover, the

number of p-values lower than a certain threshold (we used 0.05)

from the total number of p-values should form a binomial

distribution. Therefore, a single-tailed binomial test could be

performed to determine the significance in the numbers of SNPs

with p-values lower than the threshold. However, SNPs were not

independent, due to the LD. Thus, to obtain the empirical

significance for the tests, we randomly sampled 1,000 pairs of

100 kb regions from this validation dataset and calculated the

empirical distribution of the p-values for correction (Table S5). A

significant local validation was interpreted to reject the null

hypothesis, that none of the SNPs or interactions in a certain

region was associated with the disease. However, strictly speaking,

this cannot be interpreted as a successful replication of the original

association or interaction; thus, we used the term ‘‘local

validation’’ instead of ‘‘local replication’’ to avoid confusion.

Validation Analysis of T2D
The GENEVA Diabetes Study data (phs000091.v1.p1) was

accessed from the dbGaP to validate the T2D association results.

The participants in that study were all female. The genotyping

platform was the Affymetrix Genome-Wide Human SNP Array

6.0. Caucasian individuals without missing data on the disease

status were included, SNPs were quality-controlled, and 496,606

genotypes were set to ‘‘missing’’, as initially recommended. After

selection, a total of 1,543 cases and 1,770 controls, with 707,301

SNPs were analyzed. According to the genotyping platforms, the

SNPs in the GENEVA Diabetes Study dataset contained most of

the SNPs in the WTCCC data. Therefore, we could select the

exact SNP combinations in the validation dataset for exact

replication, without the need for the proxy replication described

above. Upon failure of the exact replication, the local validation

method was used with this dataset.

Supporting Information

Figure S1 The distributions of two-locus statistics represented in

quantile-quantile plots. Quantile-quantile plots were generated for

all two-locus LRT statistics in the simultaneous search (A), in the

conditional search (B), and in the epistatic search (C). The LRT

statistics (y coordinates) were sorted and plotted in black circles

against the expected based on the null hypothesis (x coordinates);

the shaded regions show the 95% concentration bands, and the

dashed lines indicate the expected distributions. Statistics that

resulted in p-values,0.01/L are shown in triangles, (L is the total

number of comparisons for the corresponding search situation).

There were no available conditional statistic plots for HT or

epistatic statistic plots for BD and HT. For the simultaneous and

conditional searches (A and B, respectively), the two-locus

statistical distributions for BD, CAD, HT, and T2D fit the

expected quite well; the distributions for the three autoimmune

diseases CD, RA, and T1D showed moderate overdispersion; the

statistical deviations for CD, RA, and T1D started suddenly from

the middle of the dotted lines, and therefore, they did not reflect

general overdispersion. This was due to the many single-locus

associated SNPs for these three diseases, including SNPs in the

MHC region for RA and T1D and multiple associated regions for

CD. Therefore, we applied a strategy similar to BEAM to control

for the excessive single-locus effects in the two-locus associations

(described in Materials and Methods). The statistics for the

epistatic search did not present overdispersion, except for the RA

and T1D data; this was also due to the many significant SNP pairs

within the MHC region. Note that the statistics of artificial

associations identified in this study were not removed from these

plots, which resulted in the extreme deviations in the tails,

particularly in (A).

Found at: doi:10.1371/journal.pgen.1001338.s001 (0.62 MB

PNG)

Figure S2 Regional signal plots of the interaction between

linked SNPs. The format of this figure is the same as that described

in Figure 1.

Found at: doi:10.1371/journal.pgen.1001338.s002 (0.30 MB

PNG)

Figure S3 Cluster plots of the SNPs in Table 1 and one other

pair of linked SNPs. The three genotypes are indicated in red,

green, and blue circles; the black ‘‘+’’ denotes missing genotypes.

Found at: doi:10.1371/journal.pgen.1001338.s003 (1.66 MB JPG)

Figure S4 Linkage disequilibrium plots for the regions in

Table 1. One row represents one pair of regions.

Found at: doi:10.1371/journal.pgen.1001338.s004 (0.97 MB JPG)

Figure S5 Genotype clustering problem of rs2532292. The

legend to this figure is the same as that of Figure 3. (A) The

interaction was yielded by the genotype combination coded as

‘‘4’’, with only a modest effect size; this interaction was detected

because BEAM was sensitive to low frequency variants. (B) The

batch effect did not exist. (C) The cluster plot of rs2532292 in the

cases showed that the four cases with the genotype combination

‘‘4’’ (in cyan) were distributed on the lower edge of the

heterozygote cluster, rather than sporadically distributed. There-

fore, the rs2532292 genotypes for these four cases should be

probably the common homozygotes, and it was the same for the

four controls with the genotype combination ‘‘4’’ (data not shown).

Found at: doi:10.1371/journal.pgen.1001338.s005 (0.74 MB

PNG)

Table S1 Original results. The table file is called ‘‘Table S1.xls’’,

and it is compressed in the zip file. (A) Raw results from PIAM.

This table shows the results generated by PIAM, with the

corresponding disease and the additional SNP quality control

codes in the first and last columns, respectively. The quality

control code ‘‘1’’ denotes an unqualified SNP pair, which includes

at least one SNP that failed the additional quality control; the

quality control code ‘‘0’’ denotes all others. (B) Results excluded

from RA and T1D searches. These results were excluded because

both SNPs were within the MHC region. The format of this table

is the same as that described in (A). (C) Results that passed the

additional SNP quality control in (A) and were tested with the

expanded controls. The format of this table is similar to that

described in (A), with additional columns for information from the

Affymetrix annotations (columns D-O), test numbers (column AR),

interaction LRT statistics and p-values (AW and AX), and

expanded control analysis results (AY-BK). (D) Results that passed

the p-value threshold of Bonferroni corrected P,0.5 in the
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expanded control analysis (column BI). Filter codes (column BL):

1, a corrected, two-locus p-value that was less significant than the

corrected single-locus p-value of either SNP (for the simultaneous

search) or the SNP in subset B (for the conditional search); 2,

single-locus p-value that exceeded the 561027 threshold in the

expanded control analysis; 3, SNP pairs that were located within

1 Mb of each other; 0, results that passed filters 1–3. (E) Results

that failed filter 3. This format of this table is the same as that

described in (D). The results masked in dark grey were false

positives due to the batch effect or genotype clustering problem;

others were not affected. Results highlighted in yellow were the

nearest SNP pairs selected in each associated region. (F) Results

that passed filters 1–3. The format of this table is the same as that

described in (D). Results highlighted in yellow were the SNP pairs

that gave the most significant two-locus p-value within each pair of

associated regions in the initial search.

Found at: doi:10.1371/journal.pgen.1001338.s006 (4.73 MB ZIP)

Table S2 Numbers of multiple tests. The total numbers of SNPs

and the multiple tests used for the Bonferroni correction.

Additional QC: the additional SNP quality control.

Found at: doi:10.1371/journal.pgen.1001338.s007 (0.03 MB

DOC)

Table S3 OR tables for the interaction between linked SNPs.

The legend to this table is the same as that of Table 3.

Found at: doi:10.1371/journal.pgen.1001338.s008 (0.03 MB

DOC)

Table S4 OR tables for the interaction between rs296533 and

rs2089509 with the IBDGC non-Jewish population, Jewish

population, and the imputed WTCCC data. The legend to this

table is the same as that of Table 3.

Found at: doi:10.1371/journal.pgen.1001338.s009 (0.06 MB

DOC)

Table S5 Local validation tests. (A) Detailed results of the local

validation tests. (B) Sampling p-values with the IBDGC non-Jewish

population data. (C) Sampling p-values with the GENEVA T2D

data.

Found at: doi:10.1371/journal.pgen.1001338.s010 (0.21 MB

XLS)
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