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The metabolic syndrome involves multiple and interactive
effects of genes and environmental factors. To identify chro-
mosomal regions encoding genes possibly predisposing to the
metabolic syndrome, we performed a genome-wide scan with
456 white and 217 black participants from 204 nuclear families
of the HERITAGE Family Study, using regression-based, sin-
gle- and multipoint linkage analyses on 509 markers. A prin-
cipal component analysis was performed on 7 metabolic syn-
drome-related phenotypes. Two principal components, PC1
and PC2 (55% of the variance), were used as metabolic syn-
drome phenotypes. ANOVA was used to quantify the familial
aggregation of PC1 and PC2. Family membership contributed
significantly (P < 0.0023) to the variance in PC1 (r2 � 0.38 in

whites; r2 � 0.55 in blacks) and PC2 (r2 � 0.51; r2 � 0.48). In
whites, promising evidence for linkage (P < 0.0023) was found
for PC1 (2 markers on 10p11.2) and PC2 (a marker on 19q13.4).
Suggestive evidence of linkage (0.01 > P > 0.0023) appeared
for PC1 (1q41 and 9p13.1) and PC2 (2p22.3). In blacks, prom-
ising linkage was found for PC2 on 1p34.1, and suggestive
linkage was found on 7q31.3 and 9q21.1. The genome-wide
scan revealed evidence for quantitative trait loci on chromo-
somal regions that have been previously linked with individ-
ual cardiovascular disease and type 2 diabetes risk factors.
Some of these chromosomal regions harbor promising poten-
tial candidate genes. (J Clin Endocrinol Metab 88: 5935–5943,
2003)

MULTIPLE METABOLIC ABNORMALITIES, includ-
ing obesity, insulin resistance and hyperinsulinemia,

dyslipidemia, hypertension, impaired glucose tolerance,
type 2 diabetes mellitus, and other anomalies, tend to occur
jointly in the same subjects more frequently than expected by
chance alone (1). This clustering of several cardiovascular
disease and diabetes risk factors has been referred to as the
metabolic syndrome (2, 3).

The metabolic syndrome has recently been identified as a
major public health problem in the United States. According
to the National Cholesterol Education Program Adult Treat-
ment Panel III, the age-adjusted prevalence is at approxi-
mately 24% of the adult population (4). This is cause for
concern, as individuals with the metabolic syndrome are at
an increased risk of morbidity and mortality from several
metabolic and cardiovascular diseases (5).

The reasons for the joint occurrence are still unclear, but
the clusters seem to be relatively stable traits that tend to
track well from childhood into adulthood (6), perhaps even
more so than the individual risk factors taken separately (7).
Undoubtedly, the development of the metabolic syndrome
involves multiple and interactive effects of genes and envi-
ronmental factors, including physical inactivity and diet (8).

There is evidence for significant familial aggregation for the
individual components of the metabolic syndrome, includ-
ing abdominal visceral fat (AVF) (9, 10), blood lipids (11, 12),
blood pressure (13–15), and blood glucose/insulin levels
(16).

Some studies have suggested that the components of the
metabolic syndrome may share genetic determinants. For
instance, data on 2508 adult male twins suggested the pres-
ence of a common underlying factor mediating the clustering
of hypertension, diabetes, and obesity (17). This latent factor
was influenced by both genetic (59%) and environmental
(41%) effects. Furthermore the concordance rate for the clus-
tering of all three conditions in the same individuals was
5-fold higher in monozygotic twins compared with dizygotic
twins. In the San Antonio Family Heart Study, a common set
of genes influenced insulin levels together with other met-
abolic syndrome-related traits (18). The results of the Swed-
ish Adoption/Twin Study of Aging showed that all 5 prin-
cipal components calculated from the measures of body mass
index (BMI), insulin level, triglycerides, high density li-
poprotein cholesterol (HDL-C) and systolic blood pressure
were influenced by a single latent genetic factor (19). These
studies indicate the presence of an underlying pleiotropic
factor among the components of the metabolic syndrome.

The purpose of this paper is to report on a genome-wide
linkage scan to identify genomic regions harboring genes
that may influence the metabolic syndrome, using data from
the HERITAGE Family Study. As no single measurement can
adequately describe the metabolic syndrome, multivariate

Abbreviations: AVF, Abdominal visceral fat; %BF, percent body fat;
BMI, body mass index; HDL-C, high density lipoprotein cholesterol;
IBD, identical by descent; LDL-C, low density lipoprotein cholesterol;
MAP, mean arterial blood pressure; PC1, first principal component; PC2,
second principal component; POMC, proopiomelanocortin; QTL, quan-
titative trait locus; TG, triglycerides.
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phenotypes were derived using principal components
analysis.

Subjects and Methods
Participants

The study cohort consisted of 456 white participants and (223 men
and 233 women) from 99 nuclear families and 217 black participants (89
men and 128 women) from 105 families. The maximum numbers of
sibling pairs used in the linkage analyses were 302 in whites and 60 in
blacks.

The study design and inclusion criteria of the HERITAGE Family
Study have been described previously (20). Briefly, to be eligible, indi-
viduals were required to be between the ages of 17–65 yr, healthy but
sedentary (no regular physical activity over the previous 6 months), BMI
under 40 kg/m2, and systolic/diastolic blood pressures equal to or less
than 159/99 mm Hg. Participants with BMIs slightly above 40 kg/m2

(n � 6), who were considered by the supervising physician to be healthy
and able to perform the requested exercise prescription, were included
in the study. Further, individuals with confirmed or possible coronary
heart disease, chronic or recurrent respiratory problems, and uncon-
trolled endocrine and metabolic disorders (including diabetes and the
use of antihypertensive or lipid-lowering drugs) were excluded from the
study. The study protocol had been approved by each of the institutional
review boards of the HERITAGE Family Study research consortium.
Written informed consent was obtained from all participants. Although
the HERITAGE Family Study involved a 20-wk aerobic exercise training
program, only data from the initial baseline visit in the sedentary state
are considered here.

Metabolic syndrome

In the present study the metabolic syndrome was represented by the
following set of measurements: percent body fat (%BF), AVF, mean
arterial blood pressure (MAP), and plasma HDL-C, triglycerides (TG),
glucose, and insulin concentrations. All measurement and array proto-
cols were standardized and carefully monitored using an extensive
quality assurance and quality control program (21).

%BF was determined from measurements of body density from un-
derwater weighing (22), with a correction for residual lung volume by
the oxygen dilution technique (23), at three clinical centers and by the
helium-dilution technique (24) at the fourth clinical center. Relative body
fatness was estimated using the equation of Siri (25) for white men,
Lohman (26) for white women, Schutte et al. (27) for black men, and Ortiz
et al. (28) for black women. AVF areas were determined by computed
tomography scans (29). Participants were in the supine position with
their arms above their heads, and the abdominal scan was obtained at
the L4–L5 vertebral level. The attenuation interval used in the quanti-
fication of the areas of adipose tissue was between �190 and �30
Hounsfield units. The AVF area was obtained by drawing a line within
the muscle wall surrounding the abdominal cavity.

Resting systolic and diastolic blood pressures were measured twice
on separate days in the morning after a 12-h fast. Measurements were
made in a quiet room with the participant reclined at a 45° angle, with
legs elevated. Blood pressure was determined after a 5-min rest period
using a STBP-780 automated unit (Colin, San Antonio, TX) while a
technician wore ear phones to confirm the values. The first measure-
ments were discarded, and three valid measurements were made on
each day. The average of six blood pressure measurements was used as
the measure of systolic and diastolic blood pressures. MAP, calculated
as [(2 � diastolic blood pressure) � systolic blood pressure]/3, was used
in the present analyses.

Plasma concentrations of HDL-C, TG, glucose, and insulin were mea-
sured twice after a 12-h overnight fast. Blood samples were obtained
from an antecubital vein and collected into Vacutainer tubes (BD Bio-
sciences, Mountain View, CA) containing EDTA. For women, samples
were collected in the early follicular phase of the menstrual cycle. Total
cholesterol and TG levels were determined by enzymatic methods using
the Technicon RA-500 analyzer (Bayer Corp, Inc., Tarrytown, NY), as
previously described (30). Plasma very low density lipoprotein (density,
�1.006 g/ml) was isolated by ultracentrifugation, and the HDL fraction
was obtained after precipitation of low density lipoprotein cholesterol

(LDL-C) in the infranatant (density, �1.006 g/ml) with heparin and
MgCl2 (31). The HDL-C and TG contents of the infranatant fraction were
measured before and after the precipitation step.

Plasma glucose was enzymatically determined using a reagent kit
distributed by Diagnostic Chemicals Ltd. (Oxford, CT), and plasma
insulin levels were measured by RIA after polyethylene glycol separa-
tion, as described by Desbuquois and Aurback (32). Polyclonal anti-
bodies that cross-react more than 90% with proinsulin (and presumably
with its conversion intermediates) were used (33). Therefore, in this
study insulin refers to immunoreactive insulin (defined as the sum of
insulin, proinsulin, and split proinsulin). In the present sample, with
normal fasting glucose levels and no history of diabetes, it is estimated
that about 10% of the immunoreactive insulin is in the form of proinsulin
and its conversion intermediates (34).

Standard principal component analysis was applied to the individual
risk factors (%BF, AVF, HDL-C, TG, glucose, insulin, and MAP) for the
purpose of deriving components that represent large fractions of the
metabolic syndrome variance. Principal components derived from be-
tween-family covariance or within-family genetic covariance were not
used, as it has been shown that standard principal components perform
equally well or better in terms of both power or type I error in linkage
analyses (35). The first two principal components (PC1 and PC2) were
retained for further analysis. They both had eigen values of 1 or more.
The factor loadings for PC1 and PC2 (eigen vectors) were plotted to
obtain a visual representation of the profile of components (Fig. 1). We
included MAP in the analysis, instead of systolic and diastolic blood
pressures individually. Both methods resulted in two PCs that repre-
sented the metabolic syndrome equally well. Therefore, the most par-
simonious method (MAP) was considered for further analyses.

Data adjustment

PC1 and PC2 were adjusted for the effects of age, sex, and generation
in both mean and variance using stepwise multiple regression proce-
dures (36). Briefly, PC1 and PC2 were regressed (mean regression) on
up to a third degree polynomial in age (age, age2, age3) within each of
the race by sex by generation subgroups. Only significant terms (5%
level) were retained. The squared residuals from the mean regression
were then regressed on up to a third degree polynomial in age to test
for heteroscedasticity, and the predicted values were retained if signif-
icant. The residuals from the best regression were then standardized to
zero mean and unit variance within each of the eight race by sex by
generation groups and constituted the final phenotypes.

Familial aggregation analysis

To study whether PC1 and PC2 aggregate within families, we per-
formed an ANOVA comparing the between-family to the within-family
variances. The ANOVAs were conducted separately in blacks and
whites using the age- and sex-adjusted values.

Genotyping

A total of 509 markers with an average spacing of 6.0 cM were used.
PCR conditions and genotyping methods have been fully outlined pre-
viously (37). Automatic DNA sequencers from LICOR (Lincoln, NE)
were used to detect the PCR products, and genotypes were scored using
SAGA software. Incompatibilities with Mendelian inheritance were
checked, and markers showing incompatibilities were regenotyped
completely (�10% were retyped). Microsatellite markers were selected
mainly from the Marshfield panel (version 8a), as were some candidate
genes for obesity and comorbidities, including dyslipidemia, diabetes,
and hypertension. Map locations were taken from the Genetic Location
Database of Southampton, UK (which can be accessed online at http:/
cedar.genetics.soton.ac.uk). The cytogenetic locations of the markers
were obtained from the NCBI map viewer (which can be accessed online
at http://www.ncbi.nlm.nih.gov).

Linkage analyses

Both single- and multipoint linkage analyses were performed with
the sibling pair linkage procedure (38, 39) as implemented in the SIBPAL
program of the S.A.G.E. 4.0 Statistical Package (40). Briefly, if there is
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linkage between a marker locus and a putative gene influencing the
phenotype, siblings sharing a greater proportion of alleles identical by
descent (IBD) at the marker locus also will show a greater resemblance
in the phenotype. Phenotypic resemblance of the siblings, modeled as
the weighted combination of squared trait difference and squared mean
corrected trait sum, is linearly regressed on the estimated proportion of
alleles that the sibling pair shares IBD at each marker locus. Both single-
and multipoint estimates of allele-sharing IBD were generated using the
GENIBD program of the S.A.G.E. 4.0 package. Empirical P values (max-
imum of 100,000 replicates) were calculated for all markers with nominal
P � 0.01. The � level used to identify promising results (P � 0.0023,
corresponding to a LOD score of 1.75) represents, on the average, one
false positive per scan for experiments involving approximately 400
markers (41). All analyses were conducted separately in blacks and
whites.

Results

The descriptive characteristics of the participants are pre-
sented in Table 1, whereas Fig. 1 depicts the loadings for the
first two principal components. PC1 explained 40% of the

variance in the original variables and was characterized by
positive loadings for glucose, insulin, %BF, AVF, TG, and
MAP and a negative loading for HDL-C. PC2 explained an
additional 15% of the variance and reflected a contrast be-
tween positive loadings for %BF and HDL-C concentration
and a negative loading for TG concentration. Similar results
were obtained when the factor analysis was performed for
blacks and whites separately. Therefore, the PC1 and PC2
derived from the combined sample were used for further
analyses.

The results of the familial aggregation analyses are pre-
sented in Table 2. In whites, family membership accounted
for 38% (P � 0.0001) and 51% (P � 0.0001) of the variance in
PC1 and PC2, respectively. In blacks, family membership
accounted for 55% (P � 0.0001) and 48% (P � 0.0026) of the
variance of PC1 and PC2, respectively. An examination of the
F values indicates that there are 1.75–3.9 times more variance

FIG. 1. Results of the principal components anal-
ysis of risk factors for the metabolic syndrome in the
HERITAGE Family Study. PC1 and PC2 explained
55% of the variance in risk factors.
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between families than within families for the two pheno-
types. Thus, both PC1 and PC2 significantly aggregate within
families.

Table 3 presents the suggestive (P � 0.01) and promising
(P � 0.0023) linkage results detected in the genomic scan.
Figures 2 and 3 depict the results for those chromosomes
with promising linkages in whites (chromosomes 10 and 19)
and blacks (chromosome 1). Overall, five chromosomal re-
gions in whites and three chromosomal regions in blacks
showed suggestive or promising linkages with either PC1 or
PC2. In whites, markers on chromosomal regions 10p11.2
and 19q13.4 showed promising linkages with PC1 and PC2,
respectively (Fig. 2). Markers in another three regions (1q41,
2p22.3, and 9p13.1) showed suggestive linkages with either
PC1 or PC2 (Table 3). In blacks, two adjacent markers on
chromosome 1p34 showed suggestive and promising linkage
with PC2 (Fig. 3). In addition, suggestive evidence for a
quantitative trait locus (QTL) for PC2 was found on chro-

mosomes 7q31.3 and 9q21.1. There were no chromosomal
regions harboring QTLs common to both blacks and whites.

Discussion

The results demonstrate that the metabolic syndrome, as
defined by principle components of multiple risk factors,
significantly aggregates within black and white families.
Therefore, it is reasonable to undertake a search for QTLs
and, ultimately, genes and mutations that may contribute to
the clustering of risk factors seen in the metabolic syndrome.
The results from the genomic scan revealed promising evi-
dence for QTLs affecting the metabolic syndrome on chro-
mosomes 10p and 19q in whites and on chromosome 1q in
blacks.

Only a few studies (42, 43) have attempted a genome-wide
scan for the metabolic syndrome. Differences in study pop-
ulation and in methods used to quantify the metabolic syn-
drome make comparisons among these studies difficult.
Arya et al. (42) reported a genome-wide scan for the meta-
bolic syndrome with 261 nondiabetic subjects from 27 Mex-
ican-American families. As in our study, they performed a
principal component analysis using 8 metabolic syndrome-
related phenotypes: fasting glucose, fasting specific insulin,
BMI, systolic blood pressure, diastolic blood pressure, fast-
ing HDL-C, fasting TG, and fasting leptin. The factor anal-
yses yielded 3 factors, factor 1 (adiposity-insulin factor: BMI,
leptin, and fasting specific insulin), factor 2 (blood pressure

TABLE 1. Descriptive characteristics of sample

Variable Group
Blacks Whites

n Mean SD n Mean SD

Age (yr)
Men 89 31.5 11.1 223 36.1 14.8
Women 128 32.1 11.0 233 34.1 14.0

BMI (kg/m2)
Men 89 27.5 5.5 222 26.2 4.4
Women 127 27.8 6.1 231 24.8 4.9

%BF
Men 89 23.0 8.4 223 22.4 8.8
Women 128 35.8 8.6 233 29.7 9.9

AVF (cm2)
Men 89 73.8 54.0 223 104.9 60.9
Women 128 67.6 42.3 233 72.4 51.8

Resting diastolic blood pressure (mm Hg)
Men 89 72.3 7.7 223 68.2 9.2
Women 128 71.8 9.1 233 63.5 7.1

Resting systolic blood pressure (mm Hg)
Men 89 125.0 9.5 223 120.2 10.8
Women 128 122.3 13.3 233 112.4 10.1

MAP (mm Hg)
Men 89 89.9 7.4 223 85.5 8.8
Women 128 88.6 9.8 233 79.8 7.4

Fasting plasma HDL-C (mmol/liter)
Men 89 0.97 0.20 223 0.94 0.19
Women 128 1.12 0.26 233 1.15 0.26

Fasting plasma TG (mmol/liter)
Men 89 1.23 0.79 223 1.52 0.91
Women 128 0.84 0.37 233 1.16 0.58

Fasting plasma glucose (mmol/liter)
Men 89 94.3 10.4 223 93.7 11.3
Women 128 90.0 10.8 233 89.2 12.4

Fasting plasma insulin (pmol/liter)
Men 89 11.9 10.0 223 9.8 7.9
Women 128 11.3 10.5 233 7.9 4.5

TABLE 2. Familial aggregation of principal components (PC1 and
PC2) of indicators of the metabolic syndrome from the comparison
of between-family to within-family variance components (by
ANOVA)

Blacks Whites

n r2 F value P n r2 F value P

PC1 217 0.55 2.29 �0.0001 456 0.38 2.35 �0.0001
PC2 217 0.48 1.75 0.0026 456 0.51 3.93 �0.0001
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factor: diastolic and systolic blood pressures), and factor 3
(lipid profile factor: HDL-C and TG). They found significant
evidence of linkage for factor 1 to two regions on chromo-
some 6 near markers D6S403 (LOD � 4.2) and D6S264
(LOD � 4.9) and strong evidence of linkage for factor 3 on
chromosome 7 between markers D7S479 and D7S471
(LOD � 3.2). None of these regions overlapped with those of
our study. The 3 principal components from the report by
Arya et al., however, are substantially different from the
components of the present study. De Andrade et al. (43)
applied multivariate linkage analyses to 5 phenotypes re-
lated to the metabolic syndrome, taking 3 traits at a time,
using 279 extended families from the Rochester Family Heart
Study. Significant LOD scores were obtained on 5q and 6q for
the combination of TG, fasting insulin, and fasting glucose.
None of these regions coincided with our QTLs.

Other studies have reported genomic scans for individual
components of the metabolic syndrome. Although the results
of these prior studies are not directly comparable to those of
the present study, there is some overlap between the chro-
mosomal regions identified in our genomic scan and those
reported in studies using univariate approaches.

In whites, for example, we observed promising evidence
for linkage between 2 markers on 10p11.2 and PC1. For the
same region, Pajukanta et al. (44) reported significant linkage
for elevated TG levels in Finnish families with familial com-
bined hyperlipidemia. This region also overlaps with a QTL
for obesity reported by Hager et al. (45). This QTL reached
maximal significance (maximum LOD scores � 4.85) at a
marker (D10S197) less than 4 Mb from D10S208 and in the
gene encoding glutamic acid decarboxylase 2, which is a
major autoantigen in insulin-dependent diabetes mellitus
(46). However, glutamic acid decarboxylase 2 is located out-
side our region of linkage on 10p11.2 and therefore cannot be
considered as a candidate gene for the PC1. Furthermore, we
recently reported promising linkage on 10p11.2 for training

response of submaximal exercise stroke volume after a 20-wk
endurance program (47).

Promising evidence for linkage was also found between a
marker (D19S589) on chromosome 19q13.4 and PC2, which
loaded primarily on %BF, and HDL-C and TG concentra-
tions. Interestingly, the same marker and a marker close by
(D19S927) showed suggestive linkage (P � 0.01) for familial
combined hyperlipidemia in 35 extended Dutch families (782
individuals) (48).

Two markers on 2p22.3 showed suggestive linkage with
PC2. Interestingly, the D2S1788 marker (�0.5 Mb from the
D2S2374) showed suggestive linkage with serum TG levels
(LOD � 1.7) in Pima Indians (49) and with systolic blood
pressure (P � 0.0089) in the Genetic Epidemiology Network
of Atherosclerosis (GENOA) cohort (50). In addition, mark-
ers in the 2p22.3 region have been shown to be significantly
linked with serum leptin levels in Mexican-Americans (51,
52) and exhibited suggestive linkages in a French (45) and an
African-American (53) population. The proopiomelanocor-
tin gene (POMC) has been proposed as a potential candidate
for these linkages with serum leptin concentrations. POMC
is the precursor for several peptide hormones produced by
posttranslational processing, some of which are involved in
energy homeostasis, including �MSH, ACTH, and �-endor-
phin (54). POMC is highly expressed in neuronal cells of the
arcuate nucleus, a region of the hypothalamus involved in
the regulation of energy homeostasis (54). The POMC gene
is located 4 Mb upstream of the D2S390 marker.

In blacks, the strongest evidence for linkage was found for
PC2, with two adjacent markers on chromosome 1p34. In a
French extended pedigree, two markers (D1S2892 and
D1S2722) in the same region showed significant linkage
(LOD score � 3.13) with autosomal dominant hypercholes-
terolemia, a disorder characterized by an isolated elevation
of LDL-C that leads to premature mortality from cardiovas-
cular complications (55). Potential candidate genes in this

TABLE 3. Suggestive (P � 0.01) and promising (P � 0.0023) multipoint linkages and corresponding single-point linkages with principal
components (PC1 and PC2) of risk factors for the metabolic syndrome in whites and blacks

Marker Chromosome Map position
(cM) Phenotype Multipoint

P
Single-point

P

Whites
D1S1602 1q41 233.055 PC1 0.0097a 0.0125

D2S390 2p22.3 45.422 PC2 0.0070a 0.0288
D2S2374 2p22.3 48.435 PC2 0.0045a 0.0036a

D9S1878 9p13.1 40.045 PC1 0.0095a 0.0092a

D10S208 10p11.2 27.469 PC1 0.0003b 0.0576
D10S1169 10p11.2 31.461 PC1 0.0084a 0.0674
D10S1768 10p11.2 38.415 PC1 0.0007b 0.0382

D19S589 19q13.4 59.573 PC2 0.0009b 0.0251
Blacks

EDN2BSMA 1p34 54.888 PC2 0.0044a 0.7508
D1S193 1p34.1 56.093 PC2 0.0011b 0.4813

LEPNSPBI 7q31.3 134.312 PC2 0.0071a 0.0322
LEP_MSAT 7q31.3 134.313 PC2 0.0088a 0.0294

D9S301 9q21.1 60.036 PC2 0.0049a 0.0225

EDN2BSMA, Endothelin 2; LEP_MSAT, leptin microsatellite; LEPNSPBI, leptin.
a Suggestive multipoint linkage.
b Promising multipoint linkage.
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region for PC2 include the �-subunit of nuclear factor Y,
which may play a role in the regulation of both lipogenic and
cholesterolegenic genes (56). The other candidates are sterol
carrier protein 2, which encodes a lipid transport basic pro-
tein believed to facilitate the movement of cholesterol and
phospholipids within the cell (57); fatty acid-binding protein
3, a protein transporting hydrophobic fatty acids through the
cytoplasm (58); and the apolipoprotein E receptor 2, a mem-
ber of the LDL-C receptor family, involved in the cellular
recognition and internalization of LDL-C and most highly
expressed in human brain tissue (59). Furthermore, one of the
markers that showed evidence of linkage at 1p34 is located
in the endothelin-2 gene, which encodes a potent vasocon-
strictor peptide involved in the control of blood pressure (60).

The endothelin-2 genotype was found to be associated with
pretreatment diastolic blood pressure in hypertensive, but
not in normotensive, patients (61). It was suggested that
endothelin-2 influences the severity, rather than the initial
development, of hypertension (61).

Suggestive evidence for linkage was found between mark-
ers on 7q31.3 and PC2. In the same sample we previously
reported suggestive linkages with AVF (62) and systolic
blood pressure at 80% maximal oxygen consumption (63) in
the same region. The obvious candidate at 7q31.3 is the leptin
gene. Leptin plays a role in the regulation of body weight and
has been linked with various anthropometric measures in
Caucasians (64–68), Mexican-Americans (69, 70), and Afri-
can-Americans (71). In the Quebec Family Study (15), the

FIG. 2. Overview of the multipoint linkage re-
sults for chromosomes 10 (PC1) and 19 (PC2) in
whites of the HERITAGE Family Study.
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same region (D7S530) was significantly linked with systolic
blood pressure (LOD � 2.26; P � 0.00063) in 445 Caucasian
subjects from 125 families. Moreover, Cheng et al. (72) found
significant linkage between the D7S3061 marker and fasting
insulin (LOD � 3.36; P � 0.000085) and suggestive linkage
with systolic blood pressure (LOD � 2.06; P � 0.0021) in 390
Hispanic family members of 77 probands. Although both
phenotypes (blood pressure and insulin resistance) are com-
monly viewed as parts of the metabolic syndrome, they did
not load on PC2 in our study.

Blacks and whites had no QTLs in common for either PC1
or PC2. Although this may be due to the lack of power in the
black sample, it is also possible that the loci for blacks and
whites are truly distinct. A review of 101 linkage studies
identified 2 factors that reduced the chance of finding con-
sistent results: 1) small sample size, and 2) ethnic heteroge-
neity (73). Furthermore, although black Americans have
about 7–20% white admixture, they are still genetically more
similar to Africans (74).

In summary, we showed that two multivariate phenotypes
representing some aspects of the metabolic syndrome sig-
nificantly aggregate within families. Both phenotypes were
found to be linked to several chromosomal regions in blacks
and whites. Many of the markers showing suggestive (P �
0.01) or promising (P � 0.0023) linkages are in chromosomal
regions that have been linked in other studies with cardio-
vascular disease and type 2 diabetes risk factors. The major
QTLs warranting further studies with fine mapping were
observed on chromosomes 10p11, 19q13, and 1p34. These
chromosomal regions may encode genes that affect features
of the metabolic syndrome that were captured in the first two
principal components.
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