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ABSTRACT: Data of broiler chickens for 2 pure lines 
across 3 generations were used for genomic evaluation. 
A complete population (full data set; FDS) consisted of 
183,784 and 164,246 broilers for the 2 lines. The geno-
typed subsets (SUB) consisted of 3,284 and 3,098 broil-
ers with 57,636 SNP. Genotyped animals were prese-
lected based on more than 20 traits with different index 
applied to each line. Three traits were analyzed: BW at 
6 wk (BW6), ultrasound measurement of breast meat 
(BM), and leg score (LS) coded 1 = no and 2 = yes 
for leg defect. Some phenotypes were missing for BM. 
The training population consisted of the first 2 genera-
tions including all animals in FDS or only genotyped 
animals in SUB. The validation data set contained only 
genotyped animals in the third generation. Genetic 
evaluations were performed using 3 approaches: 1) phe-
notypic BLUP, 2) extending BLUP methodologies to 
utilize pedigree and genomic information in a single 
step (ssGBLUP), and 3) Bayes A. Whereas BLUP and 

ssGBLUP utilized all phenotypic data, Bayes A could 
use only those of the genotyped subset. Heritabilities 
were 0.17 to 0.20 for BW6, 0.30 to 0.35 for BM, and 
0.09 to 0.11 for LS. The average accuracies of the vali-
dation population with BLUP for BW6, BM, and LS 
were 0.46, 0.30, and <0 with SUB and 0.51, 0.34, and 
0.28 with FDS. With ssGBLUP, those accuracies were 
0.60, 0.34, and 0.06 with SUB and 0.61, 0.40, and 0.37 
with FDS, respectively. With Bayes A, the accuracies 
were 0.60, 0.36, and 0.09 with SUB. With SUB, Bayes 
A and ssGBLUP had similar accuracies. For traits of 
high heritability, the accuracy of Bayes A/SUB and 
ssGBLUP/FDS were similar, and up to 50% better 
than BLUP/FDS. However, with low heritability, ssG-
BLUP/FDS was 4 to 6 times more accurate than Bayes 
A/SUB and 50% better than BLUP/FDS. An optimal 
genomic evaluation would be multi-trait and involve all 
traits and records on which selection is based.
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INTRODUCTION

Availability of large panels of SNP markers creat-
ed an interest in genomic selection (Meuwissen et al., 
2001) as a tool to increase the accuracy of prediction 
for young animals. These tools were first used in se-
lection of dairy cattle (Hayes et al., 2009; VanRaden 
et al., 2009). A typical implementation in dairy cattle 

is a multi-step procedure that requires 1) traditional 
evaluation with an animal model, 2) extraction of pseu-
do-observations, and 3) estimation of genomic effects 
for genotyped animals (Van Raden, 2008; Hayes et al., 
2009; VanRaden et al., 2009). In step 3, various distri-
butions of SNP effects may be postulated, but for most 
traits the assumption of equal variance of each marker 
yields accuracies similar to those obtained with differ-
ent assumptions of distributions of SNP effects (e.g.; 
Bayes A; Hayes et al., 2009). Assumption of equal vari-
ances is equivalent to BLUP with a genomic relation-
ship matrix (VanRaden, 2008).

The strategy in dairy cattle relies on many sires with 
increased accuracies. In species with less accuracy of 
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genotyped animals, pseudo-observations are harder to 
obtain, and steps 1 and 2 may be eliminated by per-
forming step 3 directly on phenotypic records (Dekkers 
et al., 2009; González-Recio et al., 2009). However, it is 
not clear whether the increase of accuracy due to using 
the genomic information overcomes the loss of accuracy 
due to ignoring records on ungenotyped animals. A re-
lated issue is selection bias with multiple trait selection 
(Van Vleck, 1968; Pollak et al., 1984).

Misztal et al. (2009) proposed a single-step BLUP 
(ssGBLUP) for genomic evaluation where an addi-
tive relationship matrix is modified to incorporate the 
genomic information. The ssGBLUP was successfully 
applied for final scores of over 6 million Holsteins with 
accuracy superior to a multi-step procedure (Aguilar et 
al., 2010). The ssGBLUP is suitable for multiple-trait 
analyses.

The objective of this study was to compare BLUP, 
ssGBLUP, and a multi-step procedure on a large set of 
commercial data in broiler chickens using records on all 
or genotyped animals.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study because the data were obtained 
from an existing database.

Data

Phenotypic data of broiler chickens from 2 pure lines 
across 3 generations (G1, G2, and G3) were provided 
by Cobb-Vantress Inc. (Siloam Springs, AR). Line 1 
is a sire line, selected primarily for growth rate, meat 

yield, feed conversion, and livability. Reproduction 
traits are also considered in the selection. Line 2 is a 
dam line, selected primarily for reproduction than pro-
duction. Traits analyzed included BW at 6 wk (BW6, 
100 g), ultrasound area of breast meat (BM, cm2), and 
leg angle (leg score; LS) coded 1 = acceptable and 2 = 
not acceptable. Phenotypic records of all animals (full 
data set; FDS) and only genotyped animals (SUB) for 
the 3 generations were analyzed. Genotyped animals in 
SUB were selected based on more than 20 traits with 
a different index applied to each line. Descriptions of 
phenotypic records for FDS are shown in Table 1. A to-
tal of 183,784 and 164,246 broilers were available in the 
initial complete data set for lines 1 and 2, respectively. 
The BW6 and LS were recorded for all animals, except 
for BM only 40,914 (line 1) and 40,576 (line 2) broilers 
were measured. Complete pedigrees were available for 
all animals. For FDS, numbers of animals in the pedi-
gree (including sires and dams without records) were 
186,222 for line 1 and 166,529 for line 2.

Genotypes for 57,636 SNP based on the SNP panel 
developed by Groenen et al. (2009) were determined 
in 3,284 (line 1) and 3,098 (line 2) broilers across 3 
generations. Descriptions of phenotypic records for 
genotyped animals in SUB are shown in Table 2. All 
genotyped animals had records for BW6 and LS, but 
for BM there was a slightly reduced number of 3,099 
and 2,993 animals for the respective lines. For the SUB 
data set, phenotypic information was limited to those 
animals genotyped, whereas the pedigree also included 
the parents of the first generation genotyped. For SUB, 
numbers of animals in the pedigree (including sires and 
dams without records) were 4,013 for line 1 and 3,722 
for line 2.

Table 1. Description of phenotypic records in the complete data set FDS1 for the 2 lines 

Item2

Line 1 Line 2

Male Female Total Male Female Total

BW6, 100 g        
 No. of records 89,578 94,206 183,784  79,333 84,913 164,246
 Mean 26.15 22.94 24.50  25.26 21.92 23.53
 SD 3.14 2.43 3.22  3.08 2.29 3.17
BM, cm2        
 No. of records 7,163 33,751 40,914  7,033 33,543 40,576
 Mean 45.60 42.22 42.81  44.81 40.32 41.09
 SD 5.65 5.09 5.35  5.48 4.66 5.10
LS, 1 and 2        
 No. of records 89,578 94,206 183,784  79,333 84,913 164,246
 Mean 1.26 1.12 1.19  1.24 1.09 1.16
 SD 0.44 0.33 0.39  0.42 0.28 0.37
No. of sires with records — — 281  — — 308
No. of sires without records — — 287  — — 273
No. of dams with records — — 2,447  — — 2,398
No. of dams without records — — 2,151  — — 2,010
Animals in pedigree3 — — 186,222  — — 166,529

1Phenotypic records of ungenotyped and genotyped animals across 3 generations.
2BW6 = BW at 6 wk; BM = ultrasound measurement of breast meat; LS = leg score. 
3Numbers of animals with records and numbers of sires and dams without records in the pedigree.
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The 2 data sets, FDS and SUB, were split into train-
ing and validation data sets for each line for the ge-
netic prediction. Training data set consisted of records 
from G1 and G2. Validation data set contained 799 
genotyped animals in G3, which also had phenotypic 
records. Numbers of animals in training and validation 
data sets for the 2 lines are presented in Table 3.

Models and Analyses

The single-trait model was

 y Xb Zu e= + + ,  

where y is the vector of observations for BW6, BM, 
and LS; b is the vector of fixed effects including con-
temporary group (house-hatch) and sex; u is the vec-
tor of random additive genetic effects, combining poly-
genic (breeding values based on pedigree) and genomic 
(breeding values based on genotypes) breeding values; 
X and Z are incidence matrices; e is the vector of ran-
dom residuals. Based on the preliminary analyses, the 
maternal genetic effects were very small for all 3 traits, 
whereas the maternal permanent environmental effect 
was larger for BW6 but not for BM and LS. Therefore, 
the analysis for BW6 included the vector of random 
maternal permanent environmental effects (mp), and 
the corresponding incidence matrix (W) was added in 
the model. For FDS, levels of maternal permanent envi-
ronmental effects were 4,598 for line 1 and 4,408 for line 
2. For SUB, levels were 1,290 for line 1 and 1,162 for 
line 2. Contemporary groups were nested within gen-
erations. For FDS, there were 98 contemporary groups 
for each line. For SUB, there were 57 contemporary 
groups for each line.

For regular BLUP analysis, the (co)variance matrix 
was assumed to be
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where A is a numerator relationship matrix of dimen-
sion corresponding to numbers of animals in the pedi-
gree described above, I is the identity matrix of appro-
priate dimension (m or n), and su

2,  smp
2 ,  and se

2  were 

additive, maternal permanent, and residual variances, 
respectively. In ssGBLUP, the A matrix was replaced 
by the H matrix with the following inverse (Aguilar et 
al., 2010):

 H A
G A

- -
- -= +

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1
1

22
1

0 0

0
,  

Table 2. Description of phenotypic records of data set SUB1 for the 2 lines 

Item2

Line 1 Line 2

Male Female Total Male Female Total

BW6, 100 g        
 No. of records 670 2,614 3,284  666 2,432 3,098
 Mean 29.25 24.03 25.09  26.77 22.43 23.36
 SD 2.43 1.95 2.94  2.42 1.78 2.63
BM, cm2        
 No. of records 594 2,505 3,099  656 2,337 2,993
 Mean 46.38 42.04 42.87  45.27 39.81 41.00
 SD 5.30 5.16 5.47  5.31 4.37 5.12
LS, 1 and 2        
 No. of records 670 2,614 3,284  666 2,432 3,098
 Mean 1.18 1.04 1.07  1.30 1.08 1.12
 SD 0.39 0.20 0.25  0.46 0.26 0.33
No. of sires with records — — 90  — — 87
No. of sires without records — — 220  — — 186
No. of dams with records — — 785  — — 735
No. of dams without records — — 509  — — 438
Animals in pedigree3 — — 4,013  — — 3,722

1Phenotypic records of genotyped animals across 3 generations.
2BW6 = BW at 6 wk; BM = ultrasound measurement of breast meat; LS = leg score. 
3Numbers of animals with records and numbers of sires and dams without records in the pedigree.

Table 3. Numbers of animals in the training and vali-
dation data sets for the 2 lines 

Item Line 1 Line 2

Training data set1   
 SUB 2,485 2,299
 FDS 155,899 134,918
Validation data set2 799 799

1Training data set in SUB consisted of phenotypes for genotyped 
animals in generations G1 and G2; training data set in FDS consisted 
of phenotypes for ungenotyped and genotyped animals in generations 
G1 and G2.

2Validation data set contained genotyped animals in generation G3, 
which also had phenotypic records.
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where H is a modified relationship matrix incorporat-
ing genomic information, A22

1-  corresponds to the in-
verse of numerator relationship matrix for genotyped 
animals, and G is a genomic relationship matrix. Ma-
trix G was created as in Aguilar et al. (2010) assuming 
equal allele frequencies. Using current allele frequencies 
(results not shown) did not affect rankings.

Estimates of variance components were obtained us-
ing single-trait models with the complete and subset 
data sets including records across 3 generations for each 
line. Estimates of variance components obtained with 
FDS were used for genetic evaluations. Genetic evalua-
tions were performed by modified BLUP90IOD (Tsu-
ruta et al., 2001; Misztal et al., 2002; Aguilar et al., 
2010) using BLUP (no genomic information) and ssG-
BLUP (with genomic information) for FDS and SUB. 
An extra analysis was done by Bayes A approach (Meu-
wissen et al., 2001) with SUB only. In addition, Bayes 
B with a range of π values (the proportion of SNP with 
null effects) was also compared, but the fit with π = 0, 
corresponding to Bayes A, fit the data best. Thus, 
Bayes B comparisons were not included in the results. 
Model predictive ability, r(u, u + e),ˆ  was defined as the 
correlation between predicted breeding value (û) and 
the sum of true breeding value (u) and residual (e), us-
ing the formula shown by Legarra et al. (2008). Accu-
racy, correlation between predicted and true breeding 
values, was calculated as r(u, u) = r(u, u + e) / h,ˆ ˆ  where h 
is the square root of heritability. Estimates of heritabil-
ity obtained with FDS were used for calculating accura-
cies.

RESULTS AND DISCUSSION

Table 4 summarizes estimates of variance compo-
nents using FDS with phenotypic BLUP for the 2 lines. 
Estimates of heritability for line 1 were 0.20, 0.30, and 
0.11 for BW6, BM, and LS, respectively. For line 2 the 
estimates for the same traits were 0.17, 0.35, and 0.09. 
In general, the estimates for both lines were similar.

Table 5 summarizes estimates of variance components 
using SUB with phenotypic BLUP. For all traits, the 
estimates additive variances were somewhat smaller in 
SUB than those in FDS; whereas the estimates for the 
residual variances were almost 3 times smaller in SUB 
for BW6 and LS, the residual variance was larger in 
SUB for BM. The change in residual variances in SUB 
resulted in increased heritability for BW6 and decrease 
heritability for BM across lines, with mixed changes 
for LS.

The accuracies of prediction based on phenotypes 
only or on both phenotypes and genomic information 
for the 2 lines is shown in Table 6. Based on the defini-
tion of accuracy and amount of information for pheno-
types and genotypes, greater accuracies of predictions 
for the validation generation should be expected with 
1) FDS, 2) greater heritabilities, and 3) the genomic 
information (Muir, 2007; Hayes et al., 2009; VanRaden 
et al., 2009). Also, accuracy is a function of heritability 
and number of phenotypic records being used. Fewer 
records are required to achieve greater accuracy in the 
genomic evaluation for traits with greater heritability 
(Goddard, 2009; Hayes et al., 2009). With similar heri-
tability and the amount of records being used, lines 1 
and 2 would be expected to have similar accuracies for 
some traits. In the simulation study by Neuner et al. 
(2009), accuracy using a genotyped subset with marker 
information was similar to that using FDS data with-
out marker information. For the genotyped subset, only 
1 QTL effect was simulated with partial pedigree be-
ing used in their study. With relative larger amounts 
of SNP and FDS pedigree being applicable, accuracies 
using genomic information combined with phenotypes 
from the genotyped animals (SUB) would be substan-
tially greater than phenotypic BLUP using the full data 
(FDS) without the genomic information for some traits 
with increased heritability.

As Table 6 shows, not all the expectations were real-
ized. First, accuracies are less for BM than for BW6 
despite its greater heritability. This is likely caused by 

Table 4. Estimates1 of variance components and heri-
tability using the complete data set (FDS)2 with phe-
notypic BLUP for the 2 lines 

Item3 su
2 smp

2 se
2 h2

Line 1     
 BW6 1.03 0.40 3.69 0.20
 BM 4.04 — 9.61 0.30
 LS 0.02 — 0.13 0.11
Line 2     
 BW6 0.85 0.32 3.83 0.17
 BM 4.34 — 7.95 0.35
 LS 0.01 — 0.12 0.09

1 su
2 ,  smp

2 ,  and se
2  are additive, maternal permanent, and residual 

variances, respectively; h2 is the heritability.
2Phenotypes for ungenotyped and genotyped animals across genera-

tions G1, G2, and G3.
3BW6 = BW at 6 wk; BM = ultrasound measurement of breast 

meat; LS = leg score. 

Table 5. Estimates1 of variance components and heri-
tability using data set SUB2 with phenotypic BLUP for 
the 2 lines 

Item3 su
2 smp

2 se
2 h2

Line 1     
 BW6 0.56 0.34 1.37 0.25
 BM 3.10 — 11.48 0.21
 LS 0.005 — 0.05 0.09
Line 2     
 BW6 0.64 0.59 1.47 0.24
 BM 4.06 — 9.77 0.29
 LS 0.01 — 0.06 0.20

1 su
2,  smp

2 ,  and se
2  are additive, maternal permanent, and residual 

variances, respectively; h2 is the heritability.
2SUB consisted of phenotypes for genotyped animals in generations 

G1, G2, and G3.
3BW6 = BW at 6 wk; BM = ultrasound measurement of breast 

meat; LS = leg score. 
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incomplete data recording. Only about 22% animals in 
FDS and 90% in SUB had BM records. Also, for line 
1, the heritability of BM in SUB was greater than for 
BW6. Additionally, a large range of accuracies were ob-
tained for LS. A negative accuracy (−0.01) was found 
with phenotypic BLUP in SUB, whereas a greatest ac-
curacy (0.73) was found with ssGBLUP in FDS despite 
its decreased heritability compared with that in BW6 
and BM. Large accuracy for LS score could be an arti-
fact of its binary nature, as calculation of accuracy as-
sumes a linear trait. However, this should not influence 
ranking because the same assumption applied to all the 
methods and data sets.

For traditional BLUP, the use of FDS over SUB im-
proved accuracy for all traits in line 1, whereas for line 
2, BW6 decreased; the deterioration occurred regard-
less of the use of the genomic information. Efforts to 
refine the model to eliminate this anomaly were unsuc-
cessful. Also, the pedigree is not an obvious problem 
because the accuracies for BM and LS followed expec-
tation. A possible explanation for the decreased accu-
racy of BW6 in FDS of line 2 is selection bias resulting 
from multiple trait selection (Van Vleck, 1968; Pollak 
et al., 1984). Pollak et al. (1984) demonstrated that 
preselection caused upward bias for the worst animals 
and downward bias for the best animals. Before the 
current 3 generations, the animals were selected using 
multi-trait BLUP and for more traits than in the cur-
rent genomic selection program. The current analysis is 
based on single traits; thus, bias from multi-trait selec-
tion has been introduced in the FDS.

There is a question whether the accuracies of the 
genomic prediction would have been greater with a 
methodology that accounted for nonequal distribution 
of SNP marker effects, such as Bayes A or Bayes B 
(Meuwissen et al., 2001). Table 6 also contains accura-
cies obtained with Bayes A. The results are similar to 

ssGBLUP/SUB, with Bayes A slightly more accurate 
for BM and LS in line 1 and BM in line 2 but less accu-
rate for BW6 and LS in line 2. Whereas greater perfor-
mance of Bayes A can be attributed to major genes, its 
decreased performance is probably due to the increased 
number of parameters estimated. Also, some differences 
may be due to the Monte Carlo Markov chain sampling 
present in the Bayes A procedure.

Comparison of genomic information included vs. 
excluded, using the same number of phenotypes (i.e., 
BLUP/SUB vs. ssGBLUP/SUB or Bayes A), shows 
that inclusion of genomic information always increased 
accuracy except for LS in line 2, which could be an ar-
tifact due to its binary nature or a sampling error. Two 
important questions remain. First, does inclusion of all 
pedigree phenotypic information add a substantial in-
crease in accuracy over just using phenotypes of animals 
genotyped? Comparison of ssGBLUP/SUB with ssGB-
LUP/FDS shows that in most cases an improvement is 
seen and sometimes is dramatic, such as with LS where 
approximately a 500% relative improvement is seen, 
whereas for BM approximately only a 25% relative im-
provement resulted. The large increase in accuracy for 
LS could be an artifact because LS score had a binary 
nature but was evaluated as a linear trait. In contrast, 
for BW6 either none (line 1) or a decline (line 2) was 
seen. Again, the decline in BW6 with line 2 is assumed 
to be related to the multi-trait selection bias issue as 
discussed previously. Second, using all phenotypic in-
formation available in the pedigree, how much does the 
genomic information add? Comparison of BLUP/FDS 
with ssGBLUP/FDS shows that for all traits in both 
lines the relative improvement is between 17 and 83%, 
the greatest relative improvement for the trait with 
poor heritability, as predicted by Muir (2007).

Regarding a multi-step vs. single step approach to 
the problem, one can adapt a multi-step method as 

Table 6. Accuracy1 based on no genomic or genomic information for the 2 lines with 
methods of BLUP, single-step BLUP (ssGBLUP), and 2-step Bayes A (if available) 

Item2

No genomic information Genomic

BLUP ssGBLUP Bayes A

SUB3 FDS4 SUB FDS SUB

Line 1        
 BW6 0.46 0.51  0.60 0.61  0.60
 BM 0.30 0.34  0.34 0.40  0.36
 LS <0 0.28  0.06 0.37  0.09
Line 2        
 BW6 0.39 0.24  0.50 0.44  0.47
 BM 0.27 0.33  0.45 0.51  0.51
 LS 0.24 0.43  0.15 0.73  0.11

1Accuracy defined as correlations between predicted and true breeding values. It was calculated as predictive 
ability divided by the square root of heritability. Estimates of heritability obtained with the full data set (FDS) 
were used for calculating accuracies.

2BW6 = BW at 6 wk; BM = ultrasound measurement of breast meat; LS = leg score. 
3SUB consisted of phenotypes for genotyped animals.
4FDS consisted of phenotypes for both ungenotyped and genotyped animals.
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used in dairy cattle (i.e., extract pseudo observations 
for genotyped animals based on a regular evaluation 
and then run genomic selection programs only for gen-
otyped animals). However, such an approach may be 
complicated and possibly biased if average accuracy is 
poor and especially when genotyped animals become 
part of the training population. The other option is 
to use a single-step approach that can easily provide 
multiple-trait computations without extra effort. The 
ssGBLUP as applied here assumed equal distribution 
of SNP effects. If those distributions are markedly un-
even due to large major genes, a genomic relationship 
matrix may be constructed with distributions obtained 
externally.

Abnormalities in accuracies found in this study could 
be due to faults in the model, although every effort was 
made to identify irregularities in the data and refine 
the model (e.g., checking the pedigree), using models 
with different combinations of fixed effects, and using 
different allele frequencies (0.5 and current). As can be 
seen in Table 6, problems in accuracy between FDS and 
SUB were the same regardless of whether the genomic 
information was included. Therefore, before undertak-
ing expensive genotyping, it would be cost-effective to 
identify and correct the source of abnormalities such 
as unaccounted-for selection, specific editing, and addi-
tional effects influencing the trait. These efforts would 
use BLUP with the training and validation popula-
tions; such analyses are normally not undertaken with 
the regular evaluation.

Conclusions

Based on results in this study, 3 important conclu-
sions are seen. First, one should always augment the 
genotyping data set with all phenotypes available in the 
pedigree and evaluate using an ssGBLUP approach. 
In this case, one benefits from an increased amount 
of information from the genotypes and from informa-
tion obtained from the pedigree. Second, for traits with 
poor hereditability and especially for preselected traits, 
the accuracy of the evaluation using a genotyped sub-
set would be poor, with or without the genomic in-
formation. In such cases the genomic information can 
still provide large increases of accuracy, but only if the 
complete population is used. Third, the most accurate 
evaluation would involve not only the complete popula-
tions but also with multiple-trait models and all traits 
on which the selection was practiced. Such evaluation is 
possible with the single-step methodology.
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