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Gail Davies5,6, Saskia P. Hagenaars 1,5,6, Ana Maria Fernandez-Pujals1, Jude Gibson 1, Eleanor M. Wigmore1,

Thibaud S. Boutin4, Caroline Hayward 4,7, Generation Scotland7, Major Depressive Disorder Working Group of the

Psychiatric Genomics Consortium, David J. Porteous 3, Ian J. Deary5,6, Pippa A. Thomson 3,6, Chris S. Haley4 and

Andrew M. McIntosh 1,6

Abstract
Few replicable genetic associations for Major Depressive Disorder (MDD) have been identified. Recent studies of MDD

have identified common risk variants by using a broader phenotype definition in very large samples, or by reducing

phenotypic and ancestral heterogeneity. We sought to ascertain whether it is more informative to maximize the

sample size using data from all available cases and controls, or to use a sex or recurrent stratified subset of affected

individuals. To test this, we compared heritability estimates, genetic correlation with other traits, variance explained by

MDD polygenic score, and variants identified by genome-wide meta-analysis for broad and narrow MDD classifications

in two large British cohorts - Generation Scotland and UK Biobank. Genome-wide meta-analysis of MDD in males

yielded one genome-wide significant locus on 3p22.3, with three genes in this region (CRTAP, GLB1, and TMPPE)

demonstrating a significant association in gene-based tests. Meta-analyzed MDD, recurrent MDD and female MDD

yielded equivalent heritability estimates, showed no detectable difference in association with polygenic scores, and

were each genetically correlated with six health-correlated traits (neuroticism, depressive symptoms, subjective well-

being, MDD, a cross-disorder phenotype and Bipolar Disorder). Whilst stratified GWAS analysis revealed a genome-

wide significant locus for male MDD, the lack of independent replication, and the consistent pattern of results in other

MDD classifications suggests that phenotypic stratification using recurrence or sex in currently available sample sizes is

currently weakly justified. Based upon existing studies and our findings, the strategy of maximizing sample sizes is

likely to provide the greater gain.

Introduction
Major Depressive Disorder (MDD) is a frequently dis-

abling, chronic disorder for which there is substantial

evidence of a genetic contribution to its liability1. Until

recently, the largest international mega-analysis of clini-

cally diagnosed MDD (9240 MDD cases and 9519 con-

trols) yielded no genome-wide significant findings2. Given

the success of similarly sized studies for other adult psy-

chiatric disorders3,4, this study suggested that MDD is an

extensively heterogeneous phenotype. This heterogeneity,

in addition to the relatively high prevalence and low

heritability of MDD, impacts substantially on the statis-

tical power to detect genetic effects1,5. Possible means of

improving statistical power include stratifying the
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phenotype into potentially more homogeneous subtypes,

or considerably increasing the sample size whilst accept-

ing a broader phenotype. Both of these approaches have

since identified associations between genetic variants and

MDD6–9.

A genome-wide association study (GWAS) from the

CONVERGE consortium identified two genome-wide

significant loci (chromosome 10q21.3 and 10q26.13)

using a severe depressive phenotype (5053 cases and 5337

controls) in female Han Chinese individuals, treated in a

hospital setting6. A subsequent study by the Psychiatric

Genomics Consortium (PGC) stratified the PGC MDD

mega-analysis sample2 by age of onset and identified a risk

conferring locus at chromosome 3q27.2 in individuals

with onset after 27 years of age9.

In contrast to the above study designs, two studies have

utilized larger sample sizes with less detailed structured

clinical assessments. The first of these studies came from

the CHARGE consortium and employed a quantitative

assessment of depressive symptoms using the Center for

Epidemiological Studies Depression Scale. In a combined

dataset of 51 258 individuals, a genome-wide significant

locus was identified at chromosome 5q21.27. More

recently, Hyde et al8 conducted a GWAS using 23andMe

data of self-reported depression in 45,773 cases and

106,354 controls, revealing 15 genome-wide significant

loci. The genetic correlation (rG) between the 23andMe

depression phenotype and the clinical phenotype reported

by the PGC was rG(SE)= 0.73(0.09), suggesting a strong

association between the additive genetic components of

each trait. Previous work comparing self-reported

depression and clinically defined MDD in Generation

Scotland: Scottish Family Health Study (GS:SFHS) also

provides evidence that these traits have substantially

overlapping common genetic architectures10.

The findings from these four studies support both

phenotypic stratification and increased sample size as

strategies which may help reveal the underlying archi-

tecture of MDD. The international collaborative efforts by

groups such as the PGC and the development of large-

scale biobanks with genetic and extensive phenotypic

information will ensure ever increasing sample numbers.

It is therefore timely to investigate the contrasting stra-

tegies that may be employed in the analysis of these

emerging datasets.

In the current study, we sought to compare these stra-

tegies by conducting a suite of genetic analyses for

depression and stratified subtypes in two UK-based

cohorts: GS:SFHS11,12 and UK Biobank (UKB)13,14. To

maximize the sample size, an unstratified analysis was

initially conducted. This used MDD diagnostic informa-

tion obtained at structured clinical interview15 in GS:

SFHS (2603 cases, 16,122 controls), and a probable MDD

phenotype obtained from a touchscreen questionnaire16,

previously validated by Smith et al17, in UKB (8248 cases,

16,089 controls). Subsequent analyses stratified the phe-

notype on the basis of recurrence or sex. Each approach

was evaluated using several metrics: the successful iden-

tification of variants reaching genome-wide significance in

GWAS meta-analysis, an increased SNP-based heritability

estimate, identification of significant genetic correlations

with other traits using LD score regression, and increased

variance explained by polygenic profile scores for MDD

derived from three independent cohorts. These metrics

aim to test whether basic stratification of the MDD phe-

notype improves etiological insight.

Materials and methods
This study analyzed data from Generation Scotland:

The Scottish Family Health Study (GS:SFHS), (data

available on request: http://www.generationscotland.co.

uk) and UKB, (data available on request: http://www.

ukbiobank.ac.uk). GS:SFHS received ethical approval

from the NHS Tayside Committee on Medical Research

Ethics (REC Reference Number: 05/S1401/89). UK Bio-

bank received ethical approval from the Research Ethics

Committee (REC Reference Number: 11/NW/0382). The

present analyses were conducted under UK Biobank data

application number 4844. All participants provided

informed consent.

Data and code availability

Data are available to qualified researchers on a cost-

recovery basis via online application processes, accessible

via www.gsaccess.org and www.ukbiobank.ac.uk/register-

apply/. The code used in these analyses is available on

request from the lead author.

Participants

Generation Scotland: The Scottish Family Health Study (GS:

SFHS)

GS:SFHS is a family and population-based study con-

sisting of 23,690 participants recruited via general medical

practices across Scotland. The recruitment protocol and

sample characteristics are described in detail else-

where11,12. Briefly, participants were over 18 years old,

and not ascertained on the basis of having any particular

disorder. A diagnosis of depression (MDD) was made

using the structured clinical interview for DSM-IV dis-

orders (SCID)15. Participants who answered yes to either

of the two screening questions were invited to continue

the interview, which provided information on the pre-

sence or absence of a lifetime history of MDD, age of

onset and number of depressive episodes. Participants

who answered no to both screening questions or who

completed the SCID but did not meet the criteria for

depression were assigned control status. Case definition

was further refined through NHS data linkage. Controls
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with a history of antidepressants or who had been referred

to a secondary psychiatric care centre (n= 1 072) were

excluded, as were cases who had received a previous

diagnosis of schizophrenia or bipolar disorder (n= 47).

This resulted in 2603 depression cases (of which 1289

were recurrent) and 16,122 controls. Stratification by sex

resulted in 1859 female cases, 9159 female controls, 770

male cases and 6958 male controls.

UK Biobank (UKB)

UKB13 is a population-based health research resource

consisting of approximately 500,000 people, aged between

40 and 69 years, who were recruited between the years

2006 and 2010 from across the UK14. Of these, 152,729

individuals were included in the first genotype data

release. In the current study we restricted the sample to

individuals of white British ancestry. Participants who

were also in GS:SFHS, their relatives and relatives of

remaining UKB participants (relatives: up to and includ-

ing third degree) were identified by a kinship coefficient ≥

0.0442, using the KING toolset18, and subsequently

excluded (n= 7 698). Depression case/control status was

assessed in 172,751 of the 500,000 individuals using a self-

diagnosed touchscreen questionnaire. Case status was

defined as either “probable single lifetime episode of

major depression” or “probable recurrent major depres-

sion (moderate and severe)”. Control status was defined as

“no mood disorder”, as described by Smith et al17. 149,847

individuals had sufficient data to allow an assessment of

case/control status. Individuals with probable bipolar

disorder (n= 1 615) or mild depressive/manic symptoms

(n= 26 847) were excluded. After exclusions outlined

above, this resulted in 8248 depression cases (of which

6056 were recurrent) and 16,089 controls. Stratification

by sex resulted in 5138 female cases, 7013 female controls,

3110 male cases and 9076 male controls. Further infor-

mation on sample collection, genotyping and assessment

of the depression phenotype in GS:SFHS and UKB are

provided in the Supplementary Methods.

Imputation and quality control

GS:SFHS

Autosomal genotype data were available for all GS:SFHS

individuals in the present study (n= 18 725). Genotypes

were imputed using the Haplotype Reference Consortium

reference panel (HRC.r1-1)19 via the Sanger Imputation

Server pipeline (https://imputation.sanger.ac.uk). Prior to

imputation, individuals with missingness ≥ 3% were

excluded, as were SNPs with a call rate of ≤98%, Hardy

Weinberg Equilibrium (HWE) P-value ≤ 1× 10−6, and a

minor allele frequency (MAF) ≤ 1%. Phasing of genotype

data was performed using the SHAPEIT2 algorithm20

utilizing the duoHMM option, which refines phasing by

utilizing pedigree information. Imputation was performed

using PBWT software21. Multi-allelic variants, mono-

morphic variants and SNPs with an imputation INFO

score< 0.8 were removed22. Population outliers (more

than 6SDs from the mean of the first principal component

(PC)) were identified and removed from the sample23, as

were one from each of 52 monozygotic twin pairs, iden-

tified by IBD (preferentially retaining cases), and 7 indi-

viduals who matched samples from the Psychiatric

Genomics Consortium, identified using genotype check-

sums24. After imputation, individuals with missingness ≥

2%, and genotype with a call rate of ≤98%, MAF ≤ 0.5%

and HWE P-value ≤ 1E-05 were excluded using PLINK

version 1.9.25,26. Strand ambiguous SNPs with 40% ≤

MAF ≤ 50% were also excluded.

UKB

Autosomal genotypes were available for all UKB indi-

viduals in the present study (n= 24 337). Pre-imputation

QC, phasing and imputation are described elsewhere27. In

brief, prior to phasing, multiallelic SNPs or those with

MAF ≤ 1% were removed. Phasing of genotype data was

performed using a modified version of the SHAPEIT2

algorithm28. Imputation to a reference set combining the

UK10K haplotype and 1000 Genomes Phase 3 reference

panels29 was performed using IMPUTE2 algorithms30,31.

A further QC protocol was then applied at the Wellcome

Trust Centre for Human Genetics before the data was

released, as described elsewhere32. The analyses presented

here were restricted to autosomal variants with an

imputation INFO score ≥ 0.9 and MAF ≥ 0.5%.

Of the SNPs which passed QC in each dataset, only

SNPs in common between both datasets were used in

subsequent analyses, with allele and strand in GS:SFHS

harmonized to be consistent with UKB, resulting in

7,105,178 autosomal SNPs.

Statistical analysis

All analyses present here were performed on four sub-

sets of the data: all available cases and controls (MDD), all

controls and recurrent cases (rMDD), female controls and

cases (fMDD), and male controls and cases (mMDD). The

total sample size for each depression subgroup was n= 43

062 for MDD, n= 39 556 for rMDD, n= 23 169 for

fMDD and n= 19 886 for mMDD. The number of cases

and controls and demographic information for these

subsets are shown in Supplementary Table 1.

Association analysis

GS:SFHS

GWAS of MDD, rMDD, fMDD and mMDD in GS:

SFHS were conducted using mixed linear model based

association (MLMA) analysis33, implemented in GCTA

(v1.25.)34. To account for population structure, two

genomic relationship matrices (GRMs) were used, as this
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method allows the inclusion of closely and distantly

related individuals in genetic analyses35. The first GRM

included pairwise relationship coefficients for all indivi-

duals. The second GRM had off-diagonal elements<

0.05 set to 0. GRMs were created using the mixed linear

model with candidate marker excluded (MLMe)

approach, where GRMs are calculated excluding SNPs

located on the chromosome under analysis33. No fixed

effects covariates were fitted in this analysis as sex was

being assessed as a stratifier, and the two GRMs ade-

quately accounted for population stratification (tested

using univariate LD Score Regression36). MLMA employs

restricted maximum likelihood methods on the linear

scale. As such, test statistics (betas and their corre-

sponding standard errors) were transformed to Odds

Ratios and their corresponding 95% Confidence Intervals

on the liability scale using a Taylor transformation

expansion series37,38. Further details of GWAS can be

found in the Supplementary Methods.

UKB

GWAS of MDD, rMDD, fMDD, and mMDD in UKB

were conducted using logistic regression, implemented in

PLINK v1.925. Assessment centre, genotype array and

batch were fitted as fixed effects. The first 8 PCs (out of

15) supplied by UKB were also fitted, as visual inspection

indicated that these PCs resulted in multiple clusters,

indicating structure in the data.

Meta-analysis, variant look-up and gene-based analysis

The meta-analysis of GS:SFHS and UKB was conducted

using the classical inverse-variance approach, which

weights effect sizes by sampling distribution, imple-

mented in the METAL package39. SNPs with a meta-

analysis P-value of P ≤ 1E-05 were subjected to clump-

based linkage disequilibrium pruning using PLINK25

using an LD r2 cut off of 0.1 and a 500 kb sliding window

to create SNP sets of approximately independent “lead

SNPs”. All SNPs which surpassed genome-wide sig-

nificance were entered into the NHGRI-EBI catalog of

published GWAS40,41 (www.ebi.ac.uk/gwas/) to observe

whether these SNPs had been previously observed in

association analysis.

Gene-based analysis was performed for MDD, rMDD,

fMDD, and mMDD using MAGMA42. The gene-based

statistics were derived using the summary statistics from

each meta-analysis. Genetic variants were assigned to

genes based on their position according to the NCBI 37.3

build, with a gene boundary defined by an extended

region between 20 kb upstream of transcript start site and

20 kb downstream of transcript end site for each of the

genes. This resulted in a total of 18 111 genes for MDD,

fMDD, and mMDD, and 17,225 genes for rMDD being

analyzed. The European panel of the 1000 Genomes data

(phase 1, release 3) was used as a reference panel to

account for linkage disequilibrium43. A genome-wide

significance threshold for gene-based associations was

calculated using the Bonferroni method (α= 0.05/18 111;

P< 2.76× 10−6 for MDD, fMDD and mMDD; α= 0.05/

17 225; P< 2.90× 10−6 for rMDD).

Pathway and functional genomic analyses

Pathway and functional genomic analyses were per-

formed using the GWAS results for each of the MDD

meta-analyses. These included DEPICT analyses44, refer-

ence to RegulomeDB45 (http://www.regulomedb.org/)

and to the Genotype-Tissue Expression Portal (http://

www.gtexportal.org) for independent SNPs with P<

1.0× 10−5 and all genome-wide significant SNPs (P<

5.0× 10−8, nSNPs= 6). Further information on pathway

and functional genomic analysis can be found in the

Supplementary Methods.

Heritability, polygenicity and cross-trait genetic

correlations

Univariate GCTA-GREML46 analyses were used to

estimate the proportion of variance explained by all

common (MAF> 1%) SNPs for each of the depression

phenotypes. A relatedness cutoff of 0.05 was used in the

generation of the genetic relationship matrix, as including

close relatives inflates heritability estimates47. This did not

alter the sample size in UKB due to previous sample fil-

tering, however in GS:SFHS this reduced the sample size

by 38.5–58.4% (Supplementary Table 15). In GS:SFHS, the

first 20 PCs were fitted as fixed effects. In UKB, batch,

recruitment centre and the first 8 PCs were fitted. Uni-

variate Linkage Disequilibrium Score regression (LDSR),

implemented in LD Score (v1.0.0.)36, was applied to

GWAS summary statistics to evaluate the proportion of

inflation in the test statistics caused by confounding bia-

ses, such as population stratification, relative to genuine

polygenicity. This method also provides an estimate of

SNP-based heritability. Pre-computed LD Scores were

used, estimated from the European-ancestry samples in

the 1000 Genomes Project43. To obtain heritability esti-

mates on the liability scale, sample and population pre-

valence estimates were used. Sample prevalence estimates

were calculated as the proportion of cases in each subset.

Population prevalence estimates were derived from the

literature48–50. Prevalence estimates used in GCTA-

GREML and LDSC are given in Supplementary Table 1.

Genetic correlations between meta-analyzed depression

subgroups and 200 health-related traits were calculated

using bivariate LDSR51, implemented in the LD Hub

software52. Traits derived from non-Caucasian or mixed

ethnicity samples were removed prior to analysis. False

discovery rate (FDR) correction was applied across the

800 tests to correct for multiple testing53.
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Polygenic profiling analysis

To test the association of MDD-associated alleles with

each subtype of MDD in GS:SFHS and UKB, summary

statistics for major depressive disorder from the Psy-

chiatric Genomics Consortium (minus GS:SFHS, n= 50

455 cases, 105,411 controls; minus UKB, n= 43 204 cases,

95,680 controls)54, UKB and GS:SFHS (from the current

study) were used to provide weights for polygenic profile

scores (PGS).

PGS for GS:SFHS and UKB individuals were derived at

5 GWAS P-value thresholds (PT< 0.01,< 0.05,< 0.1,<

0.5 and all SNPs) using PRSice55. Genotyped SNPs (with

MAF> 1%) were subjected to clump-based linkage dis-

equilibrium (LD) pruning, using an LD r2 cut off of 0.25

and 200 kb sliding window to create SNP sets in

approximate linkage equilibrium. PGS were then stan-

dardized to have a mean of zero and a unit standard

deviation.

In GS:SFHS, the associations between PGS and MDD,

rMDD, fMDD, and mMDD were tested using a mixed

linear model, covarying for the first 20 PCs to account for

population stratification. Prior to this analysis, the requi-

site number of PCs was established using a stepwise linear

regression approach, adding one PC at a time, and using a

likelihood-ratio test (LRT), the output of which was

assessed against a mixed 0.5(χ2)+ 0.5(0) distribution56.

An additive genetic component was fitted as a random

effect to account for the increased relatedness within GS:

SFHS. To ensure that common environment was ade-

quately modeled, models incorporating shared parent-

offspring, sibling, and spousal environmental components

as additional random effects were tested using a stepwise

LRT approach, however no environmental component

improved model fit. Further details of mixed linear model

selection are provided in the Supplementary Methods. F-

statistics, degrees of freedom, effect sizes, Z-scores and P-

values were derived using the Wald Conditional F-test57,

in ASReml-R58.

In UKB, the association between PGS and MDD,

rMDD, fMDD, and mMDD was tested in a generalized

linear model framework by regressing the PGS onto the

phenotype, covarying for assessment centre, genotype

array and batch and the first eight PCs.

FDR correction was applied across the 80 tests to cor-

rect for multiple testing53. For both GS:SFHS and UKB,

trait variance explained by the PGS was calculated using:

(var(x× β))/var(y), where x was the standardized PGS, β

was the corresponding regression coefficient and y was

the phenotype59.

Results
Meta-analysis of depression in GS:SFHS and UKB

One genomic region on chromosome 3p22.3 achieved

genome-wide significance in the males only case/control

(mMDD) analysis (index SNP rs4478037, β(SE)= 0.29

(0.05), P= 2.29× 10−8). None of the SNPs achieving

genome-wide significance (nSNPs= 6) associated with

any phenotype in currently published GWAS available via

the NHGRI-EBI catalog. One variant (rs7613051) within

the local genomic region (defined 3:33000000–33200000)

has previously shown an association with Atopic derma-

titis60, however this SNP is not in LD with the genome-

wide significant SNPs (r2< 0.1). Meta-analysis of MDD,

rMDD, and fMDD did not yield any genome-wide sig-

nificant findings. Manhattan plots are shown for each trait

in Fig. 1, and summary statistics for independent loci with

a meta-analysis association P ≤ 1× 10−6 are shown in

Table 1. A regional association plot for genome-wide

significant index SNP, rs4478037, is shown in Fig. 2.

Regional association plots for this SNP in other depres-

sion subtypes are shown in Supplementary Figure 4,

demonstrating that this locus does not replicate in any

other depression subtype (minimum P= 8.05× 10−4 in

MDD, β(SE)= 0.10(0.05)). Full details of all independent

loci used in downstream analyses (P ≤ 1× 10−5) are

shown in Supplementary Tables 4-11. The QQ plots

(Supplementary Figure 3) demonstrate λGC ranged

from 1.02–1.06, comparable to the value (1.056) observed

in the PGC mega-analysis of MDD2. Univariate LDSR

analyses estimated that meta-analyzed MDD subtypes

had mean chi-squared statistic (μχ2) values ranging

from 1.018 (mMDD) to 1.062 (MDD) with a Ratio,

defined as (Intercept-1)/(μχ2-1), ≤ 0.35 across subtypes,

indicating that any inflation in μχ2 can be attributed to

polygenicity rather than residual population

stratification36.

Gene based analysis of MDD subtypes

Three genes at chromosome 3p22.3 (CRTAP, GLB1,

and TMPPE) were significantly associated with mMDD

after Bonferroni correction (Supplementary Table 12).

Whilst CRTAP and GLB1 have not previously shown

association with psychiatric disorders, both genes are

members of the CNTN1 PPI subnetwork. This subnet-

work contains CNTN1, which encodes a protein that

may play a role in the formation of axon connections in

the developing nervous system61. Furthermore, the

CNTN1 PPI subnetwork also contains HTR1A, which

encodes a serotonin (5-HT) receptor subtype that binds

endogenous 5-HT62. To assess whether significant asso-

ciation of these 3 genes was due to LD in the region, the

meta-analysis of MDD in males was re-run conditional on

SNPs with an R2> 0.9 with the top ranking SNP,

rs4478037. This analysis, implemented in GCTA

(v1.25)34, indicated that the signal was being driven by LD

across the region (Supplementary Figure 5). There were

no significant gene-based associations with MDD, rMDD

or fMDD.
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Pathway and functional genomic analyses

Gene set enrichment analysis of SNPs with meta-

analysis P ≤ 1× 10−5, as implemented in DEPICT,

indicated a role for two gene sets at FDR< 0.05 in mMDD

(Supplementary Table 13): GO terms carboxylic acid

binding and CNTN1 PPI subnetwork. No other

Fig. 1 Manhattan plot of P-values from SNP-based association meta-analysis of all depression cases and controls (MDD, n = 43 062), recurrent only

cases and all controls (rMDD, n = 39 556), females only cases and controls (fMDD, n = 23 169) and males only cases and controls (mMDD, n = 19 886).

The blue line indicates the threshold for genome-wide significance (P < 5 × 10-8), the red line indicates the threshold for suggestive significance (P <

1 × 10-5)
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Table 1 Summary statistics for SNPs with association P-value≤ 1 × 10−6 for depression (MDD), recurrent depression

(rMDD), depression in females only (fMDD) and depression in males only (mMDD), sorted within phenotype by genomic

positions according to UCSC hg19/NCBI Build 37

Trait SNP CHR POS A1/A2 Freq β(se) P Direction Genes

MDD rs56390503 4 187552576 T/C 0.11 0.13 (0.03) 9.08E–07 ++ FAT1

rs2964802 5 10820843 T/C 0.28 0.09 (0.02) 6.73E–07 ++ -

rs11033303 11 35871266 A/G 0.37 0.09 (0.02) 2.37E–07 ++ -

rMDD rs2291479 3 178174944 A/C 0.4 −0.10 (0.02) 9.65E–07 -- -

rs10959631 9 11220986 T/C 0.2 −0.12 (0.02) 8.34E-07 -- -

rs11033303 11 35871266 A/G 0.37 0.11 (0.02) 6.02E–07 ++ -

rs4438172 13 111448658 A/T 0.25 0.11 (0.02) 8.72E–07 ++ -

fMDD rs9648182 7 13794849 A/T 0.12 −0.17 (0.03) 9.14E–08 -- -

rs17176546 7 81880914 A/G 0.04 0.26 (0.05) 7.93E–07 ++ CACNA2D1

mMDD rs115736167 1 155266609 C/G 0.02 −0.46 (0.09) 1.54E–07 -- PKLR

rs4478037 3 33160407 A/G 0.08 0.29 (0.05) 2.29E–08 ++ CRTAP

rs113485090 11 73572495 A/G 0.04 -0.32 (0.06) 2.05E-07 -- MRPL48

rs1380551 15 24124704 A/G 0.15 -0.18 (0.04) 3.96E-07 -- -

Column A1/A2 contains the reference and alternate alleles for the index SNP, respectively. The meta-analysis minor allele frequency (Freq) and regression coefficient
(β) columns pertain to the reference allele (A1). Chr and Position denote the location of the index SNP. SE is the standard error for β. The direction of effect of the
index SNP in GS:SFHS and UKB is shown in the Direction column. The final column, Genes, indicates protein-coding reference sequence genes within 10 kb of the
associated loci

Fig. 2 Regional association plot for rs4478037, an intronic SNP in CRTAP, and the top ranking SNP (rs4478037, P = 2.37 × 10-8) in GWAS of depression

in males only
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significant results were observed for tissue enrichment or

gene prioritization across MDD definitions.

Using the GTEx database (http://www.broadinstitute.

org/gtex/), 25 multi-tissue cis-eQTL associations were

identified for 16 independent lead SNPs with meta-

analysis P< 1× 10−5 (Supplementary Tables 4, 6, 8, 10,

and 14). The 5 genome-wide significant SNPs identified

for mMDD show eQTL evidence for the genes GLB1 and

CRTAP. Random effect meta-analysis of multi-tissues for

the most significant mMDD SNP, rs447803, yielded P=

3.58× 10−9 and 8.45× 10−29 for GLB1 and CRTAP,

respectively. For this study, data mining of regulatory

elements was restricted to normal cell lines/tissues. There

was evidence of regulatory elements (Regulome DB score

< 4) for 6 of the lead SNPs with meta-analysis P ≤ 1×

10−5 (MDD: rs10736455, rs73249855, rs8050755; rMDD:

rs60716536; fMDD: rs11613048; mMDD: rs74002781). Of

the six SNPs which achieved genome-wide significance in

the meta-analysis of mMDD, 2 SNPs (rs11558338 and

rs6809511) showed evidence of transcription factor

binding, position weight matrix, histone modification,

DNase hypersensitivity, and FAIRE regulatory elements.

Evidence of regulatory evidence for all independent SNPs

with meta-analysis P ≤ 1× 10−5 are shown in Supple-

mentary Table 14.

Estimating SNP-based heritability and polygenicity

Using GCTA-GREML methods46, the SNP-based her-

itability (h2SNP) estimates in UKB were consistent and

significant across MDD subtypes, with h2SNP(SE) esti-

mates of MDD= 0.20(0.04); rMDD= 0.20(0.03); fMDD

= 0.22(0.06) and mMDD= 0.18(0.06). Due to the unre-

lated subset of individuals in GS:SFHS being markedly

smaller than the full sample (nmax= 7 795), the herit-

ability estimates were non-significant across all MDD

definitions. Results from GCTA-GREML are shown for

MDD subtypes in Supplementary Table 15. LDSR yielded

lower h2SNP estimates than GCTA-GREML methods

(Supplementary Table 16). This is to be expected as LDSR

utilizes summary scores, which have usually been sub-

jected to genomic control, as opposed to full SNP data.

Genetic correlation with health-related traits

Bivariate LDSR showed nominally significant (P< 0.05)

genetic correlations (rG) between meta-analyzed MDD

and 28 of the 200 health-related traits assessed. Of these, 8

traits survived multiple testing correction: neuroticism

(rG(SE)= 0.67(0.07); P= 7.06× 10−21), depressive symp-

toms (rG(SE)= 0.81(0.09); P= 1.72× 10−19), subjective

wellbeing (rG(SE)=−0.56(0.08); P= 9.12× 10−13), age at

first birth (rG(SE)=−0.35(0.05); P= 1.92× 10−10), major

depressive disorder (rG(SE)= 0.67(0.12); P= 4.57×

10−8), PGC cross-disorder analysis (rG(SE)= 0.46(0.09);

P= 8.60× 10−8), bipolar disorder (rG(SE)= 0.32(0.08); P

= 4.35× 10−5) and systemic lupus erythematosus (rG

(SE)= 0.28(0.08); P= 8.00× 10−4). These findings are

consistent with previously reported, well-established

relationships between MDD and neuroticism63–65, bipo-

lar disorder51,66, PGC cross-disorder66, depressive symp-

toms7,67 and subjective well-being68. Relationships

between MDD and age at first birth, and SLE have been

previously reported although these have been based on

phenotypic correlations69–71. The majority of these traits

(with the exception of age at first birth and systemic lupus

erythematosus) demonstrated rG of a similar magnitude,

direction and significance with recurrent and female

MDD. In contrast to these results, bivariate genetic cor-

relations between mMDD and health-related traits were

all non-significant after adjustment for multiple testing

(Supplementary Table 17). Summary statistics from uni-

variate and bivariate LDSR (Supplementary Tables 14 and

17) indicate that the lack of association between mMDD

and other health-related traits is due to reduced statistical

power, rather than a genuine sex difference. Univariate

LDSR of mMDD returned a mean χ2= 1.018, indicating

low power (as a minimum mean χ2= 1.02 is deemed

appropriate for LDSR72). In addition, the univariate LDSR

h2SNP(SE)= 0.05(0.03) for mMDD. The LDSR rG is cal-

culated as rG= ρg/
ffiffiffiffiffiffiffiffiffi

h2i h
2
j

q

where ρg is the genetic covar-

iance between traits, h2i is the heritability of trait i and h2j
is the heritability of trait j36. Near-zero h2 estimates can

therefore cause the rG estimate to become out of bounds

(rG> 1), as observed in three out of five nominally sig-

nificant traits, with large standard errors72, as observed in

all nominally associated traits. Fig. 3 shows the genetic

correlation of meta-analyzed depression subtypes with

significantly correlated health traits.

Polygenic profiling analysis

The GWAS results from the MDD phenotype in 3

discovery samples (PGC MDD29, UKB and GS:SFHS)

were used to build polygenic profile scores (PGS) in GS:

SFHS and UKB, incorporating SNPs with a discovery

sample association P-value cut-off of PT ≤ 0.01, PT ≤ 0.05,

PT ≤ 0.1, PT ≤ 0.5, and all SNPs (PT ≤ 1). Results from

PT ≤ 0.05 are shown in Fig. 4, as this PT explained the

most variance in the target datasets. Results from all PT
are shown in Supplementary Tables 18-21. PGS derived

using information from the PGC MDD29 GWAS yielded

significant associations between depression phenotype

and PGS across almost all thresholds in both GS:SFHS

and UKB (with the exception of mMDD at PT ≤ 0.01 in

GS:SFHS). PGS derived using information from the UKB

MDD GWAS yielded significant associations with MDD,

rMDD, and mMDD phenotypes in GS:SFHS at all

thresholds, however fMDD did not survive multiple

testing correction at any PT. PGS derived using informa-

tion from the GS:SFHS MDD GWAS yielded significant
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associations with MDD, rMDD, and fMDD phenotypes in

UKB at all thresholds, except PT ≤ 0.01—presumably due

to the low number of SNPs contributing to the score.

However, mMDD did not survive multiple testing cor-

rection at any PT. Across all associations, the largest

proportion of variance explained in GS:SFHS was 0.66%

for fMDD using the MDD polygenic score derived using

SNPs at PT ≤ 0.5 using weights from the PGC MDD29

GWAS. The largest proportion of variance explained in

UKB was 0.72% for fMDD, again using SNPs at PT ≤ 0.5

using weights from the PGC MDD29 GWAS.

Discussion
For many years, the depressed phenotype has been

refractory to genetic inquiry due to issues regarding sta-

tistical power. Recently, studies have successfully identi-

fied loci associated with depression by either substantially

increasing the sample size7,8 or by refining the phenotype

by illness course9, recurrence and sex6. In this study we

used techniques designed to interrogate complex traits to

ascertain whether maximizing the sample size (nmax=

43,062) or phenotypic stratification by recurrence or sex

was more advantageous for investigating the genetic

architecture of MDD, using data from two large UK

cohorts. Each MDD definition was evaluated using several

metrics: the successful identification of variants reaching

genome-wide significance in GWAS meta-analysis, an

increased SNP-based heritability estimate, identification

of significant genetic correlations with other traits using

LD score regression, and increased variance explained by

polygenic profile scores for MDD derived from three

independent cohorts.

For all analyses, MDD, recurrent MDD and MDD in

females returned similar results: overlapping SNP-based

heritability estimates; genetic correlations with consistent

magnitude of effect, direction, and significance with six

health-related traits; low trait variance explained (<1%)

and overlapping effect size estimates in polygenic profiling

analysis, and no genome-wide significant findings from

Fig. 3 Genetic correlation (rG) between meta-analyzed MDD subsets

and other health-related traits, derived using GWAS summary statistics

and LD score regression. Traits presented showed a significant rG with

MDD subsets after multiple testing correction (FDR p≤ 0.05) and are

coloured by category (personality, psychiatric, reproductive and

autoimmune). No rG between mMDD and other health-related traits

survived multiple testing correction

Fig. 4 Heat map of associations between the polygenic profiles scores

(PGS) for major depressive disorder (MDD), derived from Psychiatric

Genomics Consortium (PGC) MDD29, UK Biobank (UKB) and

Generation Scotland: The Scottish Family Health Study (GS:SFHS), and

MDD subsets in UKB and GS:SFHS. Stronger associations are indicated

by darker shades. The amount of variance (%) explained by PGS is

indicated for each association. Further information can be found in

Supplementary Tables 15-18
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GWAS meta-analysis (akin to similarly sized published

GWAS of these phenotypes2,9).

With the exception of polygenic profiling analysis,

MDD in males generally did not conform to the pattern of

results demonstrated by other MDD definitions. Some of

these differences, such near-zero SNP-based heritability

estimate and subsequently no genetic correlations with

other traits surviving multiple testing correction, can be

attributed to reduced statistical power in this MDD

definition. Interestingly, genome-wide meta-analysis yiel-

ded a single genome-wide significant locus in depression

in males. The locus at chromosome 3p22.3 includes

TMPPE, CRTAP, and GLB1 genes; all of which were

significant in gene-based testing. Conditional GWAS on

the lead signal demonstrated that the signal which span-

ned these three genes was due to high LD in the region.

However, functional genomic analysis of the lead SNP

returned eQTL evidence for GLB1 and CRTAP, suggest-

ing that the causal variant is more likely to affect the

expression of these genes rather than TMPPE. The lack of

replication of this signal in other published GWAS is

unfortunate, but unsurprising given that the current study

is the largest GWAS of depression in males to date

(relative to published GWAS). Ever-increasing sample

sizes from international consortia will provide much-

needed larger replication datasets for corroborating or

dispelling this finding. The lack of replication also high-

lights the importance of moving towards linking results at

the functional level.

There are several limitations to this study. Firstly, the

sample size for MDD and rMDD groups are very similar

(n= 43,062 and n= 39,556, respectively), therefore per-

haps rMDD is not the best stratifier in this sample. The

sample size of all depressed cases could have been

increased by including individuals with mild depressive/

manic symptoms (n= 26,847), however as case classifi-

cation was based on very few items (two symptoms and

help-seeking behavior), it wasn’t possible to determine

whether mild symptoms should be classified as cases or

controls17, therefore including these individuals could

introduce further phenotypic heterogeneity. Whilst the

differential model selection in GS:SFHS and UKB used to

adequately account for differential family and population

structure introduces analytical heterogeneity, the genetic

correlation of MDD GWAS summary statistics from the

two samples was rG(SE)= 0.997(0.26). Lastly, the higher

prevalence of females in GS:SFHS caused a gender

imbalance in the sample sizes, resulting in lower statistical

power for the male only analysis.

Overall our results suggest that there was little benefit

to stratifying depression by either sex or recurrence for

currently available data sizes. Extreme differences

between sexes, such as opposite directions of effect in the

two sexes, would have to exist to necessitate their analysis

separately. The power implications of stratifying on these

traits is likely to out-weigh the identification of such loci.

In situations where the effect of a SNP is only found in

one sex and zero effect in the other, such as rs4778037 in

this study, it is still better to analyze sexes together to

reduce the multiple testing burden of separate analyses.

The increased trait variance explained demonstrated by

using the largest available training and discovery datasets

(PGC MDD29 and UKB MDD, respectively) in polygenic

profiling supports increasing the sample size over phe-

notypic refinement. Similarly, the lack of discernible dif-

ference between h2SNP and rG estimates between

depression subtypes suggests that the best approach,

currently, is to maximize the sample size in order to

reduce sampling error and obtain more accurate point

estimates. However, addressing recurrence, sex and

ancestral heterogeneity in a large ascertained cohort does

have intrinsic merit, as demonstrated previously by

CONVERGE6, with the implication that addressing sev-

eral sources of heterogeneity has more utility than

implementing recurrence and sex separately6.

Phenotypic stratification still has plenty of scope for

aiding the tractability of genetic analysis in depression.

There are many traits which could be used to create

subgroups, including treatment response and physical

comorbidities, and perhaps these will be more successful

than sex and recurrence. However, it is worth noting that

due to the limitations of statistical power with current

sample sizes, the performance of the stratified phenotypes

presented here is a lower bound of the stratification

strategy. Recently, age-at onset9 and use of polygenic risk

scores derived from health-related traits73 have been

shown to result in subsets of depression with improved

heritability. Our study suggests that, until a better

understanding of the determinants of genetic hetero-

geneity in depression exist—increasing sample number

remains the optimal strategy.
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