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Abstract 

 

Background: Diabetes is the leading cause of kidney disease, and heritability studies demonstrate a 

substantial, yet poorly understood, contribution of genetics to kidney complications in people with 

diabetes.  

Methods: We performed genome-wide association study (GWAS) meta-analyses using ten different 

phenotypic definitions of diabetic kidney disease (DKD), including nearly 27,000 individuals with 

diabetes, and integrated the results with various kidney omics datasets. 

Results: The meta-analysis identified a novel low frequency intronic variant (rs72831309) in the 

TENM2 gene encoding teneurin transmembrane protein 2 associated with a lower risk of the 

combined chronic kidney disease (CKD; eGFR<60 ml/min/1.73 m2) and DKD (microalbuminuria or 

worse) phenotype (“CKD-DKD”, odds ratio 2.08, p=9.8×10-9). Gene-level analysis identified ten 

genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, 

LSM14A, and MFF, p<2.7×10-6). Integration of GWAS data with human glomerular and tubular 

expression data in a transcriptome-wide association study demonstrated higher tubular AKIRIN2 gene 

expression in DKD versus non-DKD controls (p=1.1×10-6). The lead SNPs within the DCLK1, 

AKIRIN2, SNX30 and three other gene regions significantly alterated the methylation at this region in 

kidneys (p<2.2×10-11). Expression of target genes in kidney tubules or glomeruli correlated with 

relevant pathological phenotypes. For example, tubular TENM2 expression positively correlated with 

eGFR (p=2.3×10-9) and negatively with tubulointerstitial fibrosis (p=4.7×10-9), tubular DCLK1 

expression positively correlated with fibrosis (p=1.6×10-12), and SNX30 level positively correlated 

with eGFR (p=7.6×10-13) and negatively with fibrosis (p<2×10-16).  

Conclusions: GWAS meta-analysis and integration with renal omics data points to novel genes 

contributing to pathogenesis of DKD.  
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INTRODUCTION  

 

Diabetes is the leading cause of kidney disease. Diabetic kidney disease (DKD) is associated with 

high cardiovascular risk1 and mortality2, and consequently, both diabetes and kidney disease are 

among the most important causes of death worldwide3. While environmental factors, and especially 

blood glucose control, have a major impact on the risk of developing DKD, genetic factors also 

contribute to disease4,5. Although more than 300 genetic loci have been associated with chronic 

kidney disease (CKD) in the general population, these loci show limited effect in DKD, especially in 

individuals with type 1 diabetes (T1D)6. Genome-wide association studies (GWAS) have previously 

identified a handful of genetic loci for DKD in individuals with T1D at the genome-wide significance 

level (p<5×10-8)7–10. Recently, a GWAS meta-analysis including up to 19,406 individuals with T1D 

from the Diabetic Nephropathy Collaborative Research Initiative (DNCRI) identified 16 loci 

associated with various DKD definitions. The strongest association was a common missense variant 

on the COL4A3 gene which also showed evidence of association in individuals with type 2 diabetes 

(T2D).6 A GWAS meta-analysis from the The SUrrogate markers for Micro- and Macrovascular hard 

endpoints for Innovative diabetes Tools (SUMMIT) consortium, including 6,000 individuals with 

T2D from five different studies, identified three loci for DKD in T2D, including the UMOD and 

PRKAG2 loci previously identified in the general population11. However, meta-analysis with 

SUMMIT T1D studies (N=5,156)4 did not yield any genome-wide significant findings11. In this study, 

we performed GWAS meta-analyses on ten different DKD case-control definitions, including nearly 

27,000 individuals with T1D or T2D from the two large consortia (including DNCRI6, SUMMIT-

T1D4 and SUMMIT-T2D11 studies) to increase the power to detect novel genetic risk factors, 

followed by integration with versatile biological data to improve our understanding of the underlying 

biological mechanisms and clinical correlations (Figure 1).  
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METHODS  

Participating studies and phenotype definitions: A total of ten case – control definitions for DKD 

were included in DNCRI6, based on either urinary albumin excretion rate (AER; divided into controls 

with normal AER, and cases with microalbuminuria, macroalbuminuria, or ESRD), estimated 

glomerular filtration rate (eGFR), or both, and harmonized to match and include all seven phenotypic 

definitions assessed in SUMMIT-T1D4 and SUMMIT-T2D11 analyses (Supplemental Table 1). All 

individuals (both cases and controls) had diabetes (either T1D or T2D) and cases had some form of 

kidney disease. The phenotypic comparisons are as follows: controls with normal AER vs. DKD 

cases with microalbuminuria or worse (“All vs. Ctrl”), macroalbuminuria or worse (“Severe DKD”), 

microalbuminuria alone (“Micro”), or “ESRD”; ESRD cases vs. everyone else (“ESRD vs. All”); 

controls with normal eGFR defined as eGFR ≥ 60 ml/min/1.73 m2 vs. CKD defined as eGFR < 60 

ml/min/1.73 m2 (“CKD”); and “CKD-DKD” based on both AER and eGFR, with controls with 

normal AER and eGFR vs. cases with microalbuminuria or worse and eGFR < 45 ml/min/1.73 m2. 

For the three phenotypic comparisons not initially part of the SUMMIT analysis (normal AER vs. 

macroalbuminuria [“Macro”], ESRD vs. macroalbuminuria [“ESRD vs. macro”], and controls with 

eGFR ≥ 60 ml/min/1.73m2 vs. CKD cases with eGFR < 15 ml/min/1.73m2 or ESRD [“CKD 

extremes”]), GWAS and meta-analysis were performed with three SUMMIT T2D studies (Genetics 

of Diabetes Audit and Research, Tayside and Scotland [GoDARTS] 1 and 2, and Scania Diabetes 

Registry [SDR] T2D cohort) and the SDR T1D cohort. Individuals from the Finnish Diabetic 

Nephropathy Study (FinnDiane) were included in both the original DNCRI (N=6,019) and SUMMIT-

T1D analyses (N=3,415), but for the purpose of this meta-analysis, FinnDiane was only included in 

the DNCRI meta-analysis and therefore excluded from the SUMMIT-T1D data (Supplemental 

Table 2). All contributing studies were performed in accordance with the Declaration of Helsinki and 

Declaration of Istanbul. 
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Statistical analysis: Genotyping and statistical analysis of the DNCRI6 and SUMMIT4,11 cohorts 

have been previously described. Analysis plans were similar in both consortia, and the main 

characteristics are described in Supplemental Table 3. Imputation was performed using 

1000Genomes Phase 3 reference panel in DNCRI, and the older 1000Genomes phase 1 panel in the 

SUMMIT cohorts. In both consortia, analyses were performed in unrelated individuals using the 

SNPtest additive score test, adjusting for age, sex, diabetes duration, the genetic principal 

components, and study-specific covariates (e.g., site or genotyping batch). Variants were filtered for 

INFO imputation quality score ≥ 0.3 (DNCRI) or ≥ 0.4 (SUMMIT) and minor allele count ≥ 10 in 

both cases and in controls. In SUMMIT, variants were further filtered to those with minor allele 

frequency (MAF) ≥ 0.01. Within-consortium meta-analyses were performed with inverse-variance 

fixed effects meta-analysis based on the effect size estimates. Meta-analyses between DNCRI, 

SUMMIT-T1D, and SUMMIT-T2D were performed with inverse-variance fixed effect methods 

based on the effect size estimates from the summary statistics for each of the three datasets. Finally, 

variants were limited to those found in at least two studies and reported in the 1000Genomes phase 3 

reference panel. Study-wise summary statistics were available for DNCRI and SUMMIT-T1D 

studies. Regional association plots were plotted with LocusZoom.12  

 

Conditional analysis: We performed conditional analysis of the COL4A3 locus with apparent 

secondary association peak using GCTA v1.93β 13 and FinnDiane GWAS data as the reference panel. 

 

Gene-level analysis: SNP summary statistics from the GWAS meta-analysis were aggregated by 

gene-level regression analysis using two related software programs, MAGMA14 and PASCAL15, 

using default parameters. Gene-level significance thresholds were determined by a Bonferroni 

multiple-testing correction based on the number of genes tested for each of the ten phenotypes within 
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each software program (number of genes ranged from 18,439-21,790; significance thresholds ranged 

from 2.7×10-6 to 2.3×10-6). 

 

Transcriptome-wide association study (TWAS): MetaXcan16 was applied to integrate kidney 

eQTL datasets with the GWAS meta-analysis results and to map disease-associated genes. The cis-

eQTL data for microdissected human glomerular (N=119) and tubular (N=121) samples were 

obtained from Susztaklab Kidney Biobank (https://susztaklab.com/eQTLci/download.php)17, and 

were analyzed jointly to infer differential gene expression in cases vs. controls using MetaXcan 

software with default parameters. The GTEx Elastic-Net Model pipeline 

(https://github.com/hakyimlab/PredictDBPipeline) was applied to prepare the model used for 

MetaXcan. The LD references were estimated based on genotypes of European individuals from the 

1000 Genome Project. Using FDR < 0.05, the method indentified 5,990 coding genes with significant 

models for glomerular eQTL, and 5,371 coding genes for tubular eQTL. Significant association was 

defined as p<0.05/2/6050=4.1×10-6, i.e., corrected for two tissues and 6,050 genes found in either 

tubular or glomerular eQTL data.  

 

Gene-prioritization analysis: Gene prioritization at each of our top loci was performed using two 

complementary similarity-based gene prioritization approaches (PoPS v0.118 and MAGMA14), which 

integrate GWAS summary statistics with gene set enrichment analysis based on a variety of biological 

annotation datasets including gene expression, curated pathways, protein-protein interactions, and 

mouse gene knock-out studies.  

 

For PoPS gene prioritization, MAGMA is first used to calculate gene-level association statistics for 

18,383 protein-coding genes in the genome, which is used to assess feature enrichment. PoPS then 

calculates polygenic priority (PoP) scores for each gene based on its membership to enriched features. 
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For each of our top loci, we annotated the PoPS prioritized gene as the one with the highest PoP score 

within a 500kb flanking window of each of our lead SNPs.  

 

Of note, the PRNCR1 gene annotated as the nearest gene to SNP rs185299109 was not included in 

the PoPS protein-coding gene dataset and the CKD-associated SNP rs185299109 located in an 

intergenic region was also excluded from this analysis. MAGMA gene prioritization was conducted 

using a recently developed extension to the method as described and implemented in Benchmarker 

software19, enabling the explicit derivation of gene prioritization results from gene set enrichment 

analysis. Like the Benchmarker approach, we classified genes as members of each gene set using the 

top 50, 100, and 200 ranked genes, and obtained similar results from all three. To identify the PoPS 

features that contributed to the prioritization of COL4A3, we limited it to the selected marginal gene 

features (PoPS step 1), multiplied the COL4A3 beta hats (PoPS step 2) by the COL4A3 feature’s 

scores, and ranked the features by the highest overall score. 

 

Expression quantitative trait loci (eQTL): eQTL associations were sought from the eQTLGen 

database for eQTL in whole blood from >30,000 participants (http://www.eqtlgen.org/)20. Kidney 

specific eQTL associations were queried from eQTL datasets for glomeruli, tubules17, and a meta-

analysis of four eQTL studies with 451 kidney samples. The meta-analysis of four eQTLs datasets 

obtained from the Susztak lab, The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression 

(GTEx v8), and the Nephrotic Syndrome Study Network (NephQTL)17,21–23, was performed using 

METAL with fixed effects inverse-variance meta-analysis24. 

 

Methylation quantitative trait loci (mQTL): mQTL associations were sought for the lead SNPs in 

188 healthy kidney samples (eGFR > 60 and fibrosis < 10%), with Bonferroni threshold (p<1.5×10-

11) considered genome-wide significant. DNA methylation of CpG sites were profiled in 188 healthy 
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kidney samples by the Infinium MethylationEPIC Kit and BeadChips (Illumina, USA) and were 

transformed by an inverse-normal transformation after quality control using SeSAMe.25 Genotypes 

for these samples were profiled by from Axiom Tx and Axiom Biobank arrays and imputed using the 

multiethnic panel reference from 1000Genomes Phase 3 (NCBI build 37, released in October 2014). 

The association between CpG site and the SNPs within 1Mb were estimated by linear regression 

model using MatrixQTL,26 with covariates including collection site, age, sex, top five genotype PCs, 

degree of bisulfite conversion, sample plate, and sentrix position and PEER factors. For the significant 

CpG sites, we then sought for evidence of association between blood methylation levels and eGFR, 

or eGFR decline, in 500 individuals with diabetes27; we furthermore tested association with DKD in 

our epigenome-wide association study in 1304 UK-ROI and FinnDiane participants, analyzed using 

the Infinium MethylationEPIC Kit and BeadChips (Illumina, USA), following the QC and analysis 

procedures described earlier for UK-ROI28. Meta-analysis of the two data sets was performed with 

METAL software24, based on p-values and direction of effect.  

 

Human kidney gene expression: For the 29 lead genes or transcripts underlying or located near the 

lead SNPs, or based on gene-level analyses, TWAS, PoPS, or kidney eQTL data, we studied gene 

expression in kidneys in human transcriptomics data from nephrectomy samples (433 tubule and 335 

glomerulus samples)29 and kidney biopsies from the Pima Indian cohort (67 glomerular and 47 

tubulointerstitial tissues),30 and tested for correlation with relevant pathological phenotypes. The 

microdissected nephrectomy samples were from individuals with varying degree of diabetic and 

hypertensive kidney disease, and gene expression was defined with RNA sequencing. Pearson 

correlation p-values below 2.2×10-4 were considered significant, corrected for multiple testing for 29 

genes, two tissue compartments, and four phenotypes (eGFR, fibrosis, glomerulosclerosis and group 

comparison). The study was approved by the institutional review board of the University of 

Pennsylvania.  
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In the Pima Indian cohort, gene expression profiling in the first biopsy was performed with 

Affymetrix gene chip arrays30, and with Illumina RNA-sequencing for the second biopsy, as 

described earlier6. Available phenotypes included progression to ESRD, measured GFR (mGFR), 

albumin-to-creatinine ratio (ACR), glycated hemoglobin (HbA1c) and six kidney morphological 

parameters for both biopsies, and change in the phenotypes between the first and the second study 

biopsies (27 phenotypes in total).31 Pearson correlation p-values below 3.2×10-5were considered 

significant, corrected for 29 genes, 2 tissues, and 27 phenotypes; p-values below 8.6×10-4 (i.e. without 

correction for 27 phenotypes) were considered suggestive. The study was  approved by the 

Institutional Review Board of the National Institute of Diabetes and Digestive and Kidney Diseases. 

 

Further annotation of the lead variants: Chromatin 3D conformation interactions with gene 

transcription start sites (TSS) were queried for the most significant SNPs from the promoter capture 

Hi-C (PCHiC) data from the www.chicp.org web interface, including data for GM12878 

lymphoblastoid cell line and CD34 cells32, hESC derived cardiomyocytes33, 16 primary blood cells34, 

and pancreatic islets35. Interactions with score ≥ 5 were considered significant. We queried chromatin 

accessibility in kidney single-nucleus ATAC-sequencing (snATACseq) data available at 

https://susztaklab.com/human_kidney/igv/ (accessed 24 June 2021)36. Detailed gene expression in 

kidney single cell RNA sequencing (scRNAseq) data was queried in the Human Diabetic Kidney data 

set (23,980 nuclei) by Wilson et al.37, accessed through http://humphreyslab.com/SingleCell. Further 

epigenetic annotation was sought from the regulomeDB38, and differential renal gene expression in 

DKD versus healthy controls from the Ju CKD39 and Woroniecka40 data sets in the NephroSeq portal 

(www.nephroseq.org). Of note, samples in the queried Woroniecka40 data are a subset (N=22) of the 

more recent RNA sequencing based nephrectomy samples mentioned above (N=433)29.  

 
LD score regression (LDSR) and Mendelian Randomization (MR): LDSR41 was performed at 

LDhub (http://ldsc.broadinstitute.org/) for 78 glycemic, autoimmune, anthropometric, bone, smoking 
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behavior, lipid, kidney, uric acid, cardiometabolic, and aging related traits, based on the GWAS 

summary statistics of the ten DKD phenotypes explored. Variants were filtered to those with MAF 

≥1%. LDSR associations with p<6.4×10-4 were defined significant after Bonferroni correction for 78 

traits. To identify causal relationships for significant traits in the LDSR against DKD, we performed 

summary-based two-sample MR implemented in the R package TwoSampleMR42. For the SNP-trait 

associations, we selected genetic variants as instrumental variables (IV) that were independently 

associated with the selected traits (p<5×10−8; r2 < 0.001 based on the 1000Genomes EUR panel; LD 

window=10,000 kb) from published GWAS. Palindromic SNPs with intermediate allele frequency 

(MAF close to 50%) were removed. Traits with less than five IVs were excluded from the MR 

analysis. Primarily, we used inverse variance-weighted (IVW) regression, but causality was further 

assessed using methods less sensitive to pleiotropy/heterogeneity (weighted median and MR-Egger 

regression)43. Heterogeneity of SNP estimates in MR was assessed with Cochran’s Q statistic p-value 

and the I2 statistic. The MR–Egger intercept test was used to detect unbalanced horizontal pleiotropy. 

 
Data sharing information: The GWAS meta-analysis results can be accessed via the T1D, T2D, and 

Cardiometabolic Disease (CMD) Knowledge Portals (https://t1d.hugeamp.org/; 

https://t2d.hugeamp.org/; https://hugeamp.org/), and downloaded on their respective downloads 

pages.  

 

 

RESULTS 

GWAS meta-analysis: The GWAS meta-analysis of the DNCRI (T1D), and SUMMIT-T1D and 

SUMMIT-T2D cohorts included up to 26,785 individuals with diabetes from 25 studies; 11,380 

individuals with any DKD (micro- or macroalbuminuria or ESRD) and 15,405 individuals with 

normal AER (Supplemental Table 2). QQ plots and genomic correlation λGC of the meta-analysis 

indicated no marked inflation of the results; similarly, also LDSR intercepts were close to 1.00 (1.00 
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– 1.05) for each phenotype, demonstrating no evidence of population stratification bias in the GWAS 

meta-analysis (Supplemental Figure 1).  

The meta-analysis identified a novel association between the combined CKD-DKD phenotype and 

rs72831309 (minor allele frequency [MAF] =4%, odds ratio [OR] = 2.08, 95% confidence interval 

[CI] 1.62 - 2.67, p=9.8×10-9; Figure 2A; Table 1; Supplemental Table 4); the variant is located in 

an intron of the TENM2 gene encoding the teneurin transmembrane protein 2. Exploration of the 

RegulomeDB revealed that rs72831309 alters a predicted CREB1 transcription factor binding site 

(Figure 2C). Kidney eQTL data indicated that rs72831309 was nominally associated with expression 

of a TENM2 antisense transcript CTB-178M22.2 in kidneys (p=6.9×10-3). Furthermore, chromatin 

conformation data in the GM12878 cell line indicated that the rs72831309 containing DNA fragment 

interacts with the TENM2 transcription start site (TSS), as well as with three antisense transcripts 

(CTB-180C19.1, CTB-105L4.2, and CTB-78F1.1) within the TENM2 gene32. Finally, human kidney 

scRNAseq showed that TENM2 is expressed in podocytes and in the parietal epithelial cells (Figure 

2D)37.  

In addition to rs72831309, ten previously identified, mostly low-frequency or rare variants were 

associated with various kidney phenotypes (Table 1, Supplemental Figure 2). Apart from the 

COL4A3 locus, none of these variants were found in the SUMMIT cohorts (filtered to MAF≥1%), 

and thus, these associations represent the originally reported associations from the DNCRI6. Here, we 

identified a secondary signal with a higher frequency (MAF=0.44) in only partial LD (D’=0.51, 

r2=0.08) with the lead signal at the COL4A3 locus (rs6436688 with p=1.8×10-7 for Severe DKD; 

Supplemental Figure 3), which after conditional analysis for the rs55703767 lead variant remained 

nominally significant (p=0.002).  

Two variants, chr3:141792314:I and rs186434345, were associated with ESRD (N=940, p=4.6×10-

10), and with the CKD-DKD phenotype (N=2,571, p=4.0×10-8) in the SUMMIT-T2D and SUMMIT-
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T1D cohorts.The variants were absent (or poor imputation quality, r2<0.3) in all DNCRI cohorts 

derived from the more recent 1000Genomes phase 3 reference. When the original SUMMIT-

FinnDiane GWAS was included in the analysis, both associations were non-significant 

(chr3:141792314:I: p=0.056, N=3,207, and rs186434345: p=0.002, N=4,782), and thus, excluded 

from further consideration.  

Gene-level analysis:  To improve power and jointly test all available common genetic markers within 

a gene, SNP summary statistics from the GWAS meta-analysis were aggregated by gene and tested 

jointly for association using two similar programs, MAGMA and PASCAL. In addition to COL20A1 

and SNX30 identified in the previously published DNCRI gene-level analysis6, we identified eight 

novel gene associations including GPR158, LSM14A, and MFF associated with severe DKD; INIP 

associated with any DKD; PTPRN and RESP18 associated with CKD; and DCLK1 and EIF4E 

associated with ESRD vs. macroalbuminuria (p<2.7×10-6; Table 2, Supplemental Figures 4A-J). 

Kidney eQTL data for the lead SNPs in the INIP-SNX30 region suggested SNX30 as the target gene 

(rs786959 eQTL p=4.6×10-7; Supplemental Table 5).  

Genome-wide integration of GWAS results with kidney eQTL data: We performed TWAS for 

each of the ten DKD meta-analyses to predict differential gene expression between cases and controls 

in human glomeruli and tubules, based on eQTL data in glomerular and tubulointerstitial samples 

from histologically normal kidneys.17 Expression levels of AKIRIN2, encoding a nuclear protein 

involved in stimulating pro-inflammatory pathways such as NF-κB44, were predicted to be higher in 

the tubular tissue of cases with severe DKD as compared to controls with normal AER (p=1.1×10-6, 

Supplemental Table 6). The eQTL data with 39 SNPs explained 5% of the variance in tubular 

AKIRIN2 expression (p=0.01), which was further correlated with fibrosis (Figure 3B).  

Gene prioritization: To identify the underlying causal genes within each of our top loci, we used the 

PoPS18 method that leverages genome-wide enrichment of biological annotations in combination with 
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GWAS summary statistics to prioritize candidate genes. To increase precision, we intersected the 

results with both the simple nearest gene approach, as well as MAGMA gene prioritization. Four 

genes were both the PoPS prioritized gene and the nearest gene to the lead associated SNP, including 

COL4A3, PLEKHA7, CNTN6, and TENM2 (Table 1). Of note, the CNTN6 locus contained only two 

genes and the TENM2 locus only one, with a relatively low PoP Score (-0.25). When taking the 

intersect between PoPS genes and genes that were within MAGMA’s top 10% of prioritized genes 

genome-wide, COL4A3 was the only prioritized gene (Supplemental Figure 5).  

Given the robust evidence for COL4A3 as a causal gene for DKD6, we interrogated which gene 

features contributed to its prioritization in MAGMA, reasoning that additional genes that are key 

members of these same gene features are also candidate genes for DKD and may provide a deeper 

understanding of disease mechanism. The specific enriched gene set that prioritized COL4A3 for 

Severe DKD using the MAGMA gene prioritization approach was the fibulin 2 protein-protein 

interaction network (“FBLN2 PPI subnetwork”), which together with 26 correlated reconstituted 

gene-sets makes up the “basement membrane” meta-gene set derived in Marouli et al.45 These gene-

sets prioritized 86 genes in MAGMA, including three other genes specific to the “FBLN2 PPI 

subnetwork” (Supplemental Table 7).  

Kidney mQTL: To see whether the identified loci might affect the risk of DKD through DNA 

methylation, kidney mQTL data were queried for the top three variants at each lead locus from the 

GWAS meta-analyses, gene-level analyses, and TWAS. Altogether, 17 variants were significantly 

associated with kidney DNA methylation levels at six CpG sites (p<1.5×10-11; Supplemental Table 

8). These included SNPs in the LSM14A gene, associated with severe DKD and cg14143166 

methylation levels (p=1.9×10-28). Interestingly, cg14143166 methylation in blood was nominally 

associated with DKD status in our epigenome-wide association study (EWAS) in the UK-ROI and 

FinnDiane cohorts (p=0.03), further supporting the hypothesis that the DKD association at LSM14A 

might be mediated through methylation changes. Similarly, blood methylation levels at significant 
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kidney mQTL CpG sites (rs7664964–cg25974308 p=1.1×10-11) in EIF4E were nominally associated 

also with the eGFR slope in diabetes (p=0.04)27.  

Gene expression and pathological phenotypes: Altogether, we identified 29 lead genes or 

transcripts either underlying or located near the lead SNPs, or based on gene-level analyses, TWAS, 

PoPS, or kidney eQTL data. Among these, the expression levels of 14 genes were significantly 

correlated with eGFR, glomerulosclerosis, or fibrosis in transcriptomics data obtained from 433 

tubular and 335 glomerular nephrectomy samples with varying degree of diabetic and hypertensive 

kidney disease (p<2.2×10-4; Figure 4, Supplemental Table 9).29 The strongest correlations were 

observed for the tubular expression of  DCLK1 and COL4A3 (positive correlation), and  TENM2,  

COLEC11, ALLC, PLEKHA7, and SNX30 (negative correlation) with the level of fibrosis; and tubular 

TENM2, PLEKHA7, ALLC, and SNX30 expression positively correlated with eGFR (p<1×10-7, |r| 

0.29-0.56). In the Pima Indian kidney biopsy data, tubular DCLK1 expression levels at the first 

biopsies were suggestively correlated (p<8.6×10-4, corrected for 29 genes and two tissues) with higher 

level of fibrosis, and LSM14A negatively correlated with the change in mesangial volume between 

the two study biopsies (Figure 4); however, these correlations did not remain significant after a 

conservative correction for altogether 27 correlated tested phenotypes from two different time points. 

Multiple genes were nominally (p<0.05) correlated with these renal parameters (Supplemental 

Figure 6, Supplemental Table 10).  

Genetic correlation and Mendelian randomization (MR) with related traits: LDSR was used to 

assess the shared inheritance across the genome between the DKD phenotypes and the related 

metabolic traits. The analysis revealed significant genetic correlation (p<6.4×10-4) between DKD and 

15 traits including multiple obesity-related traits, mother’s age at death, T2D, coronary artery disease, 

HDL cholesterol, urate, and two smoking-related traits (Figure 5; Supplemental Figure 7). Among 

these 15 traits, all but “mother’s age at death”, which had fewer than five genome-wide significant 

SNP associations (p<5×10-8), were used in subsequent MR analysis. MR suggested that the 
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overweight and obesity related traits were causal risk factors for DKD (Supplemental Table 11, 

Figure 5B). The causal effects were directionally consistent across methods, with no evidence of 

heterogeneity (I2=0-42.9%, p>0.05, Supplemental Table 11) or unbalanced horizontal pleiotropy 

(Supplemental Table 12). The MR Egger method, more robust for pleiotropic effects, further 

supported a causal role of higher BMI, waist, and hip circumference on DKD risk (p<0.05, 

Supplemental Table 11, Supplemental Figure 8). The other significant LDSR associations that 

indicated no causal association in MR analysis may represent reverse causality or shared upstream 

effects. 

 

DISCUSSION 

We have performed the largest GWAS meta-analysis to date on kidney complications in diabetes, 

including ten different phenotypic definitions in up to 26,785 individuals with either T1D or T2D, 

and integrated the results with emerging kidney omics data (Figure 1). In the single variant analysis 

with the combined CKD-DKD phenotype (cases with eGFR<45 ml/min/1.73 m2 and 

microalbuminuria or worse, vs. controls with normal AER and eGFR ≥ 60 ml/min/1.73 m2), we 

identified one novel locus, rs72831309 intronic in the TENM2 gene. TENM2 encodes the teneurin 

transmembrane protein 2, which is involved in cell-cell adhesion. TENM2 rs72831309 was one of the 

lead loci associated with DKD in the original SUMMIT T1D GWAS meta-analysis, but it failed to 

reach genome-wide significance at the time4. Supporting the functionality of rs72831309, the SNP 

alters a predicted CREB1 transcription factor binding site. Even though no direct eQTL evidence was 

found for rs72831309 affecting TENM2 expression, it was nominally associated with expression of a 

TENM2 antisense transcript CTB-178M22.2 in kidneys (p=0.007), while chromatin conformation 

data in the GM12878 cell line also pointed towards TENM2 as the effector gene. Whereby kidney 

scRNAseq indicated TENM2 expression in podocytes and proximal tubular cells, lower tubular 

TENM2 expression was associated with renal fibrosis (p=2.0×10-9) and lower eGFR (p=1.6×10-8) in 

the nephrectomy samples; it was also lower among individuals with DKD versus controls (p=6.6×10-
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4, not significant after correction for multiple testing). Other variants in the TENM2 gene were 

associated with multiple traits including smoking status (p=1.6×10-17) and BMI (p=2.6×10-8) in the 

UK Biobank. Furthermore, it was previously reported that the DNA methylation status in TENM2 is 

among the strongest predictors of incident type 2 diabetes46. 

 

Gene level analysis identified ten genes associated with various definitions of DKD. The DCLK1 

gene encodes a doublecortin-like kinase and is a known cancer stem cell marker involved in epithelial 

to mesenchymal cell transition.47 The histone modification based ChromHMM 15-state model for 

fetal kidney indicated strong transcription overlapping one of the three lead SNPs in the DCLK1 locus 

(rs61948262), and ChIP-seq data supported ZSCAN4 binding to the locus in the HEK293 kidney 

epithelial cell line. The lead SNPs were kidney mQTLs for DCLK1 CpG sites (p=6.8×10-22), further 

supporting their functional relevance. Furthermore, multiple lines of evidence highlight the 

importance of DCLK1 in DKD (Figure 6, Supplemental Table 10): The correlation between tubular 

DCLK1 expression and fibrosis was amongst the strongest correlations both in the nephrectomy 

samples (p=7.4×10-16) and in the Pima Indian biopsies (p=3.0×10-4), and glomerular DCLK1 

expression was nominally associated with glomerular width, mesangial volume, and podocyte foot 

process width in the Pima Indian biopsies (p<0.05). Furthermore, both glomerular and tubular DCLK1 

expression were elevated in DKD in two independent data sets (fold change [FC] 1.98, p=1.2×10-4 

for glomeruli;39 FC 2.1, p=0.003 for tubules40). Finally, we have previously identified a subset of 

transcripts, including DCLK1, targeted by the early growth response-1 (egr-1) transcription factor in 

a murine model of DKD. In this study, DCLK1 expression was upregulated in diabetic versus non-

diabetic ApoE-/- mouse kidneys.48 Taken together, these expression data in human and experimental 

DKD identify DCLK1 as a novel target.  
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Of note, one of the previously identified associations with ESRD at rs116216059, intronic in the 

STAC gene, is located <200kb downstream of DCLK3 from the same protein family. The SNP is 

located on a chromatin accessibility peak border in podocytes (snATACseq peak value 1.1; 

Supplemental Figure 2F). PCHiC data in GM12878 cell line supports both STAC and DCLK3 as the 

target gene, and the expression levels of both genes were nominally associated with glomerular 

pathology parameters in the transcriptomics data sets (Supplemental Table 10).  

 

The SNX30 gene, encoding the Sorting Nexin Family Member 30, was associated with DKD in the 

gene-level analysis. While the association signal spans also the neighboring INIP gene, kidney eQTL 

data for the top SNPs in the locus pointed towards SNX30, with the DKD risk associated rs786959 A 

allele associated with higher SNX30 expression (p=4.6×10-7). On the contrary, the nephrectomy 

sample transcriptomics data indicated that higher tubular SNX30 was correlated with higher eGFR 

(p=5.8×10-14) and lower level of fibrosis (p<2×10-16); glomerular expression was correlated with less 

glomerulosclerosis (p=8×10-5). Finally, kidney SNX30 expression was associated with higher eGFR 

in the general population using TWAS based on  kidney eQTL17 and GWAS on eGFR49 (p=0.046).  

 

The TWAS analysis based on our GWAS results, integrated with microdissected tubular and 

glomerular eQTL data, predicted that the AKIRIN2 gene expression is elevated in tubules in 

individuals with severe DKD compared with individuals with normal AER. Furthermore, the 

AKIRIN2 gene expression was highly correlated with the level of fibrosis (p=2.8×10-7). AKIRIN2 

encodes the akirin-2 protein, a conserved nuclear factor required for the innate immune response. 

Akirin-2 is a downstream effector of the toll-like receptor, tumor necrosis factor and IL-1 beta 

signaling pathways. It binds to nuclear NF-κB complexes and is required for the transcription of a 

subset of NF-κB–dependent genes such as IL-6, CXCL10, and CCL5;50 NF-κB activation drives 

inflammatory responses and is activated in DKD.51  
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The strongest regulatory evidence in RegulomeDB was obtained for rs1260634 intronic in the 

LSM14A gene: rs1260634 is located in a ZNF362 binding sequence in HEK293 cell line, exerts strong 

transcription in 125 tissue types including fetal kidney chromatin state model, and affects a predicted 

transcription factor binding motif for KLF4, KLF12, and SP8 (Supplemental Figure 9). 

Furthermore, in our kidney mQTL data, rs1260634 showed strong association (p=2.1×10-28) with a 

CpG site cg14143166, where methylation in blood was associated with DKD in our EWAS data 

(p=0.03). Tubular LSM14A expression correlated with higher eGFR (p=2.9×10-6), and glomerular 

expression with the decrease in mesangial volume (6.5×10-4). LSM14A encodes a Sm-like protein, 

thought to participate in pre-mRNA splicing, and implicated in innate antiviral responses52. Other 

noteworthy novel genes include EIF4E and PTPRN: EIF4E encodes a common mRNA translation 

initiation factor; its activation and/or suppression are influenced by mTOR signaling cascades 

involved in DKD53 as well as high glucose and high insulin environments in renal epithelial cells.54 

PTPRN (protein tyrosine phosphatase receptor type N) encodes IA-2, a major T1D autoantigen 

involved in glucose-stimulated insulin secretion55. In mice, IA-2 is required to maintain normal levels 

of renin expression in kidneys56. Finally, the MFF gene encoding the mitochondrial fission factor, 

which was identified in our gene level analysis, has been previously related to DKD57,58. However, 

the association may be driven by the neighboring COL4A3 associations, as was first suggested in the 

DNCRI GWAS eQTL analysis.6  

 

In the transcriptomics analyses, as expected, all 13 significant correlations with the level of fibrosis 

were observed for tubular gene expression, whereby the two observed correlations for 

glomerulosclerosis were for glomerular expression of SNX30 and COLEC11 (Figure 3). 

Interestingly, eight out of ten correlations with eGFR were obtained for tubular rather than glomerular 

gene expression, supporting the importance of tubular damage for the loss of renal function.  
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Previous genetic risk scores and LDSR analyses have supported a role of T2D genetic factors, obesity 

and smoking for the development of DKD4. While there is a strong epidemiological link between 

DKD and coronary artery disease in diabetes1, this is the first study to report also a genetic correlation 

between these major diabetic micro- and macrovascular complications. Among the lipid traits, 

significant correlation with DKD was found only for lower HDL cholesterol, despite previous MR 

studies within general population cohorts implicating HDL as a marker of dyslipidemia rather than a 

causal factor59. Indeed, our subsequent MR found no evidence of causality between HDL cholesterol 

and DKD; in concordance with our previous MR on BMI,60 only body weight related measurements 

were causal risk factors for DKD. Of note, our current MR was in line with our previous MR in T1D 

suggesting that serum urate levels are not a causal risk factor for DKD61; similar negative results were 

also reported for non-diabetic CKD62.  

 

The majority of kidney disease in individuals with T1D is considered to occur due to diabetic 

nephropathy, histologically characterized by thickening of glomerular basement membrane and 

mesangial expansion, as well as renal tubular, interstitial and arteriolar lesions.63 In individuals with 

T2D, only a proportion of DKD is purely due to diabetic nephropathy, whereas aging, obesity, and 

hypertension also contribute to the development of kidney complications. Thus, including individuals 

with T2D in the meta-analysis increases the heterogeneity of the underlying disease, and may select 

findings for those directly related to hyperglycemia as the common endpoint shared by both forms of 

diabetes. However, as T2D represents 95% of all diabetes cases, including those individuals greatly 

increases statistical power for our current work and future GWAS meta-analyses integrating multiple 

subtypes of diabetes to identify shared genetic risk factors for DKD.  
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Table 1: GWAS meta-analysis result summary: loci with p<5×10-8  

Phenotype CHR:POS SNP EA NEA EAF OR (95% CI) P-value Dir N (studies) Genes 

Novel locus           

CKD+DKD 5:166978230 rs72831309 A G 0.039 2.08 (1.62 - 2.67) 9.8×10-9 +++ 8,570 (7) TENM2* 

Previous loci           

CKD 2:3745215 rs12615970 A G 0.867 1.31 (1.20 - 1.44) 9.4×10-9 +?? 18,488 (13) ALLC, COLEC11 

All vs. Ctrl 2:228121101 rs55703767 T G 0.207 0.86 (0.82 - 0.90) 1.9×10-9 -+- 26,898 (24) COL4A3* 

CKD+DKD 2:228121101 rs55703767 T G 0.210 0.81 (0.75 - 0.88) 4.7×10-8 -+- 17,611 (17) COL4A3* 

Severe DKD 2:228121101 rs55703767 T G 0.208 0.82 (0.77 - 0.87) 3.6×10-11 --- 21,898 (23) COL4A3* 

ESRD 3:926345 rs115061173 A T 0.014 9.40 (4.22 - 20.93) 4.1×10-8 +?? 4,827 (3) LINC01266, CNTN6*  

Micro 3:11910635 rs142823282 A G 0.983 0.15 (0.08 - 0.27) 8.3×10-10 -?? 6,076 (2) TAMM41 

ESRD vs. All 3:36566312 rs116216059 A C 0.016 8.73 (4.13 - 18.45) 1.4×10-8 +?? 3,667 (2) STAC – DCLK3 

Severe DKD 4:71358776 rs191449639 A T 0.005 32.42 (9.77 - 107.59) 1.3×10-8 +?? 7,768 (2) MUC7, AMTN 

Micro 7:99728546 rs77273076 T C 0.008 9.16 (4.29 - 19.56) 1.1×10-8 +?? 7,500 (2) MBLAC1 - ZNF3 

ESRD vs. macro 8:128100029 rs551191707 CA C 0.122 1.69 (1.40 - 2.04) 4.4×10-8 +?? 3,634 (7) PRNCR1 

Micro 11:16937846 rs183937294 T G 0.993 0.06 (0.02 - 0.16) 1.7×10-8 -?? 6,076 (2) PLEKHA7* 

CKD 18:1811108 rs185299109 T C 0.007 20.75 (7.30 – 59.00) 1.3×10-8 +?? 7,223 (2) LINC00470 
EA: Effect allele. NEA: Non-effect allele. EAF: Effect allele frequency. Dir: Direction of association in DNCRI (T1D), SUMMIT T2D, and in 
SUMMIT T1D, respectively. N (studies): Number of contributing individuals and (studies). Genes: closest gene(s). * indicates gene prioritized 
by PoPS. Genes underlying the lead SNP are underlined.  
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Table 2: Significant Gene-level DKD association results from MAGMA and PASCAL.  

Phenotype Gene Chr BP Start BP End N SNPs P-value Method Genes 

CKD PTPRN 2 220149345 220179295 72 2.13×10-6 MAGMA 18,461 
CKD RESP18 2 220187131 220202899 62 2.27×10-6 MAGMA 18,461 
Severe DKD MFF 2 228189866 228222552 439 2.07×10-6 PASCAL 21,790 
ESRD vs. macro EIF4E 4 99794607 99856786 150 5.79×10-7 MAGMA 18,442 
ESRD vs. macro EIF4E 4 99799606 99851786 269 9.28×10-7 PASCAL 21,762 
DKD INIP 9 115443786 115485387 111 4.89×10-7 MAGMA 18,475 
DKD INIP 9 115448790 115480387 248 1.87×10-6 PASCAL 21,784 
DKD SNX30 9 115506911 115642267 505 1.30×10-6 MAGMA 18,475 
Severe DKD GPR158 10 25459290 25896158 1875 1.63×10-6 MAGMA 18,467 
ESRD vs. macro DCLK1 13 36337789 36710514 1162 1.39×10-6 MAGMA 18,442 
Severe DKD LSM14A 19 34658352 34725420 180 1.90×10-6 MAGMA 18,467 
CKD extremes COL20A1 20 61919538 61967285 146 1.94×10-7 MAGMA 18,440 
ESRD vs. all COL20A1 20 61919538 61967285 145 5.26×10-7 MAGMA 18,439 
BP Start/End: Basepair position of the start and the end of the gene region. N SNPs: Number of 
SNPs in the gene region. Genes: number of genes tested.  
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Figure 1: Schematic illustration of the study design from GWAS meta-analysis to integration with 

various omics data sets. GWAS meta-analysis for ten different phenotypic definitions of DKD included up 
to 26,785 individuals with either T1D or T2D from the previous DNCRI and SUMMIT GWAS meta-analyses. 
TWAS: Transcriptome-wide association study, integrating the GWAS meta-analysis results with kidney 
expression quantitative trait locus (eQTL) data for tubular and glomerular compartments, identifying genes 
with differential expression in DKD. mQTL: methylation quantitative trait locus (mQTL) data, identifying 
SNPs associated with DNA methylation at CpG sites. snATACseq: single nucleus ATAC sequencing, 
informative of chromatin openness in various kidney cell types. RegulomeDB: database with extensive 
epigenetic annotation for SNPs. PCHiC: promoter capture HiC sequencing data for sequence interaction with 
gene promoters, proposing target genes. Kidney transcriptomics: gene expression in glomerular and tubular 
tissue in nephrectomy samples, or in Pima Indian biopsies, correlated with various renal parameters.  
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Figure 2: TENM2 gene rs72831309 is associated with CKD-DKD A: Regional association plot of the 
meta-analysis results. B: Forest plot of association across the contributing cohorts. C: SNP rs72831309 
overlaps a predicted CREB1 motif sequence; data from RegulomeDB.org. D: Human kidney single cell 
RNA expression of TENM2 showing strongest expression in podocytes (PODO), parietal epithelial cells 
(PEC) and proximal convoluted tubules (PCD). E and F: Tubular TENM2 expression is correlated with 
higher eGFR (E) and less fibrosis (F).   
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Figure 3: TWAS indicates increased AKIRIN2 expression in Severe DKD. A: The GWAS SNP effect 
sizes for association with Severe DKD (normal AER vs. macroalbuminuria or ESRD) are correlated with 
TWAS eQTL weights to predict AKIRIN2 expression, suggesting that elevated AKIRIN2 levels in tubules are 
associated with Severe DKD (p=1.1×10-6). B: AKIRIN2 expression is correlated with renal fibrosis, correlation 
= 0.252, p-value=2.83×10-7.  
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Figure 4: Tubular and glomerular gene expression of the lead genes correlates with multiple 

morphological and pathological renal parameters and with DKD. Golden rectangles indicate glomerular 
gene expression, green ellipses tubular gene expression, and grey circles the morphological phenotypes. Blue 
edges indicate negative correlation, red edges positive correlation. Correlation with fibrosis, 
glomerulosclerosis (GlomScl), and eGFR were measured in the nephrectomy samples29, shown are 
correlations with p<2.2×10-4 (corrected for 29 genes, 2 tissues, and 4 tests). For the biopsy data in Pima 
Indians, suggestive correlations with p<8.6×10-4 are shown (corrected only for 29 genes and 2 tissues), 
including BX1 Fibr (fibrosis at first biopsy) and BX1 ΔMesV, change in the mesangial volume between the 
first and the second biopsies. Association with DKD (diabetic nephropathy, DN) was queried in two data sets, 
DN Wor (Woroniecka et al.40) and DN Ju (Ju et al39) with p<4.3×10-4, or p<0.05 and fold change>1.5.   
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Figure 5: Genetic correlation between DKD phenotypes and various traits based on LDSR (A), and 

estimates of causal associations based on Mendelian Randomization (B). For LDSR only significant trait 
combinations are shown (p-value < 0.05/78 = 6.4×10-4). A: B: Mendelian Randomization results for DKD 
(All vs. Ctrl) with inverse variance weighted (IVW) method for the traits significant in LDSR, and with at 
least 5 genome-wide significant SNPs.   
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Figure 6: DCLK1 is associated with ESRD. A: The DCLK1 gene region was associated with ESRD vs. 
macroalbuminuria in the MAGMA gene-level analysis (p=1.39×10-6). EB and C: Tubular DCLK1 expression 

is highest in DKD (B), and correlated with the level of fibrosis (C) in the nephrectomy samples. D: Glomerular 
DCLK1 expression is higher in DKD than in healthy controls (Ju CKD39: Fold change 1.98, p=1.2×10-4). E: 
Tubular DCLK1 expression is higher in DKD than in healthy controls (Woroniecka data set40: Fold change 
2.1, p=0.003). F and G: Kidney DCLK1 expression is strongest in mesangial cells in human scRNAseq data 
of individuals with diabetes and healthy controls37.  
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