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Insomnia is a sleep disorder characterized by difficulty in falling 
or remaining asleep. It is highly prevalent in the population1 and 
is associated with high morbidity, mortality2 and societal costs3. 

It is moderately heritable (twin-based heritability 38–59% (ref. 4), 
and single-nucleotide polymorphism (SNP)-based heritability 7%  
(ref. 5)) and genome-wide association studies (GWAS) have 
improved understanding of the complex polygenic etiology of 
insomnia5–7. A recent GWAS in over 1.3 million individuals reported 
>200 genomic loci linked to insomnia, in which the polygenic risk 
score (PRS) explained a quarter of the estimated heritability5, impli-
cated several neurobiological processes, cell types, brain areas and 
circuitries and showed considerable overlap with genetic risk for 
psychiatric disorders5,7.

Previous genetic studies have, however, also shown that insom-
nia is among the most polygenic traits8, predicted to require at 
least 50 million individuals for detection of SNPs at the level of 
genome-wide significance (P < 5 × 10–8) to explain 90% of the 
genetic variance (SNP heritability from GWAS summary statistics)8. 
With the current rapid expansion of sample sizes, we may expect 
to reach levels of 50 million in the next decade. Nevertheless, even 
when this is achieved it will be far from straightforward to sepa-
rate true causal variants and genes from those that are statistically  

associated due to linkage disequilibrium (LD) with the true causal 
ones (‘LD byproducts’). Efficient separation requires in silico 
post-GWAS analyses followed by wet-lab functional experimenta-
tion to advance our understanding of how the combined effects of 
truly causal variants disrupt biological systems and ultimately lead 
to insomnia.

In silico strategies to prioritize causal variants may focus on 
improving LD resolution by comparing results from cohorts with 
different LD patterns (that is, due to ancestry)9, while wet-lab strate-
gies could involve large-scale screening of candidate variants using 
CRISPR–Cas9 technology within a locus10. These strategies, how-
ever, are not always feasible due to a lack of data accessibility or 
informative readouts for the functional experiments. We propose 
an alternative in silico approach in which we combine statistical 
fine-mapping with cross-locus linking of genes for which external 
data are available, aimed at more specific hypotheses and targets for 
wet-lab experiments. This approach is especially suited for GWAS’s 
that identify hundreds of loci.

Here we performed a meta-analysis of insomnia GWAS in the 
UK Biobank and 23andMe, Inc. cohorts, including 593,724 cases 
and 1,771,286 controls. We found 554 loci, implicating 3,898 genes 
using standard functional annotation and gene-based methods. 
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Insomnia is a heritable, highly prevalent sleep disorder for which no sufficient treatment currently exists. Previous genome-wide 
association studies with up to 1.3 million subjects identified over 200 associated loci. This extreme polygenicity suggested that 
many more loci remain to be discovered. The current study almost doubled the sample size to 593,724 cases and 1,771,286 con-
trols, thereby increasing statistical power, and identified 554 risk loci (including 364 novel loci). To capitalize on this large 
number of loci, we propose a novel strategy to prioritize genes using external biological resources and functional interactions 
between genes across risk loci. Of all 3,898 genes naively implicated from the risk loci, we prioritize 289 and find brain-tissue 
expression specificity and enrichment in specific gene sets of synaptic signaling functions and neuronal differentiation. We 
show that this novel gene prioritization strategy yields specific hypotheses on underlying mechanisms of insomnia that would 
have been missed by traditional approaches.
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Using per-locus fine-mapping and cross-locus linking of genes, we 
prioritized 289 genes from 239 loci and show the association with 
brain-specific gene expression and enrichment in gene sets related 
to synaptic signaling and neuronal development.

Results
We conducted a GWAS meta-analysis of insomnia in 593,724 cases 
and 1,771,286 controls, including data from the UK Biobank 
study (UKB) and 23andMe, Inc. (23andMe). In UKB, insomnia 
was assessed using a single question that was dichotomized fol-
lowing previous studies5,11 (Supplementary Note) and previously 
validated as being a reliable proxy of insomnia disorder11. We per-
formed a GWAS on 386,988 unrelated European UKB subjects 
(109,548 cases and 277,440 controls). In 23andMe, insomnia was 
defined based on multiple questions completed by online surveys 
(Supplementary Note), and the GWAS in this cohort was per-
formed on 1,978,022 unrelated participants of European ancestry 
(484,176 cases, 1,493,846 controls; Methods and Supplementary 
Fig. 1). Details regarding sample size, prevalence and SNP herita-
bility for each cohort (and sex-specific samples) are provided in 
Supplementary Table 1; Supplementary Note and Supplementary 
Table 2 show cohort-specific GWAS results.

The combined meta-analysis included in total 593,724 cases 
and 1,771,286 controls and was performed using a fixed-effect 
model in METAL12 (Methods). The genetic correlation between the 
cohort-specific GWAS was 0.66 (s.e.m. = 0.0179, P = 2.7 × 10–292), in 
line with previous work5 (Supplementary Note).

For the meta-analysis, LD score regression (LDSC)13 estimated 
h2

SNP at 7.2% (s.e.m. = 0.17%) (Supplementary Note), λ1,000 at 1.00, an 
intercept of 1.15 (s.e.m. = 0.0158) and a ratio of 0.079 (s.e.m. = 0.08). 
The latter indicates that, at most, 92.1% of the observed inflation is 
due to the high polygenicity of insomnia. We estimated that cur-
rent genome-wide significant (GWS) SNPs explain 17.3% of total 
h2

SNP (Supplementary Note). Insomnia is currently estimated to be 
the third most polygenic trait, following major depressive disorder 
(MDD) and educational attainment8 (Supplementary Note).

We found that a PRS calculated for 10,000 individuals from 
the UKB samples (Methods) explained 2.46% of the phenotypic 
variation at most (Supplementary Note, Extended Data Fig. 1 and 
Supplementary Table 3). We observed a marked decrease in pre-
dictive power using a non-UKB independent cohort as the target 
sample (the Million Veteran Program (MVP) cohort, n = 183,944), 
in which PRS explained 0.66% of the phenotypic variation at most 
(Supplementary Note and Supplementary Table 3). This discrep-
ancy between the UKB holdout and MVP samples may be due to 
dissimilarity in the phenotype as measured in the MVP cohort com-
pared with the combined UKB and 23andme cohorts, or to ances-
tral mismatches.

In addition, we performed sex-specific meta-analyses to evalu-
ate whether results may differ between males and females. Using 
LDSC13, we estimated the genetic correlation (rg) between GWAS 
results for males and females to be 0.92 (P < 1 × 10–323), 0.85 
(P = 3.2 × 10–64) and 0.91 (P < 1 × 10–323) in the meta-analysis and 
UKB and 23andMe cohort-specific GWAS, respectively, consistent 
with a previous report on partly overlapping data5. Sex-specific 
results are available in the Supplementary Information; here we will 
focus on results obtained from the sex-combined meta-analysis.

SNP and gene-based findings from the meta-analysis. The 
meta-analysis yielded 51,876 genome-wide significant SNPs resid-
ing in 554 distinct loci containing 791 independent lead SNPs 
(r2 < 0.1; Methods, Supplementary Note, Supplementary Data, 
Supplementary Fig. 2 and Supplementary Tables 4 and 5). Of the 
top 554 SNPs (that is, SNPs with the lowest P value in each locus), 
97.1% showed concordance in effect direction between the two 
cohorts. Out of 554 loci, 11 were genome-wide significant in the 

UKB and 419 in the 23andMe cohort-specific GWAS, while nine 
loci were identified in both cohorts (Supplementary Table 5). 
The total summed length of risk loci was 145.2 Mb, which repre-
sents 4.9% of the genomic regions containing known SNPs in the 
entire genome. Of these 554 loci, 190 overlapped with previously 
identified risk loci5–7,11 and 364 were novel (Methods, Fig. 1a and 
Supplementary Table 5). Of the loci reported in Hammerschlag 
et al.11, Lane et al.6,7 and Jansen et al.5, 1/2, 3/5, 25/57 and 18/202 loci, 
respectively, were no longer significant in the meta-analyses 
(Supplementary Note, Supplementary Table 5 and Supplementary 
Fig. 3; note that the meta-analysis in this study includes samples 
from Hammerschlag et al.11 and Jansen et al.5). We show that the 
number of risk loci increases almost linearly as a function of sample 
size (Fig. 1b), and that both newly identified and unreplicated risk 
loci from the previous GWAS showed significantly higher P values 
compared with other risk loci, as expected (Supplementary Note 
and Supplementary Fig. 4).

The 51,876 genome-wide significant SNPs showed enrichment 
in intronic, intergenic and 3' untranslated regions, while they were 
depleted in exonic regions compared with all analyzed SNPs (Fig. 
1c and Supplementary Table 6). Stratified heritability analyses14 
with 28 annotations (Methods) showed that SNP heritability was 
most strongly enriched in conserved regions, followed by mul-
tiple chromatin modification markers, consistent with a previous 
meta-analysis5 (Fig. 1d and Supplementary Table 7).

Next, we performed a gene-based association test using 
MAGMA. Of 19,751 protein-coding genes analyzed, 1,429 reached 
genome-wide significance (0.05/19,751 = 2.53 × 10–6; Fig. 1a and 
Supplementary Table 8). The most significant gene was PTPRD 
(P = 7.2 × 10–37), which has been associated with insomnia5, restless 
leg syndrome (RLS)15, type 2 diabetes16 and coronary artery dis-
ease17. Results show that the association of PTPRD is unlikely to be 
driven by a misclassification or comorbidity of RLS within insom-
nia cases (Supplementary Note and Supplementary Table 9). The 
second-most significant gene was LSAMP (P = 2.8 × 10–36), which 
was not significant in the previous insomnia GWAS but has been 
associated with MDD18 and suicidal behavior19, which are highly 
genetically correlated to insomnia. The most significantly associated 
genes from the previous insomnia GWAS, MEIS1 (ref. 11) and BTBD9 
(ref. 5), were also supported in the current study (P = 1.2 × 10–14  
and 4.8 × 10–24, respectively). Risk loci and gene analyses for 
sex-specific meta-analyses are summarized in Supplementary Note, 
Supplementary Tables 8 and 10–13 and Supplementary Fig. 5.

The 51,876 GWS SNPs were mapped to 3,526 genes (of which 
1,455 are located within the risk loci) using positional, expression 
quantitative trait loci (eQTL) and chromatin interaction mapping 
strategies20 (Methods and Supplementary Table 14). Together with 
genes significantly associated in gene-based tests, 3,898 unique 
genes were implicated.

We observed significant genetic correlations with 350 traits out 
of 551 tested, including multiple cardiovascular, metabolic and 
psychiatric traits, in agreement with previous reports5 (Methods, 
Supplementary Note, Supplementary Table 15 and Extended Data 
Fig. 2). Of 554 insomnia risk loci, 282 were colocalized with one 
of the 350 traits, indicating shared causal variants among traits 
(Supplementary Note). In addition, a clustering of these 282 loci 
based on the colocalization pattern across 350 traits suggested the 
presence of locus heterogeneity where we observed distinct clus-
ters of loci: one was mainly colocalized with metabolic traits and 
the other mainly with psychiatric traits (Supplementary Note, 
Supplementary Tables 16–21, Supplementary Fig. 6 and Extended 
Data Fig. 3).

We performed extensive post-GWAS analyses to test for conver-
gence of genetic association signals in tissue types, brain regions, 
cell types and biological pathways associated with insomnia, based 
on the total genome-wide distribution of genetic associations and 
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Fig. 1 | GWAS meta-analysis of insomnia in 2,365,010 individuals. a, Manhattan plot for SNPs (top) and genes (bottom) based on MAGMA gene 
analysis. The top SNPs of previously identified loci are labeled in blue, novel loci in red. b, Number of risk loci identified by insomnia GWAS with different 
sample sizes. c, Proportion of GWS SNPs in each functional category. Bars are colored by log2-transformed enrichment value (E; the proportion of 
GWS SNPs in a category divided by the proportion of all analyzed SNPs in the same category). Asterisks denote significant enrichment or depletion in 
comparison with all analyzed SNPs based on Fisher’s exact test (two-sided). d, Enrichment of SNP heritability in 28 annotation categories computed by 
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enriched annotations.
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weighted by statistical significance using MAGMA gene set analy-
ses21 (Methods and Supplementary Note). Based on the full GWAS 
distribution, we found evidence for enrichment in brain tissue (spe-
cifically the cerebral cortex), neurons in four specific brain areas 
(lateral geniculate nucleus (LGN), habenula, ventral pallidum and 
anterior pretectal nucleus), GABAergic neurons and biological 
pathways involved in synaptic functions, behavior and neuron dif-
ferentiation (Fig. 2, Extended Data Fig. 4, Supplementary Note and 
Supplementary Tables 22–33).

Prioritization of high-confidence genes using multilocus infor-
mation. Because of LD, many noncausal SNPs will show statisti-
cal association with a trait simply because they are correlated with 
causal SNPs. We call these noncausal significant SNPs LD byprod-
ucts. Because we do not know which SNPs are causal and which 
are LD byproducts, post-GWAS annotation provides information 
on many SNPs that are probably not causally related to the trait, and 
therefore conventional post-GWAS analysis testing for convergence 
may still contain considerable noise from these LD byproducts. 
Multiple studies have been proposed to conduct fine-mapping per 
locus and prioritize credible SNPs and genes from each locus before 
testing for convergence22–25. Here we propose to prioritize genes 
additionally based on cross-locus connections.

We assume the following: (1) credible SNPs can be indicated 
using in silico fine-mapping strategies; (2) SNPs that have a struc-
tural or regulatory effect on a gene product are more likely to be 
causal than those that have no such effect; (3) genes that are impli-
cated as the only gene in a locus are likely to be the gene respon-
sible for the statistical association, and are therefore probably a true 
causal gene; and (4) if insomnia is influenced by hundreds of genes, 
at least some of those are functionally related (Fig. 3).

We first defined credible SNPs by performing statisti-
cal fine-mapping for each of the 554 insomnia risk loci using 
FINEMAP23 (Methods). For each locus, the 95% credible sets were 
extracted resulting in a total of 26,016 unique SNPs (Supplementary 
Note and Supplementary Fig. 7 show detailed results). More than 
94.5% of the SNPs in 95% credible sets had a posterior inclusion 
probability (PIP) ≤ 0.1, suggesting that those SNPs were ‘unsolved’ 
by FINEMAP, which could be due to many variants being highly 
correlated with each other within the loci, and to small effect sizes. 
We retained only 1,423 credible SNPs with PIP > 0.1 distributed 
over 429 loci (Supplementary Table 34). Credible SNPs were then 
mapped to genes if they were either deleterious coding SNPs (non-
synonymous, stop-gain, stop-loss or splicing SNPs) (Supplementary 
Table 35) or colocalized with eQTLs from GTEx v.8 (ref. 26), 
PsychENCODE27 and eQTLGen28 (Methods and Supplementary 
Table 36). This resulted in labeling 314 genes from 178 loci as having 
a credible SNP that was either nonsynonymous coding or colocal-
ized with eQTLs (Supplementary Table 37).

For 376 of the remaining insomnia loci, no genes were present 
with the above criteria. This was due to a lack of either credible 
SNPs or credible SNPs that were deleterious coding or colocalized 
eQTLs. For these loci, we used GWS SNPs rather than credible 
SNPs and again evaluated whether they were deleterious coding 
SNPs or colocalized with eQTLs. This resulted in an additional 
257 genes from 103 loci (Supplementary Table 37). Together, these 
571 genes from 281 loci were termed high-confidence (HC) genes 
(Supplementary Note and Supplementary Fig. 8). Of these 571 HC 
genes, 216 (37.8%) were those closest to one of the index SNPs.

A single locus could contain multiple HC genes, but some were 
mapped to a single gene. In the case of a single HC gene, that 
gene was considered the only probable causal candidate from the 
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locus. We labeled these single HC genes as high-confidence single 
(HC-1) genes (highest confidence) and the remaining genes as 
high-confidence genes with multiple genes (each of which could be 
the causal gene(s)) in the same locus (HC-m genes) (Fig. 3). We 
obtained 164 HC-1 genes from 166 loci (two genes were mapped 
from two loci due to distal eQTLs) and 407 HC-m genes from 
116 loci (Supplementary Table 37).

Assuming that HC-1 genes are the most probable causal genes, 
and that functional relationships exist among the set of causal 
genes, we then used the set of HC-1 genes to select the most prob-
able causal genes from the set of HC-m genes. To assess functional 
relations we used protein–protein interactions (PPI) using InWeb29 
and identified HC-m genes that have a direct interaction with HC-1 
genes (Methods). We chose to use PPI for this and not, for example, 
for coexpression, because we aimed to identify genes whose prod-
ucts are known to form a protein complex, increasing the likeli-
hood that they have a common function. Of 407 HC-m genes, 125 
from 74 loci were found to have a direct PPI with HC-1 genes. We 
then defined 289 genes (164 HC-1 and 125 HC-m genes connected 
to HC-1) from 239 loci as the ‘high-confidence prioritized’ (HCP) 
genes (Supplementary Table 37). HCP genes are those we believe to 
be most probably functionally associated with insomnia based on 
the associated loci. Out of 239 loci, 202 were linked to single HCP 
genes and the maximum number of genes from a single locus was 
five. We consider these 239 loci to be ‘resolved’ and the remaining 
315 to be unsolved, due to lack of biological evidence or informa-
tion at present. Although we still cannot identify genes from 56.7% 

of the insomnia loci, we assume that these loci are randomly distrib-
uted and thus we expect HCP genes to explain some of the under-
lying biological mechanisms of insomnia, because these are more 
refined and likely to contain fewer false positives compared with the 
3,526 genes mapped by all GWS SNPs.

To validate whether the prioritization we propose here can iden-
tify known causal genes, we used GWAS of three molecular traits 
(urate, IGF-1 and testosterone) in which causal biological mecha-
nisms are well known30. The results showed that HCP genes were 
generally enriched in the core genes reported by Sinnott-Armstrong 
et al.30, supporting the effectiveness of our gene prioritization 
method (Supplementary Note and Supplementary Tables 38-43).

The HCP genes we identify here for insomnia include NEGR1, 
which has been reported in multiple traits such as body mass 
index31, MDD32 and cognitive traits33,34 as well as in a previous 
insomnia GWAS5, and its effect on neuronal growth and behavior 
has been suggested35,36. HCP genes also include EP300, known to be 
involved in the circadian rhythm37 that regulates sleep timing (see 
Supplementary Table 36 for a list of HCP genes).

To look for convergence in biological functions of HCP genes 
we assessed associations with tissues, brain regions, cell types and 
biological pathways (Methods and Supplementary Note).

The HCP genes showed significant joint associations with 
frontal cortex BA9 and anterior cingulate cortex BA24 (Fig. 3 and 
Supplementary Tables 44 and 45). These tissue enrichments seen 
with HCP genes were also detected when using the full GWAS 
results (Supplementary Tables 46–48 and Supplementary Note).

Locus

Has credible SNPs

Has coding-deleterious
SNPs or colocalized eQTLs

HC gene

GWS SNPs

Has coding-deleterious
SNPs or colocalized eQTLs

HC-1 gene HC-m gene
Is the only HC gene from

the locus

Direct interaction with any HC-
1 gene

HC-prioritized genes

a Locus 1 Locus 2 Locus 3 Locus 4 Locus 5

Protein–protein interactions

HC-1

HC-m

Genes

b

Unsolved

Fig. 3 | Schematic overview of gene prioritization strategy from risk loci. a, Conceptual illustration of gene prioritization based on multiloci information. 
Rectangles represent genes colored by prioritization status. Genes colored gray are located within or close to insomnia risk loci but were not implicated 
either due to a lack of functional evidence or because other genes in the same locus had higher priority. Genes that do not have a direct protein–protein 
interaction to HC-1 genes are filtered out (indicated by a cross). b, Flowchart of gene prioritization using credible SNPs and GWS SNPs. Solid boxes 
represent inputs or outputs, dashed gray boxes represent conditions, green arrows represent paths where an originated condition is positive, orange 
arrows represent paths where an originated condition is negative, gray arrows represent paths that do not have any other option.
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On the other hand, some tissue enrichments that were signifi-
cant when using the full GWAS were no longer detected when using 
the HCP gene list. This is because genes driving these associations 
in the full GWAS were not prioritized, which suggests that these 
initial enrichments were less likely to be based on true causal genes. 
(Supplementary Note and Extended Data Fig. 5).

From the gene set enrichment analyses, HCP genes showed 
significant enrichment in 18 gene sets clustered into four indepen-
dent groups (Fig. 4, Extended Data Fig. 6 and Supplementary Table 
49). The most significantly enriched gene sets from each cluster 
were ‘Modulation of chemical synaptic transmission’ (SynGO:BP), 
‘neuron differentiation’ (GO:BP), ‘regulation of trans-synaptic sig-
naling’ (GO:BP) and ‘inclusion body’ (GO:CC). We identified addi-
tional, less redundant gene sets when using the prioritized genes 
than when using the full GWAS results. This may indicate that, 
by filtering potential noise out of LD byproducts, we were able to 
identify gene sets specific to the most probable causal genes priori-
tized from insomnia-associated loci that were missed using the full  
GWAS results.

Discussion
In this study we performed a GWAS meta-analysis for insomnia 
that included >2.3 million subjects. We identified 554 insomnia risk 
loci, doubling the number identified by the largest previous study, 
which included 1.3 million subjects5.

We observed clusters of insomnia loci based on colocalization 
patterns across multiple traits, indicating potential locus heteroge-
neity. In particular, separation of locus clusters that are colocalized 
with either metabolic or psychiatric traits is clinically relevant. This 
suggests that insomnia is a genetically heterogeneous phenotype 
consisting of different genetic subtypes—for example, insomnia 
symptoms that are related more to either metabolic disturbances 
or other factors in the brain that may require different treatment 
approaches. Indeed, metabolic disturbances have been found to 

contribute to hyperarousal in insomniacs compared with controls, 
such as increased whole-body and brain metabolism, altered hor-
mone secretion and sympathetic activation38.

Using multiple cell-specific gene expression datasets, we identi-
fied novel associations of insomnia with neuronal cells including 
habenular, LGN and GABAergic neurons, among others. These 
findings are supported by previous evidence of involvement in sleep 
regulation, but have not been linked by GWAS until now. The haben-
ular nuclei have reciprocal connections with the pineal gland along 
which it coevolved (together forming the epithalamus)39,40, and its 
activity follows a strong circadian pattern40,41. Among its hypoth-
esized functions are sleep and circadian rhythm regulation through 
production of melatonin39,40 and maintaining rapid-eye-movement 
(REM) sleep, as evidenced by REM disturbances induced by haben-
ular lesions42,43. The LGN is part of the visual system, which relays 
retinal information to cortical brain areas. In addition, the LGN 
is involved in circadian rhythm regulation through its intrinsic 
timekeeping properties44 and indirect interactions with the supra-
chiasmatic nucleus (SCN) through neuropeptide-Y45,46. Lesions in 
the LGN indeed have shown to affect circadian activity in animal 
models via disturbed processing of environmental cues46. GABA is 
among the most abundant neurotransmitters in the brain and is the 
main neurotransmitter of the circadian system47 whose inhibitory 
action induces a sleep state48–50, and the SCN consists almost entirely 
of GABAergic neurons51. Interestingly, the GABAergic system is the 
mechanism of action of drugs such as benzodiazepines that are 
often used to treat insomnia49. These observations point to several 
different but related mechanisms in the brain that may provide a 
basis for further study by experimental designs.

We also observed that, in spite of almost doubling our sample 
size, SNP-based heritability did not notably increase (7–8%). 
Because SNP-based heritability sets an upper limit to the prediction 
power, the increased accuracy of effects sizes also did not lead to an 
improved prediction. These results support the extreme polygenic-
ity of insomnia as it is operationalized in the current (and previ-
ous) GWAS. Our current results, however, do hint at heterogeneous 
forms of insomnia, one that is due to a metabolic–genetic pathway 
and a second due to a psychiatric–genetic pathway. Future studies 
aimed at increasing prediction may benefit from the collection of 
deep phenotyping data on insomnia patients and identify subtypes 
of insomnia.

We demonstrated a novel strategy using known biological func-
tions of SNPs and multilocus functional relations of genes to priori-
tize the most probable causal genes, and based post-GWAS analyses 
for convergence on these genes. Applying this strategy, we identified 
289 HCP genes from 239 loci and compared associated tissue and 
cell types, as well as gene sets based both on the set of prioritized 
genes and all genes implicated in the GWAS. We found that the for-
mer is less likely to contain LD byproducts and provided more spe-
cific results. Indeed, the gene set showed that the most significant 
enrichment in HCP genes, Modulation of chemical synaptic trans-
mission (SynGO:BP), is at the lowest hierarchy of the gene ontology 
tree in the SynGO dataset (Modulation of chemical synaptic trans-
mission < Chemical synaptic transmission < Trans-synaptic signal-
ing < Synaptic signaling < Process in the synapse), while we only 
identified the broadest ontology, Process in the synapse, by using 
the full GWAS with MAGMA.

We identified enrichment of HCP genes in gene sets related to 
synaptic and neuronal processes, including neurogenesis and dif-
ferentiation, which were not previously observed. Evidence of 
synaptic transmission of neurotransmitters in insomnia has previ-
ously been found in imaging studies demonstrating imbalance of 
neurotransmitters in the brain of insomniacs52,53, including altered 
levels of GABA and glutamate54. In addition, the observed neu-
ronal processes could point towards developmental mechanisms 
that predispose the brain to insomnia. Alternatively, neurogenesis 
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Fig. 4 | Tissues and gene sets associated with the HCP genes. P values 
of significantly associated tissues, brain regions, cell types and gene sets 
based on one-sided t-test for the regression coefficient of gene expression. 
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displayed. Horizontal solid lines above bars represent clusters of items that 
are either collinear or jointly associated with insomnia. Asterisks represent 
items that also showed significant association with insomnia when 
using the full GWAS results. Bars are colored by datasets. MF, molecular 
function; Mod., modulation; Reg., regulation.
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and neuron differentiation were recently reported to occur in the 
hypothalamus51, a major regulator of circadian rhythm where new 
neurons support and maintain its normal functioning. It is hypoth-
esized that (age-related) decline in neurogenesis may contribute to 
impaired sleep–wake regulation in humans (a review is provided by 
Kostin et al.51). The ultimate test of whether HCP genes are actually 
causally involved still lies in functional follow-up experiments.

There are several limitations of the gene prioritization strategy 
proposed in this study. First, the strategy using multilocus informa-
tion is feasible only for polygenic traits with a reasonable number of 
independent risk loci identified by GWAS and a reasonable num-
ber of loci with single implicated genes. Second, the prioritization 
procedure depends on the availability and accuracy of functional 
annotations of SNPs and genes. For example, we defined an HC-1 
gene as the only gene from a single locus with high-confidence bio-
logical evidence. However, in future more SNPs may be found to 
be deleterious (by increasing accessible (rare) SNPs in GWAS) or 
colocalized eQTLs (by increasing statistical power to detect eQTLs 
and their availability in specific cell types), which may change the 
current results and allow us to identify additional high-confidence 
genes from loci. Third, cross-locus linking of genes depends on the 
availability and reliability of biological information (PPI, coexpres-
sion networks or any other gene-correlation matrix deemed rele-
vant), which is currently not abundantly available. We do believe 
that the use of cross-locus information greatly aids in making sense 
of the multitude of associated genes, and the current study shows 
that this strategy indicates a role for more specific biological func-
tions in insomnia.

In conclusion we show that, for extremely polygenic traits such 
as insomnia, increasing sample size does lead to an increase in 
detected SNPs, loci, genes and pathways, providing more confi-
dence in existing and novel mechanisms. We also show that increas-
ing sample size in this case does not lead to increasing predictive 
power, and provide some suggestions of why this might be the case 
(for example, genetic subtypes, extreme polygenicity and phenotype 
operationalization). In addition, we provide a novel gene prioritiza-
tion method that relies on the large number of detected loci, using 
a small percentage of those loci with clearly identifiable probable 
causal genes to prioritize genes from the remaining loci, which aids 
in generating hypotheses about biological processes underlying 
insomnia that can be tested in functional experiments.
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Methods
Genome-wide association analysis. UKB. We performed genome-wide association 
analysis for insomnia with PLINK 2.0 (ref. 55), using logistic regression with 
age, sex, genotype array and ten genetic principal components (PCs) computed 
with unrelated European subjects defined above, based on 145,432 independent 
SNPs (r2 < 0.1, minor allele frequency (MAF) > 0.01, imputation quality 
score (INFO) = 1) using FlashPCA56 as covariates. We analyzed autosomal, 
pseudo-autosomal and X chromosomes. For X chromosomes we used a model 
where genotype was coded [0, 2] for males (with a PLINK flag –xchr-model 2) for 
consistency with the 23andMe cohort. SNPs were limited to those with a minor 
allele count (MAC) > 100. For sex-specific GWAS we followed the same criteria 
except that sex was excluded from the covariates. The numbers of analyzed SNPs 
and sample sizes are summarized in Supplementary Table 1.

23andMe. Summary statistics were obtained from 23andMe, Inc. based on logistic 
regression with age, sex, genotype array and the first five genetic ancestry PCs. 
23andMe included the first five PCs compared with ten in UKB, because the first 
PCs of 23andMe explain more variance than in the UKB cohort: the variance is flat 
after the fifth PC in 23andMe while this plateau was reached after the tenth PC in 
UKB (Supplementary Fig. 1). We first extracted SNPs that passed quality control by 
23andMe. When there were both genotyped and imputed genotypes available for 
a single SNP, the imputed SNP was retained. We then further extracted SNPs with 
MAC (MAF × sample size × 2) > 100. The analyses were performed for unrelated 
European subjects for sex-combined (n = 1,978,022), male-only (n = 1,038,003) and 
female-only (n = 1,200,179) separately.

GWAS meta-analysis. A meta-analysis of GWAS summary statistics in UKB and 
23andMe was performed using METAL software12, based on the fixed-effect model 
with SNP P values weighted by sample size. The meta-analysis was performed 
separately for the sex-combined and each sex-specific GWAS. We used a unique 
marker ID consisting of chromosome, position and alphabetically ordered alleles 
to match SNPs between cohorts. Because indels were coded as I/D in the 23andMe 
cohort, exact alleles were assigned for indels based on information from the UKB 
cohort. We assigned alleles to indels in 23andMe only when there were biallelic 
indels on the same position in the UKB cohort. The numbers of analyzed SNPs and 
sample sizes are summarized in Supplementary Table 1.

We converted z-statistics to standardized effect sizes (and their standard error) 
as a function of MAF and sample size as below57:

β =
z

√

2p(1 − p)(n + z2)
, s.e.m. = 1

√

2p(1 − p)(n + z2)

where p is MAF and n is sample size for a given SNP. Log odds ratio (OR) was 
approximated using the fraction of cases:

log OR =
β

u(1 − u)

where u is a case fraction.

SNP heritability and stratified heritability. SNP heritability was estimated for 
sex-combined and sex-specific GWAS on UKB, 23andMe and meta-analyses 
using LDSC13. Precomputed LD scores for 1,000 Genome Phase 1 European 
subjects were downloaded from https://data.broadinstitute.org/alkesgroup/
LDSCORE/. The analyses were limited to HapMap3 SNPs, with the MHC region 
(chr6: 26–34 Mb) excluded. In addition, SNPs with chi-square statistics >80 
were excluded. To compute SNP heritability on the liability scale we provided a 
population prevalence of 30% (ref. 1). Because the sample size of this study is large, 
the genomic inflation factor λGC was scaled for 1,000 cases and 1,000 controls as 
λ1,000 = 1 + (λGC – 1) × (1/ncases + 1/ncontrols) × 500.

To test whether SNP heritability was enriched in a specific category of 
functional annotations, we partitioned it for 28 binary SNP annotations14. 
Enrichment was computed as the proportion of SNP heritability explained by 
SNPs with annotations divided by the proportion of SNPs with annotations. 
We obtained 28 functional annotations from https://data.broadinstitute.org/
alkesgroup/LDSCORE/.

Polygenic risk scoring. Phenotypic variance explained by our meta-analysis was 
estimated using polygenic scores (PGS) that were computed based on SNP effect 
size using PRSice v.2.2.1 (ref. 58) (http://www.prsice.info/) with default parameters. 
PRSice performs clumping of SNPS at r2 = 0.1. We set P value thresholds of input 
SNPs at P < 1.0, 0.5, 0.05, 0.01, 5 × 10–3, 1 × 10–3 and 1 × 10–5. We computed PGS 
for three randomly selected sets of 10,000 UKB subjects, with summary statistics 
recalculated excluding those 10,000 subjects each time for the UKB cohort. We 
then meta-analyzed with the 23andMe GWAS that we used as training data. 
Variants with MAF < 0.01, missing rate > 0.05 or Hardy–Weinberg equilibrium 
P < 1 × 10–6 were filtered out from the target samples. We then report R2 adjusted 
for ascertainment with population prevalence of 0.3. To evaluate the predictive 
power of insomnia GWAS meta-analysis with a different sample size, we also 

meta-analyzed GWAS of the UKB training dataset and the 23andMe GWAS from 
a previous study5 (~1.3 million samples in total), then performed prediction of the 
same target samples. PRS were also carried out with the Million Veteran Program 
as an independent cohort (Supplementary Note).

Definition of risk loci. Genomic risk loci were defined within Functional Mapping 
and Annotation (FUMA; https://fuma.ctglab.nl) as previously described20, by 
first clumping SNPs with P < 5 × 10–8 at r2 = 0.6 using SNPs with P < 1 × 10–5 to 
define independent significant SNPs. Those independent significant SNPs were 
further clumped at r2 = 0.1 to define lead SNPs. Independent significant SNPs 
that were in LD with the same lead SNPs (r2 > 0.1) and LD blocks closer than 
250 kb were merged into a single locus. Each locus is represented by the most 
significant (top) SNP. A risk locus can contain multiple lead and independent 
significant SNPs. We manually excluded suspicious loci (for example, a single SNP 
reaching genome-wide significance with no SNPs with P < 1 × 10–5 and r2 > 0.6) by 
examining LocusZoom plots (Supplementary Note 5).

MAGMA gene, gene property and gene set analysis. Gene-based testing was 
performed using MAGMA v.1.07 (ref. 21) to obtain gene P values using summary 
statistics of sex-combined meta-analysis. From 20,260 protein-coding genes, 
SNPs were assigned to one of the 19,751 genes within 2-kb upstream and 1-kb 
downstream windows, based on the location obtained from Ensembl v.92 GRCh37 
using BioMart. We used the SNP-wise mean model and randomly selected 
10,000 unrelated European subjects from the UKB cohort as a reference panel.

For tissue specificity analyses we obtained RNA sequencing (RNA-seq) data 
for 54 tissue types from GTEx v.8 (ref. 26). Reads per kilobase per million were log2 
transformed with pseudocount 1 followed by winsorization at 50, and average per 
tissue type was computed for each gene. In a gene property analysis, the average 
across 54 tissue types was conditioned and a one-sided test was performed to 
identify positive associations of tissue-specific gene expression with insomnia.

For gene expression of specific brain regions we obtained normalized 
microarray data for 3,702 samples from six healthy donors59 from the Allen 
Human Brain Atlas (AHBA; http://human.brain-map.org/static/download). 
From 58,692 probes, 31,098 with missing values in <20% of samples were first 
extracted. When there were multiple probes per gene, genes with the highest 
variance across 3,702 samples were selected, resulting in 17,916 unique genes. 
Of those, 13,943 were mapped to a unique Ensembl gene ID (v.92 GRCh37). 
Each of 3,702 samples was assigned to the structural ID of the brain where there 
were multiple layers of hierarchical structure59. We assigned the annotation of 
brain regions at the fourth and fifth layers of the hierarchical structure where 
the top of the tree (‘brain’) was considered as layer 0. We limited consideration 
to brain regions with at least five samples, resulting in 54 and 106 brain regions 
for layers 4 and 5, respectively. For each brain region, average expression 
values were computed for each gene. We then performed gene property 
analysis conditioning on average across brain regions, and a one-sided test 
was performed to identify positive associations of brain region-specific gene 
expression with insomnia.

For cell type specificity analysis we used five datasets from Linnarsson’s 
group from a previous insomnia meta-analysis study: mouse samples from cortex 
and hippocampus (GSE60361, level 2 neurons)60, hypothalamus (GSE74672, 
level 2 neurons)61, oligodendrocytes (GSE75330)62, midbrain (GSE76381)63 and 
striatum (GSE97478)64. We additionally tested one of the most comprehensive 
small cytoplasmic RNA (scRNA)-seq datasets for mouse brain, DropViz65 (http://
dropviz.org/; 565 subclusters from nine brain regions). In total, we obtained 728 cell 
types from six datasets. Each dataset was preprocessed as described in a previous 
study66. We performed a three-step workflow (per dataset analysis and within- 
and cross-dataset conditional analyses)66 to determine significant associations 
supported by multiple independent datasets.

Gene sets for Gene Ontology terms and canonical pathways were obtained 
from MsigDB v.6.2 (ref. 67) (http://software.broadinstitute.org/gsea/msigdb/index.
jsp). We performed gene set analyses for 5,033 gene sets with at least 20 genes.

We evaluated all 5,974 tested items against the Bonferroni-corrected threshold 
(0.05/5,974 = 8.4 × 10–6).

Fine-mapping and credible SNPs. We performed fine-mapping of 554 risk loci 
using FINEMAP with the shotgun stochastic search algorithm23 (http://www.
christianbenner.com/). For each risk locus, SNPs within 50 kb of the top SNP (with 
the minimum P value) or locus boundary, whichever was larger, and with P < 0.05 
were used for fine-mapping. The pairwise LD matrix of SNPs was estimated based 
on a randomly selected group of 100,000 unrelated European individuals from 
UKB using LDstore68 (http://www.christianbenner.com/). The maximum number 
of causal SNPs (k) was set to 10; an exception was made for locus no. 4, which 
contained seven SNPs, where k was set to 5.

FINEMAP outputs a set of models (all possible combinations of k causal SNPs 
in a locus) with posterior probability (PP) of being a causal model. A 95% credible 
set was defined by taking models from the highest PP until the cumulative sum 
of PP reached 0.95 for each locus. The 95% credible set of SNPs were, therefore, 
defined by taking unique SNPs from 95% credible sets. In addition, PIP was 
calculated for each SNP as the sum of PPs of credible sets containing that SNP. In 
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this study, although we used only credible SNPs with PIP > 0.1, the results of all 
credible set SNPs are described in Supplementary Note and Supplementary Fig. 6.

Annotation of SNPs with FUMA. All GWS SNPs were annotated with their 
functions using FUMA. Functional consequences of SNPs on genes were obtained 
by performing ANNOVAR69 gene-based annotation using Ensembl genes. 
Enrichments of GWS SNPs in each annotation were tested by Fisher’s exact test 
(two-sided) by comparing them with the annotations of all SNPs analyzed in the 
meta-analysis. To determine the deleteriousness of SNPs, a CADD v.1.4 (ref. 70) 
score was annotated for each SNP. In addition, a RegulomeDB score (categorical 
score indicating the likelihood of SNPs being involved in regulatory elements)71 
and a 15-core chromatin state for 127 tissue/cell types obtained from Roadmap72,73 
were annotated.

eQTL colocalization. We colocalized insomnia summary statistics from the 
sex-combined meta-analysis within 554 risk loci with eQTL summary statistics 
using the coloc R package74. We tested only those genes whose significant eQTLs 
were overlapping with at least one GWS SNP in the insomnia GWAS, and 
colocalization was performed for each gene for each of 51 eQTL datasets (that 
is, 49 tissues from GTEx v.8 (ref. 26), meta-analysis of blood samples from the 
eQTLGen consortium28 and prefrontal cortex from PsychENCODE27). For each 
colocalization, we extracted SNPs available in both eQTL summary statistics of 
a testing gene and within 10 kb of insomnia risk loci. We then used the coloc.abf 
function. We did not perform colocalization when there were fewer than ten SNPs 
overlapping between insomnia and eQTL summary statistics.

The coloc.abf function assumes a single causal SNP for each trait and estimates 
the PP of the following five scenarios for each testing region: H0, neither trait 
has a genetic association; H1, only trait 1 has a genetic association; H2, only trait 2 
has a genetic association; H3, traits 1 and 2 are both associated but with different 
causal SNPs; and H4, traits 1 and 2 are both associated with the same single causal 
SNP. In the case of our study, trait 1 is insomnia and trait 2 is expression of a 
tested gene. Because we limited the analyses to genes where there was at least one 
overlap of significant SNPs with insomnia GWS SNPs, this discards scenarios 
H0–H2 and we are thus interested only in whether H4 is most likely. We therefore 
defined eQTLs of a testing gene as colocalized with insomnia summary statistics 
when H4 > 0.9. It is possible that genomic regions outside of the predefined risk 
loci could also be colocalized with eQTLs. However, we limited the analyses to the 
risk loci in this study because the primary aim was to prioritize genes linked from 
the insomnia risk loci.

Gene mapping with FUMA. We used FUMA to map SNPs to genes using three 
criteria: positional, eQTL and chromatin interaction mapping20.

Positional mapping. SNPs were mapped to one of 20,260 protein-coding genes with 
10-kb windows on both sides.

eQTL mapping. Significant eQTLs in 49 tissue types from GTEx v.8 (ref. 26), blood 
samples from the eQTLGen consortium28 and prefrontal cortex samples from 
PsychENCODE27 were used for mapping. FUMA annotates those significant 
eQTLs with candidate SNPs, and these SNPs are mapped to the gene whose 
expression is potentially affected by the SNPs.

Chromatin interaction mapping. Significant chromatin loops (false discovery 
rate < 1 × 10–6) in 14 tissues, defined based on HiC (high-throughput chromosome 
conformation capture) data from Schmitt et al.75, and preprocessed chromatin 
loops based on HiC of prefrontal cortex from PsychENCODE27 were used for 
mapping. In FUMA, candidate SNPs are required to be overlapped with one end 
of the loop, and transcription start sites (TSSs) of genes (500 base pairs upstream 
and 250 base pairs downstream of the TSS) are required to be overlapped with 
the other end of the loop to be mapped. Because HiC is designed to measure 
physical interactions of two genomic regions, not all significant loops necessarily 
contain functional interactions. We therefore further limited chromatin interaction 
mapping to those where SNPs were overlapping with enhancer regions and 
gene TSSs were overlapping with promoter regions predicted by the Roadmap 
consortium72 (http://egg2.wustl.edu/roadmap/data/byDataType/dnase/). We used 
all available 113 cell types for enhancers and promoters.

We performed gene mapping for all genome-wide significant SNPs and credible 
SNPs separately. We further performed filtering outside of FUMA, as described 
above. Protein–protein interaction was obtained from InWeb InBio Map29.

Tissue and cell type association, and gene set enrichment tests with prioritized 
genes. Associations of tissue and cell-type-specific gene expression with prioritized 
genes were tested with a linear regression model using the lm function in R. We 
defined the model as follows to correct for average expression across tissues or cell 
types within a dataset and gene size:

E ∼ βGG + βAA + βSlog(S)

where G is a binary status reflecting whether the gene was prioritized (1) or not 
(0), E is a tissue/cell-type-specific expression value, A is the average expression of 

the gene across all available tissues/cell types in a dataset and S is gene length. We 
performed a one-sided test (βG > 0) to evaluate how well the prioritized gene status 
predicts the specificity of gene expression in a testing tissue/cell type. For tissue/cell 
types significantly associated with the prioritized genes, we performed conditional 
analyses as below and performed a one-sided test (βG_1 > 0 and βG_2 > 0):

E1 ∼ βG1
G + βE2E2 + βAA + βSlog(S)

E2 ∼ βG2
G + βE1E1 + βAA + βSlog(S)

For gene set enrichment analyses, a one-sided hypergeometric test (greater) 
was performed. We tested the same datasets as those in the MAGMA gene set 
analysis (53 tissues, 54 and 106 brain regions, 728 cell types and 5,033 gene sets). 
As done in MAGMA v.1.07, gene property (gene expression value) was truncated 
when the value was above or below 5 s.e.m. The analyses were limited to genes 
available in each dataset out of 20,260 protein-coding genes based on Ensembl v.92 
GRCh 37.

We performed Bonferroni correction across all 5,974 tested items 
(0.05/5974 = 8.4 × 10–6).

Genetic correlation. We first selected 551 GWAS (with 551 unique traits) that 
showed h2

SNP > 0.01 and z-score > 2 from 558 GWAS analyzed previously in the 
study of Watanabe et al.8, excluding insomnia and trouble falling asleep (depression 
item). We estimated genetic correlations of insomnia sex-combined meta-analysis 
with 551 traits using LDSC13. Precomputed LD scores for 1000 Genome Phase 1 
European subjects were downloaded from https://data.broadinstitute.org/
alkesgroup/LDSCORE/. The analyses were limited to HapMap3 SNPs, and the 
MHC region was excluded. Additionally, SNPs with chi-square statistics >80 were 
excluded. We defined genetic correlation as significant after Bonferroni correction 
(P < 0.05/551 = 9.07 × 10–5).

Colocalization of risk loci and clustering. Colocalization of 554 insomnia risk loci 
was performed using the coloc package in R, as described in eQTL colocalization. 
Risk loci of length <10 kb were expanded to 10 kb by centering the top SNP. 
Colocalization of each of 554 insomnia risk loci was tested with GWAS summary 
statistics of 350 traits by selection of overlapping SNPs, and loci were considered 
colocalized when H4 > 0.9.

We performed t-distributed stochastic neighbor embedding (t-SNE)76 
100 times, with the optimal solution being obtained by minimization of 
Kullback–Leibler divergence. The clustering of traits was performed on a t-SNE 
two-dimensional (2D) matrix using DBSCAN (dbscan function from the R package 
fpc), and the clustering cutoff was optimized by maximization of silhouette score. 
One percent of data points was allowed to be ‘unclustered’. Since t-SNE projects 
data into a certain number of dimensions based on the similarity of data points, 
traits that do not share any colocalized loci or share fewer than other traits can 
form a cluster. To distinguish this from a cluster where traits within the cluster 
share more colocalized loci than others, we tested for each cluster to determine 
whether the number of shared colocalized loci within clusters was larger than 
between clusters using the Mann–Whitney U-test (one-sided, greater). Clusters 
that did not show significant difference (P ≥ 0.05) were discarded. In the same way, 
insomnia risk loci were projected onto the 2D map with t-SNE and dense clusters 
were identified based on colocalization patterns across traits.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full GWAS summary statistics for UKB and the top 10,000 SNPs for 23andMe 
are available at https://ctg.cncr.nl/software/summary_statistics/. The full GWAS 
summary statistics for the 23andMe dataset will be made available through 
23andMe to qualified researchers under an agreement with 23andMe that protects 
the privacy of 23andMe participants. Please visit https://research.23andme.com/
collaborate/#publication for more information and to apply to access the data. 
The following publicly available datasets were used in this manuscript: GTEx v.8 
(https://gtexportal.org/home/datasets), Allen Human Brain Atlas (http://human.
brain-map.org/static/download), scRNA-seq from Linnerson’s laboratory (http://
linnarssonlab.org/data/; GSE60361, GSE74672, GSE75330, GSE76381, GSE97478), 
DropViz (http://dropviz.org/), MsigDB v.6.2 (http://software.broadinstitute.org/
gsea/msigdb/index.jsp), InWeb protein–protein interaction (https://inbio-discover.
com/download), eQTLGen (https://www.eqtlgen.org/) and PsychEncode (http://
resource.psychencode.org/).

Code availability
The R script used to perform gene prioritization approach proposed in this 
manuscript is available at https://doi.org/10.5281/zenodo.6598552 (ref. 77). The 
following software and packages were used for data analysis: PLINK 2.0 (https://
www.cog-genomics.org/plink/2.0/), METAL (http://csg.sph.umich.edu/abecasis/
Metal/download/), MAGMA v.1.07 (https://ctg.cncr.nl/software/magma), FUMA 
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(https://fuma.ctglab.nl/), LDscore (https://github.com/bulik/ldsc), LDstore 
v.1.1 (http://www.christianbenner.com/#), FINEMAP v.1.3.1 (http://www.
christianbenner.com/#), PRSice v.2.2.1 (https://www.prsice.info/), Eagle2 (https://
alkesgroup.broadinstitute.org/Eagle/downloads/), Minimac3 (https://genome.
sph.umich.edu/wiki/Minimac3), REGENIE v.2.0.1 (https://rgcgithub.github.io/
regenie/), MiXeR (https://github.com/precimed/mixer), BUHMBOX (https://
software.broadinstitute.org/mpg/buhmbox/) and R v.3.6.0 (https://www.r-project.
org/) with packages data.table v.1.12.2, GenomicRegion v.1.36.0, stats v.3.6.3, fpc 
v.2.2-3, coloc v.3.2-1, Rtsne v.0.15 and ggplot2 v.3.2.0.
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Extended Data Fig. 1 | Phenotypic variance explained by polygenic risk scoring. Bars are colored by P-value threshold of SNPs used to compute the 
polygenic risk score.
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Extended Data Fig. 2 | Genetic overlap between insomnia and 350 traits. Significant genetic correlations of insomnia with 350 traits after Bonferroni 
correction (p < 9.07e-5). P-values were based on two-sided Z-test. Each data point represents a trait and is colored by the domain category.
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Extended Data Fig. 3 | Distribution of PRS based on metabolic and psychiatric loci. A single star represents nominal significant (p<0.05) and double star 
represents significant after Bonferroni correction (p<0.05/9) of two-sided Mann-Whitney U test (see Supplementary Table 21 for full results). The boxes 
indicate 25% (Q1) and 75% (Q3) quantiles and horizontal black lines indelicate median. The minimum and maximum of the whisker are Q1-1.5*IQR and 
Q3+1.5*IQR where IQR is Q3-Q1. Data points which do not fall within the whisker’s interval are displayed as dots. Number of data points (individuals) are: 
for column 1 (based on metabolic loci) 300 top and 299 bottom 1%, 1495 top and bottom 5%, 2986 top and 2984 bottom 10% for overall health rating, 
297 top and bottom 1%, 1475 top and 1471 bottom 5%, 2950 top and 2948 bottom 10% for body fat percentage, 281 top and 283 bottom 1%, 1405 top 
and 1402 bottom 5%, 2812 top and 2815 bottom 10% for depressive symptoms, for column 2 (based on psychiatric loci) 299 top and 298 bottom 1%, 
1490 top and 1493 bottom 5%, 2986 top and 2990 bottom 10% for overall health rating, 297 top and 294 bottom 1%, 1470 top and 1477 bottom 5%, 
2941 top and 2959 bottom 10% for body fat percentage, 287 top and 285 bottom 1%, 1403 top and 1418 bottom 5%, 2809 top and 2844 bottom 10% for 
depressive symptoms.
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Extended Data Fig. 4 | Additional conditional analyses for MAGMA tissue and brain region association analyses. P-values were computed by MAGMA 
gene analysis based on one-sided T-test for the regression coefficient of the gene expression. (a) P-values of brain regions from GTEx, with (Conditional) 
and without (Marginal) conditioning on the average expression across 13 brain regions. (b) Comparison of AHBA (low resolution) and DropViz datasets 
with MAGMA gene-property analysis. P-values (top) and standardized effect size (Beta, bottom) of brain regions from the AHBA low dataset and cell 
types from the DropViz dataset. The most left bar indicates the marginal association statistics for each item. The middle bar indicates the association 
statistics based only on genes present in both datasets (~11,000 genes). The most right bar indicates the association statistics based only on genes that 
are not available in the other dataset (~2,000 for AHBA low and ~4,000 for DropViz). The horizontal dashed line indicates the Bonferroni corrected 
threshold for statistical significance (p=0.05/5974).
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Extended Data Fig. 5 | MAGMA gene-property and gene-set analyses conditioning on sets of genes from insomnia risk loci. The top (most significantly 
associated) 5 brain regions/cell types/gene-sets (referred to as gene-sets hereafter) were selected for each dataset, except for DropViz where 4 
independently associated cell types were selected. For each gene-set, MAGMA was performed while conditioning on 3 sets of genes; high-confidence 
prioritized (HCP), unsolved and excluded genes.
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Extended Data Fig. 6 | Heatmap of the overlap of genes across significantly enriched gene-sets. The displayed 18 gene-sets showed significant 
enrichment with 289 HCP genes. The heatmap is asymmetric. A cell of row i and column j represents the proportion of the prioritized genes in the 
gene-set i relative to the number of prioritized genes in the gene-set j.
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