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Abstract 43 

Objective: Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and 44 

complex conditions with overlapping clinical symptoms and elevated familial 45 

aggregation, which suggests the existence of a shared genetic component. In order to 46 

identify this genetic background in a systematic fashion, we performed the first cross-47 

disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, 48 

namely: systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and 49 

idiopathic inflammatory myopathies.  50 

Methods: We meta-analyzed ~6.5 million single nucleotide polymorphisms (SNPs) in 51 

11,678 cases and 19,704 non-affected controls of European descent populations. The 52 

functional roles of the associated variants were interrogated using publicly available 53 

databases. 54 

Results: Our analysis revealed five shared genome-wide significant independent loci 55 

that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, 56 

DGQK, LIMK1, and PRR12. All of these loci are related with immune processes such as 57 

interferon and epidermal growth factor signaling, response to methotrexate, 58 

cytoskeleton dynamics, and coagulation cascade. Remarkably, several of the associated 59 

loci are known key players in autoimmunity, which supports the validity of our results. 60 

All the associated variants showed significant functional enrichment in DNase 61 

hypersensitivity sites, chromatin states and histone marks in relevant immune cells, 62 

including shared expression quantitative trait loci. Additionally, our results were 63 

significantly enriched in drugs that are being tested for the treatment of the diseases 64 

under study.  65 

Conclusions: We have identified shared new risk loci with functional value across 66 

diseases and pinpoint new potential candidate loci that could be further investigated. 67 

Our results highlight the potential of drug repositioning among related systemic 68 

seropositive rheumatic IMIDs. 69 

70 
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Introduction 71 

 Autoimmunity occurs when the mechanisms related to immune self-tolerance 72 

fail, leading to an inappropriate destruction of normal tissue by the immune system. 73 

Genetic factors play an important role in the development of more than 80 immune-74 

mediated inflammatory diseases (IMIDs) identified so far.[1] Comorbidity of these 75 

diseases, increased familial clustering, and shared risk variants have been widely 76 

documented.[2] However, to date, these shared loci have been identified by simple 77 

comparison between studies, and just recently they have been determined by rigorous 78 

and systematic analysis.[3] In this sense, combining genome-wide association studies 79 

(GWAS) across several diseases has proven to be a very useful tool for the 80 

identification of new genetic risk variants simultaneously associated with several 81 

IMIDs, and to expose shared pathways involved in the pathophysiology of these 82 

conditions.[4-7] To date, two large studies combining several diseases were recently 83 

published following this strategy. One of them was a meta-GWAS across 10 pediatric 84 

autoimmune diseases with shared population-based controls that revealed new candidate 85 

loci with immunoregulatory functions.[8] In the other study, the authors identified new 86 

shared associations by combining immunochip data across five chronic inflammatory 87 

diseases.[9] 88 

 Systemic seropositive rheumatologic IMIDs, such as systemic sclerosis (SSc), 89 

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and idiopathic 90 

inflammatory myopathies (IIM), are heterogeneous diseases of the connective tissue 91 

that share clinical and epidemiological manifestations, as well as life-threatening 92 

complications.[10] The common genetic component of these conditions has not been 93 

previously assessed systematically, although the overlap of associated genes is elevated 94 

when performing a pairwise comparison.[8] Autoantibody production is the main 95 
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feature of these diseases, comprising additionally a broad deregulation of the innate and 96 

adaptive immune response. However, the low prevalence of most of these diseases 97 

hinders the collection of large datasets that makes possible to attain sufficient statistical 98 

power. Therefore, our study aimed to combine previously published GWAS datasets –99 

all from European descent populations– to identify shared genetic etiologies among 100 

systemic seropositive rheumatologic IMIDs in a systematic fashion. 101 

 102 

Subjects and Methods 103 

Study population 104 

 A total of 12,132 affected subjects with four systemic seropositive rheumatic 105 

IMIDs (SSc, SLE, IIM, and RA) and 23,260 controls were included in this study from 106 

previously published GWAS [11-16] (Table S1). 107 

 108 

Data quality control and imputation 109 

 Unified quality control (QC) of the 18 case-control collections was conducted 110 

separately, based on stringent criteria using PLINK v.1.07.[17] Given that related and/or 111 

duplicated subjects may have been recruited for different studies, genome-wide 112 

relatedness was assessed and one individual from each pair was removed. Samples with 113 

<95% of successfully called genotypes were removed. 114 

 Further, single nucleotide polymorphisms (SNPs) with genotyping call rate 115 

<98%, minor allele frequencies (MAF) <1% and deviating from Hardy-Weinberg 116 

equilibrium (HWE) with a p-value <0.001 in the control group were removed. To 117 

control for possible population stratification, we performed principal component (PC) 118 

analysis using GCTA64 and R-base software under GNU Public license v.2. 119 
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 Imputation of autosomal SNPs was conducted in the Michigan Imputation 120 

Server using Minimac3.[18] The software SHAPEIT[19] was used for haplotype 121 

reconstruction and the Haplotype Reference Consortium r1.1 was used as the reference 122 

population.[20] 123 

 124 

Statistical analyses 125 

Disease-specific association testing: Association testing for allele dosages was 126 

performed by logistic Wald test using EPACTS software,[21] adjusting by the first two 127 

or five PCs as appropriate to control for the genomic inflation factor in European 128 

population (λ<1.05) (Table S1). SNPs with a MAF ≥1% and squared correlation (Rsq) 129 

≥0.3 were maintained in the analyses as suggested by the imputation software. 130 

Additionally, we calculated a concordance rate by comparing imputed and true 131 

genotypes. 132 

Cross-phenotype meta-analysis: to identify shared loci, the summary-level statistics 133 

were meta-analyzed using METASOFT.[22] A fixed-effects model was applied for 134 

those SNPs without evidence of heterogeneity (Cochran’s Q test p-value Q > 0.05), and 135 

random-effects model was applied for SNPs displaying heterogeneity of effects between 136 

studies (Q ≤ 0.05). Genome-wide significance was established at a p-value ≤ 5 × 10−08. 137 

SNP independence was assessed with the software GCTA-COJO (Table S2).[23, 24] To 138 

annotate the independent signals SNPnexus[25] was used to the build37 genomic 139 

coordinates.  140 

Model search to identify the diseases contributing to the association: to identify the 141 

diseases most likely contributing to the association signals, we performed an exhaustive 142 

disease-subtype model search  with the R statistical package ASSET.[24] The 143 
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contribution of a disease was considered if at least two independent case-control 144 

collections from the same disease were grouped with consistent effects.  145 

Novelty of the variants: Our independent SNP associations were classified into “known” 146 

or “new” associations based on the information retrieved from the NHGRI-EBI GWAS 147 

catalog and the Phenopedia and Genopedia from HuGE Navigator.[26]  148 

Functional enrichment analysis: in order to systematically characterize the functional, 149 

cellular and regulatory contribution of the associated variants, a non-parametric 150 

enrichment analysis implemented in GARFIELD was performed.[27] Furthermore, the 151 

online tools HaploReg v.4.1[28] and the Genotype-Tissue Expression project 152 

(GTEx)[29] were queried to determine whether any of the lead associated variants was 153 

an expression quantitative trait locus (eQTL). The online tool Capture HiC plotter was 154 

used to assess physical interactions between restriction fragments containing the 155 

variants and the promoter of genes in the three-dimensional nuclear space.[30]  156 

Drug Target Enrichment Analysis: the target genes of the eQTLs were used to model a 157 

protein-protein interaction (PPI) network using String v10.[31] These protein products 158 

were then used to query the OpenTargets Platform[32] for drug targets. Moreover, this 159 

platform was used to search for drugs indicated or in different phases of drug 160 

development for the treatment of SSc, SLE, IIM and RA. The Fisher’s exact test was 161 

used to calculate if the results of the meta-analysis were significantly enriched in 162 

pharmacologically active drug targets.  163 

Additional details of the Methods section are available in the online supplementary 164 

methods. 165 

 166 

Results 167 

Cross-phenotype meta-analysis and disease contribution 168 
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 Following sample QC and imputation, a total of 11,678 cases and 19,704 non-169 

overlapping controls were included in the genome-wide meta-analysis of 6,450,125 170 

SNPs across the four diseases. The mean concordance rate among imputed and true 171 

genotypes was 0.999±0.0003. The final λ showed minimal evidence of population 172 

stratification in the meta-abalysis (λ=1.025). Moreover, we calculated λ1,000 with 173 

consistent results (λ1,000=1.025). Summary of sample/variant QC and QQ plots are 174 

shown in Table S1 and Figure S1, respectively. 175 

 The global meta-analysis revealed 42 non-hla significantly associated loci. 176 

Subsequent conditional analyses showed that 27 SNPs were independent (Figure 1 and 177 

Figure S2). Sixteen variants were meta-analyzed under a fixed effects model, whereas 178 

eleven with random effects based on study heterogeneity. 179 

 To comprehensively explore the combinations of diseases contributing to the 180 

associations we applied a subset-based meta-analysis implemented in ASSET.[24] Our 181 

model search yielded 26 SNPs associated with at least two IMIDs (Table 1). All of 182 

these variants were imputed in at least one dataset. 183 

 184 

Among these 26 associations we found several key players in autoimmunity; 185 

interestingly ten of these associations (38%) have never been reported before for SSc, 186 

eight (31%) for SLE and RA, respectively, and 20 (77%) for IIM. Remarkably, five 187 

SNPs have not been reported previously for any of the diseases under study and thus 188 

constitute new shared risk loci in systemic seropositive rheumatic IMIDs (Table 1). 189 

Amongst these five new associations we found the SNP rs744600 in the 3’ region of the 190 

NGFI-A binding protein 1 (NAB1) (Odds ratio [OR] for the T allele 0.88, Confidence 191 

Interval [CI]=0.85-0.92), p-value=7.07x10-11), and the intronic SNP rs13101828 192 

mapping in the gene Diacylglycerol kinase theta (DGKQ) (OR for the G allele 1.11, 193 
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95%CI: 1.07–1.16, p-value=1.32x10-08). Of note, both genes have been previously 194 

associated with a chronic autoimmune liver disease.[33, 34] The intergenic SNP 195 

rs112846137, maps between the genes Karyopherin subunit alpha 4 (KPNA4) and the 196 

ADP ribosylation factor like GTPase 14 (ARL14) (OR for the T allele 1.29, 95%CI: 197 

1.07–1.56, p-value=1.42x10-08). Interestingly, the gene ARL14 showed a suggestive 198 

association in a pharmacogenomic GWAS of response to methotrexate in RA 199 

patients.[35] In addition, we observe the associated SNP rs193107685 located in the 3’ 200 

region of the LIM domain kinase 1 (LIMK1) gene (OR for the C allele 1.52, 95%CI: 201 

1.27–1.83, p-value=3.81x10-09). The protein encoded by this gene regulates actin 202 

polymerization, a critical process in the activation of T cells.[36] Finally, the SNP 203 

rs76246107 is located in an intron of the gene Proline rich 12 (PRR12) (OR for the G 204 

allele 1.28, 95%CI: 1.14–1.43, p-value=3.36x10-08), which was associated with 205 

fibrinogen concentration,[37] and is an active regulator of the inflammatory 206 

response.[38] 207 
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Table 1. Twenty-six independent variants associated at a genome-wide significance level (p <5x10-8) in the meta-analysis. 

Chr Positiona SNP Geneb Functionalityc Effect 
Allele OR (CI 95%) 

Meta-Analysis 

p-valued 
Cochran’s 

p-value 
Contributing 

Diseasee 
1 67802371 rs6659932 IL12RB2 Intronic C 0.85 (079-0.91) 6.08x10-11 1.02x10-02 IIM, SLE, SSc 

1 114303808 rs6679677 PHTF1-RSBN1 Intergenic A 1.34 (1.21-1.49) 2.30x10-28 2.14x10-04 IIM, RA, SLE 

1 114377568 rs2476601 PTPN22 Coding (missense) G 0.75 (0.67-0.83) 1.74x10-28 1.06x10-4 IIM, RA, SLE 

1 114433946 rs1217393 AP4B1 Intronic A 0.89 (0.85-0.92) 5.21x10-09 4.91x10-1 IIM, RA, SLE, SSc 

1 173337747 rs2422345 TNFSF4-LOC100506023 Intronic A 1.11 (1.05-1.18) 2.55x10-08 6.00x10-03 IIM, SLE, SSc 

1 183532580 rs17849502 NCF2 Coding (missense) T 1.36 (1.16-1.59) 3.93x10-15 2.84x10-04 IIM, SLE 

2 191564757 rs744600 NAB1* 3’Downstream T 0.88 (0.85-0.92) 7.07x10-11 7.60x10-1 IIM, RA, SLE, SSc 

2 191933283 rs13389408 STAT4 Intronic C 1.27 (1.20-1.34) 3.10x10-17 3.99x10-1 IIM, SLE, SSc 

2 191973034 rs10174238 STAT4 Intronic A 0.73 (0.67-0.80) 2.76x10-42 4.31x10-07 IIM, SLE, SSc 

3 58183636 rs35677470 DNASE1L3 Coding (missense) A 1.22 (1.14-1.30) 4.96x10-09 6.78x10-01 IIM, SLE, SSc 

3 160312921 rs112846137 KPNA4-ARL14* Intergenic T 1.27 (1.17-1.37) 1.42x10-08 9.55x10-01 IIM, RA, SLE, SSc 

4 965720 rs13101828 DGKQ* Intronic G 1.11 (1.07-1.16) 1.32x10-08 2.29x10-01 IIM, RA, SLE, SSc 

5 150438477 rs4958880 TNIP1 Intronic A 1.16 (1.10-1.22) 1.45x10-11 2.61x10-01 IIM, RA, SLE, SSc 

5 159887336 rs2431098 PTTG1-MIR3142HG Intergenic G 1.12 (1.05-1.20) 4.91x10-12 1.42x10-01 SLE, SSc 

6 106569270 rs802791 PRDM1-ATG5 Intergenic C 0.87 (0.83-0.92) 3.65x10-12 1.13x10-01 SLE, SSc 

6 138243739 rs58721818 TNFAIP3 3’Downstream T 1.64 (1.46-1.84) 4.64x10-23 1.65x10-01 IIM, SLE, SSc 

7 73537902 rs193107685 LIMK1* 3’Downstream C 1.52 (1.27-1.83) 3.21x10-09 1.18x10-01 RA, SLE, SSc 

7 128589633 rs10954214 IRF5 3UTR T 1.18 (1.13-1.23) 6.63x10-17 3.64x10-01 IIM, RA, SLE, SSc 

7 128647942 rs13238352 TNPO3 Intronic T 1.44 (1.30-1.60) 1.47x10-38 2.12x10-01 SLE, SSc 

8 11341880 rs2736337 FAM167A-BLK Intergenic C 1.23 (1.17-1.30) 4.86x10-22 1.29x10-01 IIM, RA, SLE, SSc 

11 633689 rs7929541 SCT-DRD4 Intergenic G 0.89 (0.83-0.95) 2.14x10-10 4.98x10-04 IIM, RA, SLE, SSc 
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208 

12 112871372 rs11066301 PTPN11 Intronic T 1.11 (1.07-1.15) 4.20x10-08 5.86x10-01 IIM, SLE, SSc 
16 85994484 rs35929052 IRF8 Intergenic T 0.83 (0.78-0.88) 1.71x10-09 4.69x10-01 IIM, SLE, SSc 
19 10462513 rs11085725 TYK2 Intronic A 0.88 (0.83-0.92) 2.65x10-10 1.86x10-01 IIM, SLE, SSc 
19 50121274 rs76246107 PRR12* Intronic G 1.28 (1.14-1.43) 3.36x10-08 1.50x10-02 IIM, SLE, SSc 
22 21985094 rs5754467 YDJC 5’Upstream G 1.20 (1.13-1.27) 1.24x10-13 8.59x10-02 IIM, RA, SLE, SSc 

aAccording to NCBI build GRCh37/hg19. 
bVariant localization based on the nearest gene. 
cFunctionality obtained from SNPnexus.23 
dResults of meta-analysis either under a fixed effect if no heterogeneity was found based on Cochran’s Q test (p-value≥0.05) or under a random effect if heterogeneity was found 
among studies. 
eDisease contributing  to the association  observed by the subset meta-analysis method with ASSET.25 The diseases for which this locus has never been reported before at genome-
wide significance level are shown in boldface. 
*Denotes novel loci in the study.  

Chr: chromosome; OR: odds ratio; CI: confidence interval; IIM: idiopathic inflammatory myopathy; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; SSc: systemic 
sclerosis. 
All the variants in the table were imputed in at least one of the 18 case-control collections. 
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Associated loci and their functional enrichment on regulatory elements 209 

 To assess whether the associated variants lie in coding and non-coding 210 

regulatory and cell-type-specific elements of the genome, we performed an enrichment 211 

analysis with GARFIELD.[39] The results obtained showed marked enrichment 212 

patterns mainly in blood cells and skin cells, with 247 significant enrichments 213 

(p≤5×10−05) (Figure S3 and Table S3). Table 2 summarizes the main enrichment results. 214 

We found that the majority of associated variants were enriched in DNase I 215 

hypersensitivity site (DHS) hotspots in blood, as depicted in Figure 2. This functional 216 

category included a repertoire of cells from the immune system, such as B-lymphocytes 217 

(Fold enrichment (FE)=11.68, empirical p (pemp)<1×10−05), T-lymphocytes (FE=10.42, 218 

pemp<1×10−05), including T helper cells (FE=7.81, pemp<1×10−05), T CD8+ (FE=7.61, 219 

pemp<1×10−05), natural killer cells (FE=11.36, pemp<1×10−05), and monocytes 220 

(FE=8.99, pemp<1×10−05). In line with this enrichment, disease-associated SNPs were 221 

enriched in enhancers (FE=14.99, pemp<1×10−05), within TSS (FE=14.87, 222 

pemp<1×10−05), and on transcription factor binding sites (FE=12.20, pemp<1×10−05) in 223 

the B-lymphocyte cell line GM12878. Additionally, the highest enrichment was 224 

observed in the histone modification H3K9ac (FE=14.02, pemp<1×10−05), and 225 

H3K27ac (FE=10.81, pemp<1×10−05) in the B-lymphocyte cell line, which are 226 

positively associated with gene activation. Although these modifications are increased 227 

in the promoters of active genes, the latter has been shown to be associated with active 228 

enhancers.[40] Moreover, enrichment was observed in H3K4me1,2,3 sites, which 229 

usually surround TSS and are also positively correlated with gene expression.[40] 230 
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Table 2. Summary of the most enriched functional annotations for the SNPs associated in the meta-analysis at a genome-wide significance 
threshold (p <5x10-8). 

Categorya Tissue Cell types Type NAnnotTheshb NAnnotc NThreshd 
N (LD-
pruned 

variants)e 
Fold Enrichment Empirical p-value 

Chromatin_States Blood 
GM12878 Enhancer 13 10,944 33 416,420 14.99 <1x10-5 
GM12878 TSS 12 10,182 33 416,420 14.87 <1x10-5 

Footprints Blood GM06990 Footprints 8 3,153 33 416,420 32.02 <1x10-5 

Histone modifications Blood 

GM12878 H3K9ac 21 18,903 33 416,420 14.02 <1x10-5 
GM12878 H3K27ac 22 25,674 33 416,420 10.81 <1x10-5 
GM12878 H2AFZ 22 25,824 33 416,420 10.75 <1x10-5 
GM12878 H3K4me3 17 25,365 33 416,420 8.46 <1x10-5 
GM12878 H3K4me2 23 34,807 33 416,420 8.34 5x10-5 
GM12878 H3K4me1 25 39,871 33 416,420 7.91 <1x10-5 
GM12878 H3K79me2 16 25,683 33 416,420 7.86 <1x10-5 

Hotspots 
Blood GM06990 Hotspots 23 24,839 33 416,420 11.68 <1x10-5 
Skin NHEK Hotspots 25 54,667 33 416,420 5.77 <1x10-5 

Peaks Blood GM06990 Peaks 13 6,433 33 416,420 25.50 <1x10-5 
TFBS Blood GM12878 TFBS 19 19,650 33 416,420 12.20 <1x10-5 
aFunctional categories from the Encode28 and Roadmap Epigenomics.29 
bNumber of LD-pruned annotated variants passing the meta-analysis threshold. 
cNumber of LD-pruned annotated variants in the reference dataset UK10K project. 

dNumber of LD-pruned variants passing the meta-analysis threshold. 
eNumber of LD-pruned variants in the reference dataset UK10K project. 

GM12878: B-Lymphocyte; GM06990: B-lymphocyte, lymphoblastoid; NHEK: Normal Human Epidermal Keratinocytes; LD: Linkage disequilibrium; TSS: 
Transcription Start Site; TFBS: Transcription Factor Binding Sites.  
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Expression quantitative trait loci (eQTL) and associated variants 231 

 In silico analysis of eQTLs revealed the role of 16 of the lead SNPs as eQTLs in 232 

whole blood, lymphoblastoid cell lines, transformed lymphocytes, skeletal muscle and 233 

transformed fibroblasts derived from European individuals from HaploReg v.4.1[28] 234 

(Table 3 and Table S4). Focusing on new associated variants, the SNP rs744600 235 

modifies NAB1 gene expression in lymphoblastoid cell lines (p=1.30x10-34), whereas 236 

the T allele increases HIBCH expression in skeletal muscles (p=8.09x10-07). The G 237 

allele of rs13101828 increases DGKQ expression in whole blood (p=3.29x10-45), 238 

lymphocytes (p=5.23x10-19), fibroblasts (p=4.44x10-06), lung cells (p=8.42x10-28) and 239 

several other tissues. The A allele of rs76246107 can reduce ALDH16A1 expression in 240 

lung cells (p=6.45x10-06), and the protein encoded by this gene is involved in 241 

oxidoreductase activity. Reassuringly, 14 of the 16 (87%) reported eQTLs showed a 242 

physical interaction between the SNP and the promoter of 15 of the genes affected by 243 

the eQTLs (Table 3), as suggested by Capture HiC (C-HiC) data (Table S5). These 244 

independent evidences propose a mechanistic approach to understand the modulation of 245 

gene expression. 246 
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Table 3. Summary of the eQTL results in European samples for the SNPs independently associated in the meta-analysis. 
SNP Allele Source Gene Tissue p-value 

rs6659932* C GTEx2015_v6 IL12RB2 Whole blood 3.72x10-11 
rs6679677* A Westra 2013 PTPN22 Whole blood 4.84x10-10 
rs2476601* G Westra2013 PTPN22 Whole blood 3.36x10-10 

rs1217393* A 

GTEx2015_v6 AP4B1 Skeletal muscle 5.45x10-07 
GTEx2015_v6 HIPK1 Whole blood 7.71x10-09 
Westra 2013 PHTF1 Whole blood 9.56x10-05 
Westra 2013 PTPN22 Whole blood 2.67x10-10 
Westra 2013 RSBN1 Whole blood 1.41x10-10 

rs744600* T 
GTEx2015_v6 HIBCH Skeletal muscle 8.09x10-07 

Lappalainen2013 NAB1 Lymphoblastoid cell line 1.30x10-34 

rs13389408 C 
GTEx2015_v6 

GLS 
Skeletal muscle 3.42x10-09 

Westra 2013 Whole blood 2.98x10-07 
rs35677470* A GTEx2015_v6 PXK Skeletal muscle 7.08x10-06 

rs13101828 G GTEx2015_v6 DGKQ 

Whole blood 9.28x10-45 
Transformed lymphocytes 1.21x10-23 
Transformed fibroblasts 9.78x10-07 

Lung 8.42x10-28 
rs4958880* A Westra 2013 TNIP1 Whole blood 1.09x10-03 

rs10954214* T 
GTEx2015_v6 

IRF5 
Whole blood 2.56x10-16 

Lappalainen2013 Lymphoblastoid cell line 7.54x10-31 
rs13238352* T Lappalainen2013 IRF5 Lymphoblastoid cell line 2.88x10-13 

rs2736337* C GTEx2015_v6 

FAM167A Whole blood 2.90x10-26 
FAM167A Transformed fibroblasts 1.90x10-18 
FAM167A Transformed lymphocytes 2.10x10-15 

BLK Whole blood 5.30x10-13 
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rs2736337* C GTEx2015_v6 
BLK Transformed fibroblasts 1.30x10-11 
BLK Transformed lymphocytes 3.30x10-06 

rs7929541* C GTEx2015_v6 TMEM80 Transformed fibroblasts 1.22x10-11 

rs11085725* T GTEx2015_v6 
TYK2 Whole blood 2.30x10-06 

TMED1 Whole blood 8.80x10-06 
rs76246107* A GTEx2015_v6 ALDH16A1 Lung 6.45x10-06 
rs5754467* G GTEx2015_v6 UBE2L3 Whole blood 4.68x10-06 

New associated SNPs found in our meta-analysis are shown in boldface: rs744600 and rs13101828 associated with Systemic Sclerosis, Systemic 
Lupus Erythematosus, Rheumatoid Arthritis and idiopathic inflammatory myopathy; rs76246107 associated with Systemic Sclerosis, Systemic 
Lupus Erythematosus and idiopathic inflammatory myopathy. *Designates those SNPs where a physical interaction has been observed in 
Promoter Capture HiC data in relevant immune cells.    
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Drug target enrichment analysis 247 

 Genetic associations have the potential to improve the rates of success in the 248 

development of new therapies.[41] We assessed if the protein-products from disease 249 

associated eQTLs and their direct protein-protein interaction (PPI) partners were 250 

enriched with pharmacologically active targets (Table S6 and Table S7). We identified 251 

as eQTLs and PPIs 608 proteins for SSc, 630 for SLE, 632 for IIM, and 413 for RA, 252 

based on data on drugs at any stage of development collected from the Open Targets 253 

Platform (Table S8).[32] Using this information, we found for SSc that 23 out of 73 254 

(32%) proteins are targeted by drugs being studied for the disease (OR=16.80, p-255 

value=1.41x10-18). Similarly, 7 out of 25 (28%) proteins related to IIM and 13 out of 256 

146 (9%) proteins related to SLE are addressed by drugs in consideration for IIM and 257 

SLE (OR=13.40, p-value=4.62x10-06, OR=3.38, p-value=2.85x10-04, respectively) 258 

(Table S9).  259 

 260 

Discussion 261 

 In the present study we identified five unreported shared loci associated with 262 

systemic seropositive rheumatic IMIDs. This is the first large-scale meta-analysis, 263 

including more than 11,000 cases and 19,000 non-overlapping controls aiming to 264 

improve our knowledge regarding the genetic resemblances among these conditions.  265 

 Our results show that 85% of the associated variants were shared by at least 266 

three diseases. Interestingly, for several known RA susceptibility loci the contribution 267 

of RA was limited. In this case, most of the associated variants were independent to the 268 

ones previously reported. Among the new associated SNPs, the signals mapping to 269 

NAB1, DGKQ and KPNA4-ARL14 were associated to all of the diseases under study. 270 

NAB proteins are known to interact with early growth response (EGR) family members 271 
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and act as corepressors induced by type I interferons (IFN).[42] The ‘IFN signature’– 272 

has been previously described in these diseases.[43-46] Interestingly, two IFN 273 

regulatory factors –IRF5 and IRF8– previously associated to the conditions under study, 274 

were associated in the meta-analysis. Additionally, the associated SNP is an eQTL in 275 

lymphoblastoid cell line, which evidences its role in disease pathogenesis. The DGKQ 276 

protein mediates cell signal transduction and can indirectly enhance the epidermal 277 

growth factor receptor (EGFR) signaling activity.[47] This pathway regulates cell 278 

proliferation and migration, and its expression is augmented in the vasculature of SSc 279 

patients with pulmonary involvement.[48] Moreover, the risk allele was associated with 280 

an increased expression of the gene in lymphocytes, fibroblasts and lung. In the same 281 

line, this gene was associated with Sjögren's syndrome, a related connective tissue 282 

disease.[49] The protein encoded by the gene ARL14 is a GTPase involved in the 283 

recruitment of MHC class II containing vesicles and control the movement of dendritic 284 

cells (DCs) along the actin cytoskeleton.[50] The protein LIMK1 regulates many actin-285 

dependent processes, including the assembly of the immune synapse between T cells 286 

and antigen presenting cells, an expected biological process involved in seropositive 287 

IMIDs. Remarkably, rs193107685 and rs112846137 interact physically with the 288 

promoters of the genes LIMK1 and ARL14, respectively, in DCs (Figure S4). The gene 289 

PRR12 has been previously associated with fibrinogen concentrations.[37] Fibrinogen is 290 

considered a high-risk marker for vascular inflammatory diseases and is considered an 291 

accurate predictor of cardiovascular diseases.[38, 51] Moreover, this molecule is an 292 

active player in the coagulation cascade, responsible for the spontaneous formation of 293 

fibrin fibrils. Cardiovascular events and fibrosis are the most life-threatening 294 

complications described in SSc, IIM, and SLE.[52-54] 295 



18 

 

 The associated SNPs are highly enriched in functional categories in B and T 296 

cells, natural killer and monocytes, highlighting the relevance of these cells in systemic 297 

seropositive rheumatic IMIDs. Beyond whole blood, the skin is the other tissue with 298 

significant functional categories, which is not surprising given the nature of these 299 

connective tissue diseases. Moreover, epithelial cells could transdifferentiate into 300 

mesenchymal cells and eventually contribute in fibrotic processes.[55] Moreover, SSc 301 

patients are usually stratified according to the extent of skin involvement.[43] On the 302 

other hand, the histone modifications observed are consistent with the ones reported in 303 

previous studies, where histone hyperacetilation have been described in synovial tissues 304 

in RA, in B cells in SSc, and in CD4+ T cells in SLE.[40] Finally, the independent 305 

associated SNPs have significant eQTLs in relevant tissues (Table 3) and in silico data 306 

from promoter capture HiC experiments showed the potential mechanisms in which 307 

most eQTLs modulate gene expression. Interestingly, all new associated SNPs interact 308 

with the promoters of surrounding genes, suggesting them as putative candidates with a 309 

role in the pathophysiology of these conditions (Figure S4 and Table S5). 310 

 The prevalence of SSc, SLE, and IIM is low and there are no specific treatments 311 

for these diseases in comparison with RA; therefore, given our current knowledge on 312 

the use of genetic findings in drug target validation and drug repurposing, we evaluated 313 

if drugs currently indicated for RA had the potential to be used in any of the other 314 

IMIDs under study. Our meta-analysis revealed that ten loci overlap with known RA 315 

risk genes. For instance, the gene-product of TYK2 is targeted directly by Tofacitinib, 316 

which inhibits janus kinases (https://www.drugbank.ca/drugs/DB08895) or indirectly 317 

through the interleukin 6 (IL-6) family signaling pathway by targeting the IL6 receptor 318 

with Tocilizumab (https://www.drugbank.ca/drugs/DB06273). Both drugs are currently 319 

indicated for moderate to severe RA patients who respond poorly to disease-modifying 320 
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anti-rheumatic drugs. As TYK2 is associated with SSc, SLE and IIM, it is a good 321 

candidate for therapy repositioning in these diseases. As a proof of concept, Tofacitinib 322 

is currently on trial for SLE (clinical trial identifier NCT02535689), SSc 323 

(NCT03274076) and Dermatomyositis (NCT03002649). Overall, we found that five of 324 

the loci identified in our meta-analysis interact with 17 genes that are considered drug 325 

targets, six of which are used for the treatment of these diseases (Table 4). Another 326 

interesting candidate for drug repurposing is Imatinib, a kinase inhibitor that targets 327 

ABL1, which interacts with the gene product of BLK, a known locus associated with 328 

SSc and RA (Table 4). Imatinib is currently being tested for SSc (NCT00555581) and 329 

RA (NCT00154336). 330 
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Table 4. Summary of the plausible target gene products with drug indications in systemic IMIDs. 
Associated SNP Gene product Association resultsa Drugsb Targets Disease indicationc 

rs6659932 IL12RB2 IIM, SLE, SSc 
Canakinumab IL1B RA 

Anakinra IL1R1 RA 
Tofacitinib JAK kinases RA 

rs13389408 GLS IIM, SLE, SSc Azathioprine PPAT RA, SLE 
rs13101828 DGKQ IIM, RA, SLE, SSc Orlistat LIPF -- 

rs2736337 FAM167A-BLK IIM, RA, SLE, SSc 

Nintedanib PDGFRB SSc 
Dasatinib BLK -- 
Imatinib ABL1 -- 

Osimertinib EGFR -- 
Vandetanib EPHA1 -- 
Fingolimod S1PR1 -- 
Bosutinib SRC -- 

rs11085725 TYK2 IIM, SLE, SSc 

Tofacitinib JAK kinases RA 
Tocilizumab IL6R RA 

Interferon Apha-2B IFNAR1 -- 
Idelalisib PIK3CD -- 

Ruxolitinib JAK1 -- 
aBased on our meta-analysis, diseases contributing to the observed association. The diseases where the association of this 
variant has never been reported before at genome-wide significance level are shown in boldface. 
bDrugs from the OpenTarget platform with their corresponding target. 
cCurrent indication of the reported drug. Non-immune mediated diseases were omitted.  
SSc: Systemic sclerosis; IIM: Idiopathic inflammatory myopathy; SLE: Systemic lupus erythematosus; RA: Rheumatoid 
arthritis. 
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 As compared to previous cross-phenotype studies of autoimmune diseases, our 331 

study has the strength of analyzing systemic seropositive rheumatic diseases, which is a 332 

consistent clinical phenotype than in the diseases investigated previously, where mixed 333 

seropositive and seronegative diseases were analyzed, and combining systemic and 334 

organ-specific diseases.[8, 9] The study of a more homogenous phenotype allowed us to 335 

determine that the type I IFN signaling pathway and its regulation play a more 336 

prominent role in these conditions than in others, based on the associations observed in 337 

NAB1, TYK2, PTPN11, IRF5, and IRF8. Additionally, we performed a genome-wide 338 

scan to identify shared genetic etiologies, as opposed to the study performed by 339 

Ellinghaus et al. whose analyses were limited to the 186 autoimmune disease-associated 340 

loci implemented in the Immunochip platform. The study performed by Li et al. –which 341 

was also a meta-analysis of GWAS data– was focused on pediatric autoimmune 342 

diseases, whereas our study was on a new combination of diseases in adult population.  343 

 In summary, this is the first study to investigate shared common genetic 344 

variation in four systemic seropositive rheumatic IMIDs in adults. We identified 26 345 

genome-wide significant independent loci associated with at least two diseases, of 346 

which five loci had not been reported before. The shared risk variants and their likely 347 

target genes are functionally enriched in relevant immune cells and significantly 348 

enriched in drug targets, indicating that it may assist drug repositioning among 349 

genetically related diseases based on genomics data.    350 

351 
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- Systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic 400 

inflammatory myopathies are systemic seropositive rheumatic diseases that share 401 

symptoms, progressions, environmental risk factors, high rates of familial aggregation, 402 

and susceptibility genes, pointing to a shared genetic architecture. 403 

- The assessment of a shared genetic component among these conditions has not been 404 

performed before in a systematic fashion. 405 

- We have identified five new shared loci among systemic seropositive rheumatic 406 

immune-mediated inflammatory diseases. The rest of the observed associations 407 

constitute firm susceptibility genes in autoimmunity, providing validity to our findings.  408 

- The associated variants are enriched in marks related to gene activation in immune 409 

cells and constitute shared expression quantitative trait loci. 410 

- For most of these diseases there are no specific treatments, therefore, therapy 411 

repositioning could be possible among genetically related conditions. 412 

 413 

414 
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Figure Titles and Legends 573 

 574 

Figure 1. Meta-analysis results for the four systemic immune-mediated 575 

inflammatory diseases (IMIDs). The Manhattan plot displays the -log10 transformed 576 

p-values (y-axis) by position on each chromosome (x-axis). The red line depicts the 577 

genome-wide significance threshold (p-value=5x10-8). A total of 26 SNPs were 578 

independently associated with at least two systemic IMIDs. Most of the signals map to 579 

known susceptibility loci in autoimmunity (e.g. PTPN22, STAT4, TNPO3, FAM167A-580 

BLK) and five loci have never been reported before. 581 

 582 

Figure 2. GARFIELD functional enrichment analyses in DHS hotspots. The wheel 583 

plot shows functional enrichment in systemic IMIDs within DHS hotspot regions in 584 

ENCODE and Roadmap Epigenomics. The radial axis depicts the fold enrichment (FE) 585 

calculated at different meta-analysis p-value thresholds. The font size is proportional to 586 

the number of cell types from the tissue, mainly enriched in blood cell types including a 587 

repertoire of immune cell lines. 588 

589 
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Supplementary Figures 590 

Figure S1. Distribution of the observed and expected association p-values in each 591 

individual study that contributed to the meta-analysis. Quantile-Quantile (QQ) plots 592 

from: A) Systemic sclerosis case-control collections. B) Systemic Lupus 593 

Erythematosus. C) Rheumatoid Arthritis and D) Idiopathic Inflammatory Myopathies. 594 

 595 

Figure S2. Non-Conditioned and conditioned analysis on the top associated variants 596 

from the meta-analysis. In panels where significant variants remained after 597 

conditioning, there are several independent variants in the region. In panels E, P, and Y 598 

the remaining independent variants were not significant in the meta-analysis. 599 

 600 

Figure S3. Wheel plots from the functional enrichment analysis with GARFIELD at 601 

different thresholds of p-values from the meta-analysis. Functional categories from the 602 

ENCODE project and Roadmap Epigenomics. 603 

 604 

Figure S4. Circular view of the interactions from the new shared risk SNPs with genes 605 

nearby obtained from Promoter Capture HiC data in relevant immune cell types. 606 

Interactions are displayed as connecting lines depending on the confidence of the 607 

interaction. Grey lines are below threshold in the tissue. Only genes with maximum 608 

interaction score are reported. 609 


