

Open access • Posted Content • DOI:10.1101/203851

Genome-Wide Mining, Characterization and Development of miRNA-SSRs in Arabidopsis thaliana — Source link 🖸

Anuj Kumar, Aditi Aditi Chauhan, Sai Kumar Kompelli, Vijay Gahlaut ...+7 more authors

Institutions: Department of Biotechnology

Published on: 02 Nov 2017 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Genome

Related papers:

- · Comprehensive Analysis of Simple Sequence Repeats in Pre-miRNAs
- Genome-wide development of novel miRNA-based microsatellite markers of rice (Oryza sativa) for genotyping applications
- Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa).
- Abiotic Stress Responsive miRNA-Target Network and Related Markers (SNP, SSR) in Brassica juncea.
- In silico identification and characterization of conserved plant microRNAs in barley

Genome-Wide Mining, Characterization and Development of 1 miRNA-SSRs in Arabidopsis thaliana 2

- Anuj Kumar^{1,2}, Aditi Chauhan¹, Mansi Sharma², Sai Kumar Kompelli³, Vijay Gahlaut⁴, 3 Johny Ijaq², Krishna Pal Singh¹, MNV Prasad Gajula^{5*}, Prashanth Suravajhala^{3,6,7}, Harindra 4 Singh Balyan³, and Pushpendra Kumar Gupta³ 5
- 1. Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for 6 7 Biotechnology (UCB), Dehradun-248007, India
- 2. Bioclues.org, Kukatpally, Hyderabad 500072, Telangana, India 8
- 9 3. ICMR-ICPO (Institute of Cytology and Preventive Oncology), NOIDA, 1-7, Sec-39, Uttar
- 10 Pradesh
- 4. Molecular Biology Laboratory, Department of Genetics & Plant Breeding, Ch. Charan 11 Singh University, Meerut-250004, India 12
- 4. Institute of Biotechnology, PJTSAU, Rajendra Nagar, Hyderabad-500030, India 13
- 5. Bioinformatics Organization, 28 Pope st, Hudson, MA 01749, USA 14
- 6. Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, 15
- Statue Circle, 302001, RJ, India 16
- 17 *Corresponding authors: <u>email2gajula@gmail.com</u>
- 18

19 Abstract

20 Simple Sequence Repeats (SSRs), also known as microsatellites are short tandem repeats of DNA sequences that are 1-6 bp long. In plants, SSRs serve as a source of important class of 21 22 molecular markers because of their hypervariabile and co-dominant nature, making them 23 useful both for the genetic studies and marker-assisted breeding. The SSRs are widespread 24 throughout the genome of an organism, so that a large number of SSR datasets are available, most of them from either protein-coding regions or untranslated regions. It is only recently, 25 26 that their occurrence within microRNAs (miRNA) genes has received attention. As is widely 27 known, miRNA themselves are a class of non-coding RNAs (ncRNAs) with varying length of 28 19-22 nucleotides (nts), which play an important role in regulating gene expression in plants 29 under different biotic and abiotic stresses. In this communication, we describe the results of a 30 study, where miRNA-SSRs in full length pre-miRNA sequences of Arabidopsis thaliana 31 were mined. The sequences were retrieved by annotations available at EnsemblPlants using BatchPrimer3 server with miRNA-SSR flanking primers found to be well distributed. Our 32 33 analysis shows that miRNA-SSRs are relatively rare in protein-coding regions but abundant 34 in non-coding region. All the observed 147 di-, tri-, tetra-, penta- and hexanucleotide SSRs 35 were located in non-coding regions of all the 5 chromosomes of A. thaliana. While we 36 confirm that miRNA-SSRs were commonly spread across the full length pre-miRNAs, we

envisage that such studies would allow us to identify newly discovered markers for breedingstudies.

39

Keywords: MicroRNA, miRNA-SSRs, Genome-wide identification studies, noncoding
RNAs, gene expression

42

43 **1. Introduction**

44 MicroRNAs (miRNA) represent a class of non-coding RNA (ncRNA) with varying length of 45 19-22 nucleotides (nts) (Bartel, 2004). These miRNAs are endogenous in origin, and are found 46 to play a major role in regulating the gene expressions in plants, fungi and animals, with bulk 47 of the sequences linked to transcription factors (Bartel and Bartel, 2003). The miRNA are 48 involved regulation of genes implicated in different processes including the following: (i) 49 response to different biotic and abiotic stresses (Khraiwesh et al. 2012; Kompelli et al. 2015); 50 (ii) different development and protein degradation processes (Eldem et al., 2012), (iii) pathogen 51 invasion, signal transduction etc. (Jones-Rhoades et al. 2006; Jung et al. 2009).

52 Simple Sequence Repeats (SSRs), also known as microsatellites are short tandem 53 repeats of DNA sequences that are 1-6 bp long (Gupta et al. 1996; Chen et al. 2009). The SSRs 54 are found both in prokaryotic and eukaryotic genomes (Toth et al. 2000; Katti et al. 2001). 55 SSRs are co-dominant, and multi-allelic by nature and due to constant variation in the number 56 of tandem repeats; they are known to be, robust, highly polymorphic (Brandstrom et al. 2008, 57 Heesacker et al. 2008), locus-specific and co-dominant, thus becoming the markers of choice. 58 (Gupta et al. 1996; Ni et al. 2002; Lightfoot and Iqbal, 2013; Senan et al. 2014; Wang et 59 al. 2015). Previous reports show that SSRs are selectively neutral and are randomly distributed 60 in the eukaryotic genome (Schlotterer, 2000; Schlotterer, 2004). Although many of them are 61 found in protein coding (Madsen et al., 2000), non-coding (Riley and Krieger, 2009a, 2009b) or 62 untranslated regions (Mondal and Ganie, 2015) of plant genome, mainstream SSRs are 63 regularly found in non-coding regions and relatively rare in protein coding regions (Madsen et 64 al. 2008). Furthermore, with SSRs known to have numerous applications, application of SSRs 65 in construction of genetic maps has led to significant interest (Gupta et al. 1996; Li et al. 2002; 66 Usdin, 2008). While SSRs aid in chromatin organization (Cuadrado and Schwarzacher, 1998), 67 available evidence show that SSRs located in promoter regions may affect the level of gene 68 expression (Young et al. 2000). It has been reported that they are widely considered as a hot 69 spots for recombination (Jeffreys et al. 1998; Templeton et al. 2000).

70 . Recently, SSRs have been reported in pre-miRNA sequences in some plant species. For 71 instance, Chen et al. 2010 carried out a comprehensive analysis for the prediction of SSRs in 72 8,619 premiRNA sequences from 87 species, including Arthropoda, Nematoda, 73 Platyhelminthes, Urochordata, Vertebrata, Mycetozoa, Protistate, Viridiplantae, and Viruses. In 74 another studies, salt responsive (trait specific) miRNA-SSRs were reported in rice genome 75 (Ganie and Mondal, 2015; Mondal and Ganie) linking them to phenotype and expression of 76 genes. Furthermore, studies on role of transcriptional profiling of SSR specific long noncoding 77 RNAs (lncRNAs) are studied in Banana and sugarcane which supports the hypothesis there is a major role of SSRs in non-coding genome in both small and larger noncoding elements 78 79 (Cardoso-Silva et al. 2014; Yang et al. 2015). However, no study has so far been conducted to 80 study SSRs in Pre-miRNA full length transcripts of A. thaliana, which is a model plant system 81 with a small genome that was the first higher plant genome to be fully sequenced (The 82 Arabidopsis Genome Initiative, 2000). Because of enormous utilities of miRNA as well as 83 SSRs, there is a need for development of markers associated with miRNA, so that markers may 84 be developed for traits influenced by miRNAs. Keeping this in view of the prospective 85 development markers from the noncoding regions, we discovered miRNA-SSRs in full length 86 genomic sequences of pre-miRNAs of A. thaliana.

87 88

89

92

2. Methodology

2.1. Computational identification and discovery of miRNA-SSRs in A. thaliana genome

93 A total of 325 pre-miRNAs of A. thaliana were downloaded from miRBase 21.0 94 (http://www.mirbase.org/) (Kozomara et al. 2014) and full length genomic transcripts 95 representing pre-miRNA were extracted in FASTA format using BioMart-Ensembl genomes 96 (Kasprzyk, 2011) available in EnsemblPlants (Bolser et al.2015) (see Supplementary Table 97 1); among 325 pre-RNAs, only 169 pre-miRNA sequences were found (see Supplementary 98 Table 2) whose full length genomic sequences are available in EnsemblPlants. After 99 downloading all full length premiRNA genomic transcripts from EnsemblPlants, manual 100 annotation was done to confirm the transcripts (>1000bp + premiRNA) for the discovery of SSRs belonging to miRNA genes (i.e., promoter, 5' UTR, primRNA, or 3' UTR but not pre-101 102 or mature miRNA). The search for miRNA-SSRs and the designing of primers flanking 103 miRNA-SSRs was carried out in full length premiRNA transcripts from all 5 chromosomes 104 using BatchPrime3 v1.0 (You et al. 2008) with default parameters. A flow chart showing the 105 pipeline used in this study is presented in Figure 1.

106

107 2.2. Computational Prediction of SSRs-containing miRNAs

108 As earlier documented, plant miRNAs predominantly target different families of transcription 109 factors (TFs) (Llave et al. 2002; Chen, 2004; Brodersen et al. 2008; Gupta et al. 2015; 110 Gahlaut et al. 2016). However, subsequent studies suggested that miRNAs also target plant 111 functional protein encoding genes, which control various physiological processes, such as 112 root growth and development, stress responses, signal transduction, leaf morphogenesis, plant 113 defenses, and biogenesis of sRNA (Brousse et al. 2014). Unlike in animals, miRNAs in plants 114 identify their target mRNAs through perfect or near-perfect complementarity and initiate 115 cleavage.

116 The putative target sites of SSRs-containing miRNAs were predicted by aligning the 117 miRNA sequences either perfectly or near-perfectly binding to complementary sites on their 118 target mRNA sequences by using homology search-based psRNATarget server (Dai and 119 Zhao, 2011). Transcripts of SSRs-containing miRNAs were used as a query against updated 120 version of *A.thaliana* transcripts available on The Arabidopsis Information Resource (TAIR) 121 (https://www.arabidopsis.org/). Following parameters embedded in psRNATarget algorithm 122 were used: maximum expectation: 2.0, length for complementarity scoring (hspsize): 20, 123 target accessibility-allowed maximum energy to unpair the target site (UPE): 25.0, flanking 124 length around target site for target accessibility analysis: 17 bp in upstream and 13 bp in 125 downstream, Range of central mismatch leading to translation inhibition: 9–11nt.

126

127 128

129

2.3. Prediction of genes adjacent to identified miRNA-SSRs and analysis of enriched gene ontologies (GO)

Genes adjacent to identified novel miRNA-SSRs were manually predicted using the TAIR 9 130 131 browser embedded in windows based integrated genome browser (IGB) (Nicol et al. 2009). 132 The criteria for manual curation was based on location of SSRs and nearby gene located on 5' 133 untranslated region (5' UTR) and 3' untranslated region (3' UTR) sites on a particular 134 chromosome of A. thaliana genome. Further predicted adjacent transcripts were retrieved from the EnsemblPlants (Bolser et al., 2015) in FASTA format. Arabidopsis adjacent 135 136 transcripts were used as input for Gene ontology analysis using agriGO (Du et al. 2010) and 137 REVIGO (Supek et al. 2011) server.

138

139 **3. Result and Discussion**

140

141 **3.1.** Dinucleotide repeats were found to outnumber other repeats

142 In the present study, 147 miRNA-SSRs were discovered among 169 pre-miRNA genomic 143 transcripts of A. thaliana genome (Table. 1). We found that dinucleotide SSR repeats (48/147) outnumbered the other repeats; primers designed for 45 of these dinucleotide repeats 144 145 while no primers were designed for the remaining three SSRs including $(AC)_7$ associated 146 with miR164b, (AT)₇ associated with miR165b and and (TA)₁₀ associated with miR832A. 147 Ten (10) different classes of dinucleotide SSR repeats were found in all premiRNA transcripts of A.thaliana and the largest count of dinucleotide repeat was TA. (Fig.2). While 148 149 trinucleotide miRNA-SSR repeats were found to be less than dinucleotide repeats, only one 150 of 38 repeats was found with no SSR flanking primer (TTC with miR837a and SSR length -151 12). Nevertheless, there were 37 SSR flanking primers found to be associated with them. 152 Within 15 different classes of trinucleotide miRNA-SSRs repeats, TTC and CTT with same 153 number of counts formed the highest count of trinucleotide repeats (Fig.2)

154 The tetranucleotide miRNA-SSRs (46) were found to be more than trinucleotide 155 repeats but less than dinucleotide repeats. Primers flanking two SSRs viz. (TTTA)_n, and (TTAT)_n for miR164c and miR394a, respectively could not be designed (TTTA)_n repeats was 156 157 most abundant among the tetranucleotide repeats in discovered miRNA-SSRs. (Fig. 2). The 158 pentanucleotide SSRs in pre-miRNA transcripts of A. thaliana were least frequent. Out of the 159 12 of the 147 miRNA-SSRs, were pentanucleotide repeats. Primers flanking to 11 miRNA-160 SSRs were designed and no primers could be designed for, $(TTGTT)_3$ associated with miR777a. Only eight classes of pentanucleotide SSR repeats were found in all pre-miRNA 161 162 transcripts of A. thaliana and TTTTA was found as topmost count of pentanucleotide SSRs 163 (Fig. 2). The hexanucleotide miRNA-SSRs were least common and these belonged to (GTTTGA)_n, (GGGAGG)_n, (ACAAAT)_n, and (CGTTTC)_n classes to be associated with 164 165 flanking primers and remarkably distributed across all 5 chromosome in A.thaliana genome 166 (Fig. 3). The chromosomes 1 and 5 have maximum miRNA-SSRs, while chromosome 3 has 167 minimum number of miRNA-SSRs (Fig. 3).

168

169 **3.2.** Conservation of SSR loci spanning flanking regions

The miRNA-SSR polymorphism will provide trait-related molecular markers at the specific chromosomal loci, which in turn would depend on the number of indels in the flanking regions. Whether or not they are dinucleotide repeats or compound repeats is dependent not only on variances at the each repeat unit of the sequences, but also on how they are arranged

or distributed across the genome. As we observed such repeats, it would be interesting to examine their locus specific polymorphism to allow their physically mapping. It would be interesting to see if they can serve as unknown tagged sites which in turn would depend on the presence of a particular sequence tagged region or sequence tagged sites (STS). These STS' in principle can be used as potential markers.

- 179
- 180

3.3. SSRs-containing miRNAs targeted diverse set of TFs

181 On the basis of the biogenesis of miRNAs in plants, a homology search-based method was 182 used to predict the targets for SSRs-containing miRNA in A. thaliana using psRNATarget. 183 The SSR-containing miRNAs were used as queries to predict potential mRNA targets in the 184 Arabidopsis genome annotation (TAIR10). This search revealed that 90 SSR-containing 185 miRNAs identified 698 target genes, with each SSR-containing miRNA predicting more than 186 one gene (Table S1). Most of the SSR-containing miRNAs targeted a number of TFs families 187 including WRKY, MADS, MYB, NAC, bHLH, AP2/EREBP, ARF etc., which play an important role in different metabolic and regulatory processes such as stress response, 188 189 transcriptional regulation, signal transduction, growth, development, nutrient uptake, nutrient 190 transport and nutrient assimilation (Table 2). The values of UPE for targeted gene ranged 191 from 3.238 to 24.941.

Targeted TFs could be utilized for developing next generation microsatellites, Transcription Factor Gene-Derived Microsatellite (TFGM) Markers which have potential in markerassisted genetic improvement and genotyping applications through marker assisted selection (MAS) breeding program to develop the drought/heat responsive and nutrient efficient cultivars for cereal crops (Gupta and Prasad, 2009; Kujur et al. 2013, 2014; Liu et al. 2015). However in plants, (TFGM) markers have only been reported in chickpea and *Medicago truncatula* to date (Kujur et al. 2013; Liu et al. 2015).

199

3.4. Prediction of genes adjacent to identified miRNA-SSRs and GO analysis

In order to predict the genes adjacent to SSR containing miRNAs, representing 5' UTR and 3' UTR sites TAIR 9 was manually curated. Based on length and chromosomal location, a diverse set of adjacent genes were predicted both in n5' UTR and 3' UTR regions (**Table. 2**). Predicted adjacent transcripts revealed that SSR containing miRNAs are associated with different genes in network form, which play a pivotal role in gene regulation. However effect of miR-SSR on adjacent genes and vice- versa need to be studied in detail. 207 To evaluate the biological significance of the adjacent genes to SSR containing miRNAs in 208 Arabidopsis it is important to have the gene ontology (GO) descriptions i.e., detailed 209 annotations of gene function, biological process it is involved, and cellular location of the 210 gene product. The potential functions were predicted by searching against GO database using 211 agriGO and REVIGO server. Predicted adjacent transcripts were subjected to singular 212 enrichment analysis (SEA) embedded in agriGO to identify enriched GOs. SEA designed to 213 identify enriched GO terms in a list form of microarray probe sets or gene identifiers 214 available in database. Finding different enriched GO terms corresponds to finding enriched 215 biological facts, and term enrichment level was judged by comparing query list to a 216 background population from which the query list is derived. In this study the background 217 query list comprised of 27,416 protein coding genes from the updated TAIR 218 (https://www.arabidopsis.org/index.jsp). Fig. 4 wholly reflects the categorization of 219 adjacent genes based on biological process, cellular component and molecular function. 220 Adjacent genes were divided into 14 GO categories. Among the adjacent gene transcripts, 221 GOs associated with response to stimulus, cellular biosynthetic process, nitrogen compound 222 metabolic process, nucleobase, nucleoside, cellular macromolecule metabolic process, protein 223 metabolic process, transport activity, RNA metabolic process, gene regulation and binding 224 (Fig.5).

In order to reduce the number of GO terms, enriched GO categories with false discovery rates (FDR) < 0.05 from AgriGO analysis were submitted to the REVIGO (REduce and Visualize GO) server. Using the Uniprot (<u>http://www.uniprot.org/</u>) as background and the default semantic similarity measure (Simrel), this analysis clearly showed that biological processes associated with metabolism, localization, nitrogen regulation, regulation of transcription were significantly overrepresented among the adjacent genes to SSR containing miRNAs in Arabidopsis (**Fig.6**).

232 233

3.5. Taking an analogy with long non-coding RNAs

If we may consider an analogy of this keeping in view of their larger non-coding peers, viz. IncRNAs, we might expect SSRs to be mapped to the IncRNAs as well. What remains a challenge is to see if the miRNAs/IncRNAs have a coding potential of transcripts in noncoding RNA as these are associated with "unknown transcripts" which eventually are unmapped. Can the SSR-miRNAs that code for non-coding elements prove to be real candidates for understanding gene expression in plants underlying to various traits as discussed above? If it were the case, with breakthrough in genome technology in the form of

clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein
9(CRISPR-Cas9) technology (Sander and Joung, 2014; Jain, 2015), it would be interesting to
explore probable CRISPR loci that play a role into regulatory roles of these ncRNAs esp. the
smaller miRNAs (Yi et al. 2015).

245 **4.** Conclusion

246 In the present study, we discovered total 147 miRNA-SSRs from 169 pre-miRNAs representing 247 full length genomic transcripts of A. thaliana. Our result shows that all the di-, tri-, tetra-, penta 248 and hexanucleotide SSRs were located in non-coding repertoire of all the 5 chromosomes of 249 A.thaliana (Fig. 3). While dinucleotide miRNA-SSRs were found to be higher, hexanucleotide 250 miRNA-SSRs were found to be lowest repeats in the pre-miRNA transcripts. It was observed 251 that miRNA-SSRs flanking primers were larger in number for discovered miRNA-SSRs. We 252 firmly consider these candidates could be extended for experimentation for allelic variation. It 253 is important to know that these miRNA-SSRs serve as a source of highly informative molecular 254 markers and aids as a reference for marker assisted breeding in plants. We hope this first report 255 on genome-wide identification and characterization of miRNA-SSRs in A. thaliana could serve 256 as a reference for identifying more sequences from non-coding repertoire of the genomes.

257 Acknowledgments

AK would like to give his sincere thanks to Mr. Deepak Kumar, Secretary, IT, ST & BT Government of Uttarakhand for encouragement, suggestions and timely help. PKG was awarded a National Academy of Sciences India (NASI) Senior Scientist Platinum Jubilee Fellowship, and INSA Senior Scientist positions during the tenure of which this study was conducted; VG was awarded a Junior Research Fellowship under the same program, and was later awarded the position of SRF/ RA under a DBT project.

264 Authors Contributions

AK, AC, SKK, and VG performed the data analysis; KPS and MNVPG manually crosschecked the annotation. KPS assisted AK and AC for preparing the first draft. PS, HSB and PKG conceived, supervised, edited, and finalized the manuscript.

268

269 Conflict of Interest Statement

- The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- 272

273 **References**

274	Bartel B, Bartel DP (2003) MicroRNAs: At the root of plant development?. Plant Physiol
275	132:709-717
276	Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell
277	116:281-297
278	Bolser DM, Kerhornou A, Walts B, Kersey P (2015) Triticeae resources in Ensembl
279	Plants. Plant Cell Physiol 56:e3
280	Brandstrom M, Bagshaw AT, Gemmell NJ, Ellegren H (2008) The relationship between
281	microsatellite polymorphism and recombination hot spots in the human genome. Mol
282	Biol Evol 25: 2579-87
283	Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto
284	YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant
285	miRNAs and siRNAs. Science 320:1185–1190
286	Brousse C, Liu Q, Beauclair L, Deremetz A, Axtell MJ, Bouché N (2014) A non-
287	canonicial microRNA target site. Nucleic Acids Res 42: 5270-5279
288	Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TW, Canesin LE, Pinto
289	LR, Carneiro MS, Garcia AA, de Souza AP, Vicentini R (2014) De novo assembly and
290	transcriptome analysis of contrasting sugarcane varieties. PLoS One 9:e88462
291	Chen M, Tan Z, Zeng G, Peng J (2010) Comprehensive analysis of simple sequence
292	repeats in Pre-miRNA. MolBiolEvol 27:2227-2232
293	Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis
294	flower development. Science 303:2022–2025
295	Chen M, Tan Z, Jiang J, Li M, Chen H, Shen G, Yu R (2009) Similar distribution of
296	simple sequence repeats in diverse completed Human Immunodeficiency Virus Type 1
297	genomes. FEBS Lett 583:2959-2963
298	Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence
299	repeats in wheat and rye genomes. Chromosoma 107:587-594
300	Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic
301	Acids Res 39: 155-159
302	Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010)agriGO: a GO analysis toolkit for
303	theagricultural community. Nucleic Acids Res. 38(W): 64–70
304	Eldem V, Okay S, Ünver T (2013). Plant microRNAs: new players in functional
305	genomics. Turk J Agric For 37:1-21
306	Gahlaut V, Jaiswal V, Kumar A, Gupta PK (2016) Transcription factors involved in
307	drought tolerance and their possible role in developing drought tolerant cultivars with
308	emphasis on wheat (Triticum aestivum L.). Theor Appl Genet 129: 2019-2042
309	Ganie SA Mondal TK (2015) Genome-wide development of novel miRNA-based
310	microsatellite markers of rice (Oryza sativa) for genotyping applications. Mol
311	Breeding 35:51
312	Gupta PK (2015) MicroRNAs and target mimics for crop improvement. Curr Sci 108:
313	1624-1633
314	Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: A new
315	class of molecular markers. Curr Sci 70:45-53
316	Gupta S, Prasad M (2009) Development and characterization of genic SSR markers in
317	Medicago truncatula and their transferability in leguminous and non-leguminous
318	species. Genome. 52: 761–771
319	Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, Matvienko M, Kozik
320	A, Michelmore RM, Lai Z, Rieseberg LH, Knapp SJ (2008) SSRs and INDELs mined
321	from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility.
322	Theor Appl Genet 117:1021-1029

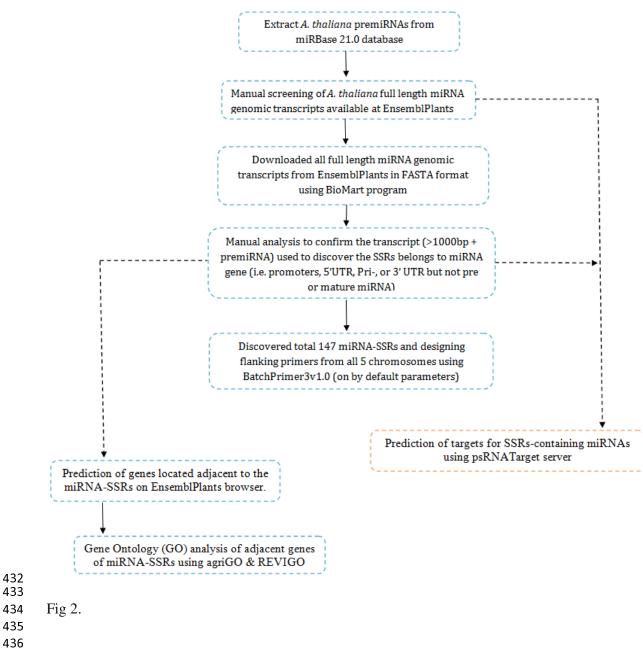
323	Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR
324	approach. Front Plant Sci 6:375
325	Jeffreys AJ, Murray J, Neumann R (1998) High-resolution mapping of crossovers in
326	human sperm defines a minisatellite associated recombination hotspot. Mol Cell 2:
327	267-273
328	Jones-Rhoades MW, Bartel DP, Bartel, B (2006) MicroRNAs and their regulatory roles in
329	plants. Annu Rev Plant Biol 57: 19–53
330	Jung JH, Seo PJ, Park CM (2009) MicroRNA biogenesis and function in higher plants.
331	Plant Biotechnol Rep 3: 111–126
332	Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management.
333	Database (Oxford) 13:2011:bar049
334	Katti MV, Ranjekar PK, Gupta VS (2001). Differential distribution of simple sequence
335	repeats in eukaryotic genome sequences. MolBiolEvol 18: 1161-1167
336	Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic
337	stress responses in plants. Biochem Biophys Acta 1819:137-148
338	Kompelli SK, Kompelli VSP, Enjala C, Suravajhala P (2015) Genome-wide
339	identification of miRNAs in pigeonpea (Cajanus cajan L.) Aust J Crop Sci 9:215-222
340	Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs
341	using deep sequencing data. Nucleic Acids Res 42(D):68-73
342	Kujur A, Bajaj D, Saxena M, Tripathi S, Upadhyaya HD, Gowda CL, Singh S, Tyagi A,
343	Jain M, Parida S (2014) An efficient and cost-effective approach for genic
344	microsatellite marker-based large-scale trait association mapping: Identification of
344 345	candidate genes for seed weight in chickpea. Mol Breed 34: 241–265
345	Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhaya HD, Gowada CL, Singh S, Jain M,
340 347	Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from
348	chickpea transcription factor genes efficient genotyping applications and trait
349	association mapping. DNA Res 20: 355-374
350	Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic
351	distribution, putative functions and mutational mechanisms: a review. MolEcol
352	11:2453-2465
353	Lightfoot DA, Iqbal MJ (2013) Molecular mapping and breeding with microsatellite
354	markers. Methods MolBiol 1006: 297-317
355	Liu W, Jia X, Liu Z, Zhang Z, Wang Y, Liu Z, Xie W (2015) Development and
356	Characterization of Transcription Factor Gene-Derived Microsatellite(TFGM)
357	Markers in Medicagotruncatula and Their Transferability in Leguminous and Non
358	Leguminous Species. Molecules 20:8759-8771
359	Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA
360	targets directed by a class of Arabidopsis miRNAs. Science 297: 2053–2056
361	Madsen BE, Villesen P, Wiuf C (2008) Short tandem repeats in human exons: a target for
362	disease mutations. BMC Genomics 9:410
363	Mondal TK, Ganie SA (2014) Identification and characterization of salt responsive
364	miRNA-SSR markers in rice (Oryza sativa). Gene 535:204–209
365	Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies
366	using microsatellite markers. Crop Sci 42: 601–607
367	Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009) The Integrated Genome
368	Browser (IGB): free software for distribution and exploration of genome-scale
369	datasets. Bioinformatics 25:2730-1
370	Riley DE, Krieger JN (2009a) Embryonic nervous system genes predominate in searches
371	for dinucleotide simple sequence repeats flanked by conserved sequences. Gene
372	429:74-79

373	Riley DE, Krieger JN (2009b) UTR dinucleotide simple sequence repeat evolution
374	exhibits recurring patterns including regulatory sequence motif replacements. Gene
375	429:80-86
376	Sander JD, Joung JK (2014) CRISPR-Cas
377	systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347-55
378	Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:
379	5844-5849
380	Schlötterer C (2004) The evolution of molecular markers-Just a matter of fashion? Nat
381	Rev Genet 5: 63–69
382	Senan S, Kizhakayil D, Sasikumar B, Sheeja TE (2014) Methods for Development of
383	Microsatellite Markers: An Overview. Not Sci Biol 6:1-13
384	Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long
385	lists of gene ontology terms. PloS One 6:e21800
386	Templeton AR, Clark AG, Weiss KM, Nickerson DA, Boerwinkle E, Sing CF (2000)
387	Recombinational and mutational hot spots within the human lipoprotein lipase gene.
388	Am J Hum Genet 66:69-83
389	The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the
390	flowering plant Arabidopsis thaliana. Nature 408:796–815
391	Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey
392	and analysis. Genome Res 10: 967-981
393	Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat
394	expansion diseases. Genome Res 18:1011-1019
395	Wang Y, Yang C, Jin Q, Zhou D, Wang S, Yu Y, Yang L (2015) Genome-wide distribution
396	comparative and composition analysis of the SSRs in Poaceae. BMC Genetics 16:18
397	Yang QS, Gao J, He WD, Dou TX, Ding LJ, Wu JH, Li CY, Peng XX, Zhang S, Yi GJ
398	(2015) Comparative transcriptomics analysis
399	reveals difference of key gene expression between banana and plantain in response to
400	cold stress. BMC Genomics 16:446
401	Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database.
402	Nucleic Acids Res 43:D982-989
403	You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD
404	(2008) BatchPrimer3: a high throughput web application for PCR and sequencing
405	primer design. BMC Bioinformatics 9:253
406	Young ET, Sloan JS, van Riper K (2000) Trinucleotide repeats are clustered in regulatory
407	genes in Saccharomyces cerevisiae. Genetics 154:1053-1068
408	
409	

410 Legend

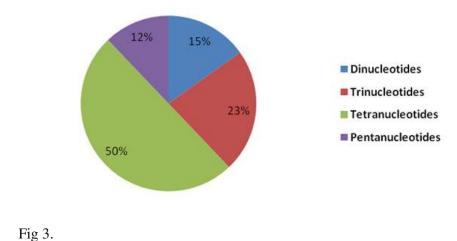
- 411 Figure 1. Pipeline used for discovery of miRNA-SSRs in A. thaliana.
- 412 Figure 2 .Incidence and number of di, tri, tetra, and pentanucleotide miRNA-SSRs.
- 413 Figure 3. Chromosomal locations of discovered miRNA-SSRs in *A.thaliana* geneome.
- 414 Figure 4. GO classifications of adjacent genes to SSR containing miRNAs.

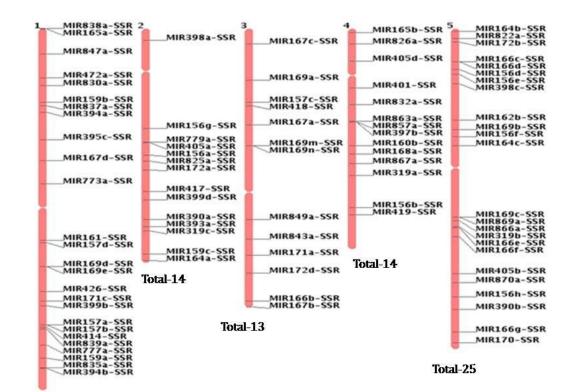
415 Figure 5. GO analysis of adjacent genes to SSR containing miRNAs: box reflects the GO

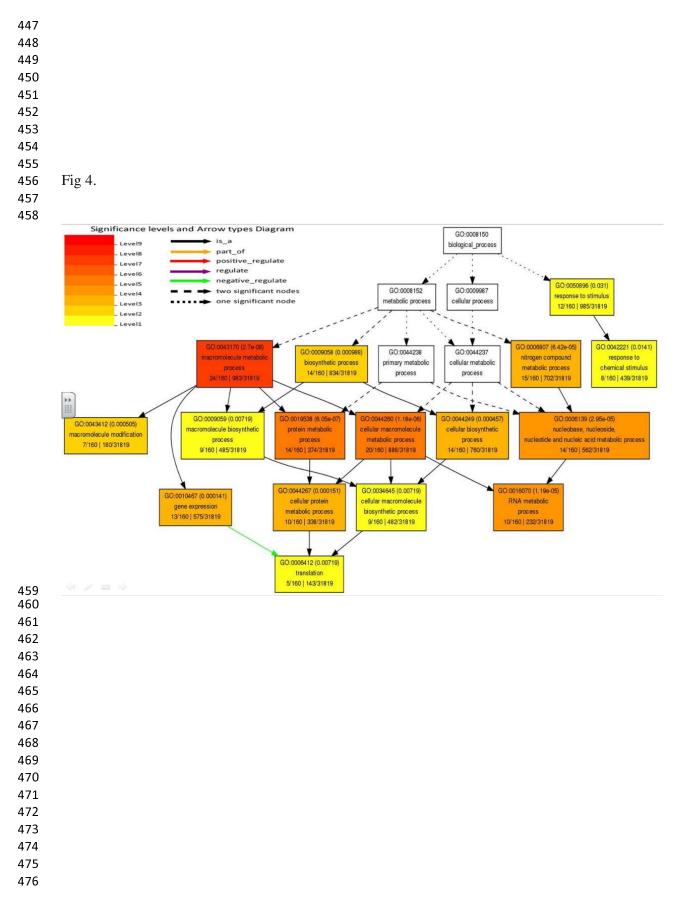

- term number, the p-value in parenthesis, and GO term. The first pair of numerals shows the
- 417 number of adjacent genes in the input list associated with that GO term and the number of
- 418 genes in the input list. The second pair of numerals represents the number of genes associated

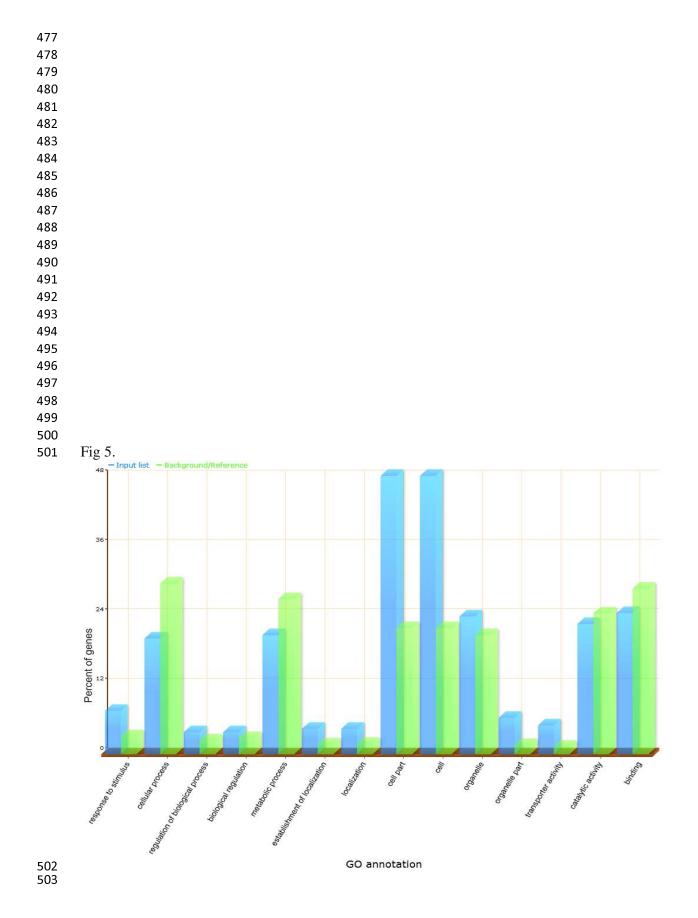
with the particular GO term in the TAIR database and the total number of Arabidopsis genes with GO annotations in the TAIR database. The box colours indicates levels of statistical significance with yellow = 0.05; orange = e-05 and red = e-09.

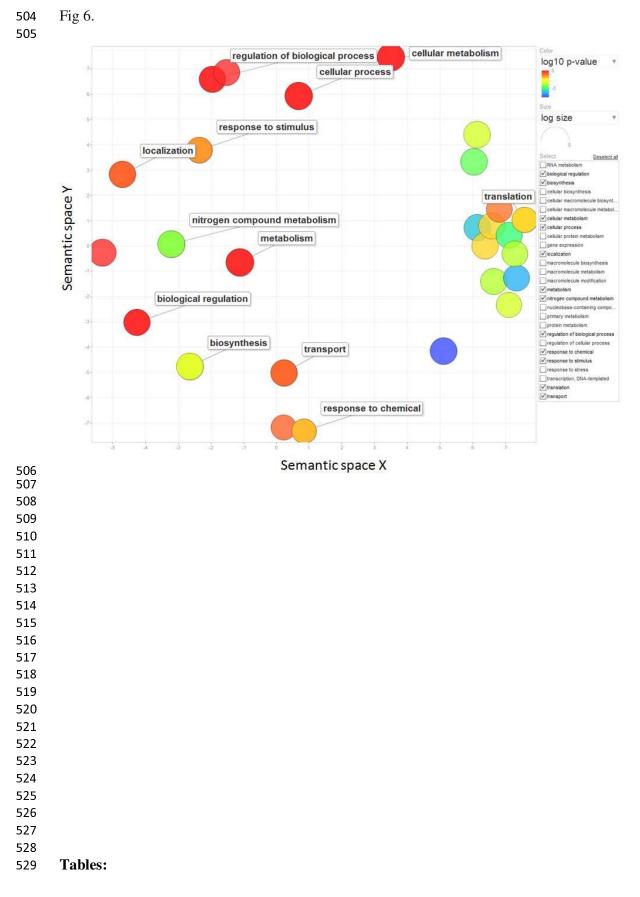
422


Figure 6. **GO analysis of adjacent genes to SSR containing miRNAs using REVIGO:** The scatter plot represents the cluster representatives (terms remaining after reducing redundancy) in a two-dimensional space derived by applying multi-dimensional scaling to a matrix of GO terms semantic similarities. Bubble color indicates the p-value for the false discovery rates derived from the AgriGO analysis. The circle size represents the frequency of the GO term in


- 428 the uniprot database (more general terms are represented by larger size bubbles).
- 429
- 430 Fig 1.
- 431




No. of SSRs Repeats



530

Table 1. Designed flanking primers for discovered miRNA-SSRs using BatchPrimer3 server.

MIRNA	Motif	Primer Sequence			Product Size	
		Forward	Reverse	(⁰ C)		
MIR156a	$(TCTT)_3$	ACAAGAGCCATAAAGAAAGGT	AGGGTTTTTGTCTAAATCGAG	55	154	
MIR156b	(CT) ₁₁	CACCTCTCTTTCTGTCAGTTG	ACACATCACTAGCAAAAGTGC	55	140	
MIR156d	(TTC) ₆	TCTCCATCATCTCTGTTTCAC	GGCTGCTTTACTTCTCTCTCT	55	154	
	(GAGT) ₃	TGTTGGATTCATTCTTCATTC	AAGGAGATAAACTCAGAATTGC	55	176	
MIR156e	(TC) ₇	TTGAAGCTATGTGTGCTTACTC	ACTTTGATCCGTTTGATGATA	55	153	
MIR156f	(CT) ₉	GAAGCTATGTGTGCTCACTCT	GTAAAACCAAAAGAATGGATG	54	139	
	(AT) ₈	ACTCTCTTCTTGTCTCCTGCT	AACCATACACAGAGACGTTTG	55	153	
MIR156g	(GAT) ₄	AAACGTAGCTAGTGGTCAGTG	AAACGTAGCTAGTGGTCAGTG	55	152	
	(TATC) ₃	ACTCTCTTCTTGTCTCCTGCT	AACCATACACAGAGACGTTTG	55	153	
	(CATG) ₃	ACTCTCTTCTTGTCTCCTGCT	AACCATACACAGAGACGTTTG	55	153	
MIR156h	(TTC) ₅	TCATCCTCTTCGCTATAAATG	AGGTTGTGCTCTCTTTCTTCT	55	144	
1410455	(TCA) ₄	TTCGTTGCTCTCTATGTGTCT	TTCGTTGCTCTCTATGTGTCT	55	161	
MIR157a	(AAGT) ₃	GTTCGTAGTCTTCTCAAATCG	AACCATCAAACCTTATGGAAT	55	170	
MIR157b	(TCA) ₄	TAGCTGTCCTCTATGCGTCTA	TCAAGAACTTGATTAAACACCA	55	187	
	(TA) ₈	TATTTTCCCTTTGTCACTTCA	GTCAACAACCAACATCACTCT	55	150	
MIR157c	(AT) ₂₂	TTTGGTAACCTGATCTCCATA	CCAAACTATCAAACCAAACTG	54	137	
MIR157d	(TA) ₁₃	TATGCTTCTGTCATCACCTTT	ACTTTTCTCACACCAAAACAA	55	156	
	(AAAG) ₃	GATGCTATGCAAAACAGACAC	GGTGATGACAGAAGCATAGAG	55	151	
MIR159a	(TC) ₆	ATTTCTTCCAAAACATGACG	CAAAAACACCAAAAGAGGTAA	55	158	
MIR159b	(TC) ₇	TAATGGCTTCACTCTTCTTTG	CTACTCAAGATCCATCATCCA	55	153	
	(AAT) ₄	GACAATAAGATTTACTGCCAAA	AAAGAGCATCAACCCTAGTCT	54	141	
MIR159c	(CAT) ₄	ATAATCGTCCCAAGGAGTAGA	AAACTATGGAAAGAGGGAGAA	55	141	
	(AAAT) ₄	CACCCTAACCGTATCTCTCTC	TCTACTCCTTGGGACGATTAT	55	190	
MIR160b	(TA) ₆	CCAATCATATTTAAGGGTTCC	TTGGTCATGCTTGACTACTCT	55	150	
MIR161	(AGA) ₄	CTTTGTTTGAGATTGCATCAT	TGACTACCAGTCTACCACTATGT	55	158	
	(TTTA) ₃	GTTTGTTCATCAACCGATTT	TCGATTCTTGCTTTTGTAAAC	55	153	
MIR162b	(TTGT) ₃	GATTCGATAAAGTCTTCTCAGC	TGATCTGTTACCCAAAACAAT	55	173	

MIR164a	(CA) ₉	TTGCCTTACGTAAAACACACT	TGAGAACTTTGGTTATGGAAA	38	137
	(AC) ₇	No SSR flanking primer found			
	(TA) ₇	GGAATCACGTTTTCAAATATC	AAGTGCGAGTGTTGTTTATGT	54	149
	(TC) ₁₀	ATCATACCCCCAAGGTAACTA	ATTCTCTCCGACCACATAACT	55	153
MIR164b	(TG) ₆	AGTTATGTGGTCGGAGAGAAT	TCATCCATATCATCACACTCA	55	165
	(ACAT) ₃	ATCATACCCCCAAGGTAACTA	ATTCTCTCCGACCACATAACT	55	153
	(TACG) ₃	GAGGAAGTAGATACCCTCTGC	GATCAAGATGCGTGATCATA	54	135
MIR164c	(TTTA) ₄	No-SSR flanking primer found			
MID165	(AT) ₇	ACTATGAAACCTTCACGCATA	CCTCATCATAACACCATCATC	54	154
MIR165a	(CT) ₇	CCTCATCATAACACCATCATC	TAATATCCTCGATCCAGACAA	55	157
	(AT) ₇	No-SSR flanking primer found			
MIR165b	(TC) ₇	ACGACTTATTTCAGCCTTCTT	GCAGCTCAATCTTATGTGAGT	55	155
WIIK105D	(TC) ₁₄	TTTGGCTCTCTCTCCACTTAC	GGCTAAGATCAAGGAAGAGAA	56	146
	(AAG) ₅	TTCTCTTCCTTGATCTTAGCC	AGAAAAATCCCTCTTTAAATCC	55	159
	(TC) ₆	CACGTCACAATTCACATCTTA	TTAAGTCTCGTCGTTGTCTTC	54	161
MIR166c	(TCT) ₄	GTGGTCATTTGTGCCTCTAT	CCACGTTATCAAGAAGAGAAA	55	150
	(CTTT) ₃	CACTCGAATTAATTTGGAAGA	GGTCGCAAGATAGAACAAATA	55	150
MIR166d	(CTT) ₇	AATATTCGCCTCACACATAGA	TCAATCTACCGATCTTCTTCA	55	141
MIR166e	(TC) ₈	CCCTCTCTTCTTTCATCATT	CTCAAAAGGAAAAGCTTCACT	55	152
MIR166f	(GAT) ₅	GTCTTTCTGAGCCAAAAGTTC	CTTGAAGATTGAGAAGCAAAA	56	146
MIR166g	(CTT) ₅	TAGGGCTTAGATCTTTTGTCC	AACCCTAAATCGCTTCACTAT	55	162
MIR167a	(AAAG) ₄	CCAAAAACCAAGAATAAGAAGA	CCAAAAACCAAGAATAAGAAGA	55	162
MID1/74	(GA) ₁₁	TGGAGTCAAACTAAGAATGGA	TATATCTCCACCACCTGTGAC	55	173
MIR167b	(CT) ₇	TCACAGGTGGTGGAGATATAG	TTAAAGAAGCCTGAAACAGTG	55	150
MIR167c	(AG) ₇	AGCATGATCTTGTCTTCCTCT	TCTCCTTCATGCTACAATCAT	55	158
WIIKIU/C	(AGA) ₇	GAGAGAGACTAGGTCATGCTG	TTCATGAGATCCTCTTTCTGA	54	129
MIR167d	(TG) ₇	AACAAGGATCTGTGTAACGTG	GAAAAATGCTCAGCTTGATAA	55	152
WIIKI0/U	(GT) ₇	ATGTATGTGGTGTGTGTGTGTCA	GAGGGATCGTAAAAGTTAAGG	55	157
MIR168a	(CTT) ₄	AGTGTGAAAGCGAAAATCTCT	TAATGGGGAAATGAGGTTTAT	56	157
11111000	(AATA) ₃	CACGTGCTTCTCAAAAAGATA	GTCTCTTTTCACCCGAGAGT	55	186

MIR169b	(TTCA) ₃	TGAACATATTTCTGGCAAGTT	CTCATACGGTCGATGTTAATC	55	134
MID160a	(TTTA) ₃	TTGAGATGCTAAAGTAGAGCAA	CGAAGTTGAATTTTGACATTG	55	178
MIR169c	(TTAT) ₄	GGCTCAACATGTAGGAAAGTA	GATTGGAGCAAACTAAACTCTT	55	167
MIR169d	(CGAT) ₃	TAATACCGAAAACCCAAAACT	CCACCTGTCGTACTTTTCTTA	55	162
MID170	(ATG) ₅	TCATCATGAGTTAGGGTTTTG	TCATCATGAGTTAGGGTTTTG	55	140
MIR169e	(ATC) ₄	AAAGATTCCTCCCTTCTTTTT	GCTGCAAGTACAAGTGTTGA	55	160
MIR169m	(AT) ₁₄	AGATGGACATGACAAGAAAAA	ATCCATGTTCTTCCACAATC	55	165
	(TA) ₆	AAACACGTCTAAAGTTGCATT	GTCGGTTCATTCACTAAATTG	55	144
MIR169n	(AT) ₁₄	AGATGGACATGACAAGAAAAA	AGATGGACATGACAAGAAAAA	55	165
MIR170	(CTT) ₄	GTGCATTGAGAGTAGCAGAGT	GGACTCTCTCGGAAACATAGT	55	157
MID171.	(AG) ₆	TTGAGGTTTTGTAAAAAGCAG	ATAAATTTTGAGGGAATCTCG	55	139
MIR171a	(AGAA) ₄	GCAGAGAAAAGAGAGAGAGAGAGAG	ATCGATGAAGATGCTTTGTAA	55	142
MIR171c	(TCAC) ₃	GCCCAATGTTATAAAGGGTAG	GACACCTTCAATTTCGTGATA	56	172
	(TC) ₁₁	ACAGTCACATCTCTTACTGTGC	TTGGAAGCCATATATTAACCA	55	118
MIR172a	(CT) ₇	TGATTCACTCTCCACAAAGTT	ACCTACCTGAAGAAGATCTGG	55	142
	(GTTTGA) ₅	TGAAGGTACGAGTTTCTAGTGTC	CGGAAATTAGTCTTCCATTTT	55	182
MIR172b	(GTTTGA) ₅ (TTC) ₄	TGAAGGTACGAGTTTCTAGTGTC TCTTATGACGTAAAAGGACCA	CGGAAATTAGTCTTCCATTTT TTCGATCTCTATTTTCTTGGA	55 55	182 171
MIR172b MIR172d	(TTC) ₄	TCTTATGACGTAAAAGGACCA	TTCGATCTCTATTTTCTTGGA	55	171
	(TTC) ₄ (CT) ₉	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC	TTCGATCTCTATTTTCTTGGA GGAAGAGATTTAGGGTGAAGA	55 55	171 155
	(TTC) ₄ (CT) ₉ (TA) ₆	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA	TTCGATCTCTATTTTCTTGGA GGAAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC	55 55 55	171 155 163
	(TTC) ₄ (CT) ₉ (TA) ₆ (CT) ₆	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG	TTCGATCTCTATTTTCTTGGA GGAAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA	55 55 55 55	171 155 163 144
MIR172d	(TTC) ₄ (CT) ₉ (TA) ₆ (CT) ₆ (ATAC) ₃	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG	TTCGATCTCTATTTTCTTGGA GGAAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGAAGATGA	55 55 55 55 55	171 155 163 144 144
MIR172d	$(TTC)_4$ (CT) ₉ (TA) ₆ (CT) ₆ (ATAC) ₃ (ATAC) ₃	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT	TTCGATCTCTATTTTCTTGGA GGAAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGATGA CGAAAAACCATGATTTAGAAG	55 55 55 55 55 55	171 155 163 144 144 154
MIR172d MIR319a MIR319b	$(TTC)_4$ $(CT)_9$ $(TA)_6$ $(CT)_6$ $(ATAC)_3$ $(ATAC)_3$ $(AATG)_3$	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT CCAAAATTCAAACTAGACTCG	TTCGATCTCTATTTTCTTGGA GGAAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGAAGATGA CGAAAAACCATGATTTAGAAG TAGTGGATCAAGCATGTTTTT	55 55 55 55 55 55 55	171 155 163 144 144 154 157
MIR172d MIR319a	$(TTC)_4$ $(CT)_9$ $(TA)_6$ $(CT)_6$ $(ATAC)_3$ $(ATAC)_3$ $(AATG)_3$ $(AATG)_3$	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT CCAAAATTCAAACTAGACTCG TCCACTCATGGAGTAATATGTG	TTCGATCTCTATTTTCTTGGA GGAAGAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGAAGATGA CGAAAAACCATGATTTAGAAG TAGTGGATCAAGCATGTTTTT CTTCAGTCCAAGCATAGAGAA	55 55 55 55 55 55 54 55	171 155 163 144 144 154 157 146
MIR172d MIR319a MIR319b	$(TTC)_4$ $(CT)_9$ $(TA)_6$ $(CT)_6$ $(ATAC)_3$ $(ATAC)_3$ $(AATG)_3$ $(AATG)_3$ $(AATG)_3$	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT CCAAAATTCAAACTAGACTCG TCCACTCATGGAGTAATATGTG TCTTCGGTTATGACGACTATG	TTCGATCTCTATTTTCTTGGA GGAAGAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGAAGATGA CGAAAAACCATGATTTAGAAG TAGTGGATCAAGCATGTTTTT CTTCAGTCCAAGCATAGAGAA	55 55 55 55 55 55 54 55 55	171 155 163 144 144 154 157 146 148
MIR172d MIR319a MIR319b MIR319c	$(TTC)_4$ $(CT)_9$ $(TA)_6$ $(CT)_6$ $(ATAC)_3$ $(ATAC)_3$ $(AATG)_3$ $(AATG)_3$ $(AATG)_3$ $(AATG)_4$	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT CCAAAATTCAAACTAGACTCG TCCACTCATGGAGTAATATGTG TCTTCGGTTATGACGACTATG	TTCGATCTCTATTTTCTTGGA GGAAGAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGAAGATGA CGAAAAACCATGATTTAGAAG TAGTGGATCAAGCATGTTTTT CTTCAGTCCAAGCATAGAGAA AATAAATCAGGGAGGAAAATG	55 55 55 55 55 55 54 55 55 55	171 155 163 144 144 154 157 146 148 148
MIR172d MIR319a MIR319b MIR319c MIR390a	$(TTC)_4$ $(CT)_9$ $(TA)_6$ $(CT)_6$ $(ATAC)_3$ $(ATAC)_3$ $(AATG)_3$ $(AATG)_3$ $(AATG)_3$ $(AATG)_3$ $(AATG)_3$	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT CCAAAATTCAAACTAGACTCG TCCTCGGTTATGACGACTATG GTCGGGTAAGTTTCATCTGTA	TTCGATCTCTATTTTCTTGGA GGAAGAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGATGA CGAAAAACCATGATTTAGAAG TAGTGGATCAAGCATGTTTTT CTTCAGTCCAAGCATAGAGAA AATAAATCAGGGAGGAAAATG GTCGGGTAAGTTTCATCTGTA	55 55 55 55 55 55 55 55 55 55	171 155 163 144 144 154 157 146 148 148 144
MIR172d MIR319a MIR319b MIR319c MIR390a	$(TTC)_4$ $(CT)_9$ $(TA)_6$ $(CT)_6$ $(ATAC)_3$ $(ATAC)_3$ $(AATG)_3$	TCTTATGACGTAAAAGGACCA GTATCTTCGATTACGATGTGC TCAGAAATCCAGATCCTCATA ATCTACCATCCCTTTTCTACG ATCTACCATCCCTTTTCTACG GTTCCAAACGCTCTATCTCTT CCAAAATTCAAACTAGACTCG TCCTCGGTTATGACGACTATG GTCGGGTAAGTTTCATCTGTA TGTAATATGGGGACACTTAGC	TTCGATCTCTATTTTCTTGGA GGAAGAGAGATTTAGGGTGAAGA ATCATTCATCATCGTTTTGTC AGAGATGGGAAAAGAAGATGA AGAGATGGGAAAAGAAGATGA CGAAAAACCATGATTTAGAAG TAGTGGATCAAGCATGTTTTT CTTCAGTCCAAGCATAGAGAA AATAAATCAGGGAGGAAAATG GTCGGGTAAGTTTCATCTGTA CATCCATAGGTATGCATCTTC	55 55 55 55 55 55 55 55 55 54 54 54.	171 155 163 144 144 154 157 146 148 148 144 164

MIR393a

110202					
MIR393a	(AAAT) ₄ CGTCTGGTTTACTAGCTCCAT		GATCGTGTTCCTCTTGATTTT	56	149
	(TTAT) ₅	No SSR-flanking primers found!			
MIR394b	(TC) ₇	TGCCTCTTTCTCAATCTCATA	CGAATGTAACATCGAGAGGTA	55	149
MIR395c	(TTTGG) ₄	TTTGTTTACACCCAAACCTAA	AATGCGAGTGACAGTCATTAT	55	133
MIR397b	(TTTTA) ₃	ATGAAGAAAAACACCCCAAAAAG	TCTCCACAATAGTCACGCTAC	56	148
MIR398a	(TCT) ₄	CCAAAACCAACTAAAACTGAA	GCTTTGGAATAAACAGAGGAG	55	134
	(CTT) ₄	GTACGAGTATCCGTAGAGCAG	AAACTCGAACCAGAACAAACT	55	151
MIR398c	(TGTTG) ₃	ATCAGTTTCGCAGTACACAAT	CACAACAAATGATGAAAGGAT	55	159
MIR399b	(CATG) ₃	AAAAATGACATGGTGTACTCA	TTCAGAGAGGGGTTGTTTGATA	53	146
MIR399d	(TTG) ₄	AACACAATCGTCTTTCATCAC	TGGTTCTTTCTTTCTTTCCTC	55	138
MID2001	(TTCT) ₃	TCATACGGTTCTCGAAGAATA	GCAACTCAAAATTTGTGAAAC	55	146
MIR399d	(GAAA) ₃	GATTCTTTCTTTCTTCTGTTGG	TAAGGAATGGTTGATGACACT	55	147
MIR401	(TA) ₁₁	CCAACATTCAAGATCCTTCTA	CAAGTTCCCCTTTGTTTACTC	55	151
MIR405a	(AACCC) ₃	TTGTTACTAGGGGTGTCAAAA	CCCATCAAATGAAATGAGTTA	55	144
MIR405b	(GTTGG) ₃	CCCATCAAATGAAATGAGTTA	TTAAGTTCATTCCTGTGGGTA	55	157
	(ATTA) ₃	GATTTTCCCGTCTAAAAATGT	GATGGGTTGAGTTGTTAAATG	55	168
MIR405d	(GTTGG) ₃	GGGTCTAACCCATAACTCATT	GCAACATTCTCCTTTTCTTTT	55	168
	(CA) ₆	AGTCACACAACCTTTGACATC	AGAGGGCAGATAGAGTTGAAG	55	151
	(AT) ₆	AGTCACACAACCTTTGACATC	AGAGGGCAGATAGAGTTGAAG	55	151
MIR414	(TTC) ₄	TAATGTTTATCTCCGACTCCA	GCATCCTTAGACCAGTCTTTA	55	145
WIIK414	(ATC) ₄	TATTAGATGGTGGTGAGGATG	GATGACGATGATGATGAAGAT	55	134
	(TCA) ₆	GCTTGAAGTCGAAGATAAAGA	TTGCTTCTCAACTCAAATCTC	54	157
MIR417	(AAAT) ₃	AGGTTGTACTTATGTGGTGGA	AGATAATGTAGGTGGGAGATACA	55	147
MIR418	(CAAA) ₅	AGGTGTCAGGTTCTACACAAA	CCAATACATGTGTTAGGATTTTT	55	150
WIIK410	(TTTTA) ₃	AAATACCCCAAAAAGAGACAC	AAATACCCCAAAAAGAGACAC	55	146
MIR419	(TTGC) ₃	GCTGAGGATGTTGTTATTACG	GGTTCATGACTTGTTTTCTTG	55	158
MIR426	(TAAA) ₄	GTGGACCAAAAGACATACAAT	TGGTGTTGTTTCTTTCCTCTA	54	200
WIIK420	(GGGAGG) ₃	TGCAATGGATCAGTTAGAATAG	ATCGTCATGTGGACAAGTATT	55	151
MIR472a	(TGTA) ₃	AAGGGGAGTCATATTCTCATC	CAAACACCAAAAACCTTACAAA	55	200

	(AAT) ₄	TGTCTAAGAGAGTTTTTAGCAAG	GTTATTGGGCTTTTATTGGAT	53	292
MIR773a	(TTAT) ₃	CTGGTACATTCATAGTTGTTGC	CAAAACTCTACTCCGTGTTTG	55	151
	(TTGTT) ₃	No-SSR flanking primer found			
MIR779a	(TGTTT) ₃	GTTAGCTGAGCAACCATACTT	CTCATTAAGCACAATGCTTTC	54	150
MIR822a	(TA) ₂₀	GTTTCAGAAAGGGAAAACATT	CGAAATCGAGTTTGTTAATTC	55	202
MIR825a	(CTAT) ₃	ACAGGTCAATGGTGTTAGAAA	AACTGCACAAAGTCTACAAGC	55	139
	(TGCA) ₃	TTATTATTTGGAGCCATCAAC	GTCTGTTTCTGTGTGATTCGT	55	167
MIR826a	(ACAAAT) ₃	CCCTAAAGTATGGGTTCACTT	GCACATGCACATGTACAATAA	55	140
MIR830a	(TTTTG) ₃	TGACACTTGTTAAAAACTCAGC	TAGCGAGACTCTGGTGAAATA	55	150
	(TA) ₁₀	No SSR-flanking primers found!			
MIR832a	(TTTG) ₃	GCGTTGAGTTTAAATTTTCCT	TATTTTCCTCTTCCATTCCTC	55	149
	(CGTTTC) ₃	AAAAATCGTTTCTCATTTCC	CCTCATCCTTCTAACATTGTG	53	146
MIR835a	(TTG) ₄	TTATCTAAATCCGTCGTCGT	AAAATTTTCGATCCTGGTG	55	152
	(TA) ₉	TCTACAGAGGATGGAAAGTCA	ACGAACAAGAAACTGATGAAA	55	157
MIR837a	(TTC) ₄	No SSR flanking primer found			
	(TAAA) ₃	TGGAAAAACATGAGGACTTTA	AACATGAAAGAAACAGATCCA	55	210
MIR838a	(TA) ₇	ATGTTACTCGCTGTTCAACTC	TCAAGGCTTCAAGAATCTACA	55	152
MIR839a	(CTCA) ₃	CAACTTCTCGGTTGATGTTTA	ATGCTACTCTTTCTGCTCACA	55	165
MIR843a	(AGA) ₄	ATTAAACCAGCAGTGAAACAA	TGAAGAAGCTAAAGGTTGGAT	55	153
MIR847a	$(TCT)_7$	GACTCGAAGGTTGAAGAAAGT	TATGGTGACGGATTTACAAAG	55	151
MIR849a	(TTTA) ₃	AGCTTTTCTTCTGGGTTATGT	TGGTCTAGTAGTTGTCCAATCA	55	165
MIR857a	(TTTTA) ₃	ATGAAGAAAACACCCAAAAAG	TCTCCACAATAGTCACGCTAC	56	148
MIR863a	(TATT) ₃	GGGGAAAACTCTTTCTTATGT	CTCTCAATCGCATTGGTATAA	54	213
MIDOCC	(ATC) ₄	TTTTCTCTTTCGACTCCTCTT	TCAAGGGTGTGAATCATTTAG	55	155
MIR866a	(ATTA) ₃	AACATCAAACCAACTTTCTGA	TCAATTGTCTTTTCGAATCTC	55	166
MID9/7-	(AAG) ₄	CAAAACTGATTTAAAGTTTGTGG	TGTCTATTGGGCTTACAAGAA	56	152
MIR867a	(GAA) ₄	AAAAGAAGAAGAAGAACGATG	TGATATTGGGCATTTGTCTAT	55	127
MIDOCOA	(AT) ₁₀	TAACAGTATTCGTGGGAAAAA	CTTATCCAACAACTACCACCA	55	149
MIR869a	(AT) ₆	TGGTGGTAGTTGTTGGATAAG	AGGAGTTTTCTCAAGAAGGTG	55	153
MID070-	$(TCT)_4$	AAACAATCGATCAACATCATC	CAAAAATTTCAAATCCCATC	55	154
MIR870a					

(AGA)₄ TTCGTAAAGAAACATTTGGTC TGTTGCAAATGTTAGGAGTCT 55 152

532 Table 2. Genes located adjacent to the miRNA-SSRs.

533

miRNA	Accession Number	Chr no	5' UTR genes	Gene Description	3' UTR genes	Gene Description
MIR838a	AT1G01046	Chr 1	AT1G01040	Encodes a Dicer homolog.	AT1G01070	Nodulin MtN21-like transporter family protein
MIR165a	AT1G01183	Chr 1	AT1G01180	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	AT1G01210	DNA-directed RNA polymerase
MIR847a	AT1G07051	Chr 1	AT1G07050	CCT motif family protein	AT1G07060	Unknown protein
MIR472a	AT1G12294	Chr 1	AT1G12290	Disease resistance protein (CC-NBS- LRR class) family	AT1G12300	Tetratricopeptide repeat (TPR)-like superfamily protein
MIR830a	AT1G14071	Chr 1	AT1G14060	GCK domain-containing protein	AT1G14090	Pseudogene
MIR159b	AT1G18075	Chr 1	AT1G18070	Translation elongation factor EF1A/initiation factor IF2gamma family protein	AT1G18080	Encodes the Arabidopsis thaliana homolog of the tobacco WD-40 repeat ArcA gene
MIR837a	AT1G18879	Chr 1	AT1G18871	Unknown protein; LOCATED IN: endomembrane system	AT1G18880	NITRATE TRANSPORTER
MIR394a	AT1G20375	Chr 1	AT1G20370	Pseudouridine synthase family protein	AT1G20380	Prolyl oligopeptidase family protein
MIR395c	AT1G26985	Chr 1	AT1G26976	Unknown protein; FUNCTIONS IN: molecular_function unknown	AT1G26990	Transposable element gene
MIR167d	AT1G31173	Chr 1	AT1G31166	Transposable element gene	AT1G31175	Unknown protein
MIR773a	AT1G35501	Chr 1	AT1G35500	Unknown protein	AT1G35510	O-fucosyltransferase family protein
MIR161	AT1G48267	Chr 1	AT1G48260	Encodes a member of the SNF1- related kinase (SnRK) gene family	AT1G48270	Unknown protein

MIR157d	AT1G48742	Chr 1	AT1G48740	2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily protein	AT1G48745	Unknown protein
MIR169d	AT1G53683	Chr 1	AT1G53660	Nucleotide/sugar transporter family protein	AT1G53687	MICRORNA169E
MIR169e	AT1G53687	Chr 1	AT1G53683	Encodes a microRNA that targets several HAP2 family members	AT1G53690	Protein of unknown function that is homologous to At5g41010
MIR426	AT1G60025	Chr 1	AT1G60020	Transposable element gene	AT1G60050	Nodulin MtN21-like transporter family protein
MIR171c	AT1G62035	Chr 1	AT1G62030	Cysteine/Histidine-rich C1 domain family protein	AT1G62045	BEST Arabidopsis thaliana protein match is: ankyrin repeat family protein (TAIR:AT1G11740.1)
MIR399b	AT1G63005	Chr 1	AT1G62981	Protein of unknown function (DUF1191)	AT1G63010	Major Facilitator Superfamily with SPX (SYG1/Pho81/XPR1) domain-containing protein
MIR157a	AT1G66783	Chr 1	AT1G66780	MATE efflux family protein	AT1G66790	Unknown protein
MIR157b	AT1G66795	Chr 1	AT1G66790	Unknown protein	AT1G66800	Unknown protein
MIR414	AT1G67195	Chr 1	AT1G67190	F-box/RNI-like superfamily protein	AT1G67200	Pseudogene
MIR839a	AT1G67481	Chr 1	AT1G67480	Galactose oxidase/kelch repeat superfamily protein	AT1G67510	Leucine-rich repeat protein kinase family protein
MIR777a	AT1G70645	Chr 1	AT1G70640	Octicosapeptide/Phox/Bem1p (PB1) domain-containing	AT1G70650	Ran BP2/NZF zinc finger-like superfamily protein
MIR159a	AT1G73687	Chr 1	AT1G73680	Encodes an alpha dioxygenase	AT1G73690	CYCLIN-DEPENDENT KINASE D1
MIR835a	AT1G76062	Chr 1	AT1G76050	Pseudouridine synthase family protein	AT1G76065	LYR family of Fe/S cluster biogenesis protein
MIR394b	AT1G76135	Chr 1	AT1G76120	Pseudouridine synthase family protein	AT1G76140	Prolyl oligopeptidase family protein
MIR398a	AT2G03445	Chr 2	AT2G03430	Ankyrin repeat family protein	AT2G03460	Galactose oxidase/kelch repeat superfamily protein
MIR156g	AT2G19425	Chr 2	AT2G19420	Unknown protein	AT2G19415	Hydroxyproline-rich glycoprotein family protein

MIR779a	AT2G22496	Chr 2	AT2G22482	Unknown protein	AT2G22510	Polynucleotidyl transferase
MIR405a	AT2G22668	Chr 2	N/A	N/A	N/A	N/A
MIR156a	AT2G25095	Chr 2	AT2G25090	Encodes a member of the SNF1- related kinase (SnRK) gene family	AT2G25100	Polynucleotidyl transferase
MIR825a	AT2G26211	Chr 2	AT2G26210	Ankyrin repeat family protein	AT2G26215	Transposable_element_gene
MIR172a	AT2G28056	Chr 2	AT2G28053	Transposable element gene	AT2G28060	5'-AMP-activated protein kinase beta-2 subunit protein
MIR417	AT2G32273	Chr 2	AT2G32240	Unknown protein	AT2G32275	Expressed protein
MIR399d	AT2G34202	Chr 2	AT2G34200	RING/FYVE/PHD zinc finger superfamily protein	AT2G34210	Transcription elongation factor Spt5
MIR390a	AT2G38325	Chr 2	AT2G38304	Unknown protein	AT2G38330	MATE efflux family protein
MIR393a	AT2G39885	Chr 2	AT2G39870	Unknown protein	AT2G39900	Encodes a member of the Arabidopsis LIM proteins
MIR319c	AT2G40805	Chr 2	AT2G40802	Unknown protein	AT2G40815	Calcium-dependent lipid-binding (CaLB domain) family protein
MIR159c	AT2G46255	Chr 2	AT2G46250	Myosin heavy chain-related	AT2G46260	Encodes a member of the Arabidopsis LIM proteins
MIR164a	AT2G47585	Chr 2	AT2G47570	Ribosomal protein L18e/L15 superfamily protein	AT2G47610	Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein
MIR167c	AT3G04765	Chr 3	AT3G04760	Pentatricopeptide repeat (PPR-like) superfamily protein	AT3G04780	Thioredoxin-like protein
MIR169a	AT3G13405	Chr 3	AT3G13403	Encodes a defensin-like (DEFL) family protein.	AT3G13410	Unknown protein
MIR157c	AT3G18217	Chr 3	AT3G18215	Protein of unknown function, DUF599	AT3G18220	LIPID PHOSPHATE PHOSPHATASE 4
MIR418	AT3G18895	Chr 3	AT3G18890	NAD(P)-binding Rossmann-fold superfamily protein	AT3G18900	FUNCTIONS IN: molecular_function unknown

				F-box and associated interaction		ATD E1 E2 town fourile most in the local
MIR167a	AT3G22886	Chr 3	AT3G22870	domains-containing protein	AT3G22910	ATPase E1-E2 type family protein / haloacid dehalogenase-like hydrolase family protein
MIR169m	AT3G26818	Chr 3	AT3G26816	Encodes a microRNA that targets several HAP2 family members	AT3G26819	MICRORNA169N
MIR169n	AT3G26819	Chr 3	AT3G26818	Encodes a microRNA that targets several HAP2 family members	AT3G26820	Esterase/lipase/thioesterase family protein
MIR849a	AT3G44444	Chr 3	AT3G44440	unknown protein	AT3G44450	unknown protein
MIR843a	AT3G48057	Chr 3	AT3G48050	'SHUTTLE' IN CHINESE, SUO	AT3G48058	pseudogene of Rac-like GTP-binding protein
MIR171a	AT3G51375	Chr 3	AT3G51370	Protein phosphatase 2C family protein	AT3G51390	DHHC-type zinc finger family protein
MIR172d	AT3G55512	Chr 3	AT3G55490	GINS complex protein	AT3G55520	FKBP-like peptidyl-prolyl cis-trans isomerase family protein
MIR166b	AT3G61897	Chr 3	AT3G61870	unknown protein	AT3G61898	unknown protein
MIR167b	AT3G63375	Chr 3	AT3G63360	Encodes a defensin-like (DEFL) family protein.	AT3G63380	ATPase E1-E2 type family protein / haloacid dehalogenase-like hydrolase family protein
MIR165b	AT4G00885	Chr 4	AT4G00880	SAUR-like auxin-responsive protein family	AT4G00890	Encodes a putative glycosyl hydrolase family 10 protein (xylanase).
MIR826a	AT4G03039	Chr 4	AT4G03030	Galactose oxidase/kelch repeat superfamily protein	AT4G03038	Unknown gene
MIR405d	AT4G05508	Chr 4	N/A	N/A	N/A	N/A
MIR401	AT4G08116	Chr 4	N/A	N/A	N/A	N/A
MIR832a	AT4G10345	Chr 4	AT4G10330	Glycine-rich protein	AT4G10360	TRAM
MIR863a	AT4G13494	Chr 4	AT4G13495	Unknown gene	AT4G13500	Unknown protein
MIR857a	AT4G13554	Chr 4	AT4G13550	Triglyceride lipases	AT4G13555	MICRORNA397B

MIR398c	AT5G14565	Chr 5	AT5G14560	Unknown protein	AT5G14580	polyribonucleotide nucleotidyltransferase
MIR156e	AT5G11977	Chr 5	AT5G11970	Protein of unknown function (DUF3511)	AT5G11980	Conserved oligomeric Golgi complex component- related / COG complex component-related
MIR156d	AT5G10945	Chr 5	AT5G10946	Unknown protein	AT5G10950	Tudor/PWWP/MBT superfamily protein
AIR166d	AT5G08717	Chr 5	AT5G08710	Regulator of Chr condensation (RCC1) family protein	AT5G08720	CONTAINS InterPro DOMAIN/s: Streptomyces cyclase/dehydrase (InterPro:IPR005031)
AIR166c	AT5G08712	Chr 5	AT5G08710	Regulator of Chr condensation (RCC1) family protein	AT5G08720	CONTAINS InterPro DOMAIN/s: Streptomyces cyclase/dehydrase (InterPro:IPR005031)
MIR172b	AT5G04275	Chr 5	AT5G04270	DHHC-type zinc finger family protein	AT5G04280	ATRZ-1C
AIR822a	AT5G03552	Chr 5	AT5G03550	TRAF-like family protein	AT5G03555	NUCLEOBASE CATION SYMPORTER 1
AIR164b	AT5G01747	Chr 5	AT5G01740	Nuclear transport factor 2 (NTF2) family protein	AT5G01750	Protein of unknown function (DUF567)
1IR419	AT4G32445	Chr 4	AT4G32440	Plant Tudor-like RNA-binding protein	AT4G32450	Pentatricopeptide repeat (PPR) superfamily protein
AIR156b	AT4G30972	Chr 4	AT4G30970	Unknown protein	AT4G30975	Unknown gene
4IR319a	AT4G23713	Chr 4	AT4G23690	Encodes a homodimeric all-beta dirigent protein in the superfamily of calycins	AT4G23720	Protein of unknown function (DUF1191)
1IR867a	AT4G21362	Chr 4	AT4G21360	Transposable element gene	AT4G21363	transposable element gene
MIR168a	AT4G19395	Chr 4	AT4G19390	Uncharacterised protein family (UPF0114)	AT4G19400	Profilin family protein
MIR160b	AT4G17788	Chr 4	AT4G17780	F-box and associated interaction domains-containing protein	AT4G17790	SNARE associated Golgi protein family
/IR397b	AT4G13555	Chr 4	AT4G13554	Encodes a microRNA that targets a Laccase family member	AT4G13575	unknown protein

MIR162b	AT5G23065	Chr 5	AT5G23035	Encodes a defensin-like (DEFL) family protein.	AT5G23070	Thymidine kinase
MIR169b	AT5G24825	Chr 5	AT5G24820	Eukaryotic aspartyl protease family protein	AT5G24830	Tetratricopeptide repeat (TPR)-like superfamily protein
MIR156f	AT5G26147	Chr 5	AT5G26140	LONELY GUY 9 (LOG9)	AT5G26146	Potential natural antisense gene
MIR164c	AT5G27807	Chr 5	AT5G27800	Class II aminoacyl-tRNA and biotin synthetases superfamily protein	AT5G27810	MADS-box transcription factor family protein
MIR169c	AT5G39635	Chr 5	AT5G39630	Vesicle transport v-SNARE family protein	AT5G39640	Putative endonuclease or glycosyl hydrolase
MIR869a	AT5G39693	Chr 5	AT5G39670	Calcium-binding EF-hand family protein	AT5G39730	AIG2-like (avirulence induced gene) family protein
MIR866a	AT5G40384	Chr 5	AT5G40382	Cytochrome c oxidase subunit Vc family protein	AT5G40400	Pentatricopeptide repeat (PPR) superfamily protein
MIR319b	AT5G41663	Chr 5	AT5G41660	Unknown protein	AT5G41670	6-phosphogluconate dehydrogenase family protein
MIR166e	AT5G41905	Chr 5	AT5G41900	alpha/beta-Hydrolases superfamily protein	AT5G41908	Unknown protein
MIR166f	AT5G43603	Chr 5	AT5G43590	Acyl transferase/acyl hydrolase/lysophospholipase superfamily protein	AT5G43620	Pre-mRNA cleavage complex II
MIR405b	AT5G50717	Chr 5	N/A	N/A	N/A	N/A
MIR870a	AT5G52797	Chr 5	AT5G52790	FUNCTIONS IN: molecular_function unknown	AT5G52780	Protein of unknown function (DUF3464)
MIR156h	AT5G55835	Chr 5	AT5G55830	Concanavalin A-like lectin protein kinase family protein	AT5G55840	Pentatricopeptide repeat (PPR) superfamily protein
MIR390b	AT5G58465	Chr 5	AT5G58450	Tetratricopeptide repeat (TPR)-like superfamily protein	AT5G58480	O-Glycosyl hydrolases family 17 protein

MIR166g	AT5G63715	Chr 5	AT5G63710	Leucine-rich repeat protein kinase family protein	AT5G63720	KOKOPELLI, KPL
MIR170	AT5G66045	Chr 5	AT5G66010	RNA-binding (RRM/RBD/RNP motifs) family protein	AT5G66050	Wound-responsive family protein