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Abstract

Background: Simultaneous consideration of two neuropathological traits related to Alzheimer’s disease (AD) has not

been attempted in a genome-wide association study.

Methods: We conducted genome-wide pleiotropy analyses using association summary statistics from the Beecham et

al. study (PLoS Genet 10:e1004606, 2014) for AD-related neuropathological traits, including neuritic plaque (NP),

neurofibrillary tangle (NFT), and cerebral amyloid angiopathy (CAA). Significant findings were further examined

by expression quantitative trait locus and differentially expressed gene analyses in AD vs. control brains using

gene expression data.

Results: Genome-wide significant pleiotropic associations were observed for the joint model of NP and NFT (NP + NFT)

with the single-nucleotide polymorphism (SNP) rs34487851 upstream of C2orf40 (alias ECRG4, P = 2.4 × 10−8) and for the

joint model of NFT and CAA (NFT + CAA) with the HDAC9 SNP rs79524815 (P = 1.1 × 10−8). Gene-based testing revealed

study-wide significant associations (P ≤ 2.0 × 10−6) for the NFT + CAA outcome with adjacent genes TRAPPC12, TRAPPC12-

AS1, and ADI1. Risk alleles of proxy SNPs for rs79524815 were associated with significantly lower expression of HDAC9 in

the brain (P = 3.0 × 10−3), and HDAC9 was significantly downregulated in subjects with AD compared with

control subjects in the prefrontal (P = 7.9 × 10−3) and visual (P = 5.6 × 10−4) cortices.

Conclusions: Our findings suggest that pleiotropy analysis is a useful approach to identifying novel genetic

associations with complex diseases and their endophenotypes. Functional studies are needed to determine

whether ECRG4 or HDAC9 is plausible as a therapeutic target.

Keywords: Alzheimer’s disease, Neuropathological traits, Genome-wide association study, Pleiotropy analysis,
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Background

Alzheimer’s disease (AD) is the most common type of

dementia in persons aged 65 years and older [1, 2]. Patho-

logically, it is characterized primarily by the appearance of

both neuritic plaques (NPs) containing oligomers of β-

amyloid and neurofibrillary tangles (NFTs), accompanied

by a progressive loss of neurons in the brain [3, 4]. Also,

cerebral amyloid angiopathy (CAA), which is caused by

aggregates of β-amyloid in walls of blood vessels in the

brain, is found in as many as 90% of autopsy-confirmed

AD cases [5]. Previously, Beecham et al. identified

multiple significant gene associations in a genome-wide

association study (GWAS) for several AD-related neuro-

pathological traits, including NP, NFT, and CAA mea-

sured in brains from subjects with pathologically

confirmed AD cases and from control subjects with no
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evidence of neurological disease [6]. We hypothesized that

additional novel associations could be identified in models

allowing a genetic variant to influence more than one trait

(i.e., pleiotropy). In this study, we performed genome-wide

pleiotropy analyses of joint models of NP, NFT, and CAA

using summary data from the previous study [6].

Methods

Study population, neuropathological trait selection, and

data processing

We obtained summary statistics from univariate GWAS

of NP, NFT, and CAA [6]. These results were derived

from meta-analyses of 12 studies including 3598 subjects

(3135 AD cases, 463 controls) of European ancestry.

Neuropathological data for the entire sample were

reviewed and harmonized by one neuropathologist for

consistency across studies [6]. Although Beecham et al.

[6] also evaluated Lewy body disease, hippocampal scler-

osis, and vascular brain disease, we limited our present

analyses to neuropathological outcomes most directly

linked to AD and moderately correlated with each other

(i.e., NP, NFT, and CAA). Uncorrelated traits are un-

likely to show significant pleiotropic associations, and

results from pleiotropy analysis will be similar to those

from univariate models (i.e., single phenotype) if the

traits are highly correlated. Details of subject re-

cruitment, genotyping, genotype imputation, quality

control procedures, population substructure analysis,

and statistical methods for association analyses of

individual traits were reported previously [6, 7]. Sam-

ple demography of the 3598 subjects with autopsied

brains and genotypes (3135 cases and 463 controls) is

described in Additional file 1: Table S1.

Univariate genome-wide association analyses

Results from the association tests by Beecham et al. [6]

in each dataset for each neuropathologic trait with geno-

types imputed using the 1000 Genomes Project refer-

ence panel (GRCh37 at December 2010) for a genome-

wide set of single-nucleotide polymorphisms (SNPs)

were obtained using ordinal logistic regression models

including the first three principal components of ances-

try as covariates to account for population substructure

[6]. NP and NFT measures were analyzed in well-

established ordinal rankings (NPs: none, sparse, moder-

ate, and frequent by Consortium to Establish a Registry

for Alzheimer’s Disease [“CERAD”] scoring [8]; NFT:

none, transentorhinal, limbic, and isocortical by Braak

and Braak staging [9]), and CAA was analyzed as a bin-

ary trait (present or absent). Full details of these analyses

are reported elsewhere [6]. We used GWAS meta-

analysis summary statistics (β and SE) of the three neu-

ropathologic traits for 6.5 million imputed SNPs after

omitting SNPs from studies if the minor allele frequency

was ≤ 1%, imputation quality (R2) was ≤ 0.4, or dosage

variance was ≤ 0.02.

Genome-wide pleiotropy analyses

We conducted a genome-wide pleiotropy analysis for

each pair of the three neuropathological traits using the

O’Brien method [10, 11], which is implemented in an R

library (“CUMP”) [12]. This method combines univariate

test statistics (Z-scores from β and SE values) of all SNPs

from separate GWASs for individual phenotypes to

compute a test statistic that follows a multivariate nor-

mal distribution. The covariance matrix of the distribu-

tion was approximated by the sample covariance matrix

of the test statistics of all SNPs. Under the null hypoth-

esis, an SNP is not associated with any of the pheno-

types. The alternative hypothesis is that an SNP is

associated with at least one of the phenotypes. We

defined a SNP as having a pleiotropic effect on two phe-

notypes when the P value for the O’Brien test statistic

from the joint model of association of two phenotypes

(Pjoint) with the SNP is at least one order of magnitude

more significant than the P values (Punivariate) for both

phenotypes and the univariate P values are at least nom-

inally significant (Punivariate < 0.05). As a supplementary

analysis, we also conducted a trivariate pleiotropy

genome-wide analysis for the three neuropathological

traits. The genome-wide significance (GWS) threshold

for these analyses was set at P < 5.0 × 10−8.

Gene-based association

We performed genome-wide gene-based tests for each

joint model using results from individual SNP tests.

SNPs within 30 kb of the transcription start and end

sites were included in each gene-based test. These ana-

lyses were carried out using the versatile gene-based test

(“VEGAS”) method [13], which computes an empirical P

value through Monte Carlo simulations based on linkage

disequilibrium patterns of the European ancestry popu-

lation in the 1000 Genomes Project (GRCh37 released

March 2012). The GWS level for the gene-based tests

was set at 2.7 × 10−6, which was calculated as the nom-

inal significance level 0.05 divided by the total number

of genes tested (n = 18,500).

Expression quantitative trait locus analysis

The association of SNP genotypes with gene-level expres-

sion (i.e., expression quantitative trait loci [eQTLs]) was

evaluated using version 6 of the GTEx Portal database

(http://www.gtexportal.org/; [14]) and data from the Mayo

Clinic brain expression GWAS (eGWAS) (https://www.sy

napse.org/#!Synapse:syn3157249 or http://alois.med.upen

n.edu/niagads; [15]). The GTEx Portal provides eQTL as-

sociation summary statistics (β and P values) across 43

different tissues from 175 subjects. The Mayo Clinic brain
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eGWAS data were generated from the cerebellum (CER;

197 AD and 177 non-AD control subjects) and temporal

cortex (TCX; 202 AD and 197 non-AD control subjects)

regions. Gene expression measures for 24,526 probes were

generated with the Illumina Whole Genome DASL array

(Illumina, San Diego, CA, USA). SNP genotype data for

the Mayo Clinic eGWAS were obtained from the Mayo

Clinic late-onset AD GWAS [16]. AD cases were diag-

nosed as definite AD according to National Institute of

Neurological and Communicative Disorders and Stroke/

Alzheimer’s Disease and Related Disorders Association

criteria, whereas non-AD controls had other neuropathol-

ogies. For each brain region, association of gene expres-

sion and imputed SNP genotype (GRCh36) was evaluated

using linear regression, including covariates for AD status,

apolipoprotein E (APOE) ε4 dosage (0, 1, or 2), age at

death, sex, plate, RNA integrity number (RIN), and ad-

justed RIN (RIN − RINmean2). Analyses were also con-

ducted for AD cases and controls separately.

Differential gene expression analysis

Differential gene expression (DGE) analysis was performed

using publicly available brain whole-transcriptome RNA-

sequencing (RNA-Seq) data [17] and microarray data (Gene

Expression Omnibus accession number [GEO:GSE44772]

[18]). The RNA-Seq data include DGE summary statistics

for the CER and TCX derived from 86 patients with AD

and 80 control subjects (https://www.synapse.org). Follow-

ing a quality control step, 80 AD and 76 control brains

were analyzed. All subjects underwent RNA-Seq using the

Illumina HiSeq 2000 sequencing system (101 bp, paired-

end sequencing) at the Mayo Clinic Genomic Core Facility.

All AD and some of the control brains were from the Mayo

Clinic Brain Bank, whereas other control brains were from

the Banner Sun Health Research Institute (Sun City, AZ,

USA). Following quality control, raw read counts normal-

ized according to conditional quantile normalization

(CQN) employing the Bioconductor package were used in

the analyses. For DGE comparing AD with controls, multi-

variable linear regression analyses were conducted in R,

using CQN normalized gene expression measures and in-

cluding age at death, sex, RIN, brain tissue source, and flow

cell as biological and technical covariates. To account for

any CNS cell-population changes that occur as a conse-

quence of disease pathology, we also included cell-specific

gene levels as covariates, using the expression levels for the

five central nervous system (CNS)-specific genes as follows:

ENO2 for neurons [ENCODE:ENSG00000111674], GFAP

for astrocytes [ENCODE:ENSG00000131095], CD68 for

microglia [ENCODE:ENSG00000129226], OLIG2 for oligo-

dendrocytes [ENCODE:ENSG00000205927], and CD34 for

endothelial cells [ENCODE:ENSG00000174059].

The microarray gene expression data were generated

from autopsied brains collected from dorsolateral prefrontal

cortex (DLPFC), visual cortex (VCX), and CER regions of

129 AD patients and 101 control subjects. Samples were

profiled on a custom-made Agilent 44K array (Agilent

Technologies, Santa Clara, CA, USA) containing 40,638

human genes. Gene expression data were normalized using

Rosetta Resolver gene expression analysis software as previ-

ously described [18]. The association between expression of

each gene (outcome) and AD status (predictor) was tested

using linear regression adjusting for RIN, postmortem

interval, batch, preservation method, pH in tissues, age, sex,

and the five cell-type markers.

Results
NP, NFT, and CAA were moderately correlated (NP-NFT,

r = 0.68; NP-CAA, r = 0.56; NFT-CAA, r = 0.40; P < 2.2 ×

10−16 for each pair of traits), indicating a potential for dis-

covery of novel associations in pleiotropy analysis.

Bivariate GWAS results

There was no inflation in P values for the GWAS of the

three neuropathological traits analyzed individually

(genomic control parameter, λ = 1.00, 1.01, and 0.96 for NP,

NFT, and CAA, respectively) or as joint outcomes

(Additional file 1: Figure S1). Results of the pleiotropy

GWAS are shown in Additional file 1: Figure S2. As re-

ported previously, with the exception of APOE, only 15 of

25 previously known AD loci attained at least a nominal

association with NP, NFT, or CAA [6]. Three of the previ-

ously established AD loci—BIN1, HLA region, and

PICALM—were moderately associated (P < 10−4) in the

pleiotropy analysis for NP and NFT at a significance level of

at least one order of magnitude smaller compared with the

results from univariate analyses (Additional file 1: Table

S2). Two novel GWS associations were detected in the plei-

otropy analyses (Table 1, Fig. 1). rs34487851, an SNP lo-

cated approximately 40 kb upstream of C2orf40, was

associated with the joint model of NP and NFT (Pjoint = 2.0

× 10−8). An intronic SNP in HDAC9, rs79524815, was asso-

ciated with the joint model of NFT and CAA (Pjoint = 1.1 ×

10−8). The major allele A of rs34487851 and the minor al-

lele G of rs79524815 are associated with increased NP and

NFT and with increased NFT and the presence of CAA, re-

spectively. Both of these findings were at least one order of

magnitude more significant than for the univariate traits

(Table 1) and were supported by evidence from multiple

SNPs at those locations (Fig. 1, Additional file 1: Table S3).

Bivariate gene-based pleiotropy analysis results

Three contiguous novel genes on chromosome 2p25.3

(TRAPPC12, TRAPPC12-AS1, and ADI1) were associated

with the joint model of NFT and CAA at a gene-wide

significant level (P ≤ 2.0 × 10−6) (Table 2 and Additional

file 1: Figure S3). Of note, one SNP in this region

(rs35067331 in TRAPPC12) was associated with the NFT-
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CAA outcome at nearly the GWS level (Pjoint = 5.8 × 10−8)

(Additional file 1: Table S4).

Trivariate GWAS and gene-based pleiotropy analysis

results

We conducted trivariate GWAS and gene-based associ-

ation analyses to identify genetic factors common to NP,

NFT, and CAA. There was no evidence for genomic

inflation (λ = 0.99) in the results from the trivariate

model (Additional file 1: Figure S4). GWS associ-

ation was observed only for APOE isoform SNP

rs429358 (P = 2.1 × 10−47), whereas associations at

C2orf40, HDAC9, and TRAPPC12 were attenuated

(Additional file 1: Table S5).

Fig. 1 Regional association plots of (a) C2orf40 from the joint model of neuritic plaque (NP) and neurofibrillary tangles (NFT) and (b) HDAC9 from

the joint model of NFT and cerebral amyloid angiopathy (CAA)
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eQTL analysis

We performed eQTL association analysis to examine

whether the expression levels of the five GWS significant

genes identified in the pleiotropy association tests dif-

fered between carriers and noncarriers of the risk alleles

from those loci. Because information about the two

GWS SNPs was not available in the GTEx Portal data-

base or in the Mayo Clinic brain eGWAS, we analyzed

proxy SNPs that are in high linkage disequilibrium (LD;

D′ ≥ 80) with the GWS SNPs. According to GTEx,

rs34487851 proxy SNP rs1232803 is a cis-acting eQTL,

and the major allele A, which is associated with higher

NP and NFT, is also significantly associated with

decreased expression of C2orf40 in several tissues, in-

cluding the esophagus (P = 3.5 × 10−5), transverse colon

(P = 4.7 × 10−4), and tibial artery (P = 1.7 × 10−3), but

not in any brain regions. In the Mayo Clinic brain

eGWAS, proxy SNPs for rs34487851 were not cis-acting

eQTLs for C2orf40. In GTEx, proxy SNPs for rs79524815

were not associated with the expression of HDAC9.

However, in the brain eGWAS, the minor alleles of proxy

SNPs for rs79524815, which are associated with higher

NFT and CAA, were significantly associated with lower

HDAC9 levels in the CER (probe ID: ILMN_1803563; best

eQTL, rs4721721; P = 0.003) but not in the TCX

(Additional file 1: Table S3). According to GTEx,

rs35067331 is a cis-acting eQTL, and its major allele C,

which is associated with higher NFT and CAA, is signifi-

cantly associated with increased expression of TRAPPC12-

AS1 in several brain regions (best P = 2.1 × 10−7 in cortex)

and ADI1 (P = 0.03) in the caudate nucleus, but not

with differential expression of TRAPPC12 in any

brain regions (Additional file 1: Table S4). In the

Mayo Clinic brain eGWAS data, rs35067331 and its

proxy SNPs were not cis-acting eQTLs for ADI1 or

TRAPPC12. Unfortunately, information about

TRAPPC12-AS1 was unavailable in the brain eGWAS.

Differential gene expression analysis

We investigated whether the expression levels of C2orf40,

HDAC9, and TRAPPC12/TRAPPC12-AS1/ADI1 differed

in AD brains compared with non-AD control brains in

the publicly available RNS-Seq and microarray datasets

(Table 3 and Fig. 2). There were no significant differences

in C2orf40 expression between subjects with AD and con-

trol subjects in the TCX or CER in the Mayo Clinic RNA-

Seq DGE profiling. However, C2orf40 was significantly

downregulated in subjects with AD compared with control

subjects in the CER (P = 1.6 × 10−3), DLPFC (P = 0.04),

and VCX (P = 2.7 × 10−3) in the microarray brain expres-

sion data. HDAC9 was significantly downregulated in sub-

jects with AD compared with control subjects in several

brain regions, including the TCX (P = 1.5 × 10−4) and CER

(P = 0.04) in the RNA-Seq profiling data and in the DLPFC

Table 2 Gene-wide significant results (P < 2.7 × 10−6) from gene-based tests of pleiotropy single-nucleotide polymorphism

association results

Univariate gene-based tests Pleiotropy gene-based tests

Chromosome Start End Gene NP NFT CAA NP + NFT NP + CAA NFT + CAA

2 3,383,446 3,483,342 TRAPPC12 0.09 4.0 × 10−5 0.5 0.01 0.07 2.0 × 10−6

2 3,485,013 3,486,180 TRAPPC12-AS1 0.002 3.9 × 10−5 5.0 × 10−3 1.6 × 10−5 2.1 × 10−5 < 1.0 × 10−6

2 3,501,690 3,523,350 ADI1 0.003 1.6 × 10−5 7.0 × 10−4 3.2 × 10−5 4.0 × 10−6 < 1.0 × 10−6

Abbreviations: NP Neuritic plaque, NFT Neurofibrillary tangles, CAA Cerebral amyloid angiopathy

Gene-based P values were computed through 1 million permutations, so the smallest P value is 1.0 × 10−6

Table 3 Results of differential gene expression analysis in brain

RNA-Seq Microarray

CER TCX CER DLPFC VCX

Gene β value (SE) P value β value (SE) P value β value (SE) P value β value (SE) P value β value (SE) P value

ECRG4
a 0.06 (0.20) 0.77 0.19 (0.24) 0.43 −0.18 (0.05) 1.6 × 10−3 −0.12 (0.06) 0.04 −0.12 (0.04) 2.7 × 10−3

HDAC9 −0.24 (0.12) 0.04 −0.31 (0.08) 1.5 × 10−4 −0.01 (0.02) 0.77 −0.09 (0.03) 7.9 × 10−3 −0.06 (0.02) 5.6 × 10−4

TRAPPC12 −0.05 (0.06) 0.35 −0.13 (0.05) 0.01 −0.09 (0.03) 1.1 × 10−3 −0.03 (0.02) 0.09 −0.08 (0.02) 3.2 × 10−4

TRAPPC12-AS1 0.22 (0.12) 0.06 0.59 (0.18) 1.3 × 10−3 – – – – – –

ADI1 −0.10 (0.08) 0.19 −0.07 (0.08) 0.36 −0.10 (0.03) 4.9 × 10−4 −0.03 (0.03) 0.31 −0.01 (0.03) 0.64

Abbreviations: CER Cerebellum, TCX Temporal cortex, DLPFC Dorsolateral prefrontal cortex, CER Cerebellum, TCX Temporal cortex, DLPFC Dorsolateral prefrontal

cortex, VCX Visual cortex

Results were obtained from analyses of RNA-Seq data in the Synapse database (https://www.synapse.org; [17]) and microarray data in the Gene Expression

Omnibus database [GEO:GSE44771]. Negative β value indicates lower level of gene expression in AD cases compared with controls and vice versa. Results that

remained significant after multiple test correction (P = 0.05/22 = 2.27 × 10−3) are highlighted in bold
aAlso known as C2orf40
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Fig. 2 Box plots showing differential expression in microarray data [GEO:GSE44772] between AD cases and controls for C2orf40, HDAC9, TRAPPC12,

and ADI1 in the cerebellum (CER; left column), dorsolateral prefrontal cortex (DLPFC; middle column), and visual cortex (VCX; right column). AD

Alzheimer’s disease
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(P = 7.9 × 10−3) and VCX (P = 5.6 × 10−4) in the microarray

expression data. ADI1 expression was downregulated in

subjects with AD in the CER in the microarray data

(P = 4.9 × 10−4). The RNA-Seq DGE profiling indi-

cated that TRAPPC12-AS1 expression was signifi-

cantly increased in subjects with AD in the TCX (P =

1.3 × 10−3). In contrast, expression of TRAPPC12 was

significantly lower in subjects with AD than in con-

trol subjects in the TCX (P = 0.01) in the RNA-Seq

and in the CER (P = 1.1 × 10−3) and VCX (P = 3.2 ×

10−4) in the microarray data. Information about ex-

pression of TRAPPC12-AS1 was not available in the

microarray data. The majority of these nominally sig-

nificant findings survived correction for multiple test-

ing (P < 2.27 × 10−3).

To contextualize our findings, we evaluated DGE

among AD cases and controls for 26 previously estab-

lished AD genes (Additional file 1: Table S6) [19–21].

With notable exceptions of EPHA1 (P = 2.8 × 10−7) and

SLC24A4 (P = 7.0 × 10−5) in CER in the RNA-Seq data

and ABCA7 in DLPFC (P = 2.5 × 10−7) and VCX (P = 4.9

× 10−7) in the microarray data, none of the results for the

other 23 genes were significant after correcting for 127

tests (P < 3.94 × 10−4).

Discussion

A previous GWAS of neuropathologic traits including

NP, NFT, and CAA identified GWS associations with

APOE only [6]. Our pleiotropy analysis of all pairwise

combinations of these traits identified GWS associa-

tions with APOE and three regions not previously re-

ported with any neuropathologic traits or AD risk,

including C2orf40 for the joint model comprising NP

and NFT, as well as HDAC9 and TRAPPC12/

TRAPPC12-AS1/ADI1 for the joint model comprising

NFT and CAA. Our DGE study found that HDAC9 is

significantly downregulated in several brain regions in

subjects with AD compared with control subjects.

Moreover, we observed that the G allele of HDAC9

SNP rs79524815 is associated with a higher level of

the joint outcome of NFT and CAA, and proxy SNPs

for rs79524815 (which are suggestively associated with

the joint outcome of NFT and CAA) are associated

with decreased HDAC9 expression in subjects with

AD (Additional file 1: Table S3). The pleiotropy ana-

lysis also revealed that 4 (BIN1, HLA, PICALM, and

APOE) of the 25 previously reported GWS AD risk

loci [7, 19–21] were at least one order of magnitude

more significantly associated with the joint model of NP +

NFT than each of these traits analyzed separately, suggest-

ing that these genes are involved in pathways leading to

both plaques and tangles [22–25].

It is notable that pleiotropy analyses for the model

including NP, NFT, and CAA did not yield any GWS

findings. Moreover, the GWS associations identified in

the bivariate models were attenuated in the trivariate

model. These results suggest that the mechanisms or

pathways underlying the bivariate associations prob-

ably do not encompass all three traits, and this con-

clusion may generalize genome-wide.

C2orf40, also known as esophageal cancer-related gene

4 (ECRG4), is a tumor suppressor gene [26] that encodes

a peptide hormone that is involved in NFT formation in

transgenic mice [27], senescence of precursor cells in

the CNS during aging [28], and activation of microglia

and peripheral mononuclear leukocytes [29]. We ob-

served that rs34487851 allele A is associated with higher

NP and NFT and lower expression of ERCG4, albeit not

in the brain. We also found that ERCG4 expression was

significantly lower in AD cases than in controls in sev-

eral brain regions. Abnormal downregulation of C2orf40

was previously reported in brain injury [30] as well as in

several cancer cell types [31, 32].

HDAC9 encodes a member of class IIa histone genes

that deacetylate histones, thereby remodeling chromatin

structure and controlling gene expression [33, 34] that

has previously been linked to epigenetic mechanisms

[35] and memory loss [36] in AD and also has been pro-

posed as a possible therapeutic target [37–39]. GWS as-

sociation of ischemic stroke with an HDAC9 variant was

identified by GWAS [40]. Structural variants including

deletions and copy number variants in HDAC9 have

been identified in patients with schizophrenia and

patients with autism [41, 42]. MEF2C, one of the well-

established AD risk loci [21], stimulates HDAC9 expres-

sion, but HDAC9 suppresses MEF2C transcription,

resulting in a negative feedback loop [43]. In a previously

reported coexpression network study in AD and con-

trol brains, HDAC9 and MEF2C were clustered to-

gether in the top fourth module ranked by relevance

to AD pathology, and expression of HDAC9 and

MEF2C was inversely correlated with Braak stage

(HDAC9, r = −0.71; MEF2C, r = −0.65) and frontal

atrophy (HDAC9, r = −0.57, MEF2C, r = −0.51) [18].

These findings are consistent with our observation

that HDAC9 expression is reduced in subjects with

AD and in the subjects with HDAC9 SNP alleles as-

sociated with higher NFT and CAA. Decreased

HDAC9 expression has also been linked to increased

neuronal apoptosis [44, 45]. Collectively, findings

from our and other studies indicate that MEF2C and

HDAC9 may participate in a pathway leading to NFT

formation and brain atrophy.

Gene-based analyses identified significant associations

with three adjacent loci—TRAPPC12, TRAPPC12-AS1,

and ADI1—in a gene-rich region near the end of the

short arm of chromosome 2p. ADI1, encoding acireduc-

tone dioxygenase 1, is involved in methionine salvage
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and prostate cancer [46] and has no known relationship

to AD. TRAPPC12 is a subunit of a trafficking protein

particle complex that has a role in vesicle trafficking in

endoplasmic reticulum (ER) to Golgi [47]. TRAPPC12-

AS1 is an antisense (noncoding) RNA that contains a

1168 transcript from TRAPPC12. We previously estab-

lished that regulation of vesicular trafficking in the ER to

Golgi by several VPS10 receptor domain receptor genes,

including SORL1, and by other genes encoding members

of the retromer complex is an important pathway lead-

ing to AD [48–50]. Of the genes in this region, only

TRAPPC12-AS1 showed a pattern of expression in sub-

jects with AD and control subjects that is consistent

with the effect direction of the TRAPPC12 rs35067331

allele’s influence on NFT and CAA. It should be noted

that TRAPPC12 expression was significantly lower in

AD cases than in control subjects in the TCX (P = 0.01)

in the RNA-Seq data and the CER (P = 1.1 × 10−3) and

VCX (P = 3.2 × 10−4) in the microarray data, which

could be due to negative feedback by the antisense

TRAPPC12-AS1 transcript [51].

Our study has several potential caveats. The GWS

associations identified in the pleiotropy analysis have

moderate supportive evidence for association from

other SNPs under the association peaks, probably

because of low LD with the top SNPs. The two

GWS SNPs near C2orf40 and HDAC9 were not asso-

ciated with AD risk in one of the largest GWASs for

AD (rs34487851, P = 0.07; rs79524815, P = 0.73)

[19, 21]. However, approximately 87% of the autopsy

samples used in this pleiotropy analysis (as well as

in the Beecham et al. study [6]) were from patients

with AD. This may indicate that our findings are

more relevant with neuropathological progression

after onset of AD clinical symptoms. Alternatively,

because our study was focused on endophenotypes

that might be more proximal than disease diagnosis

to effects of the genetic variants [52, 53], our ana-

lyses might have more power to detect those novel

associations. Finally, to our knowledge, additional

large late-onset AD cohorts with neuropathological

and genotype data are not currently available for

replication of our association findings. Therefore,

validation of the role of these loci in AD will likely

require experimental evidence.

Conclusions

Our findings suggest that genome-wide pleiotropy

analysis is a useful approach to identifying novel gen-

etic associations with complex diseases and their

endophenotypes. Functional studies are needed to de-

termine whether C2orf40 or HDAC9 is a plausible

therapeutic target.
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(D′ > 0.90) with rs79524815 were used for the eQTL test with HDAC9

expression. Table S4. Association of expression of SNPs for TRAPPC12-AS1
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model of neuritic plaque (NP), neurofibrillary tangles (NFT), and cerebral
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all SNPs (black dots) and after excluding SNPs in APOE region (blue dots) for
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CAA using the O’Brien method [10]. Figure S2. Manhattan plots showing
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(c) NFT and CAA using the O’Brien method [10]. Red dashed line represents

the genome-wide significance threshold of P < 5.0 × 10−−8. Loci achieving

genome-wide significance are highlighted in red, and known AD genes that

attained at least a moderate significance level (P < 10−−4) are highlighted in

gold. Figure S3. Regional association plots of genes, including TRAPPC12,
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and CAA. Figure S4. Genome-wide trivariate pleiotropy analysis of NP, NFT,
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