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Functional-linkage network <p>An evidence-weighted functional-linkage network of human genes reveals associations among diseases that share no known disease genes and have dissimilar phenotypes </p>

Abstract

We integrate 16 genomic features to construct an evidence-weighted functional-linkage network

comprising 21,657 human genes. The functional-linkage network is used to prioritize candidate

genes for 110 diseases, and to reliably disclose hidden associations between disease pairs having

dissimilar phenotypes, such as hypercholesterolemia and Alzheimer's disease. Many of these

disease-disease associations are supported by epidemiology, but with no previous genetic basis.

Such associations can drive novel hypotheses on molecular mechanisms of diseases and therapies.

Background
Recently, a number of computational approaches have been

developed to predict or prioritize candidate disease genes [1-

34]. Most approaches are based on the idea that genes associ-

ated with the same or related disease phenotypes tend to par-

ticipate in common functional modules (such as protein

complexes, metabolic pathways, developmental or organo-

genesis processes, and so on) [1-16]. This concept is sup-

ported by functional analysis of genes associated with diverse

diseases [1-4], and by the success of various disease gene pri-

oritization studies based on the concept [5-7,9-

17,19,20,23,24,29].

Network-based approaches have also been employed to infer

new candidate disease genes based upon network linkages

with known disease genes [15,17-23]. These methods typically

first construct a gene-gene association network based on one

or more types of genomic and proteomic data, and subse-

quently rank candidate genes based on network proximity to

known disease associated genes. Although some of these

methods perform well using just one specific type of evidence

for functional association, such as protein-protein physical-

interaction data or co-expression data, the restriction to only

one type of functional association potentially limits their pre-

dictive ability [17,20-23]. To address this issue, Franke et al.

[15] constructed a functional linkage network (FLN) by inte-

grating multiple types of data, and utilized the FLN for dis-

ease gene prioritization. However, their results indicate that

the performance was highly dependent on Gene Ontology

(GO) annotations, in addition to functional associations from

curated databases such as the Kyoto Encyclopaedia of Genes

and Genomes (KEGG) and Reactome [15,35,36]. As a result,

the predictions tend to be biased towards well-characterized

genes, and thus limit potential inferences. In a second study,

Kohler et al. [19] constructed an FLN from heterogeneous

data sources, and used a random walk algorithm for disease

gene prioritization. However, their network did not incorpo-

rate linkage weight to differentiate confidences in functional

associations among genes. Therefore, the FLN-based disease

gene prioritization still needs to be further explored.
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In addition to identifying genes associated with different dis-

eases, other work has explored relationships among human

diseases [1-4,37]. Recent studies indicate that human dis-

eases tend to form an interrelated landscape, whereby differ-

ent diseases are linked together based on perturbing the same

biological processes [1-4]. Perhaps unsurprising is the finding

that diseases with similar phenotypes tend to be caused by

dysfunctions of the same genes [1-4]. Less anticipated was the

finding that diseases with dissimilar phenotypes can also be

related at the molecular level [1,2]. To study disease-disease

relationships, some previous methods used the similarity of

phenotype descriptions or examined the hospital diagnosis

records to quantify the disease-disease associations [3,37].

However, because these approaches characterize disease-dis-

ease associations entirely at the phenotypic level, they have

the potential limitation of missing those disease-disease asso-

ciations that can be easily detected at the molecular level but

not at the phenotypic level.

Recently, Goh et al. [4] proposed a method to identify dis-

ease-disease associations at the molecular level based on

shared disease genes, which therefore may capture associa-

tions missed by the phenotype-based approaches. However,

the breadth of this method is limited by the relative paucity of

knowledge of disease causing genes. A potential solution to

this problem is the use of functional linkages to identify asso-

ciations between genes involved in different diseases. This

can result in the identification of relationships between dis-

eases that while they may not be associated with the same

genes, are associated with functionally related sets of genes.

Here, we construct an integrated FLN in human for two pur-

poses: to prioritize new (not previously recognized) genes

that are potentially associated with a given disease; and to

explore the inter-relationships between diverse diseases

revealed by considering functional associations between

genes associated with different diseases (Figure 1). We use a

naïve Bayes classifier [38,39] to integrate 16 functional

genomics features assembled from 32 sub-features. The

result of this integration is a genome-scale FLN (composed of

21,657 genes and 22,388,609 links), in which nodes represent

genes, and edge weights the likelihood that the linked nodes

participate in a common biological process. Our integrated

FLN has a higher coverage and increased accuracy compared

to networks based on individual data sources.

Next, we use this FLN to predict new candidate disease genes

for 110 diverse diseases from the Online Mendelian Inherit-

ance in Man Database (OMIM) database [40]. For each dis-

ease, we quantify the degree of association between each gene

and the disease by considering how tightly the candidate gene

is connected to known disease genes in the FLN. This then

allows us to rank the probabilities of all genes being involved

in a particular disease, based upon their degree of functional

relatedness to genes known to be associated with a given dis-

ease.

Finally, using the FLN, we identify disease-disease associa-

tions based on functional correlations between disease-

related genes. Specifically, our approach considers not only

whether diseases share associated genes, but also whether

gene sets from different diseases are tightly linked in the FLN.

We show that the FLN can be used to identify associations

between phenotypically diverse diseases, and to reveal associ-

ations even in the absence of common known disease genes or

common pathological symptoms. With knowledge of such

disease-disease associations, prior knowledge gained from

one disease can shed light on the underlying molecular mech-

anisms and relevant therapies of related diseases.

Results
A genome-scale human functional linkage network 

built through data integration

Our goals are to exploit the functional coherence of genes

involved in a given disease to identify genes that underlie

diverse disorders, and to find previously unknown links

between phenotypically dissimilar human diseases. We pur-

sue these goals by first integrating genomic features from dis-

parate data sources to establish quantitative functional links

among human genes. Since each data source usually charac-

terizes only one type of functional association between genes,

and covers a relatively limited set of genes, functional associ-

ations from various sources need to be combined to attain

maximal coverage and accuracy. We systematically assemble

a set of 16 genomic features, which incorporates 32 sub-fea-

tures. These genomic features include diverse functional

genomics data in human, as well as functional associations

mapped through orthology from five model organisms (yeast,

worm, fly, mouse, and rat; Table 1).

We then use a naïve Bayes classifier to compute functional

links between human genes by integrating these genomic fea-

tures. Each functional link is weighted by a log likelihood

ratio (LR) score, which reflects the probability of the linked

gene pair sharing the same biological process after summing

over evidence from all available data sources (see Materials

and methods). Such extensive data integration outperforms

individual data sources in terms of inferring functional link-

ages (Figure 2), demonstrating the importance of data inte-

gration.

After data integration, we choose a permissive linkage weight

cutoff (LR score is higher than 1; Equation 1 in the Materials

and methods) such that two genes are linked if the overall evi-

dence supports the functional linkage. This threshold is very

intuitive, as it retains edges with more evidence for functional

association than against it, and removes edges with more evi-

dence against functional association than for it. In addition,

the same cutoff has also been successfully used by Lee et al.

[41] to predict perturbation phenotypes of genes based on an

integrated FLN in worm. The resulting genome-scale FLN

network consists of 21,657 genes (covering approximately
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85% of RefSeq annotated human genes [42]) and 22,388,609

weighted links (Additional data file 1). Despite its high cover-

age, our network retains its accuracy because each link is

weighted and the linkage weight is proportional to the linkage

precision (Figure 2). The average number of linked neigh-

bours per gene is around 2,000. Such high linkage density

together with linkage weighting allows a quantification of

functional associations between thousands of genes. Such

high coverage is critical to the successful utilization of the

FLN for both disease gene prioritization and mapping the dis-

ease-disease associations at the molecular level.

Identifying candidate disease-associated genes

Given a network of functionally linked genes, our first goal is

to use the information in this network to identify genes most

likely to be associated with a particular disease. The motiva-

tion for using the FLN to identify potentially disease-related-

genes is the hypothesis that genes whose dysfunction contrib-

utes to a disease phenotype tend to be functionally related [1-

16]. Our approach exploits this concept by using genes known

to be associated with a particular disease as network 'seeds',

and identifying those genes whose connectivity with the seeds

indicates a strong functional relation. In particular, for a

given disease, each gene in the network is prioritized accord-

Construction of an integrated functional linkage network (FLN) with applications in prioritizing candidate disease genes and quantifying the disease-disease associationsFigure 1

Construction of an integrated functional linkage network (FLN) with applications in prioritizing candidate disease genes and quantifying the disease-disease 
associations. Functional associations between genes are retrieved from diverse data sources (Table 1). These functional associations are then integrated 
into one single FLN using a naïve Bayes classifier, in which the nodes represent individual genes and the weighted edges represent the degree of their 
overall functional association upon combining all contributing data sources. Green arrows represent the two steps of using of the FLN for candidate 
disease gene prioritization: step 1, given a particular disease (Disease I), label genes known to be associated with this disease as seeds (pink colored nodes); 
step 2, prioritize all other genes in terms of their association with the disease based on the sum of the weights of their network links to the seed genes. 
The purple arrows represent the two steps of using the FLN to quantify the disease-disease associations: step 1, label genes known to be associated with 
different diseases with different colors (gene K is labeled with two colors since it is associated with two diseases); step 2, quantify the associations between 
any two diseases based on the degree of association between the two corresponding disease gene sets within the FLN.
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ing to the sum of the weights of its network links to the known

disease (seed) genes (Equation 4; see Materials and methods)

[41,43]. This prioritization rule is referred to as neighbour-

hood weighting.

Validation of identified candidate disease-associated 

genes

To test this approach, we first extract from the OMIM data-

base [40] 1,025 known disease genes, and assemble them into

110 seed gene sets, representing 110 disorders covering a wide

spectrum of human disease phenotypes (Additional data file

2). Each seed set contains at least 5 genes, and the average

seed count is 11 (with some seed genes associated with more

than one disease). Next we use the FLN to identify new candi-

date disease genes for each of the 110 diseases, based on the

neighbourhood weighting rule [41,43,44]. As a result, on

average, nearly half of the genome is prioritized for each dis-

ease. In Additional data file 3, we list the top 100 ranked new

candidate disease genes for each disease. To help investiga-

tors estimate the prediction precision at a particular rank cut-

off, for each disease we provide a plot of precision estimate

versus different rank cutoffs (see Materials and methods;

Additional data file 4). We assess the performance of our

FLN-based disease gene prediction method using leave-one-

out cross validation, with so-called disease-centric [41,43]

and gene-centric approaches [19,23] (see Materials and

methods).

Disease centric assessment

The disease-centric evaluation approach first ranks each gene

based on the neighborhood weighting rule for a particular

disease, and then for each disease computes the area under

the receiver operating characteristic (ROC) curve (AUC),

which is obtained by varying the rank cutoff (see Materials

and methods) [43]. The AUC is an indication of how highly in

the ranked list the known disease genes are, where the AUC

will be 1 if all disease genes are at the top of the list and 0.5 if

the disease genes are randomly distributed in the list. Exam-

ples of ROC curves for seven diseases are provided in Figure

3. Additionally, we also provide the same plot using just the

extreme left side of the ROC curve, which represents the top

ranking predictions (Figure S2 of Additional data file 5).

Disease-centric evaluation shows that FLN-based disease

gene prioritization has an extremely high median AUC of

0.98 for the 110 diseases tested, indicating a high predictive

Table 1

Data sources for FLN construction

Data sources Description Number of unique gene pairs Number of unique genes

Curated PPI Curated human PPI from HPRD, BIND, BIOGRID, INTACT, 
MIPS, DIPS, and MINT [45-51]

90,352 10,281

Y2H PPI from high-throughput yeast two-hybrid experiments [52] 2,611 1,522

Masspec PPI from large-scale mass spectrometry experiments [53] 2,046 1,159

DDI Protein pairs containing interacting protein domains [38,39] 6,933,469 13,454

Co-exp Expression correlation from multiple large-scale expression 
datasets [56,88-90]

5,110,798 16,287

DS Proteins pairs sharing same protein domains [91] 2,064,262 17,328

PG Gene pairs having correlated phylogenetic profiles [56] 18,086 2,607

GN Gene pairs located close to each other along the chromosome 
[56]

10,070 1,365

Fusion Protein pairs fused into one single protein in other species [56] 361 361

Yeast Functional associations mapped from seven types of functional 
genomics data in yeast through gene orthology [92]

123,380 3,809

Worm Functional associations mapped from four types of functional 
genomics data in worm through gene orthology [41]

96,911 5,737

Fly Functional associations mapped from three types of functional 
genomics data in fly through gene orthology [56]

139,984 5,966

Mouse-rat Functional associations mapped from three types of functional 
genomics data in mouse and rat through gene orthology [56]

254,477 11,789

TexM Co-occurrence in PubMed abstracts [56] 518,716 12,286

MF Gene pairs sharing same molecular function terms in GO [93] 6,937,725 7,863

CC Gene pairs sharing same cellular component terms in GO [93] 5,591,796 12,503

See Additional data file 5 for detailed descriptions of data sources for FLN construction. CC, cellular component; Co-exp, co-expressed; DDI, 
domain-domain interaction; DS, protein domain sharing; GN, gene neighbor; HPRD, Human Protein Reference Database; Masspec, mass 
spectrometry; MF, molecular function; MIPS, Munich Information Center for Protein Sequences; PG, phylogenetic profiles; PPI, protein-protein 
interaction; TexM, text mining; Y2H, yeast two hybrid experiments.
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capacity across a large number of diseases (Figure 4a). In

light of this very high performance, we next consider an issue

that may potentially inflate our performance. Specifically,

one of the data sources used to construct our FLN is text min-

ing of PubMed abstracts. The potential issue with this text

mining feature is the possibility that some of the gene-disease

associations in the OMIM database, which we use to evaluate

our method, could be originally derived from the same litera-

ture references that text mining is based on [19,24]. To assess

the impact of this potential bias, we create a FLN excluding

text mining, and find that the resulting AUCs have a median

value of 0.85, lower than full FLN, but still far superior to the

random expectation of 0.5. In particular, when we exclude

text mining data from the FLN, 80%, 65%, and 39% of the dis-

eases still have an AUC of over 0.75, 0.8, and 0.9, respec-

tively. Additionally, we have also performed the disease

centric analysis using only the area of the extreme left side of

the ROC curve, which represents the top ranking predictions

(see Additional data file 5 for the ROC-50 analysis). The

results are consistent with those using the whole ROC curve

(Figure S3 of Additional data file 5). Therefore, our FLN is

capable of predicting candidate genes for diverse diseases,

even in the absence of text mining data.

Gene-centric assessment

This evaluation treats each known gene-disease association

as a test case, and assesses how well each known disease gene

ranks relative to a background set of genes not known to be

associated with the particular disease (see Materials and

methods). Then, all test cases are pooled together, and the

overall performance is evaluated by calculating the fraction of

tested disease genes that are ranked above various rank cut-

offs. We use two background sets to define the background

pool of candidate genes from which we pick out disease-asso-

ciated genes. One set is a collection of 100 nearest genes

flanking the test disease gene physically on the chromosome.

This background is referred to as the artificial chromosome

region background, and is intended to mimic the common

scenario in which a chromosomal region is known to be asso-

ciated with a disease through genetic association studies, but

the specific disease-causing genes are unknown. The other

background set contains all genes in the network and is

intended to mimic the common scenario where the set of

potential candidate genes cannot be narrowed down. This set

is referred to as the genome background.

Data integration outperforms individual data sources in terms of quantifying functional links between human genesFigure 2

Data integration outperforms individual data sources in terms of 
quantifying functional links between human genes. The x-axis represents 
linkage sensitivity, defined as the fraction of the gold standard positive 
(GSP) gene pairs that are linked at different linkage weight cutoffs (see 
Materials and methods). The y-axis represents linkage precision, defined as 
the fraction of the linked gold standard gene pairs that belong to the GSP 
set (see Materials and methods). GSPs are defined as gene pairs sharing 
the same biological process term in Gene Ontology (GO). Gold-standard 
negatives (GSNs) are defined as gene pairs annotated with GO biological 
process terms that do not share any term. To generate the random 
control curve, we randomize the class labels in the gold standard datasets 
and then perform the same evaluation. In Figure S1 of Additional data file 
5, we provide the same plot with the x-axis in log scale to show details for 
individual data sources. CC, cellular component; Co-exp, co-expressed; 
DDI, domain-domain interaction; DS, protein domain sharing; GN, gene 
neighbor; Masspect, mass spectrometry; MF, molecular function; PG, 
phylogenetic profiles; PPI, protein-protein interaction; TexM, text mining; 
Y2H, yeast two hybrid experiments. The descriptions of the 16 individual 
data sources are listed in Table 1.
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With the artificial chromosome region background, 85%

(with text mining) or 62% (without text mining) of disease

genes are ranked in the top 10 out of 100 (Figure 4b). Moreo-

ver, we calculate the fold enrichment score, defined as the

average rank of a gene before prioritization divided by the

rank after prioritization (see Materials and methods). The

average fold enrichments are 35.5 (with text mining) or 20.5

(without text mining). Finally, we also carry out gene-centric

evaluation using the genome background, and the results are

similar (Figure 4c).

Monogeneic versus polygeneic disorders

Next, we investigate the difference in prioritization perform-

ance between monogenic diseases and complex diseases. It is

potentially important to distinguish these two classes of dis-

eases, as complex diseases tend to be caused by dysfunctions

FLN-based disease gene prioritization significantly outperforms random controlFigure 4

FLN-based disease gene prioritization significantly outperforms random control. Performances are compared between FLN (inclusion or exclusion of text 
mining data) based disease-gene prioritization and the random control. The random control is generated using the FLN to prioritize randomly assembled 
disease gene sets (see Materials and methods). (a) Box plots of AUCs of disease gene prioritization performances for 110 diseases, based on disease-
centric assessment (see Materials and methods). For each box plot, the bottom, middle, and top lines of the box represent the first quartile, the median, 
and the third quartile, respectively; whiskers represent 1.5 times the inter-quartile range; red plus signs represent outliers. (b) Disease gene prioritization 
performance based on gene-centric assessment using the artificial chromosome region background (see Materials and methods). Gene-centric assessment 
treats each known gene-disease association as a test case. For each test case, the task is to assess how well the known disease (seed) gene ranks relative 
to a background gene set according to the disease-association score (Si; Equation 4). The Si for each gene in each test case is calculated in leave-one-out 
setting based on the connectivity to the remaining seed genes. The background gene set used is referred to as the artificial chromosomal region, which is 
composed of a collection of 100 nearest genes flanking the tested disease gene physically on the chromosome. Finally, after the rank of each tested disease 
gene for each test case is determined, all the test cases are pooled together and the overall performance is assessed by evaluating the fraction of the tested 
disease genes ranked above various rank cutoffs. (c) Same evaluation as (b) using the background gene set composed of all the genes represented in the 
FLN, as opposed to just those proximate on the chromosome.
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in multiple biological processes, and this lack of functional

coherence may reduce the utility of the FLN in predicting

novel disease genes. Kohler et al. [19] published a gene-dis-

ease association benchmark dataset that explicitly separates

monogenic diseases (83 diseases), polygenic diseases (12 dis-

eases) and cancers (12 diseases). We adopt their categoriza-

tion so that we can evaluate the three disease groups

separately. In particular, using the gene-centric evaluation

(see Materials and methods), we evaluate how well each

known disease gene is ranked relative to a background gene

set in a leave-one-out cross-validation (see Materials and

methods). The background gene set is composed of the 100

nearest genes flanking the test disease gene physically on the

chromosome. As expected, the results are best for monoge-

neic diseases (Figure S4 in Additional data file 5). The lower

performance for complex diseases and cancers is not surpris-

ing, since disease gene prediction methods are based on the

assumption of functional coherence among genes contribut-

ing to the same disease, while as mentioned above, complex

diseases tend to perturb multiple biological processes, mak-

ing the contributing genes less functionally coherent. Despite

the lower performance for complex disorders, the results are

still far better than random control; for example, 65% of

tested disease genes ranked in the top 20 among the back-

ground gene set composed of 100 genes.

The importance of data integration for gene 

prioritization

Disease genes have previously been prioritized using net-

work-based strategies that used only protein-protein interac-

tions (PPI) [20,21,23]. Here we have integrated multiple data

sources with the expectation that such integration will

improve performance. To assess whether this is in fact the

case, we compare disease-prioritization performances

between our FLN and a PPI network that combines human

PPI links from seven major curated PPI databases [45-51],

along with high-throughput PPI data from yeast two-hybrid

and mass spectrometry [52-54], and interactions mapped

from PPI of other model organisms [55]. To avoid bias, inter-

actions from different sources in the PPI network are

weighted using the same procedure as FLN construction

(Equation S1 in Additional data file 5). In the end, a total of

105,361 interactions among 11,886 genes are included in the

PPI network.

As expected, data integration does improve performance

(Figure 5). Using the gene-centric evaluation with the artifi-

cial chromosome region background, 62% of disease genes

rank in the top 10 among 100 using the integrated FLN

(excluding text miming), in contrast to 40% in the PPI net-

work. Similar results were also found using the disease-cen-

tric assessment (Figure S5a in Additional data file 5; see

Materials and methods for the description of disease-centric

assessment). Further support for using an FLN-based

approach is the increased gene coverage. In the PPI network

only 40% of disease genes are connected to seed genes, and

thus only 40% can be prioritized. In contrast, in the inte-

grated network more than 92% of disease genes are linked to

seeds and can, therefore, be prioritized. Finally, the benefit of

data integration is also evident when we evaluate the prioriti-

zation performance of the FLN at different linkage weight

cutoffs. After the application of the permissive linkage weight

cutoff (LR > 1; Equation 1), we explore other higher cutoffs

but find no improvement in the prioritization performance

(Figure S5b, c in Additional data file 5). This further demon-

strates that functional links are assigned proper weights after

data integration, and that the neighbourhood weighting deci-

sion rule (Equation 4) allows links with lower weights to con-

tribute to performance.

Evaluation of new predictions using recently identified 

disease genes

The performance evaluations described above are based on

leave-one-out cross-validation. Here we evaluate the predic-

tive performance for unknown disease genes by simulating

the search for new disease genes. We first manually check the

date of the landmark reference for each gene-disease associa-

tion recorded in the OMIM database. Next, disease genes with

references published after January 2007 are set aside for test-

ing, while all other disease genes with reference dates before

2007 are used for seed genes. For the purpose of this evalua-

tion we included text mining from the STRING database,

which was curated before January 2007 [56].

FLN-based disease gene prioritization shows improvement over PPI networkFigure 5

FLN-based disease gene prioritization shows improvement over PPI 
network. Gene-centric assessment (as described in the legend of Figure 
4b) is used to compare the disease-gene prioritization performances 
between the integrated FLN and a representative PPI network. The PPI 
network is composed of curated PPI databases [45-51], along with high-
throughput PPI data from yeast two-hybrid and mass spectrometry [52-
54], and interactions mapped from PPI of other model organisms. The 
artificial chromosomal region composed of a collection of 100 nearest 
genes flanking each tested disease gene physically on the chromosome is 
used as the background gene set. Here, we exclude text mining data from 
the FLN.
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Within the FLN, there are a total of 61 disease genes associ-

ated with 31 diseases that are published after January 2007.

These are used for evaluating the FLN-based predictions.

Among them, 45 disease genes associated with 24 diseases

are also present in the representative PPI network. These

genes are used for evaluating PPI-based predictions. These

recently identified disease genes and their landmark refer-

ences are listed in Additional data file 6.

Again, the FLN shows improvement over the PPI network

(Figure 6). For instance, using the gene-centric evaluation

with the artificial chromosome region background, 45% of

disease genes are ranked in the top 5 in the FLN, in contrast

to fewer than 25% in the PPI network. It is noteworthy that

there is a drop in performance for both PPI and FLN relative

to the cross-validation analysis presented above. In particu-

lar, the fold enrichment drops from 16 to 8.2 for PPI and from

35.5 to 16.5 for FLN. This indicates that cross-validation

tends to overestimate performance, and it is important to

consider this when interpreting cross-validation results.

Obesity: a case study

Obesity is a polygenic disorder involving genes from various

processes, such as nutrient catabolism and appetite control

[57]. Our FLN includes 24 obesity-associated genes in the

OMIM database, and 334 additional obesity-associated genes

collected from the literature by Hancock et al. [58]. We will

subsequently refer to this set of 334 genes as 'ObesHancock'

genes. There is no overlap between the 24 OMIM obesity

genes and the 334 ObesHancock genes. Here, we rank obes-

ity-related genes using the 24 OMIM genes as seeds, then

evaluate the utility of our ranking using the non-overlapping

set of ObesHancock genes. Since ObesHancock genes are col-

lected from the literature, we exclude the text mining data

source from FLN construction.

We find that the ObesHanecok set is overrepresented in the

top scoring FLN genes, with 22 of them occurring in the top

100 (P < 1.0 × 10-13; see Additional data file 5 for P-value cal-

culation). The list of the 22 ObesHancock genes and their

supporting evidence are provided in Additional data file 7.

Detailed analysis of the subset of the top 100 ranked obesity

genes that does not overlap with the ObesHancock set reveals

additional genes with potential roles in obesity. For instance,

NR1H3, ranked 24th, is predominantly expressed in adipose

tissue and plays an important role in cholesterol, lipid, and

carbohydrate metabolism [59-63]. Recently, Dahlman et al.

[64] also found that one NR1H3 single nucleotide polymor-

phism (SNP), rs2279238, is associated with the obesity phe-

notype. Similarly, NMUR2, ranked 35th, is exclusively

expressed in the central nervous system as a receptor for neu-

romedin U, a neuropeptide regulating feeding behavior and

body weight [65]. Additionally, Schmolz et al. [66] found that

a NMUR2 variant potentially related to obesity in a mouse

model.

FLN-based identification of disease-disease 

associations at the molecular level

As described in the Introduction, human diseases tend to

form an interrelated landscape. We hypothesize that the basis

for these relationships stems from multiple diseases resulting

from dysfunctions in the same genes, and more broadly, mul-

tiple diseases resulting from dysfunction of the same or

related biological processes [1-4]. Associations between dis-

eases potentially stemming from common causal genes were

previously reported by Goh et al. [4]. Here we focus on quan-

tifying associations between diseases based on perturbation

in common biological processes by developing the concept of

'mutual predictability' (see Materials and methods). The

mutual predictability between two diseases measures the

extent to which genes known to be associated with either

member of a disease pair can be used to identify genes known

to be associated with the other member (see Materials and

methods). We hypothesize that disease pairs with high

mutual predictability will be closely related to each other, as a

high mutual predictability should be indicative of high con-

nectivity in the FLN between the two gene sets associated

with two diseases, and hence should quantify the functional

relatedness between diseases.

We validate our mutual-predictability-based disease-disease

associations at the molecular and gene network level, using

disease-disease associations based on the classification in

Goh et al. [4], where the diseases in OMIM were manually

partitioned into 22 classes based on physiological system-

FLN shows improvement over PPI network for predicting 'new' disease genesFigure 6

FLN shows improvement over PPI network for predicting 'new' disease 
genes. Disease genes whose disease-association landmark references were 
published before January 2007 are considered 'known' and are used as 
seed genes, and disease genes that were published after January 2007 are 
considered 'new' and are used as test genes. Performances are compared 
among FLN, PPI network, and the random control of the FLN. Gene-
centric assessment is used to evaluate the performance using the artificial 
chromosome region background composed of 100 genes, as described in 
the legend of Figure 4b.
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level phenotypic observations. After calculating the mutual

predictability (Equation 7) between every possible disease

pair (all mutual predictability scores are provided in Addi-

tional data file 8), we threshold pair selection with increasing

score cutoffs. At each cutoff, we examine the fraction of dis-

ease pairs belonging to the same disease class (excluding

'unclassified class' and 'multiple class'; the former has insuf-

ficient information for disease class assignment, and the lat-

ter lacks physiological system specificity). As seen in Figure 7,

the fraction of pairs placed in the categories defined by Goh et

al. increases rapidly with increasing score cutoff. This dem-

onstrates that FLN-based mutual predictability can capture

disease-disease association in a quantitative way.

The FLN discloses hidden associations between 

diseases sharing no known disease genes and having 

dissimilar phenotypes

To visualize disease-disease association estimated by mutual

predictability, we create a network of disease associations, in

which the nodes represent individual diseases and the

weighted edges represent mutual predictability. Figure 8a

shows a high confidence subset of the disease network

obtained by selecting the top 100 pairs (out of 5,995, that is,

the top 1.7%; Figure S9 of Additional data file 5), correspond-

ing to a mutual predictability cutoff of approximately 0.85.

These 100 pairs cover a total of 66 diseases. At this cutoff, the

disease pairs are four times more likely to share the same dis-

ease class than expected at random (Figure 7). Moreover, 97

of the 100 disease pairs are supported by various types of evi-

dence, such as the classification scheme of Goh et al. (within

the same disease class) or other literature evidence (Addi-

tional data file 9). These results suggest that disease pairs

with high mutual predictability tend to be related.

We compare our method with another available disease-dis-

ease association identification method proposed by Goh et

al., which identifies the associations between two diseases by

counting their overlapping disease genes [4]. However, Goh

et al.'s method could only identify the associations between

diseases with known overlapping disease genes. In contrast,

our method is able to identify additional associations for

those diseases sharing no known disease genes but having

dense functional links between their corresponding disease

gene sets by taking advantage of the FLN.

Among the 97 potentially related disease pairs with literature

support, 48 pairs share known disease genes and are identi-

fied by both methods (pairs connected by blue links in Figure

8a). However, the remaining 49 pairs share no known disease

genes, and their associations are identified solely based upon

functional links among associated genes (pairs connected by

red links in Figure 8a). An example of a non-trivial disease-

disease linkage in the latter group is the association between

Alzheimer's disease, a neurological disorder, and hypercho-

lesterolemia, a metabolic disorder. Since the two diseases

share no disease genes in OMIM, their predicted association

is based entirely on the strong and dense functional links

between the corresponding disease gene sets (Figure 8b).

Importantly, associations between diseases identified using

the FLN provide immediate insight into the molecular mech-

anisms underlying different diseases, and thus generate novel

hypotheses for therapeutic strategies. For instance, based on

the association of hypercholesterolemia and Alzheimer's dis-

eases, we propose that high cholesterol may play an impor-

tant role in the development of Alzheimer's disease and that

modulation of cholesterol levels might help to reduce or delay

the risk of Alzheimer's disease, which is indeed supported by

recent literature [67-69]. Besides Alzheimer's disease and

hypercholesterolemia, there are diverse disease-disease asso-

ciations that are identified only by the FLN but not by the dis-

ease gene sharing method. These include night blindness/

Leber's congenital amaurosis, which are both ophthalmolog-

ical; pseudohypoaldosteronism/Bartter syndrome - both

involved in ion transport deficiency); and holoprosenceph-

aly/Waardenburg syndrome - both involved in developmen-

tal deficiencies (Additional data file 9). We provide a more

quantitative comparison between our mutual predictability

method and disease gene sharing method in Additional data

file 5.

Since our disease-disease association identified at the molec-

ular level correlates with disease-disease associations based

on phenotypic level classification (Figure 7), it is not surpris-

ing that some diseases in the same disease class are found to

be connected in our disease network. For example, prostate

cancer and ovarian cancer both belong to the cancer class,

and are connected in our network. Potentially of more inter-

est is the observation that among the 97 potentially associated

disease pairs identified by high mutual predictability and

supported by the literature, 54 disease pairs belong to differ-

Fraction of related disease pairs increases as mutual predictability cutoffs increaseFigure 7

Fraction of related disease pairs increases as mutual predictability cutoffs 
increase. Disease pairs are considered to be related if they belong to the 
same disease class based on Goh et al.'s manual classification [4].
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Figure 8 (see legend on next page)
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ent disease classes, as defined by Goh et al. [4]. This finding

suggests that diseases with different phenotypes can share

common etiology at the molecular level [1,2]. Examples of

such disease pairs include Alzheimer's disease (neurological

class) and hypercholesterolemia (metabolic class) described

above, central hypoventilation syndrome (respiratory class)

and Hirschsprung disease (gastrointestinal class), both of

which are potentially caused by a defective developmental

process [2], and ceroid-lipofuscinosis (neurological class)

and glaucoma (ophthamological class), both of which are

involved in abnormalities in lysosomal function [70,71]

(Additional data file 9). These results suggest that standard

disease classifications may be much less informative than

currently thought.

In addition to validating individual links, we visualize the

topology of our disease-disease association network based on

the network connectivity. We find that some network mod-

ules (such as those defined by rectangles in Figure 8a) can be

readily identified through visual inspection. Specifically, dis-

eases within a module tend to be more connected than dis-

eases between different network modules. These disease

modules tend to be enriched with homogeneous diseases

belonging to the same or related classes, or sharing similar

molecular mechanisms (Figure 8a, homogeneous modules

are colored correspondingly; cluster details are listed in Addi-

tional data file 10 and Figure S9 in Additional data file 5).

Examples are the ophthalmological disease clique of night

blindness/Leber's congenital amaurosis/retinitis pigmen-

tosa/cone or cone-rod dystrophy, and the mitochondrion

deficiency clique of mitochondrial complex I/II/III defi-

ciency/combined oxidative phosphorylation deficiency/

Leigh syndrome/mitochondrial DNA depletion syndrome.

These results confirm that the FLN-based mutual predictabil-

ity measure can be used to identify biologically meaningful

disease-disease associations.

Discussion
Comparison with other disease gene prioritization 

methods

We have demonstrated that our FLN-based disease gene pri-

oritization approach successfully predicts new candidate dis-

ease genes for diverse diseases. The method compares

favorably to previous methods, providing 50% more coverage

than [19] with accuracy comparable to [19,24,72]. (Detailed

descriptions of the performance comparisons are provided in

Additional data file 5.)

A potential strategy for further improving on our predictive

performance is to consider not only functional linkages

between neighbors as was done here, but to also incorporate

global network topology into disease gene identification [19].

It should be noted, however, that the use of a global propaga-

tion scheme should be done with extra care. A global propa-

gation scheme may more comprehensively exploit the

information contained in the FLN by considering non-adja-

cent nodes, but at the same time it can be more susceptible to

noise. Such issues are exemplified in recent work by Wu et al.

[23], where they compared a direct interaction based local

rule and a shortest path rule, based on their abilities to prior-

itize disease genes. Surprisingly, the shortest path rule, which

uses global network topological information, performs worse

than the direct interaction rule [23]. A likely reason is that

although, in principle, rules utilizing global network topolog-

ical information are preferred, they are more sensitive to the

false positive and false negative links in the network. In prac-

tice, however, a properly implemented local rule can perform

well, when combined with a comprehensive and weighted

FLN.

Further considerations for disease gene prioritization

Among the data sources used for constructing the integrated

FLN, literature-based text mining, GO annotation (GO anno-

tations in the molecular function and cellular component cat-

egories are included in the integration), and curated PPI

might be biased towards well characterized genes (Table 1).

Similarly, text mining and curated PPI data mapped from

mouse and rat (organisms close to human in the evolutionary

tree) via orthology may also have the same bias. Conse-

FLN-based disease-disease association networkFigure 8 (see previous page)

FLN-based disease-disease association network. (a) An example network of 66 diseases (nodes) linked by the top 100 edges with the highest mutual 
predictability scores. Many of these edges cannot be identified using the simple disease-gene sharing method, and these are colored red. The rest of the 
edges are colored blue, which link disease pairs with one or more overlapping disease genes. This disease-disease association network has a modular 
topology, and diseases tend to form clusters (rectangles). The disease clusters are labeled based on enriched disease class or underlying molecular 
mechanisms. The following disease nodes mentioned in the text are labeled: ovarian cancer (OC), prostate cancer (PC), Leber congenital amaurosis (LC), 
cone or cone-rod dystrophy (CD), retinitis pigmentosa (RP), night blindness (NB), Leigh syndrome (LS), mitochondrial DNA depletion syndrome (MD), 
combined oxidative phosphorylation deficiency (CO), mitochondrial complex I/II/III deficiency (MC), Alzheimer's disease (AZ), hypercholesterolemia 
(HC), pseudohypoaldosteronism (PH), Bartter syndrome (BS), holoprosencephaly (HP), Waardenburg syndrome (WS), central hypoventilation syndrome 
(CH), Hirschsprung disease (HD), ceroid-lipofuscinosis (CL), and glaucoma (GC). (b) Functional links among Alzheimer's disease genes (purple nodes) and 
hypercholesterolemia disease genes (blue nodes) in the FLN. Green edges represent functional links between Alzheimer's disease genes and 
hypercholesterolemia genes. Light blue edges represent functional links connecting genes associated with the same disease. Edge thickness is proportional 
to linkage weight. Both networks are generated by Visant [76].
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quently, predictions based on these sources tend to be biased

towards well characterized genes. On the other hand, the

remaining data sources are relatively unbiased, and include

sequence data, high-throughput experiments, and functional

associations mapped from yeast, worm, and fly (organisms

distant to human in the evolutionary tree). Predictions from

these latter sources can reveal new disease genes that are not

well characterized. To test the extent to which our predictions

depend on the relatively biased data sources, we remove them

and use the remaining unbiased sources for FLN construction

and disease gene prioritization. The prediction performance

remains far better than random control (Figure S6 in Addi-

tional data file 5). Using the gene-centric assessment, over

40% of disease genes are still ranked within the top 10 posi-

tions in the artificial chromosome region background com-

posed of 100 genes. The disease-centric assessment also

shows similar results. Therefore, our predictions do not solely

rely on the potentially biased text mining, molecular function

and cellular component annotations of GO, and curated PPI

data sources; other relatively unbiased sources also make sig-

nificant contributions to the disease gene prediction and bio-

logical insights that go beyond well characterized genes.

Our current framework assumes that known disease genes

('seed genes') contribute equally to the disease, but in reality

some seed genes may contribute more than others, especially

for complex diseases. An example is homozygosity in the

APOE4 allele, which confers a 40% chance of late-onset

Alzheimer's disease [73]. Incorporation of this notion of 'seed

strength' into our framework would be desirable. In addition,

our framework requires the knowledge of a number of known

disease genes as seed genes in order to predict new candidate

genes. A further improvement might be to borrow seed genes

from closely related diseases when the disease under study

does not have enough seeds, adjusting the strength in accord-

ance with how closely related the two diseases are.

Additionally, FLN has been made available in VisANT [74], a

web-based platform for the integrative visualization and anal-

ysis of biological networks and pathways [75-80]. Users can

interactively query the FLN for genes of interest by choosing

FLN as the current database in the VisANT toolbar; compare

the FLN with other interaction data by updating gene interac-

tions stored in the Predictome database; and filter the FLN

with preferred weights and visualize the weight using edge

color, edge thickness or both. In addition, we are developing

a series of functions to integrate the methods of FLN-based

prediction of new disease genes and disease-disease associa-

tions into VisANT, including making predictions for the new

seed sets provided by users. Each disease will be represented

as a metanode [78] - a special type of node that contains asso-

ciated sub-nodes (disease genes), which allows direct integra-

tion of disease information and the FLN. These new functions

will extend the applications developed here to other areas,

such as the prediction of new proteins for protein complexes,

cross-talk between pathways and so on.

Further considerations for FLN-based identification of 

disease-disease associations

Here, we carry out a proof-of-principle study with our mutual

predictability measure to demonstrate that the functional

links provided by the FLN can be used to quantify disease-dis-

ease associations at the molecular level as illustrated in the

Results section. Further studies are needed to improve our

measures as well as to explore related measures of disease-

disease associations based on the FLN. Our approach for

assessing disease-disease associations requires the knowl-

edge of a few known disease genes for each disease, and can-

not be applied to diseases with no known disease genes. In

these cases, phenotype-based methods such as [3] are good

alternatives if there is enough disease phenotype information

available, bearing in mind that it is possible for two diseases

to share related molecular pathology mechanisms but be less

similar at the phenotypic level [1,2]. In general, it is likely that

the identification of disease-disease associations can be fur-

ther improved by combing our FLN-based approach with

phenotype-based approaches.

Conclusions
In this work, we build a comprehensive and high quality

weighted FLN by integrating 16 functional genomics features

assembled from 32 sub-features from 6 model organisms. To

our knowledge, our integrated human FLN is the most com-

prehensive to date.

We show that genome-wide disease gene prioritization for

diverse diseases can be obtained using our integrated FLN.

Top ranking candidate disease genes can be used to guide the

design of new genetic association studies. Conversely, in the

future, results from genetic association studies can be further

integrated into our framework for better disease gene predic-

tions.

We also show that the integrated FLN can be used to identify

disease-disease associations, even among diseases that share

no known disease genes or have dissimilar phenotypes. Thus,

we show that by considering functional linkages between

genes involved in different diseases, relationships between

diseases that are based on underlying molecular mechanisms

can be revealed. Such associations can potentially be used to

generate novel hypotheses on the molecular mechanisms of

human diseases, and can in turn guide the development of

relevant therapy as illustrated in the case of Alzheimer's dis-

ease and hypercholesterolemia.

Materials and methods
Human dataset

All methods are applied to a common set of 25,564 protein

encoding genes (downloaded from RefSeq in November 2007

[42]) with the Entrez gene ID as the unique identifier [81].

For data sources using different gene or protein identifiers,
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the original identifiers are all mapped to Entrez gene IDs

using the cross-reference files from Entrez Gene [81], the

International Protein Index (IPI) database [82], or Biomart

[83].

FLN construction

Gold standard

We construct gold standard datasets for gene-gene functional

association in the following way. Gold-standard positives

(GSPs) are defined as gene pairs sharing the same biological

process term in GO. Gold-standard negatives (GSNs) are

defined as gene pairs annotated by GO biological process

terms but that do not share any term. As a result, 1,456,585

pairs are included in GSP, and 3,345,661 pairs are included in

GSN. These gene pairs are composed of 5,955 human genes.

Details are provided in Additional data files 5 and 11.

Naïve Bayes classifier for FLN construction

We use a naïve Bayes classifier [84] to predict gene pairs that

participate in the same GO biological process. The inputs to

the classifier include diverse genomic features assembled

from various data sources (Table 1). Similar to other studies

[29,85], we use a log likelihood ratio (LR) score to quantify

the degree of functional association between two genes. The

associated gene pairs are then assembled into a functional

linkage network with individual genes as nodes and the LR

score as the linkage weight.

There are two primary reasons that we choose naïve Bayes as

the integration approach. First, it allows for the direct inte-

gration of heterogeneous data sources in an easily interpreta-

ble model. Second, it calculates the probability that two genes

participate in the same biological process given the input fea-

tures. Naïve Bayes classifiers have been used to successfully

combine heterogeneous data in human [29,38,39]. It is pos-

sible, and perhaps likely, that other multivariate methods

would perform equally as well [86].

In the Bayesian framework, we use the LR score to quantify

the degree of functional association between a gene pair:

where I is a binary variable representing the existence of func-

tional association (GSP pairs), ~I represents the absence of

functional association (GSN pairs), f1 through fn are the

genomic features, and LR is the likelihood ratio.

In naïve Bayes, we assume that features are conditionally

independent. As a result, LR(f1,..., fn) can be further written

as:

Equation 2 is equivalent to the following, where LLR repre-

sents log likelihood ratios:

Naïve Bayes assumes conditional independence among fea-

tures, but the naïve Bayes classifier can still be applied even

when this assumption is not strictly satisfied [29,85,87]. In

our work, we minimize conditional dependence among fea-

tures by combining related datasets or features into single

features before final integration (Additional data file 5).

Indeed, no strong correlations exist among our final features

after this procedure (Additional data file 12).

As listed in Table 1, a total of 16 features assembled from 32

sub-features are utilized for the final integration (see Addi-

tional data file 5 for details).

FLN quality assessment

After the naïve Bayes integration, each gene pair is assigned a

probability for sharing a GO biological process. The quality of

this FLN is evaluated by plotting linkage precision versus

linkage sensitivity at various linkage weight cutoffs. Given a

pre-specified linkage weight cutoff, 'linkage precision' is

defined as the fraction of the linked gold-standard gene pairs

that belong to the GSP set, and 'linkage sensitivity' is defined

as the fraction of the GSP pairs that are linked. We perform

threefold cross-validation by randomly partitioning the gold

standard datasets into three equal segments, two serving as

training sets and the third as the test set. This procedure is

repeated three times such that each segment serves once as

the test set. Next, the three test sets are combined and the per-

formance is assessed by plotting linkage precision versus

linkage sensitivity. Finally the whole gold standard dataset is

used for training to generate one final FLN, which is then

used for disease gene prioritization and prediction of disease-

disease associations.

FLN-based disease gene prioritization

For a given disease, the known disease associated genes are

used as seeds. New candidate genes can then be ranked based

on their association with these seed genes in the FLN.

Seed genes

The seed disease genes are obtained from the OMIM data-

base, a compendium of human disease genes and phenotypes

[40]. The disease-gene associations are downloaded from the

Morbid Map (April 2008) [40]. To obtain reliable test statis-

tics, we include in the analysis only diseases with at least five

seed genes in the FLN. This results in 110 unique diseases

with a total of 1,025 seed genes (see Additional data files 2 and

5 for details).
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Neighborhood-weighting decision rule

Given a particular disease and its seed gene set, we quantify

the association of each candidate gene i with the disease using

the following disease association score Si:

where wij is the linkage weight connecting gene i and seed j

[41,43]. This score is 0 for genes not connected to any seed.

The justifications of the rule selection are described in Addi-

tional data file 5.

Performance assessment for disease gene prioritization

Disease-centric assessment

Disease-centric assessment evaluates an overall prediction

performance for each individual disease [41,43]. In particu-

lar, for a given disease, first each gene is ranked based on the

disease association score (Si; Equation 4). The Si for each seed

gene is computed using leave-one-out cross-validation, based

on its connectivity to other seeds. Next a ROC curve is gener-

ated to assess how well known disease (seed) genes are

ranked relative to non-seed genes in the ranked gene list. The

ROC curve plots true positive rate (sensitivity) versus false

positive rate (1 - specificity) at different Si cutoffs:

where TP (true positive) is the number of seed genes above

the Si cutoff, FP (false positive) is the number of non-seed

genes above the cutoff, TN (true negative) is the number of

non-seed genes below the cutoff, and FN (false negative) is

the number of seed genes below the cutoff.

Finally, an AUC is calculated for each ROC curve to represent

the predictability of a disease. AUC scores range between 0

and 1, with 0.5 and 1.0 indicating random and perfect predic-

tive performance, respectively. Here we treat non-seed genes

as non-disease genes, but some of these non-seed genes can

be new disease-associated genes. Hence, our performance

evaluation is likely an underestimate.

Gene-centric assessment

Gene-centric assessment treats each known gene-disease

association as a test case [19,23]. For each test case, the task

is to assess how well the known disease (seed) gene ranks rel-

ative to a background gene set. Gene centric assessment is

also carried out using leave-one-out cross-validation. For

each test case, the tested seed gene is ranked according to its

connectivity to the remaining seed genes (Equation 4), and

compared against a background gene set.

To assess the overall performance of a method, we first deter-

mine the rank of each tested disease gene among the back-

ground gene set within each test case, and then pool together

all test cases and compute the fraction of the tested disease

genes ranked above various cutoffs. A second commonly used

measure is fold enrichment, defined as the average rank of a

gene before prioritization divided by the rank after prioritiza-

tion [19]. For instance, to rank a test disease gene with a back-

ground gene set of 100 genes, the average rank before

prioritization is 50. If the test disease gene is ranked top 1,

then its fold enrichment is 50/1 = 50.

Random control

Similar to McGary et al. [43], we assemble 100 random gene

sets from the FLN for each given disease. Each gene set has

the same number of genes as the seed gene set for the given

disease. Next we perform the same FLN-based disease gene

prioritization and evaluation using these randomly assem-

bled seed sets.

Estimate precision for disease gene predictions

To estimate the prediction for disease gene predictions, we

first rank the predicted candidate disease genes by their dis-

ease association scores (Si; Equation 4). Precision is then esti-

mated at different rank cutoffs.

For each particular disease, each known disease gene (seed)

is assigned a disease association score (Si) based on its func-

tional linkage to other seeds. We then rank the seed genes

together with other non-seed genes based on their Si scores.

At each rank cutoff, we calculate the precision as the fraction

of genes above the cutoff that are seed genes. This is likely an

underestimate, since some non-seed genes can be new dis-

ease-related genes.

For each of the 110 diseases, we provide the precision esti-

mate for its top 100 predicted new candidate genes by plot-

ting precision versus rank cutoff.

Mutual predictability as an estimate for disease-disease 

association at the molecular level

Given two diseases, I and II, each of which is associated with

a set of known disease genes, we define a mutual predictabil-

ity score that reflects the degree of association between the

two diseases (Figure S7 in Additional data file 5). The mutual

predictability score accounts for both the number of genes in

common between the two disease gene sets, and the func-

tional links between the two sets in the FLN. In essence, the

mutual predictability score evaluates the degree to which

genes associated with disease I can be used as seed genes to

predict genes associated with disease II (predictability I-II),

and vice versa (predictability II-I). High mutual predictability

implies close association between the two disease gene sets in

the FLN, suggesting related molecular mechanisms.

To quantify predictability I-II, we first use genes associated

with disease I as seeds, and rank all other genes based on the

Si score (Equation 4). In addition, disease II genes that over-

S Wi ij

j seeds

=

∈

∑ (4)

Sensitivity = +TP TP FN/ ( ) (5)

1 − = +Specificity FP TN FP/( ) (6)



http://genomebiology.com/2009/10/9/R91 Genome Biology 2009,     Volume 10, Issue 9, Article R91       Linghu et al. R91.15

Genome Biology 2009, 10:R91

lap with the seed genes from disease I are given a Si score of

infinity and ranked on the top. Next, we plot a ROC curve of

sensitivity versus 1 - specificity on how well the disease II

genes are ranked in the sorted gene list. Sensitivity and (1 -

specificity) are defined in Equations 5 and 6, where TP is the

number of disease II genes above a particular Si cutoff, TN is

the number of genes associated with neither disease below

the cutoff, FP is the number of genes associated with neither

disease above the cutoff, and FN is the number of disease II

genes below the cutoff. Finally, we calculate the AUC of the

ROC curve (AUCI-II) as a measure for predictability I-II.

Similarly, we can calculate AUCII-I as a measure of predicta-

bilityII-I. The mutual predictability between disease I and II is

defined as the geometric mean of AUCI-II and AUCII-I:

Since AUC ranges from 0 to 1, the mutual predictability also

ranges from 0 to 1.
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with the highest mutual predictability scores and the support-
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supporting the associations in Figure S9 of Additional data

file 5 and Figure 8a (Additional data file 10); a list of the 53

informative GO terms used to define the gold standard sets

for the naïve Bayes integration (Additional data file 11); a list

of Pearson correlation coefficients between the 16 features

used for the naïve Bayes integration (Additional data file 12).
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