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Abstract
Although they have demonstrated success in searching for common variants for complex diseases,
Genome-Wide Association (GWA) studies are less successful in detecting rare genetic variants
because of the poor statistical power of most of current methods. We developed a two-stage
method that can apply to GWA studies for detecting rare variants. Here we report the results of
applying this two-stage method to the Wellcome Trust Case Control Consortium (WTCCC)
dataset that include 7 complex diseases: Bipolar disorder, Cardiovascular disease, Hypertension,
Rheumatoid Arthritis, Crohn’s disease, Type 1 Diabetes and Type 2 Diabetes. We identified 24
genes or regions that reach genome wide significance. 8 of them are novel and were not reported
in the WTCCC study. The cumulative risk (or protective) haplotype frequency for each of the 8
genes or regions is small, being at most 11%. For each of the novel genes, the risk (or protective)
haplotype set cannot be tagged by the common SNPs available in chips (r2<0.32). The gene
identified in hypertension was further replicated in the Framingham Heart Study (FHS), and is
also significantly associated with Type 2 Diabetes. Our analysis suggests that searching for rare
genetic variants is feasible in current genome-wide association studies and candidate gene studies,
and the results can severe as guides to future resequencing studies to identify the underlying rare
functional variants.

Introduction
Despite the success of GWAS in searching for the common variants contributing to complex
diseases in recent years, the identified common variants are responsible for only a small
fraction of the phenotypic variation (Levy et al. 2009; Newton-Cheh et al. 2009; Visscher
2008). It has been suggested that it is time to shift from searching for common variants of
modest effect to rarer variants of large effect by effectively searching the full
genome(Goldstein 2009). Rare variants may hold the promise for the prediction of
individual risk and personalized medicine because of their large effect, although it has been
argued that common variants illuminate the biologic pathways of underlying
diseases(Hirschhorn 2009). Large sample based on resequencing studies with carefully
selected designs are usually necessary to detect the rare variants(Cohen et al. 2004; Ji et al.
2008). Such studies are greatly welcomed but are still tremendously expensive when
searching is on the full genome scale. Several statistical methods have been developed and
these methods mainly focus on when resequencing data are available (Cohen et al. 2004; Li
and Leal 2008; Madsen and Browning 2009). Our simulation study suggests that searching
for rare variants is possible and efficient using current GWA study designs(Zhu et al. 2010)
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by clustering the haplotypes in each gene according to disease risk. Since many GWA
studies have been conducted or are ongoing, the results based on haplotype analysis to detect
rare variants can be a future guide for in-depth resequencing studies.

The WTCCC study was the first successful large comprehensive GWA study which includes
7 complex diseases: Bipolar disorder, Cardiovascular disease, Hypertension, Rheumatoid
Arthritis, Crohn’s disease, Type 1 Diabetes and Type 2 Diabetes, with 2,000 cases for each
of the diseases and 3,000 shared common controls(2007). There were 24 independent
association signals identified and many of them have been replicated in independent
replication studies. Here we describe the experience of our searching for rare variants by
haplotype analysis across the genome in the WTCCC data.

Materials and methods
A detailed description of study samples can be found in the original WTCCC GWA study
paper(2007). In brief the WTCCC dataset includes seven major complex diseases: bipolar
disease (BD), coronary artery disease (CAD), Crohn’s disease (CD), rheumatoid arthritis
(RA), type 1 diabetes (T1D), type 2 diabetes (T2D); each has ~2,000 individuals, and a
shared ~3,000 controls. The majority of subjects were of European ancestry. All the
individuals were genotyped using Affymetrix GeneChip 500K arrays. We downloaded the
genotype data called by the algorithm CHIAMO for all the seven disease cases and the
shared controls (which consist of the 1958 Birth Cohort (58C) and UK Blood Service
sample (NBS)) from the WTCCC website.

Framingham Heart Study. A detailed description of study samples can be found at Levy et
al.(Levy et al. 2009). Our goal is to extract as many as unrelated cases and controls from the
available family data. We defined hypertensive case as the systolic blood pressure >140 or
diastolic blood pressure >90 or on medication treatments at any one of the four visits, and
normtensive controls as the systolic blood pressure <140 and diastolic blood pressure <90
and no medication treatment at any one of the four visits. We then examined each family
and chose the youngest case when there are multiple cases in a family, and the oldest control
if there are multiple controls in a family. This process results 549 cases and 547 controls in
our final analysis.

Quality controls
The individuals dropped in the WTCCC study because of evidence of non-European
ancestry or call rate were excluded in the current analysis. We applied the following criteria
to call SNPs: 1) CHIAMO probability greater than 0.95; 2) HWE exact test p-value
<5.7×10−7 in controls; 3) allele frequency difference test based on 1df Trend Test p-value
<5.7×10−7 or genotype frequency difference based on 2df General Test <5.7×10−7 between
58C and NBS. We further excluded the SNPs with missing genotype proportion >1% or
minor allele frequencies<1%. We further dropped the SNPs with bad genotype calling, as
suggested in the original WTCCC analysis(2007). Supplementary Table 1 shows the
numbers of individuals as well as the numbers of SNPs that were analyzed for all the seven
diseases and shared controls.

For FHS data, we further performed Mendelian inheritance consistence check. We set a
genotype as missing if Mendelian inheritance error was identified.

Inferring haplotypes
In each gene or block, haplotypes were then inferred using the software BEAGLE 3.0
(Browning and Browning 2007) which is based on the localized haplotype-cluster model. To
account for the uncertainty of haplotype inference, we sampled an individual’s haplotype
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conditional on the individual’s genotype and the estimated haplotype frequency. We
repeated the analysis based on the sampled haplotypes given the estimated haplotype
frequencies and individual genotypes.

Two-stage analysis
We hypothesized that a complex disease can be attributed to both common and multiple rare
variants. Further, we hypothesized that multiple rare variants can be captured by many
haplotypes(Zhu et al. 2010). We applied two-stage analysis to the WTCCC data using the
method in Zhu et al(Zhu et al. 2010) to the ith gene or block (Gi), where i=1 to N, and N is
the total number of genes and blocks. In stage 1, co-classification of risk haplotype, we
randomly selected 400 cases and 1,000 controls. For each disease, we examined whether a
haplotype is more frequent in cases than in controls by performing a one-sided Fisher exact
test. We defined the risk haplotype set (SRi) as the set of haplotypes that have one-sided
Fisher exact test p-value <0.05 for the ith gene or block. Similarly, we defined the protective
haplotype set (SPi) as the set that included haplotypes more frequent in controls than in
cases for the ith gene or block. In the stage 2 association test, we compared the frequency of
risk haplotype set SRi and protective haplotype set SPi, identified in stage 1, between the
remaining cases and controls. Because there was no overlap of samples between stages 1
and 2, the p-values calculated in stage 2 are valid. The Q-Q plot of the −log10(p-value) was
used to examine whether there is any effect of population stratification or cryptic relatedness
in the analysis. Because the power of two-stage analysis test is dependent on how well the
co-classification performed at stage 1 and the sample size at stage 2, the actual power of two
stage test will not change much when different sample size at the stage1 is used. We then
randomly selected another 400 cases and 1000 controls at stage 1 and kept the rest of the
samples for the stage 2 analysis. This process was performed 100 times and the smallest p-
value for testing the risk haplotype set SRi was recorded for the ith gene or block as pi.
Similarly, we recorded the smallest p-value of testing the protective haplotype set SPi as qi.
We next ranked the pi and qi separately. We selected the top-ranked genes or blocks. When
increasing the number of times to 1000, the top genes or blocks did not vary much. Thus, we
only reported the results based on 100 times.

Evaluating the significance of the selected genes or blocks
Since pi and qi are not the true p-values for a gene or block due to the selection of the
smallest p-value among 100 resamplings, we use a permutation procedure to evaluate the
true p-values for the selected genes or blocks. We were concerned that using only a portion
of samples in the stage 1 co-classification might reduce the efficiency of the method. Thus,
for the top genes or blocks we selected, we reanalyzed data using the entire sample for the
co-classification stage. We then tested the association of each risk haplotype set or
protective haplotypes using the entire sample, again by Fisher’s exact test. We recorded the
p-values for each gene as the observed p-value. For each gene or block, we randomly
shuffled the disease status for 1,000,000 replications and the p-values were calculated in the
same way; then these p-values were tallied to calculate the empirical p-value for each
selected gene. Because our permutation procedure is only for the top genes or blocks
selected, this method is computationally efficient.

Examining whether a risk haplotype set or a protective haplotype set can be tagged by a
common SNP

We created a pseudo-SNP genotype for an individual according to the number of risk
haplotypes carried in the risk (protective) haplotype set. That is, an individual will have
genotype 2/2 if he/she carried both haplotypes from a haplotype set, 1/2 if he/she only
carried one haplotype from the haplotype set, and 0/0 if he/she carried no haplotypes from
the risk haplotype set. We then evaluated the linkage disequilibrium between the pseudo-
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SNP and genotyped SNPs in the analyzed samples. A strong LD suggested that the risk
haplotype set can be well tagged by a single real SNP. Similar analysis was also performed
for the protective haplotype sets.

Results
We used the SNP map annotations provided by Affymetrix 6.0 GeneChip as a reference
(https://www.affymetrix.com/support/technical/annotationfilesmain.affx). We mapped a
SNP to a particular gene if the SNP is mapped to a gene based on the Affymetrix
annotations. If SNPs are located between two neighboring genes, we mapped them in their
own block. However, if a gene or block includes a large number of SNPs, we further divided
it to small blocks, with each block having less than 100 SNPs. The total numbers of genes
and blocks for the seven diseases ranges from 19613-19678 (Supplemental table 1). In each
gene or block, we inferred the most likely haplotypes for all the individuals in the WTCCC
data using the software BEAGLE 3.0(Browning and Browning 2007) which is based on the
localized haplotype-cluster model. We hypothesized that a complex disease can be attributed
to both common and multiple rare variants. Further, we hypothesized that multiple rare
variants can be captured by many haplotypes(Zhu et al. 2010). We applied the
computational efficient two-stage analysis method(Zhu et al. 2010) in the WTCCC data to
each gene or block (See Methods). Figure 1 and 2 presents the QQ plots of −log10(p-value)
for testing association at stage 2 between the 7 disease cases and the common controls
against the uniform distribution, which is the expected distribution under the null
hypothesis, and the genome-wide −log10(P value) according to the chromosomal positions
of genes in association tests. Overall we did not observe any substantial deviation from the
null as suggested by the inflated factor λ (Figure 1 and 2). However, we did observed heavy
tails for T1D and RA, which is mainly driven by many known genes in MHC and HLA
regions. When we excluded the SNPs in the MHC and HLA region and redraw the QQ plots
of RA and T1D (supplemental figure 1 and figure 2), the heavy tails were essentially
disappeared. Our analysis results suggest that neither population stratification nor cryptic
relatedness play a significant role in the data analysis, which is consistent with the original
WTCCC report. Since the power of the two-stage method to detect genes is dependent on
the samples selected for stage 1 and 2 analysis, we then repeated the same analysis 100
times, each time taking a new random sample to obtain the stage 1 individuals. We recorded
the smallest p-value for each gene or block among the 100 resamplings. We then ranked the
p-values for 7 diseases separately. To save computing time, we selected the top 50 risk and
protective genes and blocks for each of the diseases except RA and T1D, for which we
selected 100 and 150, respectively. To further reduce the type I error because of genotyping
quality, we dropped SNPs with CHIAMO probability less than 0.99, as suggested by
Browning and Browning(Browning and Browning 2008). We then redid the two-stage
analysis with both stages using the entire sample. We performed 1,000,000 permutations to
evaluate the p-values for all selected genes and blocks in order to account for the
dependence of the two stages. Table 1 summarizes the genes or blocks that reached a
genome-wide significance level (nominal p<2.5×10−6) when using the entire sample in the
co-classification stage for risk and protective haplotype sets, respectively. For RA and T1D
in HLA regions, we only list the most significant genes - the full set of genes is listed in
Supplemental Table 2. We used a p-value 2.5×10−6 to declare the genome-wide significance
because for each disease there is a total of <20,000 independent tests. This significant level
corresponds to P-value 0.05 after the Bonferroni correction of 20,000 independent tests. The
genes or regions showing moderate evidence of association (p≤10−4) are summarized in
Table 2. Although we aimed to detect rare variants, among the 23 strongest association
regions reported in the WTCCC study, 13 also reached genome-wide significance in this
analysis. Of the remaining 10 regions, 2 also showed moderate association evidence (Table
2). When examining the maximum LD between the SNPs and the pseudo-SNPs clustered by
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risk or protective haplotypes in these 15 genes, only half of them have r2 >0.8 (Table 1).
However, we also identified 11 additional genes and blocks which were either not reported
or showed only moderate evidence of association in the original WTCCC report (table 1).
Among these 11 genes, 3 have a cumulative frequency of risk (or protective) haplotypes
<5%. No SNPs in genes or blocks can well tag the rare risk haplotypes (maximum r2 <0.31
Table 1), indicating the association evidence for these rare haplotypes cannot be driven by
any individual SNPs. Further, it is reasonable to believe that rare variants are unlikely to be
well tagged by the common SNPs available in chips. The average number of risk (or
protective) haplotypes in the significant genes in table 1 is 4.2, suggesting multiple variants
may independently contribute to the diseases.

Bipolar disease (BD)
BD is a psychiatric disorder and is still poorly understood genetically. We did not observe
any genes reaching genome-wide significance. Of the 7 genes showing moderate association
evidence (Table 2, empirical p-value <10E-4), RNPEPL1 (arginyl aminopeptidase-like 1)
and TDRD9 (tudor domain containing 9) showed moderate association evidence in the
WTCCC report(2007). Among the rest of the genes, POFUT2 is located on 21q22.3, which
is an active region for searching genes affecting BD where both linkage and association
evidence have been reported(Kato 2007;Straub et al. 1994). The region where ZDHHC13
(zine finger, DHHC domain containing 12 isoform) (McInnis et al. 2003) located has also
been reported of linkage evidence.

Coronary artery disease (CAD)
We detected 3 genes and one region showing genome wide significant association evidence
to CAD. Among the three genes, CDKN2B is the only gene reaching genome-wide
significance in the original WTCCC study and is also identified by our method (Empirical p-
value=1.0E-6). The other two novel genes are hemochromatosis type 2 (HFE2, Empirical p-
value<1.0E-6) and eukaryotic translation initiation factor 4H (EIF4H, Empirical p-
value<1.0E-6). HFE2 was also detected by Browning and Browning (Browning and
Browning 2008). The region of HFE2 has shown linkage to juvenile hemochromatosis
which is a feature of heart failure(Rivard et al. 2003). We also detected a region located
between 87.9-88 Mb (Empirical p-value=1.0E-6), where the nearest genes are gap junction
protein and beta 7 (GJB7). The risk haplotype frequencies are rare and they cannot be
tagged by common SNPs (r2<0.32). Among the genes with empirical p-value<1.0E-4, it is
interesting that the variants in PSRC1 (empirical p-value=1.6E-5) have been detected to be
associated with CAD in a large GWAS analysis(Samani et al. 2007). This gene was not
reported in the original WTCCC report although the risk haplotype can be well tagged by a
SNP in the gene. The results are in general consistent with the our previous results using
different haplotype inference method(Zhu et al. 2010), except that gene ZBTB43 could not
be detected by this method.

Crohn’s disease (CD)
We observed 6 genes and one block significantly associated with CD (Table 1). These seven
regions are either strongly or moderately associated with CD in the WTCCC report.
Although the frequency of the cumulative risk haplotypes in each region is not rare (>7%),
the maximum r2 values between SNPs and risk haplotype set are relatively small except for
gene NOD2 (nucleotide-binding oligomerization domain) and the block ranged
131.83-131.84Mb on chromosome 5 (r2 >0.95). Gene PTGER4 (prostaglandin E receptor 4)
has also been reported to be associated with CD with possibly multiple variants contributing
to disease susceptibility(Libioulle et al. 2007). Among the 6 moderate association evidence
regions, two regions were also reported in the WTCCC (Table 2). The association evidence
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of BSN (bassoon protein) has been replicated in the Spanish’s population(Marquez et al.
2009).

Hypertension (HT)
There was no SNP reaching genome-wide significance for HT in the original WTCCC
report. We identified a novel gene ZFAT1 (zinc finger protein 406 isoform, empirical p-
value<1.0E-6), which is significantly associated with HT. This result is consistent with that
found when we used a slightly different analysis approach(Zhu et al. 2010). In the linkage
analysis of large pedigree data from South Italy, genome-wide significant linkage evidence
to essential hypertension was reported on chromosome 8q22-23 (Ciullo et al. 2006), where
the ZFAT1 gene is located. There are 7 risk haplotypes with total frequency 4.5% in cases
and 1.1% in controls. These risk haplotypes form a set that cannot be tagged by common
SNPs (r2=0.107).

We also identified two genes: ABLIM1 (actin binding LIM protein 1, empirical p=1.2E-5)
on chromosome 10 and NR2F2 (nuclear receptor subfamily 2, group F, member 2, empirical
p=5.5E-5) on chromosome 15, moderately associated with HT and were not reported in Zhu
et al. 2010. Interestingly, a study of transcriptional profiling with a blood pressure QTL
interval-specific oligonucleotide array using the Dahl salt-sensitive rat has suggested that the
homologous gene NR2F2 is associated with blood pressure in the rat(Joe et al. 2005). This
gene was also identified by multilocus association testing method in the WTCCC
data(Browning and Browning 2008), although that study did not focus on searching for rare
variants.

Replication of HT in FHS data
We performed analysis of these three genes: ZFAT1, ABLIMI and NR2F2 in FHS data. We
used all the sample in both stage 1 and 2 analysis and evaluated the p-value using 1,000,000
permutations. Since ZFAT1 is a large gene with 278 SNPs genotyped, we partitioned
ZFAT1 into 3 blocks with size 100, 100 and 78 SNPs, respectively, and tested each block
accordingly. We could not replicate the association evidence when the haplotypes of using
the same set of SNPs identified in WTCCC was tested. However, the association evidence
was observed when test was performed on the neighbor block. We identified 3 risk
haplotypes are moderately associated with HT (empirical p-value=8.2E-5, Table 3). When
we combined the SNPs identified from both WTCCC and FHS, the significance of
association is reduced (Empirical p-value =0.059). We also identified 4 protective
haplotypes in ABLIM1 significantly associated with HT (empirical p-value=0.01, table 3).
However, we failed to replicate the association evidence in NR2F2.

Rheumatoid arthritis (RA)
The two significant regions identified in the WTCCC study were also identified in this
analysis. The association between RA and the MHC region has been well established
inWTCCC study. We also identified many genes in this region associated with RA
(Supplemental Table 2). The strongest association evidence is on the block from 32.5-32.9
Mb, where the most significant SNP in WTCCC report, rs6457617, is located. The
significance level in this analysis is much higher than that in the WTCCC report. This block
includes 307 haplotypes and 10 of them are identified as risk haplotypes with total
frequency 49.5% in cases and 25.0% in controls. Other than rs6457617, which was reported
as the most significant one in single locus analysis in WTCCC, SNP rs9275418 has the
maximum r2 value with the risk haplotype set (r2 =0.31), suggesting additional variants,
beside rs6457617, independently associated with RA. The other known gene is PTPN22
(protein tyrosine phosphatase, non-receptor type 22). There is only one risk haplotype
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among 37 haplotypes identified in this gene and is in strong LD with SNP rs6679677 (r2

=0.99).

We identified 3 additional genes or regions that reached genome-wide significance. Among
them, OLIG3 (oligodendrocyte transcription factor 3) has been reported to be associated
with RA(Plenge et al. 2007). We identified 3 risk haplotypes among 46 haplotypes, with the
largest r2 =0.52 between SNPs and risk haplotypes. The remaining 2 genes or blocks are
novel, including NDST3 (N-deacetylase/N-sulfotransferase 3, and a block between 16.8-17
Mb on chromosome 17. The maximum r2 between the risk haplotype set and SNPs is all less
than 0.09. NDST3 is located in 4q27, where association evidence has been identified with
autoimmune diseases, including RA(Liu et al. 2008; Zhernakova et al. 2007). Among the 2
genes with p-values <1.0E-4, the region including the OS9 (osteosarcoma amplified 9,
endoplasmic reticulum lectin) gene has shown replication evidence to RA(Barton et al.
2008).

Type I diabetes (T1D)
We observed 6 regions that reach genome-wide significance for T1D. The strongest region
associated with T1D is the major histocompatibility complex (MHC), where there are many
genes that have shown association evidence (Supplemental table 2). The strongest genes and
block include NOTCH4 (notch4 preproprotein), C6orf10 (chromosome 6 open reading
frame 10), BTNL2 (butyrophilin-like 2) and block 32.52-32.89 Mb on chromosome 6. The
minimum number of risk haplotypes in these genes and block is 11 and the largest r2 value is
0.45. The MHC region is well established for association with T1D, but how many
independent variants in the MHC region contribute to T1D is still unknown. The other
genes, including PHTF1 (putative homeodomain transcription factor 1), RAB5B (member
RAS oncogene family), and SH2B3 (lymphocyte adaptor protein), identified in the WTCCC
report are also observed in this analysis.

We identified two novel regions, including ADAD1 (adenosine deaminase domain
containing 1) and a block in chromosome 16 (0.99-1.03Mb) significantly associated with
T1D. ADAD1 is a region showing moderate association evidence in the WTCCC. We did
not observe any SNP that can well tag the 2 risk haplotypes identified in the block.

Type 2 diabetes (T2D)
We only identified one gene, ZFAT1, that was not reported in the WTCCC study to be
significantly associated with T2D. Among 241 haplotypes in ZFAT1, we identified 4 are
risk haplotypes. No single SNP can well tag the haplotype risk set. Interestingly, this gene is
also shown to be significantly associated with HT. Among the risk haplotypes detected, 4
are shared by both HT and T2D (Table 4), suggested these rare haplotypes may contribute to
both HT and T2D. We failed to identify both the TCF7L2 and FTO genes whose association
to T2D has been established(2007; Grant et al. 2006). Further examining these two genes,
we observed there are 4841 and 2220 haplotypes in TCF7L2 and FTO, respectively.
Simulation studies suggested the current method will have limited power when the number
of haplotypes increases and the haplotype frequencies are too rare. Among the genes or
regions reaching a p-value <10E-4, linkage evidence has been reported in these genes:
PLXNA2 (plexin-A2), TRIP13 (thyroid hormone receptor interactor 13), block
(42.75-42.76Mb) on chromosome 15, and block (18.259-18.259Mb) on chromosome
20(Lillioja and Wilton 2009).
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Discussion
We have conducted a genome-wide search for rare genetic variants using the GWAS design
by reanalyzing the WTCCC data. Although only the common SNPs were tagged in the
Affymetrix 500K chip, our findings still detect rare variants by examining haplotypes in
each gene and provide further understanding of the genetic patterns underlying complex
diseases.

Our first experience is that we identified 8 novel genes or regions independently associated
with the diseases. We should caution that these findings are tentative and further
independent replication studies are necessary. However, we replicated the association
evidence between ZFAT1 and HT in FHS data, although the evidence is not from the same
block. We believe the replication for rare variants could be much challenged and it is less
likely to have the same variants showing association evidence in two independent studies.
The 7 risk haplotypes together occur in 4.5% of hypertensive cases and 1.1% of controls. No
common SNPs are in strong LD with the 7 identified rare risk haplotypes, suggesting
multiple rare variants in this gene contribute to HT. Interestingly, ZFAT1 is also identified
to be associated with T2D, with 4 risk haplotypes shared by both HT and T2D cases. It has
been known that HT is extremely common in patients with type 2 diabetes, affecting up to
60%(Varughese and Lip 2005). This analysis suggests ZFAT1 may contribute both HT and
T2D. In this study, all the novel genes and blocks identified have small cumulative risk (or
protective) haplotype frequencies. These rare risk (protective) haplotypes cannot be well
tagged by common SNPs. Multiple rare haplotypes were also observed in 5 of the 8 novel
genes or blocks, further suggesting multiple rare variants likely contribute to the variation of
the diseases.

For the genes reported in the WTCCC study, we also replicated 8 of their 24 genes. When a
common variant is solely the cause, our approach is expected to be less powerful than a
single SNP approach. Interestingly, two blocks capture our attention. The block on
chromosome 6 ranged from 32.5-32.9Mb, which is in the HLA region, is highly
significantly associated with RA. The most significantly associated SNP associated with RA
in single SNP analysis is rs6457617 in the WTCCC report, which is located in this block.
However, the significance level in the WTCCC report is far less than that in this study, even
on comparing with the less efficient two-stage method with independent samples in stage 1
and 2 (single SNP p-value in the WTCCC 3.44×10−76 vs 2.94×10−94, after adjusting for 100
multiple comparisons). In addition, SNP rs6457617 is not the SNP having the maximum LD
with the risk haplotype set we detected, suggested that rs6457617 may not be a causative
variant. The most significant region associated with T1D is the same block as for RA, where
the most significant SNP rs9272346 in the WTCCC report is located. Similarly, the
significance level of single SNP analysis is far less than the less efficient two-stage method
(p-value 2.42×10−134 vs 1.12×10−279). SNP rs9272346 is also not the SNP having the
maximum LD with the risk haplotype set we detected for T1D, suggesting additional
independent variants exist in this region contributing to T1D. This can also be further
confirmed in that many genes in the MHC region are strongly associated with RA and T1D
(supplemental table 2).

Our analysis was based on the most likely haplotypes inferred from the statistical software
BEGEAL(Browning and Browning 2007). To overcome any concern about haplotype
uncertainty, we reanalyzed the significant genes we identified by sampling an individual
haplotypes conditional on the individual’s genotypes and the haplotype frequency. The
results are consistent in general, indicating that significant evidence identified in this study
is unlikely due to incorrect haplotype inference (Supplementary table 3). However, we did
observe a block for T1D, is strongly affected by the uncertainly of haplotype inference.
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These blocks may reflect the false positive due to the haplotype uncertainty. We were also
concerned about the possibility of genotype errors, which could lead to biased results. We
therefore applied stricter QC procedures by dropping SNPs with missing rate>0.01. We
compared the missing rates between cases and controls and did not observe any systemic
difference (Supplementary table 4). Further, we did not observe any single SNP in strong
LD with the risk (or protective) haplotype sets in the novel genes or blocks we identified,
suggesting the findings are unlikely driven by SNP genotyping error. We also did not
observe any strong effect of population structure in the rare variant analysis, consistent with
the original WTCCC study.

The identification of the novel genes and regions by searching for rare risk (protective)
haplotypes demonstrates that it is an efficient alternative way, beside single SNP analysis,
for common variants in GWA studies. The identified risk (protective) haplotypes can serve
as guidance for future resequencing analysis in order to identify the underlying functional
variants. Especially, resequencing a region or a gene can make it possible to determine the
rare causal variants falling on the risk (protective) haplotypes detected in GWAS.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
QQ plots of −log10(p-value) for testing association of risk haplotype set at stage 2 between
the 7 disease cases and the common controls against the uniform distribution (left panel),
and the Manhattan plot of the genome-wide −log10(P value) according to the chromosomal
positions of genes in association tests (right panel).
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Figure 2.
QQ plots of −log10(p-value) for testing association of protective haplotype set at stage 2
between the 7 disease cases and the common controls against the uniform distribution (left
panel), and the Manhattan plot of the genome-wide −log10(P value) according to the
chromosomal positions of genes in association tests (right panel).

Feng and Zhu Page 13

Hum Genet. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng and Zhu Page 14

Ta
bl

e 
1

re
gi

on
s o

f t
he

 g
en

es
 o

r t
he

 g
en

om
e 

sh
ow

in
g 

st
ro

ng
 a

ss
oc

ia
tio

n 
ev

id
en

ce

D
is

ea
se

ch
ro

m
os

om
e

G
en

e
R

an
ge

 (M
B

)
Fr

eq
 o

f
ca

se
ha

pl
ot

yp
e

se
t

Fr
eq

 o
f

co
nt

ro
l

ha
pl

ot
yp

e
se

t

Sm
al

le
st

 P
va

lu
ea

ob
se

rv
ed

 P
va

lu
eb

# 
of

 r
ar

e
ha

pl
ot

yp
es

/
to

ta
l #

 o
f

ha
pl

ot
yp

es
r2c

SN
P 

ID
d

E
m

pi
ri

ca
l P

va
lu

ee
A

ss
oc

ia
tio

n
ev

id
en

ce
 in

W
T

C
C

C
 st

ud
yf

C
A

D
1

H
FE

2
14

4.
11

-1
44

.1
5

0.
00

62
0.

00
03

1.
67

E-
07

2.
65

E-
08

1/
3

0.
06

45
rs

12
09

15
64

<1
.0

E-
6

C
A

D
6

B
lo

ck
87

.9
3-

88
.0

2
0.

00
49

0
2.

32
E-

05
2.

21
E-

08
2/

21
0.

04
78

rs
93

62
39

9
1.

0E
-0

6

C
A

D
7

EI
F4

H
73

.2
0-

73
.2

5
0.

01
19

0.
00

05
5.

23
E-

14
1.

13
E-

15
1/

5
0.

31
91

rs
15

08
80

<1
.0

E-
6

C
A

D
9

C
D

K
N

2B
21

.9
9-

22
.1

2
0.

33
67

0.
26

92
5.

94
E-

08
7.

10
E-

13
7/

23
2

0.
45

09
rs

13
33

04
9

1.
00

E-
06

++

C
D

1
IL

23
R

67
.4

1-
67

.4
9

0.
24

77
0.

34
07

1.
59

E-
16

9.
67

E-
22

7/
99

0.
62

63
rs

11
46

57
60

<1
.0

E-
6

++

C
D

5
PT

G
ER

4
40

.3
1-

40
.6

2
0.

11
44

0.
 1

74
9

6.
73

E-
16

2.
30

E-
15

13
/4

46
0.

11
93

rs
16

86
98

64
<1

.0
E-

6
++

C
D

5
PT

G
ER

4
40

.3
1-

40
.6

2
0.

38
38

0.
29

83
1.

06
E-

06
1.

38
E-

17
9/

44
6

0.
26

62
rs

92
92

77
7

2.
00

E-
06

++

C
D

5
B

lo
ck

13
1.

83
-1

31
.8

4
0.

18
88

0.
23

06
1.

37
E-

06
9.

24
E-

07
1/

4
0.

98
28

rs
47

05
86

1
1.

0E
-0

6
+

C
D

5
ZN

F3
00

15
0.

26
-1

50
.3

2
0.

10
7

0.
07

52
3.

18
E-

07
1.

11
E-

07
1/

7
0.

11
20

rs
14

78
38

8
<1

.0
E-

6
++

C
D

6
C

6o
rf

10
32

.3
4-

32
.4

5
0.

13
84

0.
09

51
1.

64
E-

05
1.

34
E-

10
6/

81
0.

35
90

rs
93

91
85

8
<1

.0
E-

6
+

C
D

16
N

O
D

2
49

.2
8-

49
.3

1
0.

34
72

0.
27

75
6.

20
E-

14
9.

56
E-

13
2/

37
0.

95
91

rs
17

22
14

17
<1

.0
E-

6
++

H
T

8
ZF

A
T1

13
5.

57
-1

35
.6

7
0.

04
48

0.
01

12
3.

95
E-

29
2.

20
E-

25
7/

24
7

0.
10

68
rs

78
16

90
9

<1
.0

E-
6

R
A

1
PT

PN
22

11
4.

11
-1

14
.2

2
0.

17
04

0.
09

63
1.

55
E-

24
3.

17
E-

26
1/

37
0.

99
23

rs
66

79
67

7
<1

.0
E-

6
++

R
A

4
N

D
ST

3
11

9.
26

-1
19

.4
2

0.
00

7
0

3.
47

E-
09

1.
89

E-
11

1/
50

0.
02

51
rs

12
65

00
31

<1
.0

E-
6

R
A

6
B

lo
ck

*
32

.5
2-

32
.8

4
0.

49
56

0.
25

0
2.

94
E-

96
7.

65
E-

13
3

10
/3

07
0.

30
97

rs
92

75
41

8
<1

.0
E-

6
++

R
A

6
O

LI
G

3
13

8.
05

-1
38

.1
4

0.
32

42
0.

26
72

2.
60

E-
06

1.
53

E-
09

3/
46

0.
52

30
rs

69
20

22
0

5.
0E

-0
6

+

R
A

17
B

lo
ck

16
.8

9-
17

.0
1

0.
00

62
0

1.
32

E-
06

3.
28

E-
10

2/
24

0.
08

91
SN

P_
A

-1
95

45
87

<1
.0

E-
6

T1
D

1
PT

PN
22

*
11

4.
11

-1
14

.2
2

0.
16

94
0.

09
65

3.
69

E-
24

3.
22

E-
26

1/
32

0.
99

36
rs

66
79

67
7

<1
.0

E-
6

++

T1
D

4
A

D
A

D
1

12
3.

55
-1

23
.5

9
0.

30
64

0.
26

02
2.

02
E-

07
3.

02
E-

07
1/

8
0.

99
65

rs
17

38
85

68
1.

00
E-

06
+

T1
D

6
B

lo
ck

32
.5

2-
32

.8
3

0.
67

49
0.

24
21

1.
12

E-
28

1
0

16
/2

94
0.

83
05

rs
92

73
36

3
<1

.0
E-

6
++

T1
D

12
ER

B
B

3*
54

.7
3-

54
.7

7
0.

40
17

0.
33

82
6.

64
E-

11
1.

55
E-

10
1/

4
0.

99
43

rs
22

92
23

9
<1

.0
E-

6
++

T1
D

12
C

12
or

f3
0

11
0.

95
-1

11
.0

0
0.

50
50

0.
42

42
5.

90
E-

16
2.

10
E-

15
1/

7
0.

99
83

rs
17

69
67

36
<1

.0
E-

6
++

T1
D

16
B

lo
ck

0.
99

-1
.0

3
0.

08
1

0.
11

25
3.

32
E-

06
1.

56
E-

07
2/

7
0.

14
58

rs
53

52
55

2.
0E

-0
6

T2
D

8
ZF

A
T1

13
5.

57
-1

35
.6

7
0.

03
14

0.
00

03
1.

41
E-

34
1.

72
E-

46
4/

24
1

0.
17

41
rs

64
21

00
8

<1
.0

E-
6

a Sm
al

le
st

 P
-v

al
ue

 w
as

 c
al

cu
la

te
d 

as
 th

e 
sm

al
le

st
 p

-v
al

ue
 o

f F
is

he
r’

s e
xa

ct
 te

st
s a

m
on

g 
10

0 
re

sa
m

pl
in

gs
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 4
00

 c
as

es
 a

nd
 1

00
0 

co
nt

ro
ls

.

Hum Genet. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng and Zhu Page 15
b O

bs
er

ve
d 

P-
va

lu
e 

w
as

 c
al

cu
la

te
d 

us
in

g 
Fi

sh
er

’s
 e

xa
ct

 te
st

 w
he

n 
st

ag
e 

1 
co

-c
la

ss
ifi

ca
tio

n 
us

ed
 th

e 
en

tir
e 

sa
m

pl
e.

 T
hi

s p
-v

al
ue

 sh
ou

ld
 b

e 
co

ns
id

er
ed

 a
s a

 g
en

e-
sp

ec
ifi

c 
te

st
 st

at
is

tic
.

c r2
 is

 th
e 

m
ax

im
um

 c
or

re
la

tio
n 

be
tw

ee
n 

th
e 

ris
k 

(p
ro

te
ct

iv
e)

 h
ap

lo
ty

pe
 se

t a
nd

 th
e 

SN
Ps

 c
on

si
st

in
g 

ha
pl

ot
yp

es
.

d SN
P 

ID
 is

 th
e 

SN
P 

ha
vi

ng
 th

e 
m

ax
im

um
 c

or
re

la
tio

n 
w

ith
 th

e 
ris

k 
(p

ro
te

ct
iv

e)
 h

ap
lo

ty
pe

 se
t.

e Em
pi

ric
al

 P
 v

al
ue

 w
as

 o
bt

ai
ne

d 
ba

se
d 

on
 1

,0
00

,0
00

 p
er

m
ut

at
io

ns
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 th
e 

en
tir

e 
sa

m
pl

e.
 T

hi
s p

-v
al

ue
 re

fe
rs

 th
e 

re
po

rte
d 

p 
va

lu
es

 in
 th

e 
te

xt
.

f ++
 in

di
ca

te
s s

tro
ng

 a
ss

oc
ia

tio
n 

ev
id

en
ce

 w
as

 o
bs

er
ve

d 
in

 W
TC

C
C

 st
ud

y;
 +

 in
di

ca
te

s m
od

er
at

e 
as

so
ci

at
io

n 
w

as
 o

bs
er

ve
d 

in
 W

TC
C

C
 st

ud
y

* in
di

ca
te

d 
th

er
e 

ar
e 

m
an

y 
ge

ne
s i

de
nt

ifi
ed

 a
nd

 w
e 

re
po

rte
d 

th
e 

m
os

t s
ig

ni
fic

an
t o

ne
.

Hum Genet. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng and Zhu Page 16

Ta
bl

e 
2

re
gi

on
s o

f t
he

 g
en

es
 o

r t
he

 g
en

om
e 

sh
ow

in
g 

m
od

er
at

e 
as

so
ci

at
io

n 
ev

id
en

ce

D
is

ea
se

ch
ro

m
os

om
e

G
en

e
R

an
ge

 (M
B

)
Fr

eq
 o

f
ca

se
ha

pl
ot

yp
e

se
t

Fr
eq

 o
f

co
nt

ro
l

ha
pl

ot
yp

e
se

t

Sm
al

le
st

 P
va

lu
ea

ob
se

rv
ed

 P
va

lu
eb

# 
of

 r
ar

e
ha

pl
ot

yp
es

in
ha

pl
ot

yp
e

se
t

r2c
R

s N
am

ed
E

m
pi

ri
ca

l P
va

lu
ee

A
ss

oc
ia

tio
n

ev
id

en
ce

 in
W

T
C

C
C

 st
ud

yf

B
D

2
R

N
PE

PL
1

24
1.

16
-2

41
.1

6
0.

18
82

0.
22

53
7.

21
E-

05
6.

84
E-

06
2/

4
1

rs
67

30
10

7
2.

60
E-

05
+

B
D

5
FB

X
O

38
14

7.
72

-1
47

.8
1

0.
62

1
0.

66
47

1.
84

E-
05

5.
22

E-
06

1/
18

0.
75

22
rs

68
61

07
8

7.
10

E-
05

B
D

7
ZN

F6
80

63
.4

5-
63

.7
1

0.
03

42
0.

05
82

3.
52

E-
05

3.
85

E-
08

3/
15

3
0.

32
23

rs
63

37
02

0.
00

01
31

B
D

11
ZD

H
H

C
13

19
.0

7-
19

.1
5

0.
00

08
0.

00
92

2.
48

E-
05

4.
97

E-
09

3/
97

0.
00

56
rs

11
02

50
15

4.
20

E-
05

B
D

14
K

LH
D

C
1

49
.2

3-
49

.2
9

0.
66

73
0.

70
54

1.
44

E-
04

4.
61

E-
05

1/
4

0.
99

37
rs

12
71

74
02

0.
00

01
48

B
D

14
TD

R
D

9
10

3.
50

-1
03

.6
1

0.
25

37
0.

29
87

2.
29

E-
06

1.
12

E-
06

1/
20

0.
98

96
rs

11
62

24
75

2.
70

E-
05

+

B
D

21
PO

FU
T2

45
.5

1-
45

.5
4

0.
00

96
0.

00
31

0.
00

01
38

3.
15

E-
05

1/
4

0.
01

33
rs

28
38

85
5

1.
03

E-
05

C
A

D
1

PS
R

C
1

10
9.

62
-1

09
.6

2
0.

80
92

0.
77

21
9.

44
E-

06
5.

61
E-

06
1/

2
1

rs
59

98
39

1.
40

E-
05

C
A

D
1

B
lo

ck
22

0.
86

-2
20

.8
9

0.
19

52
0.

23
54

3.
54

E-
04

1.
46

E-
06

3/
15

0.
73

41
rs

30
08

61
3

2.
30

E-
05

C
A

D
17

B
lo

ck
71

.4
4-

71
.4

5
0.

24
61

0.
28

27
6.

14
E-

05
4.

04
E-

05
1/

2
1

rs
26

08
88

1
6.

30
E-

05

C
D

2
C

2o
rf

65
74

.6
6-

74
.7

0
0.

87
90

0.
90

36
5.

09
E-

05
0.

00
01

0
1/

2
1

rs
36

36
91

0.
00

02
19

C
D

3
B

SN
49

.5
8-

49
.6

8
0.

32
95

0.
28

21
3.

17
E-

06
7.

93
E-

07
1/

15
0.

99
55

rs
98

58
54

2
1.

4E
-0

5
++

C
D

6
B

lo
ck

10
7.

50
-1

07
.5

5
0.

24
14

0.
28

60
1.

23
E-

06
1.

59
E-

06
2/

16
0.

51
70

rs
16

65
90

1
8.

30
E-

05

C
D

8
LO

C
44

13
76

11
7.

99
-1

18
.0

3
0.

15
53

0.
11

83
1.

02
E-

05
2.

22
E-

07
2/

44
0.

13
93

rs
30

20
17

6
2.

80
E-

05

C
D

10
B

lo
ck

10
1.

25
-1

01
.2

8
0.

50
66

0.
44

98
4.

26
E-

06
5.

69
E-

08
2/

38
0.

95
03

rs
65

84
28

3
6.

00
E-

06
++

C
D

20
ZG

PA
T

61
.8

2-
61

.8
4

0.
78

49
0.

74
66

2.
18

E-
05

1.
34

E-
05

1/
2

1
rs

27
38

75
8

1.
80

E-
05

H
T

10
A

B
LI

M
1

11
6.

18
-1

16
.3

2
0.

02
36

0.
05

62
8.

83
E-

06
5.

43
E-

16
11

/6
42

0.
03

54
rs

65
85

27
8

1.
20

E-
05

H
T

15
N

R
2F

2
94

.6
4-

94
.7

0
0.

11
76

0.
15

11
2.

26
E-

05
1.

17
E-

06
3/

15
0.

46
36

rs
11

07
34

74
5.

50
E-

05
+

R
A

12
C

LE
C

1B
10

.0
3-

10
.0

4
0.

42
61

0.
47

53
4.

23
E-

05
1.

29
E-

06
2/

8
0.

72
33

rs
77

07
38

1.
80

E-
05

R
A

12
O

S9
56

.3
4-

56
.3

9
0.

30
62

0.
34

68
3.

25
E-

05
1.

97
E-

05
1/

2
1

rs
10

87
69

91
4.

00
E-

05

T1
D

1
H

M
G

C
S2

12
0.

09
-1

20
.1

2
0.

11
10

0.
14

29
1.

53
E-

05
2.

07
E-

06
2/

12
0.

14
44

rs
37

90
69

2
3.

90
E-

05

T1
D

2
B

lo
ck

74
.6

0-
74

.6
2

0.
16

17
0.

13
16

2.
71

E-
05

1.
84

E-
05

1/
4

0.
99

92
rs

65
46

90
9

2.
90

E-
05

T1
D

4
B

lo
ck

12
3.

24
-1

23
.4

6
0.

30
54

0.
26

31
5.

10
E-

06
2.

88
E-

06
1/

8
0.

71
8

rs
10

01
59

24
3.

90
E-

05
+

T1
D

6
FA

M
13

5A
71

.1
3-

71
.3

3
0.

26
87

0.
31

39
2.

70
E-

04
7.

76
E-

07
3/

26
0.

40
10

rs
10

49
88

73
1.

90
E-

05

T1
D

17
B

lo
ck

36
.0

2-
36

.0
3

0.
31

17
0.

35
34

3.
53

E-
05

9.
84

E-
06

1/
2

1
rs

72
21

10
9

1.
80

E-
05

Hum Genet. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng and Zhu Page 17

D
is

ea
se

ch
ro

m
os

om
e

G
en

e
R

an
ge

 (M
B

)
Fr

eq
 o

f
ca

se
ha

pl
ot

yp
e

se
t

Fr
eq

 o
f

co
nt

ro
l

ha
pl

ot
yp

e
se

t

Sm
al

le
st

 P
va

lu
ea

ob
se

rv
ed

 P
va

lu
eb

# 
of

 r
ar

e
ha

pl
ot

yp
es

in
ha

pl
ot

yp
e

se
t

r2c
R

s N
am

ed
E

m
pi

ri
ca

l P
va

lu
ee

A
ss

oc
ia

tio
n

ev
id

en
ce

 in
W

T
C

C
C

 st
ud

yf

T2
D

15
ZF

A
N

D
6

78
.1

4-
78

.2
2

0.
24

19
0.

28
3

1.
15

E-
04

3.
89

E-
06

2/
8

0.
 9

94
37

5
rs

29
03

26
5

4.
90

E-
05

+

a Sm
al

le
st

 P
-v

al
ue

 w
as

 c
al

cu
la

te
d 

as
 th

e 
sm

al
le

st
 p

-v
al

ue
 o

f F
is

he
r’

s e
xa

ct
 te

st
s a

m
on

g 
10

0 
re

sa
m

pl
in

gs
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 4
00

 c
as

es
 a

nd
 1

00
0 

co
nt

ro
ls

.

b O
bs

er
ve

d 
P-

va
lu

e 
w

as
 c

al
cu

la
te

d 
us

in
g 

Fi
sh

er
’s

 e
xa

ct
 te

st
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 th
e 

en
tir

e 
sa

m
pl

e.
 T

hi
s p

-v
al

ue
 sh

ou
ld

 b
e 

co
ns

id
er

ed
 a

s a
 g

en
e-

sp
ec

ifi
c 

te
st

 st
at

is
tic

.

c r2
 is

 th
e 

m
ax

im
um

 c
or

re
la

tio
n 

be
tw

ee
n 

th
e 

ris
k 

(p
ro

te
ct

iv
e)

 h
ap

lo
ty

pe
 se

t a
nd

 th
e 

SN
Ps

 c
on

si
st

in
g 

ha
pl

ot
yp

es
.

d SN
P 

ID
 is

 th
e 

SN
P 

ha
vi

ng
 th

e 
m

ax
im

um
 c

or
re

la
tio

n 
w

ith
 th

e 
ris

k 
(p

ro
te

ct
iv

e)
 h

ap
lo

ty
pe

 se
t.

e Em
pi

ric
al

 P
 v

al
ue

 w
as

 o
bt

ai
ne

d 
ba

se
d 

on
 1

,0
00

,0
00

 p
er

m
ut

at
io

ns
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 th
e 

en
tir

e 
sa

m
pl

e.
 T

hi
s p

-v
al

ue
 re

fe
rs

 th
e 

re
po

rte
d 

p 
va

lu
es

 in
 th

e 
te

xt
.

f ++
 in

di
ca

te
s s

tro
ng

 a
ss

oc
ia

tio
n 

ev
id

en
ce

 w
as

 o
bs

er
ve

d 
in

 W
TC

C
C

 st
ud

y;
 +

 in
di

ca
te

s m
od

er
at

e 
as

so
ci

at
io

n 
w

as
 o

bs
er

ve
d 

in
 W

TC
C

C
 st

ud
y

Hum Genet. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng and Zhu Page 18

Ta
bl

e 
3

R
ep

lic
at

io
n 

an
al

ys
is

 o
f F

H
S 

da
ta

 fo
r t

he
 g

en
es

 id
en

tif
ie

d 
in

 W
TC

C
C

 fo
r H

T

G
en

e
R

an
ge

 (M
B

)
Fr

eq
 o

f
ca

se
ha

pl
ot

yp
e

se
t

Fr
eq

 o
f

co
nt

ro
l

ha
pl

ot
yp

e
se

t

ob
se

rv
ed

 P
va

lu
ea

# 
of

 r
ar

e
ha

pl
ot

yp
es

/to
t

al
 #

 o
f

ha
pl

ot
yp

es
r2b

SN
P 

ID
c

E
m

pi
ri

ca
l

P 
va

lu
ed

ZF
A

T1
(1

)
13

5.
82

-1
35

.8
6

0.
12

02
19

0.
06

48
99

5
4.

88
E-

06
3

0.
14

23
17

rs
11

77
61

56
0.

00
00

9

ZF
A

T1
(2

)
13

5.
57

-1
35

.8
6

0.
03

55
19

1
0.

00
91

40
77

1.
67

E-
05

3
0.

01
36

24
3

rs
69

88
00

0
0.

05
9

A
B

LI
M

1
11

6.
35

-1
16

.4
3

0.
03

46
08

4
0.

07
76

97
7.

23
E-

06
4

0.
09

67
80

2
rs

12
57

07
18

0.
00

98
7

ZF
A

T1
(1

)  :
 h

ap
lo

ty
pe

s w
er

e 
co

ns
tru

ct
ed

 b
as

ed
 o

n 
th

e 
SN

Ps
 in

 F
H

S 
da

ta

ZF
A

T1
(2

)  :
 h

ap
lo

ty
pe

s w
er

e 
co

ns
tru

ct
ed

 b
y 

co
m

bi
ni

ng
 th

e 
SN

Ps
 id

en
tif

ie
d 

in
 W

TC
C

C
 a

nd
 F

H
S 

to
ge

th
er

.

a O
bs

er
ve

d 
P-

va
lu

e 
w

as
 c

al
cu

la
te

d 
us

in
g 

Fi
sh

er
’s

 e
xa

ct
 te

st
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 th
e 

en
tir

e 
sa

m
pl

e.
 T

hi
s p

-v
al

ue
 sh

ou
ld

 b
e 

co
ns

id
er

ed
 a

s a
 g

en
e-

sp
ec

ifi
c 

te
st

 st
at

is
tic

.

b r2
 is

 th
e 

m
ax

im
um

 c
or

re
la

tio
n 

be
tw

ee
n 

th
e 

ris
k 

(p
ro

te
ct

iv
e)

 h
ap

lo
ty

pe
 se

t a
nd

 th
e 

SN
Ps

 c
on

si
st

in
g 

ha
pl

ot
yp

es
.

c SN
P 

ID
 is

 th
e 

SN
P 

ha
vi

ng
 th

e 
m

ax
im

um
 c

or
re

la
tio

n 
w

ith
 th

e 
ris

k 
(p

ro
te

ct
iv

e)
 h

ap
lo

ty
pe

 se
t.

d Em
pi

ric
al

 P
 v

al
ue

 w
as

 o
bt

ai
ne

d 
ba

se
d 

on
 1

,0
00

,0
00

 p
er

m
ut

at
io

ns
 w

he
n 

st
ag

e 
1 

co
-c

la
ss

ifi
ca

tio
n 

us
ed

 th
e 

en
tir

e 
sa

m
pl

e.
 T

hi
s p

-v
al

ue
 re

fe
rs

 th
e 

re
po

rte
d 

p 
va

lu
es

 in
 th

e 
te

xt
.

Hum Genet. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng and Zhu Page 19

Table 4

Risk haplotypes and the corresponding frequencies detected in T2D and HT

Risk haplotype HT(%) T2D(%) Controls(%)

CCGCTAGCGATCTCACGTCGCGTGTGTCTC 0.10 0.10 0.00

CCGGTAGCGATCTCACGTCGCGTGTGTCTC 1.23 1.51 0.00

GTGCTAGCGATCTCACGTCGCGTGTGTCTC 1.20 1.38 0.00

GCAGGAACCGCCTTACGTTGTGTGTACGCC 0.10 0.00 0.00

GCAGGAACCGCCTTACTTCACCCGTACGCC 0.38 0.00 0.15

GCGGGAGCCGTATTACGTCACCCGTATGCC 1.33 0.00 0.95

CCGCGAGCGGTCTCAGGTTGTGCGTACGCC 0.13 0.00 0.02

CCGGGAGCCGTATTACGTCACCCGTATGCC 0.00 0.16 0.03
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