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OPEN

ORIGINAL ARTICLE

Genome-wide selective sweeps and gene-specific
sweeps in natural bacterial populations

Matthew L Bendall1,8, Sarah LR Stevens2,8, Leong-Keat Chan1, Stephanie Malfatti1,
Patrick Schwientek1, Julien Tremblay1, Wendy Schackwitz1, Joel Martin1, Amrita Pati1,
Brian Bushnell1, Jeff Froula1, Dongwan Kang1, Susannah G Tringe1, Stefan Bertilsson3,
Mary A Moran4, Ashley Shade5, Ryan J Newton6, Katherine D McMahon2,7

and Rex R Malmstrom1

1DOE Joint Genome Institute, Walnut Creek, CA, USA; 2Department of Bacteriology, University of
Wisconsin-Madison, Madison, WI, USA; 3Department of Ecology and Genetics, Limnology and Science for Life
Laboratory, Uppsala University, Uppsala, Sweden; 4Department of Marine Sciences, University of Georgia,
Athens, GA, USA; 5Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA;
6School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA and 7Civil and
Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA

Multiple models describe the formation and evolution of distinct microbial phylogenetic groups.
These evolutionary models make different predictions regarding how adaptive alleles spread through
populations and how genetic diversity is maintained. Processes predicted by competing evolutionary
models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in
natural populations using time-series metagenomics if the approach were applied over a sufficiently
long time frame. Direct observations of either process would help resolve how distinct microbial
groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore
changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in
30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these
populations, although the degree of heterogeneity varied by 41000-fold among populations. SNP
allele frequencies also changed dramatically over time within some populations. Interestingly, nearly
all SNP variants were slowly purged over several years from one population of green sulfur bacteria,
while at the same time multiple genes either swept through or were lost from this population. These
patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the
‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations
contained large, SNP-free genomic regions that appear to have swept independently through the
populations prior to the study without purging diversity elsewhere in the genome. Evidence for both
genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may
apply to different populations coexisting in the same environment.
The ISME Journal (2016) 10, 1589–1601; doi:10.1038/ismej.2015.241; published online 8 January 2016

Introduction

Microbial communities are composed of genetically
and ecologically distinct groups. Multiple evolution-
ary models have been proposed to explain the
formation of distinct groups, and these models often
assume a different balance between the forces of
recombination and selection. The ‘ecotype model’ is
perhaps the most prominent, and it assumes recom-
bination within ecologically coherent populations is

low enough that if a population member gains an
advantageous trait, then that member will likely take
over the population before the trait can spread to
other members via recombination (Cohan, 2001;
Cohan and Perry, 2007). As a result, genetic hetero-
geneity is purged from the population, that is, the
population experiences a genome-wide selective
sweep. In this model, distinct phylogenetic groups
form after ecologically divergent populations
undergo a series of genome-wide sweeps (Cohan,
2001; Cohan and Perry, 2007). Support for the
ecotype model, however, is largely based on theore-
tical simulations (Cohan, 1994; Majewski and Cohan,
1999), and thus far genome-wide sweeps have not
been observed in natural populations (Cordero and
Polz, 2014; Shapiro and Polz, 2014). In fact, recent
comparative genomic analyses support an alternate
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model where recombination rates are high, and
advantageous genes are exchanged among popula-
tion members without initiating genome-wide
sweeps (Whitaker et al., 2005; Fraser et al., 2007;
Cadillo-Quiroz et al., 2012; Shapiro et al., 2012).
Direct, time-resolved observations of either genes or
genomes sweeping through natural populations
would help to determine which mechanisms drive
diversification in microbial assemblages.

Genetic diversification can be observed directly
by sequencing bacterial populations at various
time points throughout their evolutionary history
(Barrick et al., 2009; Maharjan et al., 2012; Herron
and Doebeli, 2013). In long-term evolutionary
studies of Escherichia coli cultures, for example,
DNA sequencing has revealed numerous single-
nucleotide polymorphisms (SNPs) appearing spon-
taneously and, in some cases, becoming fixed, over
thousands of generations (Barrick and Lenski, 2009;
Barrick et al., 2009; Lee et al., 2012). Exploring
genetic changes within natural populations is the
next step in understanding how bacteria evolve and
diverge into distinct groups. Investigating natural
communities will, for example, provide a more
complete picture of how genome composition is
impacted by natural processes, such as horizontal
gene transfer, the direct uptake of free DNA and
interactions with viruses—processes that are not
typically addressed in laboratory-based studies
(Barrick et al., 2009; Maharjan et al., 2012; Herron
and Doebeli, 2013). This approach will also expand
our view to include new microbial groups whose
rates of growth, mutation and recombination may
differ substantially from isolates grown in the
laboratory.

Time-series metagenomics has the potential to
identify genetically and ecologically distinct groups
within natural microbial communities and reveal the
mechanisms leading to their diversification. For
example, de novo assembly of metagenomic data
can generate reference genomes of uncultivated
microbes (Tyson et al., 2004; Iverson et al., 2012;
Wrighton et al., 2012; Albertsen et al., 2013; Sharon
et al., 2013), while recruitment of metagenomic reads
to reference genomes can reveal genetic heterogene-
ity within discrete populations (Konstantinidis and
DeLong, 2008; Caro-Quintero and Konstantinidis,
2012). Metagenomics can also provide insights
into the evolutionary processes within natural
communities by uncovering evidence for genome
recombination among microbes and providing
direct measurements of nucleotide substitution
rates (Tyson et al., 2004; Allen et al., 2007;
Simmons et al., 2008; Denef and Banfield, 2012).
Repeated metagenomic sampling of an environment,
if applied over a sufficiently long time frame, could
also capture other evolutionary patterns such as
genome-wide selective sweeps, a process that
has not been directly observed in natural popula-
tions to date (Cordero and Polz, 2014; Shapiro and
Polz, 2014).

Here we use metagenomics to explore the genome
dynamics and diversification processes of freshwater
bacterial groups over a 9-year period. As part of
this study, we perform shotgun sequencing of
a freshwater lake microbial community sampled at
63 time points from 2005 to 2013 and reconstruct
30 genomes from a variety of bacterial groups.
To better understand the ecological and evolutionary
processes at work within natural communities, we
analyze these genomes, and the populations they
represent, for changes in gene content and SNP-level
heterogeneity over the 9-year period.

Materials and methods

DNA sampling and sequencing
Trout Bog Lake is located in Wisconsin, USA and
surrounded by boreal forests and a sphagnum mat that
supply large amounts of terrestrially derived organic
matter to the lake. Surface area is ~11 000m2, a
maximum depth of 9m and a mean pH of 5.1. Depth
integrated water samples were collected from the
hypolimnion layer at 63 different time points during
ice-free periods from 2005 to 2013 and from the
epilimnion layer at 45 time points from 2007 to 2009
(Supplementary Table S4) and filtered on 0.2-μm pore-
size polyethersulfone Supor filters (Pall Corp., Port
Washington, NY, USA) prior to storage at −80 °C. DNA
was later purified from these filters using the FastDNA
Kit (MP Biomedicals, Burlingame, CA, USA).

DNA sequencing was performed at the Department
of Energy Joint Genome Institute (Walnut Creek, CA,
USA). Four libraries (two from each layer of
water column) were amplified following the standard
Illumina TruSeq (Illumina, San Diego, CA, USA)
protocol and sequenced on the Illumina GA IIx
platform (Illumina), while all other libraries remained
unamplified and were sequenced on the HiSeq 2500
platform (Illumina). Paired-end sequences of
2×150 bp were generated for all libraries. Libraries
from samples collected between 2007 and 2009 were
generated simultaneously in a 96-well plate, and
samples from different years were pooled together
for sequencing. Samples collected in 2005, 2012
and 2013 were also processed simultaneously in a
96-well plate prior to pooling and sequencing.
Sequence reads were merged with the FLASH v1.0.3
(Magoc and Salzberg, 2011) with a mismatch value
of ⩽0.25 and a minimum of 10 overlapping bases from
paired sequences, resulting in merged read lengths
of 150–290 bp. Metagenomic sequence reads are
publicly available on the JGI Genome Portal (http://
genome.jgi.doe.gov/pages/dynamicOrganismDownload.
jsf?organism=TroutBogmetagenomicdata).

Merged reads from all samples collected between
2007 and 2009 were pooled by layer into two
combined assemblies using SOAPdenovo (Luo
et al., 2012) with k-mer sizes of 107, 111, 115, 119,
123 and 127 (Supplementary Table S5). Contigs from
SOAPdenovo assemblies were combined into a final
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assembly using Minimus (Sommer et al., 2007).
Samples from 2005, 2012 and 2013 were sequenced
at a later date so that changes in SNP allele
frequencies and patterns of gene gain/loss could be
followed over a longer time period (see below), and
these sequences were not included in the combined
assembly.

Binning metagenomic contigs into genomes
Contigs ⩾ 2.5 kbp were organized into genomes
based on tetranucleotide sequence composition and
overall contig coverage patterns using the binning
tool MetaBat (Kang et al., 2015). Coverage levels
at 45 time points collected between 2007 and
2009 were determined from metagenomic reads
mapping with ⩾95% sequence identity using the
Burrows–Wheeler aligner (BWA)-backtrack align-
ment algorithm with n=0.05 (Li and Durbin, 2009).
To minimize the chance of incorrectly binning
contigs from different organisms, MetaBat was run
with ‘very specific’ settings. Genome bins with ⩾10-
fold coverage in ⩾ 3 years of the time-series study
were then manually curated to ensure all contigs
shared similar abundance patterns (Supplementary
Figure S2). Contig coverage levels in curated genome
bins had an average correlation coefficient of 0.995,
with the median bin coverage.

Gene prediction and annotation
Gene prediction and annotation for metagenomic
reconstructions was performed using the DOE Joint
Genome Institute’s Integrated Microbial Genome
database tool (Markowitz et al., 2012). Genome
completeness was estimated using the two methods
published previously based on the fraction of
broadly shared genes recovered in each genome
(Rinke et al., 2013; Parks et al., 2015; Supplementary
Table S6). Accession numbers for publically

available genomes deposited in IMG are listed in
Supplementary Table S7.

Phylogenetic analysis and average sequence identities
Genomes were classified based on the taxonomic
assignments from a subset of 37 conserved marker
genes, mostly ribosomal proteins, extracted from the
reconstructed genomes using PhyloSift (Darling
et al., 2014). Marker genes with cumulative prob-
ability masses o0.80 were removed. Genomes were
assigned to the finest taxonomic scale for which all
marker genes agreed, ranging the phylum level for
some genomes down to genus level for others. TM7-
1225 was initially only classified to the domain
Bacteria using this approach, but the population was
assigned to the TM7 phylum through phylogenetic
analysis of marker genes from previously published
TM7 genomes. Marker genes in other TM7 genomes
were identified and concatenated using Phylosift,
and a maximum likelihood tree was generated
using RAxML with the Dayhoff substitution model
(Supplementary Figure S6; Stamatakis, 2014).
Bootstraps were generated with 100 replicates using
RAxML’s rapid bootstrap function.

Identifying sequence-discrete populations
Metagenomic reads were mapped to the recon-
structed genomes using BBmap (https://sourceforge.
net/projects/bbmap/), with minimum alignment
identity cutoff of 0.60. BBmap was selected for this
particular mapping step owing to ease in mapping
with low-percent identity reads. The genome loca-
tion and percentage of identity for each mapped read
was extracted from the alignments, and the fraction
of reads mapping with 60–100% nucleotide identity
to each genome was determined for all time points.
A large drop in coverage around 95% identity was
observed for all genomes (Figure 1). This coverage

Figure 1 ‘Sequence-discrete’ populations revealed by metagenomic read mapping. (a) An example recruitment plot of 50 000 shotgun
reads mapping across the Chlorobium-111 genome at various nucleotide identity levels. Each dot represents a read. (b) Summary of reads
mapping at each percentage of nucleotide identity level for all genomes. Each line represents a different genome. A distinct lack of
coverage around 95% identity was observed in all genomes. The y axis (percentage of mapped reads) of panel (b) was truncated at 30% to
illustrate this coverage discontinuity.
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discontinuity was used to identify the boundary of
‘sequence-discrete’ populations, although the vast
majority of reads mapping with high identity
(495%) actually mapped with ⩾99% identity.

SNP identification and analysis
SNPs were discovered by first mapping reads with
⩾95% nucleotide sequence identity from each time
point to the reference genomes using BWA. The vast
majority of recruited reads actually mapped with
⩾99% identity. As many individual time points
lacked sufficient coverage for confident SNP dis-
covery, we combined the alignments from samples
collected in the same year to ensure at least 10-fold
coverage per time period. Each of these yearly time
periods were treated as a sample, and variant
positions were identified using the multi-sample
genotype likelihood model implemented in the
GATK UnifiedGenotyper tool v.2.7-2 (McKenna
et al., 2010; DePristo et al., 2011). The tool was
run in ‘DISCOVERY’ mode, which did not require
known variants as input, and ploidy was set to 1. To
ensure only high-confidence SNPs were examined,
an initial filter was applied to remove SNP loci with
multiple alternate alleles, low quality scores (Qo30,
99.9%) or low genotype quality in one or more
samples (Qo30, 99.9%) (Supplementary Table S8).
We then removed a small fraction of outlier SNPs
with unusually high or low coverage, that is, 41.5
interquartile ranges below the first quartile or above
the third quartile. These SNPs do not necessarily
represent all single-nucleotide variation in the
populations because the references genomes were
not complete. Some rare SNPs might also be over-
looked despite high sequencing coverage.

The reconstructed genomes were temporal com-
posites assembled from reads collected from 2007 to
2009, and ultimately only a single allele at each SNP
locus was selected by the assembly algorithm, thus
referring to the assembled allele as the ‘reference’
was somewhat arbitrary. For consistency, the ‘refer-
ence’ allele was chosen to be the majority allele
observed at the final time period. This choice
simplified figure construction and had no impact
on patterns of gain and loss of diversity. Allele
frequencies were calculated based on the number of
reads observed with the reference or alternate allele.

Gene gain and loss over time
To identify genes whose relative abundance in the
population changed significantly over the course of
this study, we compared gene coverage between the
first and last year with ⩾ 10-fold coverage using the
Metastats software (Paulson et al., 2011). Coverage
was determined as the number of metagenomic
reads mapping with ⩾95% sequence identity to
each gene at each time point. Gene coverage was
normalized by gene length, and spurious short gene
annotations (o450 bp) were excluded from the

analysis. Gene frequency was estimated as the
coverage of each gene divided by the median
coverage of all other genes in the genome.
A frequency of 1 implies each cell in the population
encoded one copy of the gene. Genes were consid-
ered to be gained or lost from a population if the gene
frequency changed by a magnitude of 40.4 copies
per cell with a false discovery rate of ⩽ 0.01 using the
Metastats test.

Identifying putative sites of historical gene-specific
sweeps
Potential sites of gene-specific sweeps were identi-
fied as regions with unusually low numbers of SNPs
relative to the rest of the genome. The probability
that region of any size would contain no SNPs was
modeled as a Poisson distribution that assumed
SNPs were distributed uniformly and occurred with
an average rate equal to the total number of SNPs
divided by genome size. The chance of finding a
SNP-free region of any size in a genome was then
determined as the Poisson probability multiplied by
the genome size minus the region size. In a 1-Mbp
genome, for example, the Poisson probability of
a 1-Kbp region lacking SNPs would be multiplied by
999 000, that is, the number of unique 1-Kbp regions
found in a 1-Mbp genome. Genome regions with
anomalously low numbers of SNPs were identified,
with a significance cutoff of Po0.0001.

Results and Discussion

Genome assembly from metagenomic data
Bacterial genomes were reconstructed from a com-
bined assembly of metagenomic sequences collected
at several time points. Contigs generated from
this combined assembly were organized into genome
bins based on tetranucleotide sequence composition
and differences in contig coverage levels throughout
the time series. The unique temporal abundance
pattern of each genome bin (Supplementary
Figure S1), and the tight synchronization of contig
coverage within bins (Supplementary Figure S2),
allowed us to confidently distinguish closely related
genomes based on coverage differences (Albertsen
et al., 2013; Sharon et al., 2013). We then focused our
analyses on 30 reconstructed genomes that had
⩾10-fold sequence coverage in at least three different
years from 2005 to 2013 (Table 1). These genomes
belonged to 13 classes distributed among 6 phyla;
some could only be classified to the phylum level
while others were classified to the genus level based
on availability of related reference genomes
(Supplementary Figure S3). Estimates of genome
completeness ranged from ~50 to 100% (Table 1).

Genetic heterogeneity in natural populations
The recovered genomes were assembled from
sequences collected at several time points and do
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not reflect the exact genetic make up of any single
cell, as is the case with all metagenomic constructs
(Tyson et al., 2004; Simmons et al., 2008; Denef and
Banfield, 2012). Instead, they are composites that
represent populations of cells with high sequence
similarity. These populations were visualized by
recruiting metagenomic reads at various sequence
identity levels to each composite reference genome
(Konstantinidis and DeLong, 2008; Caro-Quintero
and Konstantinidis, 2012). In every case, metage-
nomic recruitment revealed ‘sequence-discrete’
populations whose reads typically mapped with
⩾99% nucleotide identity to reference genomes
and closely related populations whose reads mapped
with o90% identity (Figure 1). A large drop in
coverage around 95% sequence identity was
observed in all genomes (Figure 1b). This is a
common feature in metagenomic recruitment plots,
and it marks the boundary between these operation-
ally defined sequence-discrete populations and
other closely related sympatric populations
(Tyson et al., 2004; Konstantinidis and DeLong,
2008; Caro-Quintero et al., 2011; Oh et al., 2011;
Caro-Quintero and Konstantinidis, 2012). The terms
‘population’ and ‘sequence-discrete population’ are
used interchangeably for the remainder of this
manuscript.

Sequence-discrete populations are not clonal but
instead are composed of highly similar, co-occurring

genotypes that contain some degree of genetic
diversity (Caro-Quintero et al., 2011; Caro-Quintero
and Konstantinidis, 2012). Previous studies suggest
that levels of intra-population diversity are lower
than those among strains of the same named species
(Konstantinidis and Tiedje, 2005; Konstantinidis
and DeLong, 2008; Caro-Quintero et al., 2011;
Caro-Quintero and Konstantinidis, 2012). This
implies members of sequence-discrete populations
may have highly similar, if not identical, ecological
roles (Caro-Quintero and Konstantinidis, 2012),
although the ecological coherence of these popula-
tions has not been demonstrated.

We examined intra-population diversity by
identifying SNPs within sequence-discrete popula-
tions (Tyson et al., 2004; Hunt et al., 2008). By
recruiting highly similar reads from all time points,
the vast majority of which mapped with ⩾ 99%
nucleotide identity, we found numerous SNPs
in each population, ranging from 8501 SNPs in
Holophagales-254 to only 3 SNPs in TM7-1225
(Table 2). Most populations had 41800 SNPs per
Mbp, but four populations had o50 SNPs per Mbp,
including the nearly clonal TM7-1225 population.
Although abundant populations had higher coverage
levels and thus more power to detect rare SNPs,
coverage depths alone could not account for the
large differences in SNP counts among populations
—up to three orders of magnitude in some cases

Table 1 Genomes reconstructed from metagenomic-combined assembly

Genome name Environment Genome size (bp) Contigs Genes % of genome recovered (a/b)

Actinobacterium-149 Epilimnion 764 032 95 917 64/74
Nitrosomonadales-439 Epilimnion 996 711 125 1094 67/69
Polynucleobacter-567 Epilimnion 1 660 228 93 1777 72/62
Rickettsia-755 Epilimnion 1 013 290 136 1149 98/100
Betaproteobacteria-788 Epilimnion 990 006 133 1125 57/52
Methylophilaceae-913 Epilimnion 942 700 85 1111 76/99
Opitutae-1301 Epilimnion 2 036 179 101 1943 95/100
Opitutae-1800 Epilimnion 2 186 907 124 1,998 90/100
Actinobacterium-2057 Epilimnion 971 617 97 1063 74/58
Chlorobium-111 Hypolimnion 2 314 202 74 2319 92/100
Polynucleobacter-238 Hypolimnion 1 314 366 121 1475 66/52
Holophagales-254 Hypolimnion 2 981 798 188 2862 80/56
Desulfocapsa-433 Hypolimnion 3 073 408 152 2864 77/66
Methylotenera-545 Hypolimnion 1 431 993 51 1439 90/82
Actinobacterium-680 Hypolimnion 1 257 796 81 1353 73/60
Polynucleobacter-941 Hypolimnion 1 496 525 68 1581 57/54
TM7-1225 Hypolimnion 915 278 14 993 63/90
Methylobacter-1380 Hypolimnion 2 299 825 136 2072 68/59
Methylotenera-1381 Hypolimnion 1 077 715 49 1131 50/46
Sulfurimonas-1998 Hypolimnion 2 301 184 60 2383 98/100
Methylobacter-2062 Hypolimnion 3 124 798 188 2919 94/89
Bacteroidales-2086 Hypolimnion 3 680 027 151 2965 72/59
Actinobacterium-2152 Hypolimnion 845 311 113 980 61/64
Opitutae-2519 Hypolimnion 1 808 963 100 1654 72/88
Methylophilaceae-2902 Hypolimnion 1 002 927 75 1180 62/65
Desulfobulbus-2922 Hypolimnion 3 798 404 58 3387 93/92
Actinobacterium-3180 Hypolimnion 1 149 636 85 1251 67/54
Gallionella-3415 Hypolimnion 2 657 023 54 2637 97/95
Chlorobium-3520 Hypolimnion 2 156 671 83 2242 89/100
Acidomicrobium-3765 Hypolimnion 1 315 659 42 1392 76/94

a/b =Genome completeness estimated using the approaches of Parks et al. (2015) (a) and Rinke et al. (2013) (b).
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(Figure 2; Supplementary Table S1). For example,
Methylotenera-1381 had eightfold more SNPs
per Mbp than its close relative Methylo-
tenera-545 even though Methylotenera-545 had
higher metagenomic coverage. This suggests that

intra-population diversity levels varied dramati-
cally between phylogenetic groups, including
closely related populations belonging to the same
genus (Supplementary Figure S3).

Large differences in diversity among populations
could result from a number of processes. For
example, populations with fewer SNPs might have
immigrated to the lake more recently and had less
time to diversify (that is, founder effect) or may have
lower mutation/substitution rates or could have
more recently experienced a purge of diversity than
populations with higher SNP counts. Indeed, the
extraordinarily low number of SNPs in TM7-1225
suggests that this population is either quite new to
the ecosystem or it experienced a periodic selective
event that essentially produced a clonal population
shortly before the start of this study (Table 2).

Most SNPs within the sequence-discrete popula-
tions did not result in amino-acid substitutions
(Table 2). Instead, SNPs were typically silent or
located in intergenic regions. Nonsense mutations
generating premature stop codons were found in
several populations, indicating some genotypes
within these populations encoded nonfunctional
genes, although these mutations typically accounted
for o0.1% of SNPs (Table 2). The small proportion
of nonsynonymous SNPs might indicate that purify-
ing selection was driving mutation accumulation in

Table 2 Summary of single-nucleotide polymorphisms (SNPs)

Genome name Total SNPs SNPs per Mbp Synonymous SNPs Nonsynonymous SNPs Intergenic

Missense Nonsense

Actinobacterium-149 3514 4599 2914 460 3 136
Nitrosomonadales-439 1772 1753 1378 275 3 91
Polynucleobacter-567 4571 2753 3627 710 3 231
Rickettsia-755 45 44 18 11 2 14
Betaproteobacteria-788 6244 6188 5039 851 3 231
Methylophilaceae-913 3003 3186 2223 656 1 123
Opitutae-1301 6437 3161 5257 893 4 283
Opitutae-1800 3839 1743 2924 663 1 223
Actinobacterium-2057 2238 2182 1659 377 0 84
Chlorobium-111 3111 1344 1498 1127 22 464
Polynucleobacter-238 6451 4908 3418 738 1 2291
Holophagales-254 8501 2851 5605 2004 10 881
Desulfocapsa-433 4995 1625 3187 1037 1 770
Methylotenera-545 279 195 132 120 1 26
Actinobacterium-680 297 236 189 47 1 60
Polynucleobacter-941 4269 2853 2971 971 4 323
TM7-1225 3 3 0 1 0 2
Methylobacter-1380 1381 600 951 197 1 232
Methylotenera-1381 1779 1651 1153 434 2 190
Sulfurimonas-1998 279 121 154 95 1 29
Methylobacter-2062 6660 2131 3908 1515 14 1223
Bacteroidales-2086 4256 1157 2389 1231 12 623
Actinobacterium-2152 4209 4979 3400 597 3 209
Opitutae-2519 8036 4442 6254 1246 4 531
Methylophilaceae-2902 2943 2934 2115 712 2 113
Desulfobulbus-2922 145 38 43 70 3 29
Actinobacterium-3180 2111 1836 1551 318 2 240
Gallionella-3415 69 26 35 23 0 11
Chlorobium-3520 4146 1922 2317 1180 11 637
Acidomicrobium-3765 2126 1616 1505 477 0 143

Figure 2 Differences in SNP-level heterogeneity among coexist-
ing populations. The number of SNPs found in each sequence-
discrete population, normalized to genome size (SNPs per Mbp),
varied by three orders of magnitude among populations with
similar coverage levels. Although the power to identify low-
frequency SNPs increases with greater genome coverage, popula-
tions with many SNPs were not necessarily sequenced deeper than
those with few SNPs. Two pairs of closely related populations are
highlighted to illustrate this point.
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most populations we surveyed (Simmons et al.,
2008). The preponderance of synonymous mutations
also suggests that most genetic variation within these
sequence-discrete populations might be neutral, thus
allowing many highly similar genotypes to coexist
without outcompeting each other.

Purges of diversity in natural populations
Next we asked whether the degree of genetic hetero-
geneity within each population, as revealed by the
proportions of SNP variants in the metagenomic
reads, changed over the 9-year study period. SNP
allele frequencies varied over time in all populations,
although the fraction of total SNPs dominated by a
single allele remained relatively low in most years (for
example, Actinobacterium-2152, Figures 3a and c;
Supplementary Figure S4). This suggests that the
overall level of genetic heterogeneity in most popula-
tions did not change dramatically. However, in a few
populations SNP allele frequencies did shift consider-
ably and many SNP loci were dominated by a single
allele (Figures 3b and d; Supplementary Figure S4),
indicating large changes in the relative abundance of

different genotypes within these sequence-discrete
populations. For example, Bacteroidales-2086 was
composed of many genotypes with comparable
abundances in 2007, 2008 and 2012—based on
the more even distribution of SNP allele frequencies
in these years—whereas large shifts in allele
frequencies throughout the genome suggests that
one genotype, or perhaps a few, dominated the
population in 2005, 2009 and 2013 (Figures 3b and d).
Diversity levels also shifted substantially from
year to year within Methylobacter-1380, Methylote-
nera-1381 and Sulfurimonas-1998 (Supplementary
Figure S4).

The most dramatic change in allele frequencies
was observed in the Chlorobium-111 population,
which initially displayed a high degree of SNP-level
heterogeneity, but slowly lost most of this diversity
over the course of the study. That is, the frequency of
alternate alleles in the population was close to zero at
nearly all SNP sites by 2013 (Figure 4a; Supplementary
Figure S4). These SNP sites were not localized to
specific genomic regions (Supplementary Figure S5).
This pattern did not result from differences in
coverage (Supplementary Figure S1) or differences

Figure 3 Temporal dynamics of SNP allele frequencies within different populations. (a, b) Two examples of populations with different
SNP dynamics. SNPs are arrayed along the y axis, with each row representing one SNP locus. SNP color indicates allele frequency, that is,
the percentage of metagenomic reads supporting the reference allele during each time period. SNPs dominated by a single allele appear
either as red (few reads matching reference base) or blue (most reads matching reference base). SNPs are arranged in ascending order along
the y axis based on allele frequency in 2005. (c, d) Fraction of SNPs dominated by single allele (⩾95% frequency) in each year. Broad
patterns of allele frequencies were determined by combining sequence data for each year.
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in library creation and sequencing steps (see
Methods and Materials section). Nor was it the
result of inter-population dynamics where a
different sequence-discrete population displaced
the Chlorobium-111 population; this process would
appear as a drop in coverage in Chlorobium-111, not
a change in SNP allele frequencies. The simulta-
neous trend towards fixation at nearly all SNP sites,
which were spread throughout the genome, indicates
a steady and substantial loss of genetic heterogeneity
within the population.

In addition to SNP dynamics, our time series also
revealed patterns of gene gain and loss within the
Chlorobium-111 population. The relative abundance
of eight genes slowly increased until they were
encoded by nearly every cell in the population
(Figure 4b; Supplementary Table S2). Two of the
genes were adjacent while the others were scattered
throughout the genome. These dynamics, when
viewed alongside the simultaneous genome-wide
purge of SNPs, suggests that these genes were
acquired horizontally in one genotype at some point
prior to this study and increased in abundance as the
genotype (or its descendant lineage) took over the
population. Simultaneously, three genes slowly
decreased until o10% of cells in the Chlorobium-
111 population encoded them in 2013, indicating
that the newly dominant lineage lacked these genes
(Figure 4b).

The dramatic loss of SNP-level heterogeneity and
the patterns of gene gain and loss in the Chlorobium-
111 population were consistent with a genome-wide
selective sweep in progress, a process predicted by
the ecotype model for bacterial diversification
(Cohan, 2001; Cohan and Perry, 2007). In this model,

genetic diversity accumulates within ecologically
coherent populations and is periodically lost when
one member of a population outcompetes all others
after gaining an advantageous trait through mutation
or horizontal gene transfer (Cohan and Perry, 2007).
In such an event, diversity would be purged at all
loci in the population as the less fit members of the
population were replaced. If this process were
captured in a metagenomic time-series study, then
we would expect nearly all SNPs in the population to
trend toward fixation, while at the same time some
genes would sweep through or be swept from the
population—the same patterns we observed in
Chlorobium-111 (Figure 4). In this scenario, we
would also expect the vast majority of SNP variants
to be neutral, at least with regards to the selective
pressure driving the sweep, and their dynamics
would merely trace the process of selection based
on their genomic linkage to some advantageous trait
in the winning lineage. That is, the SNPs in
Chlorobium-111 did not arise de novo during this
study, and it is not clear which alleles, if any, were
specifically selected based on a fitness advantage
they provided; most SNPs were simply ‘genomic
hitchhikers’. Similarly, it is not clear if the genes we
observed sweeping through the population provided
an advantage, or if they, much like the neutral SNPs,
merely traced the putative sweep based on their
linkage to other unidentified alleles that improved
fitness. It was not obvious from functional annota-
tions, when available, how the gain or loss of these
genes might have provided an advantage
(Supplementary Table S2).

The predicted result of genome-wide sweeps and
the ecotype model is the formation of sequence

Figure 4 Temporal trends in SNP allele frequencies and gene content in a natural Chlorobium population. (a) SNPs are arrayed along the
y axis, with each row representing one SNP locus. SNP color indicates allele frequency, that is, the percentage of metagenomic reads
supporting the reference allele during each year. (b) Relative abundance of genes gained or lost from Chlorobium-111. A gene frequency of
1 equates to single copy per cell. Gene annotations and locus IDs are listed in Supplementary Table S2. Broad patterns of allele frequencies
and gene abundances were determined by combining sequence data for each year.
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clusters that represent ecologically distinct groups
(Cohan and Perry, 2007). The existence of such
sequence clusters in other systems has been taken
as evidence for the ecotype model, but to our
knowledge this study provides the first direct
observations of a natural population appearing to
undergo a genome-wide sweep (Cordero and Polz,
2014; Shapiro and Polz, 2014). Of course,
Chlorobium-111 was not completely clonal by
2013, indicating that the sweep was not yet complete
or the population was experiencing a ‘soft sweep’
where selection favored a few genotypes from a large
and diverse population. In this scenario, the persis-
tent genotypes would have acquired an advanta-
geous allele independently or via intra-population
recombination prior to selection (Messer and Petrov,
2013). Thus a selective sweep would not purge
sequence differences among genotypes encoding the
advantageous allele. As the time between trait
acquisition and selection increases, periodic selec-
tion is more likely to produce some form of soft
sweep in natural populations rather than a theore-
tical ‘hard sweep’ (Messer and Petrov, 2013). In
addition, even though populations were sequenced
deeply over 9 years, it is possible that diversity could
be maintained below detection limits and reappear
on longer time scales. Although acknowledging
this caveat, we believe the patterns observed in
Chlorobium-111 and the discovery of four popula-
tions with o50 SNPs per Mbp, including the nearly
clonal TM7-1225 population (Table 2), suggest that
genome-wide sweeps are occurring in natural
populations.

Based on the observed patterns, the Chlorobium-
111 population appears to follow a different model of
bacterial diversification than some other microbes.
For example, through comparative genomic analysis
of closely related Vibrio cyclitrophicus isolates,
Shapiro et al. (2012) found that divergence between
ecologically distinct groups was likely driven by
gene-specific sweeps followed by preferential recom-
bination within micro-niche-adapted populations
and not by genome-wide sweeps. High recombina-
tion rates also appear to prevent periodic selection
and to preserve genome-wide diversity in popula-
tions of Sulfolobus islandicus and Synechococcus
dwelling in hot springs (Whitaker et al., 2005;
Cadillo-Quiroz et al., 2012; Rosen et al., 2015).
Conversely, although we could not measure recom-
bination with only a single reconstructed genome
representing each population, it appears that intra-
population recombination rates were too low to
prevent a massive and long-term purge of diversity
within Chlorobium-111.

Preservation of intra-population diversity
Models invoking either genome-wide or gene-
specific sweeps are not mutually exclusive
(Doolittle, 2012), and it is possible both mechanisms
shape the genetic diversity of microbial populations.

For example, genome-wide sweeps may occur in
groups with lower recombination rates, whereas
gene-specific sweeps occur in other groups with
inherently high recombination rates, for example,
Helicobacter pylori (Falush et al., 2001) and
presumably V. cyclitrophicus, S. islandicus and
Synechcococcus (Whitaker et al., 2005; Shapiro
et al., 2012; Rosen et al., 2015). Twenty-nine out of
the 30 populations analyzed did not undergo
genome-wide sweeps during the course of our study,
suggesting either that periodic selection events are
rare and that these populations did not experience
strong selective pressures during the course of our
study or that other mechanisms preserved diversity
within these populations.

To determine whether recombination preserved
diversity in some of the populations, we next
searched for genes sweeping through populations,
as was seen in Chlorobium-111, but without
a corresponding genome-wide purge of SNPs.
However, we did not find clear evidence of gene-
specific sweeps in any of the populations during the
course of this study. Gene-specific sweeps could
have been missed if the genes were not part of the
assembled genomes, but we might have expected to
capture a gene sweep in at least 1 of the other
29 populations if such sweeps were common.
Gene-specific sweeps could also have been missed
if the sweeping genes only differed by a few
nucleotides from homologs already found in the
populations. In fact, there were examples in some
populations where a few adjacent SNPs trended
toward fixation while genome-wide diversity was
maintained, a pattern not only consistent with a gene
variant sweeping independently through a popula-
tion but also consistent with a shift in the relative
abundance of different genotypes—the latter process
occurred in all populations (Supplementary Figure S4).
If populations did not experience gene-specific
sweeps during the course of the study, then perhaps
diversity was preserved through other mechanisms
such as ‘kill the winner’ interactions where viruses
suppress rapidly growing genotypes within a popu-
lation (Thingstad, 1998, 2000; Rodriguez-Brito et al.,
2010). Interestingly, such top–down pressures were
not sufficient to prevent the steady and massive loss
of diversity that occurred within the Chlorobium-111
population over several years.

Although gene-specific sweeps were not directly
observed during the course of the time series, SNP
recruitment patterns indicate that large genome
regions may have swept independently through
some populations prior to the study period. For
example, Polynucleobacter-238 had 6451 SNPs
located throughout the genome except for in a
statistically anomalous 21 kbp region that lacked
SNPs entirely (Po0.0001; Supplementary Figure S5;
Supplementary Table S3). Large SNP-free regions
of 41 kbp, 9–25 kbp, 22–23 kbp, 11 kbp and
12 kbp were also found in Methylobacter-2062,
Holophagales-254, Opitutae-1800, Opitutae-1301
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and Methylophilaceae-913, respectively (Po0.0001;
Supplementary Table S3). If a genome region swept
independently through a population, then this
region would appear as an island of localized
homogeneity within a heterogeneous genomic back-
ground (Guttman and Dykhuizen, 1994)—the same
pattern observed in these six populations.

Large, SNP-free regions could also arise according
to the ‘adapt globally, act locally’ model where a
generally advantageous allele is shared between
closely related ecotypes and triggers independent
genome-wide sweeps in each (Majewski and Cohan,
1999). The six sequence-discrete populations were
each clearly composed of many different genotypes
based on the large range of SNP allele frequencies
observed during the same time period—SNP allele
frequencies would be similar at all loci if each
population was composed of only two genotypes.
Thus, for the ‘adapt globally, act locally’ model to
apply, each sequence-discrete population would
have to be composed of several coexisting ecotypes
with inter-ecotype recombination rates sufficient for
the allele to spread among all ecotypes but with
intra-ecotype recombination rates too low to prevent
genome-wide sweeps. Definitively distinguishing
between this model and a single recombining
population that experienced a gene-specific sweep
may not be possible with our data, although the
latter would seem to be the more parsimonious
explanation.

Gene annotations provide little insight into why
the particular regions might have swept indepen-
dently (Supplementary Table S3), but the presence of
these large SNP-free regions indicates that diversity
within some populations may be maintained through
frequent recombination. In addition, the evidence for
gene-specific sweeps suggests that some populations
in the lake might evolve following the model
proposed for V. cyclitrophicus and S. islandicus
where recombination rates are high, genes sweep
independently and sequence divergence results from
barriers to recombination between microniche-
adapted populations (Whitaker et al., 2005; Fraser
et al., 2009; Cadillo-Quiroz et al., 2012; Shapiro
et al., 2012). Thus it appears that different
evolutionary models might apply to different popu-
lations coexisting in the same environment.

Sequence-discrete populations and theoretical ecotypes
According to the ‘stable model’, an ecotype is a
population of closely related genotypes whose
members are ecologically similar and can coexist
until one member/lineage gains a selective advan-
tage and takes over the population by outcompeting
all others (Cohan, 2001; Cohan and Perry, 2007). The
model also assumes that periodic selection in one
ecotype is independent from selection in other
closely related, co-occurring ecotypes (Cohan,
2001; Cohan and Perry, 2007). However, the exis-
tence of these theoretically defined ecotypes has not

been clearly demonstrated previously. The term
‘ecotype’ has been applied to various microbial
groups, for example, clades of Prochlorococcus
adapted to different light, temperature and mixing
regimes (Moore and Chisholm, 1999; Rocap et al.,
2003; Johnson et al., 2006; Malmstrom et al., 2010),
but here and elsewhere the term follows the broader
historical designation for subgroups within a species
adapted to different environments and does not
necessarily fit the more formal definition predicted
by the ecotype evolutionary model and its variations
(Turesson, 1922; Clausen et al., 1940; Coleman and
Chisholm, 2007).

The sequence-discrete populations in this study,
which were defined based on patterns in meta-
genomic read recruitment, appear to match the
description of theoretical ecotypes in some ways.
For example, populations were composed of many
closely related genotypes that were able to coexist at
similar abundance levels for years. In some popula-
tions, a single genotype (or lineage of genotypes) was
able to displace the other population members,
implying that they all shared the same ecological
niche (Figures 3b and 4, Supplementary Figure S4).
Furthermore, timing and magnitude of diversity
purges differed between sympatric populations (that
is, Chlorobium-111 vs Chlorobium-3520), suggesting
that closely related sequence-discrete populations
could undergo sweeps independently (Supplementary
Figure S4). The Chlorobium populations were
separated in sequence space by the coverage
discontinuity around 95% nucleotide sequence
identity—for example, metagenomic reads mapping
with ⩾99% sequence identity to Chlorobium-111
also mapped with ~ 70–90% similarity to Chloro-
bium-3520, and vice versa—indicating that these
populations could not be more similar and still
remain sequence discrete (Figure 1). Thus closely
related populations on either side of the coverage
discontinuity appear to be ecologically distinct and
behave in some ways similar to the theoretically
predicted ecotypes.

If sequence-discrete populations behave similar to
ecotypes in general, then coverage discontinuities in
metagenomic read recruitment could be used to
define ecotype boundaries. Ecotypes are expected to
form distinct sequence clusters at the furthest tips of
phylogenetic trees constructed from marker genes
(Cohan, 2001; Cohan and Perry, 2007), but it remains
unclear what level of sequence similarity, if any,
demarcates an ecotype. In fact, any cutoff is likely to
vary depending on the marker gene or the phyloge-
netic group in question, whereas the boundaries of
sequence-discrete populations are determined
empirically through read recruitment. For reference,
the common marker genes recA and rpoB
(Eisen, 1995; Dahllof et al., 2000; Walsh et al.,
2004) both displayed 97% amino-acid sequence
identity between the sympatric Chlorobium
populations, while the other 1594 shared genes
had an average amino-acid identity of 84%.

Genome-wide and gene-specific sweeps
ML Bendall et al

1598

The ISME Journal



Additional evidence of ecological coherence within
sequence-discrete populations will clarify the con-
nections between these operationally defined popu-
lations and theoretical ecotypes.

Conclusions

In this study, we examined ecological and evolu-
tionary patterns within natural bacterial commu-
nities through direct, time-resolved observations.
From a metagenomic time-series study, we identified
tractable populations that were genetically and
ecologically distinct. We also observed substantial
genetic heterogeneity within these populations,
although the degree of heterogeneity varied by orders
of magnitude between closely related, co-occurring
populations. The purge of genetic heterogeneity from
one of these populations, identified by changes in
SNP allele frequencies, suggests that natural popula-
tions can experience genome-wide sweeps, a process
not previously observed in situ (Cordero and Polz,
2014; Shapiro and Polz, 2014). In other populations,
evidence of historical gene-specific sweeps was
uncovered, indicating that diversity within
co-occurring populations may be controlled by
different mechanisms and explained by different
evolutionary models (Whitaker et al., 2005; Fraser
et al., 2009; Cadillo-Quiroz et al., 2012; Shapiro
et al., 2012).

These observations raise a variety of questions,
such as: Are certain mechanisms of speciation (for
example, genome-wide vs gene-specific sweeps)
more common in certain environments or microbial
groups? Do multiple mechanisms act on the same
groups? How long does it take for genes or genomes
to sweep through populations? At what rates do
natural populations accumulate mutations? How
does dispersal of highly similar genotypes impact
population boundaries? We believe metagenomic
time-series studies of different microbial groups
inhabiting different environments will help answer
these questions.
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