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Abstract

High-throughput sequencing technologies have offered in recent years new opportunities

to study genome variations. These studies have mostly focused on single nucleotide poly-

morphisms, small insertions or deletions and on copy number variants. Other structural vari-

ants, such as large insertions or deletions, tandem duplications, translocations, and

inversions are less well-studied, despite that some have an important impact on pheno-

types. In the present study, we performed a large-scale survey of structural variants in cat-

tle. We report the identification of 6,426 putative structural variants in cattle extracted from

whole-genome sequence data of 62 bulls representing the three major French dairy breeds.

These genomic variants affect DNA segments greater than 50 base pairs and correspond

to deletions, inversions and tandem duplications. Out of these, we identified a total of 547

deletions and 410 tandem duplications which could potentially code for CNVs. Experimental

validation was carried out on 331 structural variants using a novel high-throughput genotyp-

ing method. Out of these, 255 structural variants (77%) generated good quality genotypes

and 191 (75%) of them were validated. Gene content analyses in structural variant regions

revealed 941 large deletions removing completely one or several genes, including 10 sin-

gle-copy genes. In addition, some of the structural variants are located within quantitative

trait loci for dairy traits. This study is a pan-genome assessment of genomic variations in

cattle and may provide a new glimpse into the bovine genome architecture. Our results may

also help to study the effects of structural variants on gene expression and consequently

their effect on certain phenotypes of interest.

PLOSONE | DOI:10.1371/journal.pone.0135931 August 28, 2015 1 / 21

OPEN ACCESS

Citation: Boussaha M, Esquerré D, Barbieri J, Djari

A, Pinton A, Letaief R, et al. (2015) Genome-Wide

Study of Structural Variants in Bovine Holstein,

Montbéliarde and Normande Dairy Breeds. PLoS

ONE 10(8): e0135931. doi:10.1371/journal.

pone.0135931

Editor: Marinus F.W. te Pas, Wageningen UR

Livestock Research, NETHERLANDS

Received: February 19, 2015

Accepted: July 28, 2015

Published: August 28, 2015

Copyright: © 2015 Boussaha et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: The Illumina short

reads generated in this study have been submitted to

the European Nucleotide Archive (ENA) with study

accession number PRJEB9343 and are available at

http://www.ebi.ac.uk/ena/data/view/PRJEB9343. The

filtered putative large SVs generated in this study

have been submitted to the public database of

Genomic Variants archive (DGVa) with study

accession number estd223 and are available at http://

www.ebi.ac.uk/dgva/data-download. Data can be

downloaded at ftp://ftp.ebi.ac.uk/pub/databases/dgva/

estd223_Boussaha_et_al_2015/. Small insertions

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0135931&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ebi.ac.uk/ena/data/view/PRJEB9343
http://www.ebi.ac.uk/dgva/data-download
http://www.ebi.ac.uk/dgva/data-download
ftp://ftp.ebi.ac.uk/pub/databases/dgva/estd223_Boussaha_et_al_2015/
ftp://ftp.ebi.ac.uk/pub/databases/dgva/estd223_Boussaha_et_al_2015/


Background

Over the past decade, many studies have attempted cataloging the nature and pattern of geno-

mic alterations in population (e.g.[1]). The advent of novel high-throughput sequencing tech-

nologies [2–6] with the ability to partially or completely re-sequence genomes, in a relatively

cost-effective manner, has offered new opportunities to study large scale genomic variations. In

addition to single nucleotide polymorphisms (SNPs) and small insertions or deletions (indels),

several other studies have identified larger and more complex structural variants (SVs). Origi-

nally, SVs were considered as genomic alterations affecting DNA segments greater than 1,000

base pairs (1 kbp) in size [7]. However, with new advances in high-throughput sequencing

technologies, the operational spectrum of SVs has widened to include much smaller genomic

alteration events (> 50 bp in size) [8]. SVs such as large insertions, large deletions, inversions,

duplications, translocations and Copy Number Variants (CNVs), are less frequent than SNPs

and indels within a given genome however some of them may have more significant functional

effects [9] and may also play a role in genome structure remodeling [10–16]. For example, dur-

ing its pilot phase, the 1000 Genomes Project Consortium has sequenced 185 human whole-

genomes and has identified more than 22,025 deletions and 6,000 additional SVs [17]. Some of

those SVs are associated with disease susceptibility, such as autism [18–20] or schizophrenia

[21–23] in humans.

Many animal genomes have now been sequenced, including the genomes of several bulls

and cows [24–48]. For example, Eck et al. (2009) generated the first cattle genome sequence by

a next-generation sequencing method [24]. By sequencing a Fleckvieh bull genome, they dis-

covered more than 2 million novel cattle SNPs. More recently, Daetwyler et al. (2014) have

sequenced the whole-genome of 234 bulls from four different breeds and have identified more

than 28 million variants (SNPs and indels). These polymorphisms have then been used to iden-

tify putative causative mutations for genetic defects or economically important complex traits

[44].

Studies of large genomic variations in cattle have mostly focused on CNVs [27,29,32,43,49–

63]. Some of these alterations have been involved in important phenotypes, such as resistance

or susceptibility to gastrointestinal nematodes in Angus cattle [64–66] or feed intake in Hol-

stein cows [67]. Other studies have also reported the involvement of other types of structural

variants such as deletions, duplications or translocations in inherited disorders or coat colour

patterning [31,38,68–75]. More recently McDaneld et al. have found a 70 kb-long deletion on

BTA5 associated with decreased female reproductive efficiency in Bos indicus [76]; while Kadri

et al. found a 660-kb long deletion on BTA12 with antagonistic effects on female fertility and

milk production in Nordic Red cattle [77].

Here, we performed a large scale study to investigate both small indels (< = 50 bp) and

large SVs (> 50 bp) in cattle by sequencing the whole-genome of 62 bulls from the three

French major dairy breeds (Holstein, Montbéliarde and Normande breeds).

The collection of SVs reported in this study may prove useful to study their potential effect

on the expression levels of certain genes of interest and consequently to study their link with

the genetic variability of economically important traits in cattle.

Materials and Methods

Animal ethics

No animal experimentation was used in this study, therefore no ethical permission was

required from any relevant authority. Sequencing was performed using genomic DNA

obtained from sperm collected from semen straws kindly provided by approved commercial
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artificial insemination stations as part of their regular semen collection process. The authors

did not participate in the acquisition of semen samples for the purpose of this research.

Genomic DNA extraction

Genomic DNAs were extracted from semen of 62 dairy bulls (27 Holstein, 17 Montbéliarde

and 18 Normande bulls) chosen based on their genetic contribution to the French cattle popu-

lations, using the Wizard Genomic DNA Purification Kit (Promega, Charbonnières-les-Bains,

France) or using a standard phenol-chloroform method, respectively. A quality control inspec-

tion of each purified DNA sample was performed by agarose gel electrophoresis. DNA concen-

tration was then measured with a Nanodrop ND-100 instrument (Thermo Scientific, Ilkirch,

France).

Library construction and sequencing

Genomic libraries were prepared using the TruSeq DNA Sample Preparation Kit (Illumina)

according to the manufacturer’s instructions. Briefly, 4 μg genomic DNA were fragmented into

150–400 bp pieces using divalent cations at 94°C for 8 min. The resulting cleaved DNA frag-

ments were purified using Agencourt AMPure XP beads (Beckman Coulter, Villepinte,

France), then subjected to end-repair and phosphorylation and subsequent purification was

performed using Agencourt AMPure XP beads (Beckman Coulter). These repaired DNA frag-

ments were 30-adenylated producing DNA fragments with a single ‘A’ base overhang at their

30-ends for subsequent adapter-ligation. Illumina adapters were ligated to the ends of these 30-

adenylated DNA fragments followed by two purification steps using Agencourt AMPure XP

beads (Beckman Coulter). Ten rounds of PCR amplification were performed to enrich the

adapter-modified DNA library using primers complementary to the ends of the adapters. The

PCR products were purified using Agencourt AMPure XP beads (Beckman Coulter) and size-

selected (200 ± 25 bp) on a 2% agarose Invitrogen E-Gel (Thermo Scientific). Libraries were

then checked on an Agilent Technologies 2100 Bioanalyzer using the Agilent High Sensitivity

DNA Kit and quantified by quantitative PCR with the QPCR NGS Library Quantification kit

(Agilent Technologies, Massy, France). Libraries were used for 2×100 bp paired-end sequenc-

ing on an Illumina HiSeq2000 with a TruSeq SBS v3-HS Kit (Illumina).

Alignment to the reference

Sequence alignments were carried out using the Burrows-Wheeler Alignment tool (BWA

v0.6.1-r104) [78] with default parameters for mapping reads to the UMD3.1 bovine reference

genome [79]. Potential PCR duplicates, which can adversely affect the variant calls, were

removed using the MarkDuplicates tool from Picard version 1.4.0 [80]. Only properly paired

reads with a mapping quality of at least 30 (−q = 30) were kept. The resulting BAM files were

then used for all subsequent analysis.

Identification of small insertions and deletions

Small indels were detected using the Genome Analysis Tool Kit 2.4–9 (GATK) version and

GATK-UnifiedGenotyper as SNP caller [81]. Prior to variant discovery, reads were subjected

to local realignment, coordinate sort, quality recalibration, and PCR duplicate removal. In the

GATK analysis, we used a minimum confidence score threshold of Q30 with default parame-

ters. We have also used multi-sample variant calling in order to distinguish between a homozy-

gous reference genotype and a missing genotype in the analyzed samples.

Structural Variants in Cattle
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Identification of SVs

Bioinformatics detection of potential genomic variation events was carried out on the 62 BAM

files. We have performed multi-sample variant calling by Pindel software, v. 0.2.4y [82] using

parameters as described in https://trac.nbic.nl/pindel. We first set the "Maximum event size

index" to 9 in order to detect events whose sizes are up to 8,286,208 bp. We also set the–m

parameter (min_perfect_match_around_BP) to 30 (i.e. at the point where the read is split into

two, there should at least be 30 perfectly matching bases between the read and the reference

sequences). We required a minimummapping quality of the split read of 30 to support a break-

point or junction. We finally used a custom python script to filter out Pindel-generated raw

data: Only samples presenting at least three unique reads at the breakpoint of SVs were

declared positive for the corresponding SV.

Annotation of SV regions

Analyses of the overlap between SVs and functional elements were performed based on the

gene build 77 database for the UMD3.1 bovine gene dataset obtained from the Ensembl

Genome Browser using the Biomart software (http://www.ensembl.org/index.html). Positions

of SV breakpoints predicted by Pindel were compared to gene start and end positions in order

to identify SVs that may encompass an entire gene, those that overlap with exons of a given

gene, those that overlap gene starts or ends and those for which both SV breakpoints are

located within two different genes.

The Ensembl Biomart software was also used to find gene paralogs located within or over-

lapping the annotated SV regions.

Gene Ontology (GO) enrichment was also performed using the MouseMine analysis tools, a

powerful new system for accessing MGI (Mouse Genome Informatics) data, using the Inter-

Mine framework and is available at the MGI international database resources (http://www.

mousemine.org/mousemine/begin.do).

In order to investigate QTL regions within SV regions, we first downloaded all Bovine QTL

regions from the public cattle QTL database release 24 (Aug 25, 2014), available at http://www.

animalgenome.org. QTLs linked to milk traits (fat and protein content and yield) and somatic

cell scores were subsequently extracted. A custom python script was then used to search for

SVs located within or overlapping with QTLs regions.

SV validation by high-throughput genotyping

In order to investigate our approach efficiency to detect SVs, we developed a genotyping-based

strategy using the already available Illumina BovineLD custom BeadChip [83]. With this strat-

egy, many individuals can be genotyped for many SVs at limited cost. The main idea was to

convert predicted SVs into “virtual SNPs” by testing the base change at the SV breakpoints.

Therefore, several selection filters were applied in order to select a panel of SVs for validation:

(1) in order to overcome genotyping problems due to sequence repeats, the SV flanking

sequences were first analyzed with the RepeatMasker software [84] and all SVs with masked

flanking sequences were removed; (2) For deletions, if the first nucleotide of the deleted region

is different from the first nucleotide which is located immediately after the SV 3’ breakpoint,

then we selected the corresponding SVs for further analysis. This deletion was then converted

into a “virtual SNP” for which the reference allele corresponds to the first nucleotide of the

deleted region and the alternative allele corresponds to the first nucleotide immediately after

the SV 3’ breakpoint; (3) For inversion, if the first nucleotide of the SV region is different from

the reverse-complement of the last nucleotide of the same SV region, then we selected the cor-

responding SV for further analysis. This inversion was then converted into a “virtual SNP” for
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which the reference allele corresponds to the first nucleotide of the inverted region and the

alternative allele corresponds to the reverse-complement of the last nucleotide of the same

inverted region. Steps 2 and 3 were repeated with the reverse-complement sequences.

After applying the above filters, 331 deletions and inversions were selected for validation.

They were genotyped for a large number of animals. High-throughput genotyping reactions

were performed at Labogena core facility, using the custom low-density Illumina BovineLD

SNP chip (San Diego, CA). SNPs with an Illumina design score above 0.4 were retained for fur-

ther analysis. Oligonucleotides were designed, synthesized, and used to genotype 382 animals

from at least eight major dairy breeds (Table 1). Several other breeds such as beef breeds (Lim-

ousine: 15, Charolaise: 19, Blonde d’Aquitaine: 12, Parthenaise: 12 and Gasconne: 9) were also

included in our genotyping panel. However, none of the bulls used for SV identification was

included in this genotyping sample list.

Analysis of population structure

To indirectly validate the results of this SV detection study, we compared the population struc-

ture assessed from SVs to those previously obtained with SNPs [85]. We first performed Princi-

pal Components Analysis (PCA) using “dudi.pca” implemented in the R package ade4 [86]

using all validated SV information. Second, we used the STRUCTURE software package [87]

to assess the population structure. This program implements a model-based clustering method

to infer population structure using genotype data of unlinked markers. We used the admixture

model and correlated allele frequency version of STRUCTURE [88].

Results and Discussion

Whole-genome sequencing, read mapping

Sixty-two of the most contributing bulls from the three major French dairy breeds (Holstein,

Montbeliarde and Normande) were selected for whole-genome sequencing. A total of 31,140

million raw paired-end reads with a length of 100 bases were generated, resulting in a total of

3,114 gigabases. Each sample was sequenced on 1–4 lanes and approximately 140 to 1,120 mil-

lion paired-ends reads were obtained for each library. On average, 93% (from 75% to 97%) of

the paired-end reads were properly aligned on the UMD3.1 bovine reference genome (S1

Table). Similar read mapping rates were obtained in other bovine whole-genome sequencing

studies. For example, Kawahara-Miki et al. (2011) found that 86% of the paired-end reads they

Table 1. Breed distribution of animals used in the validation study.

Breed number of animals

Holstein 29

Montbeliarde 32

Normande 30

Abondance 29

Brown Swiss 30

Pie rouge des plaines 9

Simmental 16

Tarentaise 27

Others 180

Total 382

Table 1 summarizes the sample panel that was used for genotyping assays.

doi:10.1371/journal.pone.0135931.t001
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generated while sequencing the genome of a Japanese Kuchinoshima-Ushi bull mapped

uniquely onto the bovine genome [25]. The average genome-wide sequence coverage from the

mapped reads ranged from 5× to 42× across the different genomes, with 52 samples sequenced

at least at 10 fold average coverage.

Identification of genomic variations

Search for small variations with GATK-UnifiedGenotyer software resulted in the identification

of 2,021,215 indels (S2 Table). On average we found 873,372 +/- 47,845 indels per bull. With

this approach based on GATK, the largest indel identified was 11 bp in length.

With Pindel algorithm, we generated two categories of variations. First, we produced a cata-

log containing 1,384,490 small SVs mainly small insertions and deletions (< = 50 bp) out of

which 1,383,007 small SVs were less than 11 bp in size (S2 Table). These were subsequently

used for concordance analysis with small indels data generated by GATK. Almost 98.9%

(1,368,226 out 1,383,007) of small indels detected by Pindel were also identified with GATK

(Fig 1). This relatively high percentage of concordance suggests that most small SVs detected

by Pindel might be true variations. However, it is difficult to precisely estimate the sensitivity

Fig 1. Small indels identified with GATK and Pindel. Venn diagram summarizing small indels identified by GATK and by Pindel.

doi:10.1371/journal.pone.0135931.g001
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(false-positive rate) of our SV detection method as small indels found with GATK but not with

Pindel might not be true indels.

Second, we produced another catalog containing 6,426 putative large SVs (>50 bp) corre-

sponding to 3,138 large deletions, 1,061 tandem duplications and 2,227 inversions (S3 Table).

On average we observed nearly 199,200 small SVs and 305 large SVs per individual.

Analysis of the length distribution of large SVs (Fig 2) revealed that most deletions (38.9%)

are between 51 and 1,000 base pairs-long, whereas the length of most inversions (50.5%) is

between 1 and 10 Kb while the vast majority of tandem duplications (80.9%) are larger than

10 Kb. These preliminary results seem to indicate a possible correlation between SV type and

size. However, these observations should further be investigated.

Analysis of the chromosomal distribution of the large SVs did not reveal any correlation

with chromosome size (Fig 3). BTA12 harbours the highest number of SVs with approximately

7% of the total, followed by BTAX (5.5%) and BTA23 (5%). Moreover, no correlation has been

observed between SV types and chromosomal distributions (Fig 3). The highest percentages of

deletions were observed in BTA12 (6.3%), BTAX (5.7%) and BTA23 (5.3%). For tandem dupli-

cations, the highest percentages were observed in BTA1 (6.2%), BTA12 (6.2%) and BTA15

(5%). Finally, the highest percentages of inversions were observed in BTA12 (10.6%), BTA23

(7.2%) and BTA2 (6.2%).

Deletions and tandem duplications identified in this study covered a total length of up to

277 Mb corresponding to almost 10% of the whole bovine genome, whereas inversions covered

a total length up to 152 Mb, ie almost 6% of the bovine genome. However, these percentages

could be overestimated as SVs identified in our study are indeed putative variations and at this

stage we do not know yet the false positive rate of our detection approach.

Distribution of SVs between animals and between breeds

Overall, 61% of SVs were found only in single bulls (Fig 4). One deletion was found to be pres-

ent in all 62 animals. One deletion and one tandem duplication were observed in 60 and 61 ani-

mals, respectively. Analysis of raw results generated by Pindel revealed that these 2 SVs were

present in all 62 animals of our study but, for two animals, they were supported by less than the

minimum number of 3 reads which was required to support an SV. These samples were there-

fore excluded from the final list of animals presenting the SVs. The cow genome reference

sequence is derived from a single Hereford animal called Dominette. Therefore the first dele-

tion and probably the two other SVs might be Hereford- or Dominette-specific SVs. Alterna-

tively, these SVs could also be due to local errors in the UMD3.1 reference genome assembly.

Comparison of large SVs revealed that 12% of these were shared between the three breeds

(Fig 5) and at least one third were shared between at least two breeds. As shown in Fig 5, we

identified more large SVs (2,195) in Holstein bulls than in Montbéliarde and Normande bulls

(1,103 and 1,240, respectively). This result could be partly explained by the larger number of

sequenced bulls in Holstein (27) than in Montbéliarde and Normande (18 and 17, respec-

tively). Our results suggest that at least one third of the SV events occurred before the separa-

tion of the three breeds and therefore might also be present in other cattle breeds.

Identification of potential CNV regions

CNVs are defined as loss (deletions) or gain (duplications) of copies of DNA segments. In

order to identify SV regions (SVRs) that might correspond to potential CNV regions (CNVRs),

we searched for DNA segments for which we could observe at the same time either a deletion

in one bull and a duplication in another bull (across animals) or a deletion and a duplication at

the same region within the same bull (within animal). We considered a given DNA region as a

Structural Variants in Cattle
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potential CNVR when the deleted and the duplicated segments are located within the same

region, and are at least 70 percent overlapping.

In our study, we found 452 unique deletions and 392 unique duplications which may code

for potential CNVRs (S4 Table).

Fig 2. Distribution of SVs based on their type and size. Histogram summarizing the distribution of SVs based on their type and size. Inversions are
highlighted in blue, deletions in red and tandem duplications in green.

doi:10.1371/journal.pone.0135931.g002
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In parallel, all deletion and tandem duplication regions identified in our study were also

compared to publicly available CNVRs. Overall, 175 regions (128 deletion and 47 tandem

duplication regions) overlapped with publicly available CNV datasets [29][43][52][56][60][65]

[89]. Out of these, 33 deletions and 29 tandem duplications were also identified with our first

approach (S5 Table).

Fig 3. Chromosomal distribution of large SVs.Histogram showing the distribution of SVs within bovine chromosomes. Deletions are shown in blue,
inversions in red and tandem duplications in green.

doi:10.1371/journal.pone.0135931.g003
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Overall, we identified 957 SVs that could potentially code for CNVs. Out of these, 547 SVs

were deletions and 410 were tandem duplications (S4 and S5 Tables).

Annotation of SVRs

Gene content. Analyses of functional elements lying within SVRs revealed a total of 2,415

(38%) SVRs which contain either entire gene-coding regions or only parts of genes (S6 Table).

Therefore these SVs could potentially have an effect on expression of some of these genes and

consequently a potential effect on some phenotypes. Out of these, 48% (1,168) were deletions,

27% (650) were tandem duplications and 25% (597) were inversions. Overall, a total of 5,011

genes overlap with these SVRs. The vast majority of these genes has paralogs (S7 Table) and

correspond to uncharacterized genes (587) and genes coding for the olfactory receptor (327),

U6 splicesomal RNA (159) and for the 5S ribosomal RNA (86).

Interestingly, we found 182 large deletions removing an entire gene. Overall, 115 different

genes are affected by these large deletions (S8 Table). Almost 91.3% (105/115 genes) of these

Fig 4. SV distribution among the 62 sequenced animals.Histogram showing the distribution of SVs among all 62 sequenced animals. Frequencies of
SVs present in more than 16 sequenced samples were too low to be visualized and were therefore drawn in a separate graph embedded in the first one.

doi:10.1371/journal.pone.0135931.g004
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genes belong to large multigene families. The remaining large deletions remove 10 single-copy

genes, out of which we found 3 pseudogenes, 3 protein coding genes and 4 genes encoding for

microRNAs.

Alignment to the UMD3.1 bovine genome sequence of the sequence of the genes encoding

for the novel miRNA ENSBTAG00000044935 and for bta-mir-2887-2 revealed several

Fig 5. Distribution of SVs found within the three breeds. Venn diagram showing shared and unique SVs between the 3 breeds.

doi:10.1371/journal.pone.0135931.g005
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significant perfect matches (S9 Table), suggesting that multiple paralogous copies of these two

microRNAs are located throughout the bovine genome.

A single perfect alignment match was however observed for the other two miRNAs. The

gene encoding for bta-mir-2310 has been discovered in the normal adult bovine kidney

(MDBK) cell line after infection with bovine herpesvirus 1 and shows a low expression in non-

and infected cells [90]. Further analysis using TargetScan database [91] identified four genes to

be targets of bta-mir-2310. These encode for interleukin 5, protein inhibitor of activated STAT

1 (PIAS1), solute carrier family 25 member 31 (SLC25A31) and zinc finger protein 316

(ZFN316). They are involved in different functions such as immune response, gene signaling,

metabolite transport, and gene expression regulation. It is therefore possible that bta-mir-2310

plays an important role by negatively modulating the gene expression of these genes. However,

its inactivation might also have limited impact as targets for numerous other miRNAs were

also found in the 3’-untranslated regions of these four target genes.

The gene deleted by INRA_BovSV6339 encode for the mediator complex subunit 10 pro-

tein-coding gene (MED10) which is is a coactivator for DNA-binding factors that activate tran-

scription of RNA polymerase II-dependent genes [92].

The other two genes deleted by INRA_BovSV1327 and by INRA_BovSV4164 encode for

two yet uncharacterized proteins. The first gene contains only one exon and the predicted pro-

tein is around 100 amino acids. Alignment of this protein sequences against protein databases

revealed a perfect match (100% identity) with the 3’-end of Bos taurus partitioning defective 3

homolog B isoform X5 (PARD3B). The second gene, however, contains 13 exons and code for

a 463 amino acid protein. Amino acid sequence alignments against protein databases revealed

high similarities with Bos Taurus ankyrin repeat domain-containing protein 26-like isoform

X1 (LOC513969).

Further analyses are needed to check whether these deletions have any functional impact in

cattle.

Gene Ontology. Gene Ontology analyses were also performed for all 5,011 genes and GO

terms were obtained for biological processes, cellular components and molecular functions

(S10 Table). Several GO terms were found to be significantly over-represented. For example,

the five most enriched GO categories corresponding to biological process are related to meta-

bolic process, primary metabolic process, organic substance metabolic process, single-organism

metabolic process and cellular metabolic process.

QTLs in SVRs. The positions of the 6,426 predicted large SV events were also compared

to the positions on the UMD3.1 bovine genome assembly of known quantitative trait loci

(QTLs) deposited in the public database AnimalQTLdb [93]. Overall 587 SVs (246 large dele-

tions, 236 inversions and 105 tandem duplications) were found located within or overlapping

QTLs linked to milk traits and somatic cell count and scores (S11 Table). The most frequent

traits corresponded to somatic cell score (257 SVs) followed by milk fat percentage (161 SVs),

milk protein yield (143) and milk protein percentage (107 SVs). QTL enrichment analysis (S11

Table) showed no significant enrichment of specific QTLs linked to milk trait or somatic cell

counts when comparing the SVs overlapping the QTL regions against SVs overlapping all

other known QTL regions available in the AnimalQTLdb database for cattle.

Validation of large SVs by genotyping

The efficiency of the selection approach and the relevance of the resulting SVs were assessed by

genotyping a selected panel of SVs in 382 animals. None of the sequenced individuals was pres-

ent in this genotyped panel.
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Assays were developed for 331 putative SVs (S12 Table), out of which 255 (77%) were suc-

cessfully genotyped (S13 Table) while genotyping failed for 76 (23%). These did not either clus-

ter well according to genotype or failed to amplify most probably because of the sequence

complexity or the presence of polymorphisms within flanking sequences or failed manufacture

with Illumina. These were considered "failed assays". Out of the 255 successfully genotyped

SVs, 237 were deletions and 18 were inversions.

For almost 25% (64 SVs) of the successfully genotyped SVs, only one SV allele was identified

in all individuals (S13 and S14 Tables). Out of these, 61 SVs were homozygous for the reference

allele and could therefore be incorrectly identified as true SVs by Pindel. Some of these SVs

may also correspond to rare variants that were not present in the samples genotyped in this

study. Indeed, almost 50% (30 out of 61) of these monomorphic SVs were found in a single

bull and 84% (51 out of 61) were present in less than 5 animals.

The remaining 3 SVs were homozygous for the alternative allele and were therefore consid-

ered as true SVs.

Finally, 75% (191) of the successfully genotyped SVs were polymorphic and reliably scored,

and thus were considered as true SVs (S13 and S14 Tables). Out of these, 184 SVs were

Fig 6. Results of PCA analysis. PCA analysis results were shown for the 3 main dairy breeds (Fig 6A) and for the 8 breeds (Fig 6B).

doi:10.1371/journal.pone.0135931.g006
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deletions and 7 were inversions. The observed minor allele frequency (MAF) mean among true

SVs was 0.20 ± 0.15 (SD), while the observed heterozygosity mean across loci was 0.28 ± 0.17,

and the PIC (Polymorphic Information Content) mean was 0.23 ± 0.13 (S15 Table). Based on

Fig 7. Genetic population structure prediction.Genetic population structure predicted by STRUCTURE software for the 3 main dairy breeds (Fig 7A) and
for the 8 breeds (Fig 7B).

doi:10.1371/journal.pone.0135931.g007
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the observed heterozygosity and PIC rates in the validated SV panel and across the eight main

breeds analyzed (S15 Table), we could conclude that this type of markers may be informative

and is therefore of particular interest for linkage analysis.

Nine deletions overlapping with publicly available CNVs and 37 others identified as poten-

tial CNVs with our first approach were also validated in our genotyping study (S4 and S5

Tables).

Assessment of population structure using SV genotyping data

Our validation study was carried out using animals from at least eight major dairy breeds

(Table 1), out of which there were 29 Holstein, 32 Montbeliarde and 30 Normande animals.

Using only genotyping data related to the three dairy breeds (S14 Table), PCA grouped indi-

viduals into three clusters according to their breeds of origin (Fig 6A).

For K = 3, which corresponded to the three main breeds, STRUCTURE successfully sorted

individuals into three groups entirely corresponding to the three breeds (Fig 7A).

Similar results were also observed with the eight breeds used in our validation study (Fig 6B

and Fig 7B).

Our results are of particular interest as they could be considered as a global statistical valida-

tion step in addition to the genotyping validation approach we developed. Indeed, the SV used

in these analyses provided a good description of the breed structure, similar to the one previ-

ously provided by SNP data [85].

Conclusions

In the present study, we performed a pan-genome assessment of structural variations in cattle

using whole genome sequence data. Analysis of WGS data of 62 bulls from the three main

dairy breeds used in France (Holstein, Montbéliarde and Normande breeds) allowed the identi-

fication of 6,426 large SVs (> 50 bp). Out of these, 547 deletions and 410 tandem duplications

were identified as potential CNVs.

To analyze the accuracy of our SV detection approach, a set of 331 SVs were selected for val-

idation using a novel high-throughput genotyping strategy. Almost 75% of the successfully

genotyped SVs could be validated and were polymorphic.

The collection of newly discovered SVs may prove useful to study their link with genetic

variability of economically-important traits in cattle. It will be particularly interesting to ana-

lyze the impact of the large deletions inactivating completely single-copy genes.
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