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Abstract

Background: The AP2/ERF transcription factor, one of the largest gene families in plants, plays a crucial role in the

regulation of growth and development, metabolism, and responses to biotic and abiotic stresses. Castor bean

(Ricinus communis L., Euphobiaceae) is one of most important non-edible oilseed crops and its seed oil is broadly

used for industrial applications. The available genome provides a great chance to identify and characterize the

global information on AP2/ERF transcription factors in castor bean, which might provide insights in understanding

the molecular basis of the AP2/ERF family in castor bean.

Results: A total of 114 AP2/ERF transcription factors were identified based on the genome in castor bean. According

to the number of the AP2/ERF domain, the conserved amino acid residues within AP2/ERF domain, the conserved

motifs and gene organization in structure, and phylogenetical analysis, the identified 114 AP2/ERF transcription

factors were characterized. Global expression profiles among different tissues using high-throughput sequencing of

digital gene expression profiles (DGEs) displayed diverse expression patterns that may provide basic information in

understanding the function of the AP2/ERF gene family in castor bean.

Conclusions: The current study is the first report on identification and characterization of the AP2/ERF transcription

factors based on the genome of castor bean in the family Euphobiaceae. Results obtained from this study provide

valuable information in understanding the molecular basis of the AP2/ERF family in castor bean.

Background
The AP2/ERF (APETALA2/ETHYLENE) transcription

factor (TF), one of the biggest gene families, contains a

typical AP2 DNA-binding domain and exists extensively

in plants [1,2]. The AP2/ERF domain is characterized by

approximately 60–70 amino acid residues that consti-

tute a typical helix-turn-helix structure responsible for

sequence-specific DNA binding to modulate the target

gene expression. Based on the number of AP2/ERF do-

mains and the structural features, the AP2/ERF fam-

ily is usually divided into four subfamilies (AP2, ERF,

DREB and RAV). The AP2 subfamily, containing two

repeated AP2/ERF domains, is comprised of two groups,

the AP2 group [3] and the AINTEGUMENTA group

(ANT) [4,5]. Their main function involves the regulation

of organ-specific growth and development, such as flower

development [6], ovule development [4] and the formation

of seed size [7], by binding to target sequences gCAC(A/G)

N(A/T)TcCC(a/g)ANG(c/t) [8]. Both the ERF and DREB

subfamilies contain a single AP2/ERF domain with a spe-

cific WLG motif [9]. The ERF subfamily can recognize

the conserved nucleotide consensus sequence AGCC

GCC of the GCC-box [10] in the promoter regions of

pathogenesis-related (PR) genes and modulate their ex-

pression in disease resistance signaling pathways [11],

whereas the DREB subfamily typically binds to the cis-

acting elements by the binding sequence CCGAC and is

involved in gene expression responsive to abiotic stresses

(drought, low-temperature and high salinity) and plant

hormones such as ethylene and ABA [12,13]. The RAV

subfamily, containing a single AP2/ERF domain and a

specific B3 motif [14-16], is involved in regulating gene

expression in response to ethylene [17], Brassinosteroid

[18], and biotic and abiotic stresses [19,20]. In addition,
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other members containing a single AP2/ERF domain and

lacking additional motifs are often named as Soloist.

Little is known about their function. Though the identifi-

cation of structural characterization and the expression

profiles for AP2/ERF transcription factors has been ex-

tensively studied and documented in several plants such

as Arabidopsis [9], poplar [21], grapevine [22], a holistic

profile of the AP2/ERF family detailing its structure and

function in a given species is limited.

Based on genomic sequences, the AP2/ERF family has

been characterized in Arabidopsis [9], poplar [21], grape-

vine [22], rice [23], wheat [24] and peach [25]. Castor

bean (Ricinus communis L. Euphobiaceae) is one of most

important non-edible oilseed crops and its seed oil is

broadly used in industry. In particular, the main compos-

ition of its seed oil is ricinoleic acid, which is considered

an ideal and unique feedstock for biodiesel production

[26-28]. Due to the increased demand for production of

castor bean seed oils in many countries, breeding and im-

provement of varieties are drawing great attention from

breeders [29]. Further efforts should be made to elucidate

the molecular mechanism underlying the regulation of

growth and development. The recent completion of the

castor bean genome [30] provides an opportunity to iden-

tify and characterize the holistic profile of the AP2/ERF

family, which could add insights into understanding

the molecular mechanism of the AP2/ERF family that

underlies the regulation of growth and development in

castor bean.

A genome-wide survey and characterization of the

AP2/ERF family was conducted based on the complete

genomic sequences of castor bean in this study. The

expression profiles of the AP2/ERF transcription fac-

tors among different tissues were examined using high-

throughput sequencing for Digital Gene Expression Tag

Profiling (DGE). Results obtained from this study provide

global information in understanding the molecular basis

of the AP2/ERF family in castor bean and other plants in

the family Euphobiaceae as well.

Results
Detection of AP2/ERF transcription factors in castor bean

In total, 114 putative AP2/ERF transcription factors were

identified (see Additional file 1) in castor bean, ranging

from 257 to 4877 bp in length. The proteins encoded

varied from 85 to 729 aa. According to the number of

AP2/ERF domains and their structural features, the 114

proteins can be divided into four subfamilies with 56

members in the ERF subfamily, 34 members in the

DREB subfamily, 19 members in the AP2 subfamily, and

four members in the RAV subfamily. Like other plants such

as Arabidopsis, rice, grapevine and poplar, the ERF and

DREB subfamilies are the most dominant in castor bean.

According to the classification criteria in Arabidopsis [9],

the DREB subfamily and ERF subfamily can be further

classified into six groups each. Within the DREB subfamily

the six groups (A1-6) have 6, 5, 1, 10, 7 and 5 members,

respectively. Within the ERF subfamily the six groups

(B1-6) contain 11, 4, 19, 6, 5 and 11 members, respectively

(see Table 1).

Compared with Arabidopsis (147 members), rice (164

members), grapevine (132 members) and poplar (200

members), the AP2/ERF family seems to have relatively

fewer members in castor bean. It is obvious that the

number of the AP2/ERF members within different sub-

families and groups are varied among species (Table 1).

For instance, the number of members in the DREB sub-

family ranges from 34 (in castor bean) to 77 (in poplar),

and the number of ERF members ranges from 56 (in

castor bean) to 91 (in poplar). In addition, one member

(30217.m000254) was identified as Soloist, encoded by a

single-copy gene with low similarity to the Arabidopsis

Soloist AT4G13040.

Conserved residues in the AP2/ERF domain

The featured sequences of specific domain regions

within transcription factors usually determined the main

function of a given transcription factor. Compared amino

acid sequences of the AP2/ERF transcription factors from

castor bean with Arabidopsis, the conserved amino acid

residues within AP2/ERF domain were identified for each

subfamily. Based on multiple sequence alignments 23 con-

served amino acid residues were identified in the DREB

subfamily, including 4G, 6R, 8R, 11G, 12 K, 13 W, 14 V,

16E, 18R, 19E, 20P, 39R, 41 W, 42 L, 43G, 51A, 52A, 54A,

56D, 64G, 67A, 73 L, 74 N (see Figure 1). Twenty-three

conserved amino acid residues (4G, 5 V, 6R, 11G, 14A,

16E, 17I, 19D, 32 W, 33 L, 34G, 35 T, 42A, 43A, 46Y, 47D,

49A, 50A, 55G, 59A, 62 N, 63 F) were identified in the

ERF subfamily (see Additional file 2). In the AP2 subfamily,

the sequences of two AP2/ERF domains AP2/ERF-R1 and

AP2/ERF-R2 were highly variable because of a 10-aa inser-

tion in the R1 domain or a 1-aa insertion in the R2

domain. However, the linker sequences between the two

domains were highly conserved in the AP2 subfamily (see

Additional file 3). In the RAV subfamily, both the AP2/ERF

domain in the N-terminal region and the B3 domain in

C-terminal region were highly conserved (see Additional

file 4). In addition, two Soloist proteins identified in castor

bean and Arabidopsis were highly conserved within the

AP2 domain (see Additional file 5). In particular, most of

members (more than 90%) in castor bean AP2/ERF family

possessed the two featured conserved elements YRG and

RAYD elements within the AP2/ERF domain region.

Phylogenetic and conserved motif analyses

To examine the phylogenetic relationships among 114

AP2/ERF members identified in castor bean, an unrooted
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tree was constructed using MEGA 5.0 with the Neighbor-

Joining criteria based on the alignments of full-length pro-

tein sequences. The generated phylogenetic tree formed 12

distinct clades (designated A to L) with well supported

bootstrap values (Figure 2). It was clearly observed that

four clades A-D composed the DREB subfamily, six clades

E-J constituted the ERF subfamily, the clade L formed the

AP2 subfamily, the clade K made up the RAV subfamily,

whereas the Soloist was separated. Within the DREB sub-

family, the six groups A1-6 categorized were able to be

substantially identified. Similarly, the six groups B1-6 cate-

gorized within the ERF subfamily were also substantially

identified (see Figure 2).

To dissect the evolutionary relationships of AP2/ERF

transcription factors between castor bean and Arabidopsis,

another unrooted phylogenetic tree was constructed based

on the amino acid sequence similarity of 112 AP2/ERF

family members in castor bean (excluding 30006.m000282

and 30170.m013669 due to their low similarity) and 120

AP2/ERF family members obtained from Arabidopsis in

previous study [24]. The phylogenetic tree generated four

major clades (designated I to IV, see Additional file 6).

Clade I was composed of the AP2 and RAV members;

Clade II covered all DREB members (except for the clade

II-1clustered by B6 members); Clade III, Clade IV and sub-

clade II-1 included all ERF members; and the Soloist was

clustered in Clade II. Further, it was also observed that sub-

clades clustered by groups A1-A6 members of castor bean

and Arabidopsis within the DREB subfamily and by groups

B1-B5 members of castor bean and Arabidopsis within the

ERF subfamily were substantially identified, but the group

B6 members were split in subclade II-1 and other sub-

clades within Clade III. In particular, all major clades and

subclades were clustered by interspecies members, indicat-

ing that the AP2/ERF transcription factors are homologous

between castor bean and Arabidopsis.

The amino acid sequences of AP2/ERF transcription

factors contained many conserved motifs which may in-

dicate potential DNA-binding sites or participate in acti-

vating the specific function of AP2/ERF genes. Diverse

conserved motifs had been identified in Arabidopsis and

rice [21,31]. To characterize potential conserved motifs

embedded in the AP2/ERF family of castor bean, the 114

complete AP2/ERF amino acid sequences of castor bean

were analyzed using the MEME suite version 4.9. In

total, 25 conserved motifs were detected and named as

motifs 1–25 (see Additional file 7). It was observed that

motifs 1–8, 14, 20 and 21 corresponded to the AP2/ERF

domain region, and the remaining 14 motifs corresponded

to outside of the AP2/ERF domain region. Further, most

of the 14 conserved motifs outside the AP2/ERF do-

main region were nested in specific clades in phylo-

genetic tree. For example, the motif 9 (characterized in

Additional file 8A) was shared by ten members and the

motif 11 (characterized in Additional file 8A) was shared

by 15 members in the AP2 subfamily; motifs 13 and 18 in

Table 1 Summary of the AP2/ERF gene family in Arabidopsis, rice, poplar, grapevine and castor bean

Plant Group Arabidopsis Rice Poplar Grapevine Castor bean

DREB subfamily A1 6 10 6 7 6

A2 8 4 18 4 5

A3 16 1 2 0 1

A4 16 15 26 13 10

A5 16 13 14 7 7

A6 10 9 11 5 5

Total 57 52 77 36 34

ERF subfamily B1 15 16 19 7 11

B2 5 16 6 3 4

B3 18 18 35 37 19

B4 7 9 7 4 6

B5 8 6 8 4 5

B6 12 14 16 18 11

Total 65 79 91 73 56

AP2 subfamily 18 26 26 18 19

RAV subfamily 6 7 5 4 4

Soloist 1 0 1 1 1

Total 147 164 200 132 114

Note: The names of subfamily and group were previously reported by Sakuma et al. in 2002 (see reference [9]). The number shows the number of members in

each subfamily and group.
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Figure 1 Comparison of amino acid sequences of the AP2/ERF domains of the DREB subfamily proteins from Arabidopsis thaliana and

Ricinus communis. The black background represents the conserved amino acid residues (>95%). The location of the conserved YRG and RAYD

elements are indicated by brackets.
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the C-terminal region (characterized in Additional file 8B)

were specific to the RAV subfamily, and shared by each

members in the RAV subfamily; the motif 10 (characterized

in Additional file 8C) was shared by A1, A4 and most of

A5 members in the DREB subfamily, the motif 23 was spe-

cifically distributed within the A6 group in the DREB

Figure 2 An unrooted Phylogenetic tree of the AP2/ERF gene family in castor bean. The amino acid sequences were aligned using Clustal

W and the phylogenetic tree was constructed with neighbor-joining criteria. The names of groups (A1-6, B1-6) that have been reported previously

are indicated. The letters (A-L) represented the main clades.
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subfamily; the motifs 16 (characterized in Additional

file 8D) and 19 were shared by most of B3 members, and

motifs 17 and 22 were shared by several B6 members in

the ERF subfamily. These observations indicated that

most of conserved motifs were clade-specifically distrib-

uted or the members clustered together shared one or

more conserved motifs, implying the distinct subfamilies

or groups within phylogenetical placement may help in

correlating their functions. The distribution of these con-

served motifs within proteins of relevant clades in the

phylograms was laid out in Figure 3.

Structural analysis of AP2/ERF genes

Structural analyses of genes revealed that all members in

the AP2 subfamily genes had diverse introns ranging from

three to nine, whereas 40 of 56 members in the ERF sub-

family, 33 of 34 members in the DREB subfamily and all

the four members in the RAV subfamily were intronless.

Only one was exceptional with a single intron in the DREB

subfamily. The 16 members in the ERF subfamily con-

tained just one intron whereas the Solosist gene contained

four introns. Further we inspected the pattern of intron po-

sitions for those genes containing introns. We found that

the positions occurring introns were conserved in both the

AP2/ERF domain and the outside AP2/ERF domain re-

gions in the AP2 subfamily, though the number of intron

was varied. Similarly, most of genes shared same or similar

intron patterns in the ERF subfamily with most introns oc-

curring in the AP2/ERF domain regions (see Figure 3C).

The pattern of exon/intron splicing phase usually provided

useful information in understanding of the emergence and

evolution of gene family. We checked the pattern of exon/

intron splicing phase for each intron in the AP2/ERF fam-

ily. The splicing phases were designated as three splicing

phases: phase 0, splicing occurred after the third nucleotide

of the codon; phase 1, splicing occurred after the first nu-

cleotide of the codon; and phase 2, splicing occurred after

the second nucleotide. Results showed that most members

in the AP2 subfamily shared same or similar pattern of

exon/intron splicing phase, and the pattern of exon/intron

splicing phase also was conserved in the ERF subfamily

(see Figure 3C).

Gene structure analyses could provide additional evi-

dence to support the phylogenetic groupings in a given

gene family. Our results provided strong evidence to val-

idate our previous phylogenetic groupings. For instance,

the five genes (28320.m001139, 29841.m002846, 29848.

m004632, 29588.m000873 and 29848.m004566) catego-

rized in the ERF-B6 subgroup shared the same gene struc-

ture including patterns of intron position and exon/intron

splicing phase (see Figure 3C); the four genes (30174.

m008755, 30174.m008756, 30174.m008757 and 30174.

m008759) clustered in ERF-B3 subgroup were nearly iden-

tical in gene length and structure.

Recent researches have demonstrated that several AP2

transcription factors are regulated by the microRNA

miR172 in Arabidopsis [6,32]. To reveal potential mech-

anisms underlying the AP2 subfamily gene regulation in

castor bean, we inspected the binding sites targeted by

the microRNA Rc-miR172 identified in our previous study

[33] for each transcription factor in the AP2 subfamily.

The targeted binding sites were unambiguously identified

from four genes (29169.m000017, 28752.m000339, 29805.

m001494 and 29923.m000827; see Figure 4).

Expression profiles of the AP2/ERF gene family

To investigate the expression levels of AP2/ERF genes in

different organs, high throughput Tag-seq analysis was

performed using five tissues leaf, root, seed 1, seed 2 and

endosperm (see Methods). The raw sequence data of

the five tag libraries obtained from Illumina Genome

Analyzer were submitted to the Sequence Read Archive

(SRA) under accession SRX343933. In total, 4,574,301,

4,660,289, 4,543,329, 4,650,533 and 4,828,665 clean se-

quence tags for leaf, root, seed 1, seed 2 and endosperm

libraries were obtained (see Additional file 9A). To esti-

mate our sequence quality and sequencing depth, the tag

coverage and saturation was analyzed for each library

(see Additional file 9). As showed in Additional file 9B,

when the sequencing counts reached 2 million tags, the

number of detected genes tended towards saturation,

meaning that our sequencing depth was sufficient to detect

the expression of AP2/ERF genes in each library.

After mapping these clean tags to the castor bean gen-

ome database, abundance of tags matching to each AP2/

ERF gene regions in five libraries was 1786, 2009, 3046,

569 and 575, respectively. Expression of only 54 AP2/

ERF genes was detected in at least one of five tissues

tested, covering 32 members in the ERF subfamily, three

members in the DREB subfamily, 16 members in the

AP2 subfamily and three members in the RAV subfamily.

Of them, the expression of 39 genes was detected in root

tissue, 33 genes in leaf tissue, 32 genes in seed 1 tissue,

23 genes in seed 2 tissue and 24 genes in endosperm tis-

sue were detected (see Figure 5A). Further, we expanded

the expression analysis of AP2/ERF genes using the gene

expression database SRA (ERA047687) submitted by

Brown et al [34]. As a result, expression of 78 AP2/ERF

genes was detected from Brown et al.’s libraries. Com-

pared with our data, the expression of 34 of 78 genes was

not detected in our libraries (see Figure 5B). Most of the

34 genes newly detected from Brown et al.’s libraries ex-

hibited a very low expression (see Additional file 10).

Combined the two databases, the expression of 88 genes

was, in total, detected.

To understand the temporal and spatial transcription

patterns of AP2/ERF genes among different tissues, a hier-

archy cluster in each subfamily was separately performed
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Figure 3 (See legend on next page.)
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to visualize a global transcription profile of these genes de-

tected from our five libraries. As illustrated in Figure 6,

only a few genes (such as 28752.m000339 and 29169.

m000017 within the AP2 subfamily, and 29640.m000403

and 27904.m000217 within the ERF subfamily) showed a

high expression across five tissues tested. Most of genes

exhibited diverse expression profiles among different

organs. Further, we combined our transcription data with

Brown et al.’s data [34] to profile the expression pat-

terns of AP2/ERF genes in castor bean. Similarly, most of

AP2/ERF genes exhibited various expression profiles

among different organs. Notably, most of genes ex-

hibited a tissue/organ-specific expression, such as five

genes (28320.m001139, 30146.m003535, 28353.m000054,

27810.m000639 and 30174.m008790) specifically expressed

in leaf tissue, five genes (28644.m000942, 29562.m000029,

29588.m000873, 29929.m004537 and 30169.m006542) spe-

cifically expressed in root tissue, three genes (30131.

m006896, 29841.m002846, and 30174.m009031) specif-

ically expressed in flower, four genes (30069.m000440,

30170.m013668, 29726.m004094, and 28192.m000250)

specifically expressed in developing seeds, and three gene

(29635.m000461, 29680.m001737 and 29736.m002029)

specifically expressed in endosperm. Also, 16 genes, which

exhibited higher expression levels in vegetative tissues

(including leaf and root) than reproductive tissues (includ-

ing flower, developing seed and endosperm), were identi-

fied (see Additional file 10).

Further, we compared the expression profiles of AP2/

ERF genes among different organs between castor bean

and Arabidopsis. Although some AP2/ERF genes and

their orthologs (such as 29983.m003227/AT2G20880.1,

28976.m000163/AT4G37750.1, 29584.m000234/AT3G

23240.1, 28049.m000300/AT3G61630.1, 29635.m000461/

AT5G19790.1, 30084.m000185/AT5G19790.1, 29680.m00

1737/AT5G18450.1) displayed different expression pat-

terns among tissues, most of AP2/ERF genes and their

orthologs presented similar expression profiles among or-

gans between castor bean and Arabidopsis (see Additional

file 10). Eight genes and their orthologs (29908.m006005/

AT1G78080.1, 28752.m000339/AT2G28550.3, 29169.m00

0017/AT4G36920.1, 27904.m000217/AT3G15210.1, 29640.

m000403/AT1G50640.1, 27585.m000144/AT1G53910.1,

28192.m000255/AT4G17500.1, 29738.m001050/AT1G25

560.1), for instance, were highly expressed in all organs

tested in both castor bean and Arabidopsis. In particular,

most of genes and their orthologs exhibited a tissue/organ-

specific expression profile. For instance, 30069.m000440/

AT3G54320.1, 30170.m013668/AT4G37750.1 and 29726.

m004094/AT1G72360.1, were preferentially expressed in

developing seeds and 29841.m002846/AT1G15360.1 was

specifically expressed in flower in both castor bean and

Arabidopsis (see Additional file 10).

To identify potential transcription factors involved in

regulating lipid biosynthesis in developing seeds of castor

bean, we purposely analyzed the expressional differ-

ences of all transcription factors identified in castor bean

(PlantTFDB: http://plntfdb.bio.uni-potsdam.de/v3.0/) be-

tween seed 1 (at the initial stage) and seed 2 (at the fast

oil accumulation stage) libraries. As shown in Additional

file 11, 23 transcription factors significantly up-regulated

at the fast oil accumulation stage were identified. In par-

ticular, some key regulators of fatty acid biosynthesis,

such as LEC1, LEC2, ABI3 and WRINKLED1 were signifi-

cantly up-regulated, consistent with Brown et al.’s observa-

tion [34]. For AP2/ERF genes, 18 genes were significantly

down-regulated, and only two genes (30069.m000440 and

29726.m004094) were significantly up-regulated at the fast

oil accumulation stage (p < 0.001 and fold-change > 2) (see

Additional file 12).

Discussion
Although the AP2/ERF family has been broadly studied

in diverse plants, the current study is the first report on

identification and characterization of the AP2/ERF tran-

scription factors based on the genome in the family Eupho-

biaceae, one important group of resource plants. In total,

114 putative AP2/ERF family genes were identified based

on the genome sequences of castor bean. Genome analyses

showed that castor bean had undergone recent duplication

(See figure on previous page.)

Figure 3 The structural features and the distribution of conserved motifs within each AP2/ERF subfamily in castor bean. (A) Phylogenetic

clades identified within each AP2/ERF subfamily. (B) The distribution of conserved motifs within amino acid sequences of each AP2/ERF gene. The

relative positions of each conserved domain within each protein are shown in color. (C) Exon/intron structures of castor bean AP2/ERF

genes. The exons, represented by green boxes, are drawn to scale. Black lines connecting two exons represent introns. The number above

line represents the splicing phases.

Figure 4 Putative miR172 target sites in mRNAs of AP2 subfamily

genes. The underlined nucleotides denote that it is not complementary

to miR172.
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events [30], which might contribute to the expansion of

the AP2/ERF family in castor bean. Compared with Arabi-

dopsis (genome size 125 Mb), rice (genome size 466 Mb),

grapevine (genome size 490 Mb) and poplar (genome size

480 Mb), castor bean (genome size 310 Mb) harbored the

minimum members in the AP2/ERF family (see Table 1).

As mentioned above, the AP2/ERF family was extensively

involved in regulating plant response to diverse biotic and

abiotic stresses. Castor bean can easily grow in diverse hab-

itats from template, subtropical to tropical areas. It appears

that castor bean displays a strong tolerance or resistance to

diverse environmental stresses. However, why castor bean

harbors less members in the AP2/ERF family is yet un-

known. The 114 members identified were unambiguously

divided into four subfamilies, in consistence with the cat-

egory of AP2/ERF family in other plants. In particular, Both

ERF and DREB are dominant subfamilies containing a sin-

gle AP2/ERF domain in structure, whereas both AP2 and

RAV subfamilies were of minority exhibiting a more com-

plex gene structure such as two AP2/ERF domains and

more introns or a specific B3 motif in gene sequences.

Probably, an early addition of introns or a second DNA

binding domain in structure may have impaired the dupli-

cative ability of the hypothesized ancestral HNH endo-

nuclease in the early evolution of this family, or a longer

piece of DNA might have made a transposition and dupli-

cation event less likely, resulting in the smaller number of

members in the AP2 and RAV subfamilies [35]. In addition,

similar to other plants [24,31], the AP2/ERF domain re-

gions contained many highly conserved amino acid resi-

dues in castor bean.

In general, transcription factors functionally result from

some important conserved motifs within and outside the

DNA binding domain which are related to transcriptional

activity, nuclear localization, and protein-protein interac-

tions [31]. Two conserved amino acid residues 14 V/A

and 19E/D within the AP2/ERF domain have been proved

to be critical for DNA-binding specificity [9]. The identi-

fied divergence of amino acid residues 14 V and 19E in the

DREB subfamily, or 14A and 19D in the ERF subfamily

may be one of the important factors in the understanding

of the functional divergence between the ERF and DREB

subfamilies in castor bean. In particular, the two elements

YRG and RAYD within the AP2/ERF domain had been re-

ported to be critical in activating DNA binding to modu-

late the expression of target genes in Arabidopsis [3,36].

The two elements YRG and RAYD were highly conserved

and identified in most of the members of AP2/ERF family

in castor bean, implying their structural and functional

necessity. Outside the AP2/ERF domain regions 14 con-

served motifs were identified in castor bean AP2/ERF fam-

ily in this study. Most of these conserved motifs display a

group-specific distribution pattern. Combining the struc-

tural differentiation of genes among subfamilies or groups,

these observations strongly imply that the functional diver-

gence exists among subfamilies or groups. The conserved

Figure 5 Number of detected castor bean AP2/ERF genes in leaf, root, seed1, seed2 and endosperm in this study (A) and Overlap of

AP2/ERF genes identified in this study and in Brown et al. [34] (B).
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motifs 13 and 18 may play important roles as transcrip-

tional repressor in mediating plant growth and develop-

ment [18]. Both motifs 13 and 18 were the RAV subfamily

specific, and shared by each member, implying that motifs

13 and 18 may be indispensable elements in structure

of RAV subfamily in castor bean. Studies have showed

that motifs 9 and 11 could form a long linker of the

two β-sheets and these extruded residues or of AP2/

ERF proteins and several linker residues in ANT lineage

in Arabidopsis, which may participate in activating the

function of transcription factors in the AP2 subfamily

[37]. Both motifs 9 and 11 were the AP2 subfamily specific

in castor bean, shared by 10 and 15 members respectively,

meaning that motifs 9 and 11 may provide a specific func-

tion for DNA binding in the AP2 subfamily in castor bean.

The motif 10 was shared by 17 members from groups

A1, A4 and A5 in the DREB subfamily, characterized by

four blocks of conserved amino acid residues: LPRP,

Figure 6 Heatmaps representing the expression profiles of castor bean AP2/ERF genes in leaf, root, seed1, seed2 and endosperm.

The A, B, C and D indicate the expression patterns of AP2, RAV, ERF and DREB subfamily, respectively. The log2 signal values of AP2/ERF

protein-encoding genes in various tissues/organs and developmental stages (mentioned at the top of each lane) are presented by cluster

display. The color scale (representing log2 signal values) is shown at the top.
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D[IV]QAA/DIR[RA], LRAA and [IHEYQAKS]LNFP (see

Additional file 8C). These conserved amino acid residues

have been identified to be essential signatures in Arabi-

dopsis for CBL-interacting serine/threonine-proteins

kinase-12 [38], Ethylene-responsive transcription factor

ERF037 [39], dehydration responsive element binding

proteins-1C and proteins-G [40], auxin response factor-19

[41], and disease resistance [42], respectively. The motif 16

containing a unique ‘EDLL’ residue was the group B3 spe-

cific in ERF subfamily (see Additional file 8D). The ‘EDLL’

residue might participate in activating the function for the

group B3 members in the ERF subfamily [43]. However,

the function of most conserved motifs identified in castor

bean is uncertain. Compared those additional conserved

motifs identified outside of the AP2/ERF domain regions

in castor bean with other plants, eight motifs (including

motifs 9, 10, 11, 13, 16, 17, 18 and 22) were shared by

castor bean, Arabidopsis and rice, indicating most of add-

itional motifs outside of AP2/ERF domain regions were

conserved in plants. The newly identified seven motifs (12,

15, 19, 20, 23, 24 and 25) might be variable among species

or species-specific in castor bean.

Phylogenetic analysis of the AP2/ERF transcription

factors in castor bean showed that the four subfamilies,

AP2, RAV, DREB, ERF, and the main groups A1-A6

within the DREB subfamily, and groups B1-B6 within

the ERF subfamily were able to be substantially identi-

fied. Compared with the phylogenetical relationships of

the AP2/ERF members in Arabidopsis and rice [21,31],

phylograms displayed similar clades to our results. The

phylogenetical tree generated by the combined members

between castor bean and Arabidopsis showed a major clade

I shared by the AP2 and RAV members, indicating a phylo-

genetically close relationship between the AP2 and RAV

subfamilies. In particular, all major clades and subclades

were clustered by interspecies members, indicating that

the AP2/ERF transcription factors are homologous be-

tween castor bean and Arabidopsis. Based on similar gene

structure and conserved motifs of AP2/ERF gene in differ-

ent species, it was indicated that the AP2/ERF transcrip-

tion factors were highly conserved in angiosperm. These

observations strongly support Magnani et al.’s assumption

that the AP2/ERF transcription factors might have an an-

cient origin during angiosperm evolution [35].

As mentioned above, researches have demonstrated

that the activities of several AP2 transcription factors are

regulated during the development of organs by the

microRNA miR172 in Arabidopsis [6,32,44]. Our current

study identified four AP2 genes containing unambiguous

targeted sites for binding Rc-miR172, which could pro-

vide a potential clue to dissect the mechanisms under-

lying the AP2 gene regulation in castor bean.

Although our sequencing depth was sufficient, high

throughput Tag-seq data obtained from five libraries

identified the expression of only 54 AP2/ERF genes in this

study. Based on the deep RNA-seq data in previous study

[34], the expressions of additional 34 AP2/ERF genes were

supplemented. The expressional differences of AP2/ERF

genes between our data and Brown et al’s data could be

explained because of 1) the different sequencing strategy

and depth (Brown et al’s data was based on RNA-seq

strategy with more deeper sequencing, which was more

sensitive for detecting genes expressed at the low level

than our Tag-seq strategy [45]); 2) the different tissues

tested (Brown et al’s data included flower and geminating

seed tissues). The expression profiles of most AP2/ERF

genes displayed spatial and temporal expression patterns

among different tissues, implying their functional specifi-

city. For example, the 29929.m004537 gene was spe-

cifically expressed in root tip tissues, and its homologs

(AT5G17430 and AT3G20840) in Arabidopsis were func-

tionally involved in regulating the growth and develop-

ment of root tips [46]. In addition, the expression of 26

of 114 AP2/ERF genes (including 16 members in ERF

subfamily, eight members in DREB subfamily, one mem-

ber in AP2 subfamily, and one member in RAV subfamily)

were not detected (see Additional file 10). The possible

reasons include: 1) the limited tissues or developmental

stages were examined in our analysis, and 2) the tissues

tested in both our current examination and Brown et al’s

study were sampled from individuals with normal growth

(lack of environmental stresses). It is understandable that

the expression of some genes in DREB and ERF subfam-

ilies would not be detected if their expressions were ma-

jorly involved in responding to biotic and abiotic stresses.

One of main objectives of this study is to identify poten-

tial AP2/ERF transcription factors involved in oil accumu-

lation or seed development of castor bean. The analyses of

expressional differences between seed 1 and seed 2 librar-

ies revealed that 18 of 20 AP2/ERF genes were down-

regulated from the initial developing stage to the oil fast

accumulation stage. These genes might be negatively regu-

lated in oil accumulation in the developing seeds of castor

bean. For the two genes (29726.m004094 and 30069.

m000440) strongly up-regulated at the oil fast accumula-

tion stage, we inspected the function of their the homologs

(AT1G72360 and AT3G54320) in Arabidopsis and found

that AT1G72360 was a hypoxia-inducible ethylene re-

sponse factor and significantly up-regulated in developing

seeds [47-50], and AT3G54320 (WRINKLED1) was a mas-

ter gene responsible for transcriptionally regulating carbon

metabolism and lipid biosynthesis in developing seeds

[51-56]. Potentially, the gene 30069.m000440 may be an

important transcription factor responsible for regulating

oil accumulation in developing seeds of castor bean. Stud-

ies focusing on the functional analysis of 30069.m000440

might reveal the mechanism underlying the regulation of

oil accumulation in developing seeds of castor bean.
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Conclusions
The current study is the first report on identification

and characterization of the AP2/ERF transcription factors

based on the castor bean genome in the family Euphobia-

ceae. In total, 114 putative AP2/ERF family genes were

identified in castor bean, one of most important non-

edible oilseed crops and its seed oil is broadly used for

industrial applications. Further, the 114 AP2/ERF tran-

scription factors were characterized according to the con-

served amino acid residues within AP2/ERF domain, the

conserved motifs and gene organization in structure, phy-

logenetical analysis, and global expression profiles among

different tissues using high-throughput sequencing. Re-

sults obtained from this study provide global information

in understanding the molecular basis of the AP2/ERF fam-

ily in castor bean.

Methods
Identification of AP2/ERF transcription factors from castor

bean genomic sequences

Based on the castor bean genome (http://castorbean.jcvi.

org/index.php), an extensive search was performed to

identify all members of the AP2/ERF transcription factors.

The Arabidopsis AP2/ERF gene and amino acid sequences

were downloaded from the DATF database (http://datf.cbi.

pku.edu.cn). The characterized ERF sequences from the

representative members for each group in Arabidopsis

thaliana [9] were used as query sequences against the

castor bean complete genome using WU-BLAST 2.0 pro-

gram with an e-value of le-3 and more than 80% coverage.

According to the hit position of sequences targeted in

castor bean genome, the corresponding gene sequences

(including ORF sequences), gene model, position in scaf-

fold, amino acid sequences and their annotations were ex-

tracted for further analyses. To obtain an exhaustive

search for identifying all members of AP2/ERF family in

castor bean, we further used the full length sequences of

representative members in other subfamilies, such as

AT1G25560.1 representing RAV subfamily, AT2G28550.1

representing AP2 subfamily, and the Soloist AT4G13040

as query sequences for comparing our previous searches.

After removing redundant sequences and incomplete ORF

sequences, SMART tools (http://smart.embl-heidelberg.

de/) and InterProScan (http://www.ebi.ac.uk/Tools/pfa/

iprscan/) were used to confirm the presence of the char-

acterized AP2/ERF domain in the candidate sequences.

Further, the putative members of AP2/ERF family and

their gene sequences were identified and defined for fur-

ther analyses.

Phylogenetic, MEME motif and gene structure analyses

Multiple alignments of amino acid sequences of the AP2/

ERF domain in Arabidopsis and castor bean were carried

out using Clustal W [57] and an un-rooted phylogenetic

tree was generated with neighbor-joining criteria in MEGA

5.0 [58] with 1000 bootstrap replicates. Conserved motifs

in castor bean AP2/ERF transcription factors were identi-

fied using motif based sequence analysis tool MEME (Suite

version 4.9.0) with the following parameters: optimum

width 10–200 amino acids, any number of repetitions

of a motif, and maximum number of motifs set at 25.

The BLAST search for the resulting motifs in the NCBI

and MS-Homology databases was carried out to deter-

mine their biological contexts. In addition, gene structure

was investigated using the online Gene Structure Display

Server (http://gsds.cbi.pku.edu.cn/) based on full-length

mRNA alignments with corresponding genomic sequences,

whereas introns are gaps between exons consisting entirely

of genomic sequence.

Gene expression analyses

To examine the global expression profiles of 114 AP2/

ERF transcription factors identified among different or-

gans or developmental stages, high-throughput sequen-

cing of digital gene expression tag profiles (DGEs) for

five tissues leave, root tips, developing seeds at the initial

stage (seed 1), developing seeds at the fast oil accumulation

stage (seed 2), and endosperm were conducted. Seeds of

castor bean var. ZB306 elite inbred line (provided kindly

by Zibo Academy of Agricultural Sciences, Shandong,

China) were germinated and grown in the conservatory

under natural conditions (11 h light, 13 h dark; 25°C dur-

ing the day and 18°C at night). Mature female flowers

were hand pollinated and tagged. Leaf tissues were col-

lected from fully expanded young leaf and root tips were

dissected, washed and collected. Immature seeds at two

different stages, i.e. seed 1 at the initial stage (developing

seeds do not start to accumulate oil, ca. 15 days after

pollination) and seed 2 at the fast oil accumulation stage

(developing seeds start to fast accumulate oil, ca 35 days

after pollination) were collected. Endosperm tissues were

dissected from the immature seeds (ca. 40 days after

pollination). Three biological replicates were collected

for each tissue type. For all the tissues, three randomly

chosen samples were pooled to form a biological repli-

cate. Total RNA was isolated from the leaves, roots, seed

1, seed 2 and endosperms of castor bean using Trizol re-

agent (Invitrogen, Carlsbad, CA) and purified using an

RNeasy Mini Kit (Qiagen, Valencia, CA) following the

manufacturer’s protocol. The quality of total RNA sam-

ples was checked using the NanoDrop Spectrometer

(ND-1000 Spectrophotometer, Peqlab) as well as agarose

gel electrophoresis.

The high quality RNAs were used to constructed tag

libraries respectively for deep-sequencing. Briefly, total

ploy A RNA (about 6 μg) was enriched by Oligo(dT)

magnetic beads and Oligo(dT) used as the primer to

synthesize the first and second-strand cDNA. The cDNA
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was digested by two types of Endonuclease: NlaIII or

DpnII, acquiring 17 bp tags with different adaptors of both

ends to form a tag library. After 15 cycles of linear PCR

amplification, 105 bp fragments were purified by 6% PAGE

Gel electrophoresis. After denaturation, the single-chain

molecules were fixed onto the Illumina Sequencing

Chip (flowcell). Each molecule then grows into a single-

molecule cluster sequencing template through in situ

amplification. Four colored nucleotides were added for

sequencing using the method of sequencing by synthesis

(SBS). Millions of raw reads were generated with a sequen-

cing length of 49 bp. Sequencing was performed using a

Illumina Genome Analyzer at BGI ShenZhen (China).

The raw data from the five tagged libraries were pre-

processed to filter out low quality reads and clipped

adapter sequences. After that, all clean reads were mapped

to the castor bean genome (http://castorbean.jcvi.org/

index.php) to obtain unique reads and reads abundance

using SOAP2 software [59]. To compare the differential

expression of genes among tissues, the expression level of

each gene in the different tissues was normalized to the

number of transcripts per million clean (TPM). Genes

with significantly different expression were determined by

P ≤ 0.001 and fold-change ≥2 in two samples. To visualize

a global transcription profile of genes detected in each

subfamily across the five tissues, the hierarchical clustering

was performed using R software [60].
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