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ABSTRACT 

 

Investigation of the molecular mechanisms of aging in the human heart is challenging due to 

confounding factors, such as diet and medications, as well limited access to tissues. The laboratory mouse 

provides an ideal model to study aging in healthy individuals in a controlled environment. However, 

previous mouse studies have examined only a narrow range of the genetic variation that shapes individual 

differences during aging. Here, we analyzed transcriptome and proteome data from hearts of genetically 

diverse mice at ages 6, 12 and 18 months to characterize molecular changes that occur in the aging heart. 

Transcripts and proteins reveal distinct biological processes that are altered through the course of natural 

aging. Transcriptome analysis reveals a scenario of cardiac hypertrophy, fibrosis, and reemergence of fetal 

gene expression patterns. Proteome analysis reveals changes in energy metabolism and protein 

homeostasis. We found that for many protein complexes there is a decline in correlation between their 

component proteins with age, indicating age-related loss of stoichiometry. Some of the most affected 

complexes are themselves involved in protein homeostasis, which potentially contributes to a viscious 

cycle of progressive breakdown in protein quality control with age. In addition, we identified genetic loci 

that modulate age-related changes in a variety of cellular processes, including protein degradation and 

sorting, suggesting that genetic variation can alter the rate of molecular aging. 
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INTRODUCTION 
 

Cardiovascular (CV) diseases are the leading cause of death in elderly people. Improved 

understanding of mechanisms that underlie the changes that occur in the aging heart could open new 

opportunities for prevention and treatment (1). As the heart ages, characteristic physiological changes 

occur, including increased arterial thickening and stiffness, endothelium dysfunction, valvular fibrosis and 

calcification, and a switch from fatty acid to glucose metabolism (2–4). Compensatory mechanisms may 

temporarily maintain heart function but can also contribute to progressive deterioration and eventual 

heart failure (2). For example, thickening of the left ventricle and remodeling of the extracellular matrix 

may compensate for loss of systolic function (2,3). However, in the long term, the increased wall stress 

causes the left ventricle to dilate, leading to a decline in systolic function (5). Physiological measures of 

cardiac function that change with age have high heritability suggesting that genetic factors contribute to 

variability in cardiac aging in humans (6).   

Despite well-known physiological changes in the aging heart, dissecting the cellular and molecular 

basis of age-related change is challenging due to its complex dynamics and inherent variability in the aging 

process (7,8). Age-related changes at the cellular levels have been associated with genomic instability, 

loss of protein homeostasis, epigenetic alterations, mitochondrial dysfunction and inflammation (7). 

Variability of transcript expression increases with age in mammalian tissues, including the heart (9,10). 

Age-related dysregulation of transcripts is offset by selective translation, and post-transcriptional 

mechanisms become crucial for achieving cellular homeostasis (11). The investigation of molecular 

mechanisms involved in aging is further complicated by the uncoupling of age-related changes between 

transcripts and their corresponding proteins (12). Waldera-Lupa et al (2014) found that 77% of the 

proteins that change with age in human fibroblasts showed no corresponding change in their transcripts 

(13). Decoupling between transcripts and proteins with age has also been observed in the brain of humans 

and rhesus macaques (14). Thus, investigating age-related changes using only transcriptional profiling may 

fail to reveal important influences on proteins and higher-order cellular processes. 

Mouse models of aging can recapitulate many of the cardiac aging phenotypes seen in humans, 

such as increased atrial and ventricular dimensions and reduced diastolic function (15), and thus provide 

relevant models for investigating aging processes in the heart. However, most previous studies have used 

mice descended from only a few isogenic strains that do not reflect the diversity of cardiac phenotypes 

found in aging human populations. Multiple studies report differences in mouse cardiac phenotypes, 
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under either physiological or pathological conditions, associated with genetic background across inbred 

strains (16–20), and in multiparent populations (21,22), confirming the importance of genetic diversity in 

shaping the rate and course of cardiac aging. 

 In this study we utilize Diversity Outbred (DO) mice derived from eight inbred founder strains: 

A/J (AJ), C57BL/6J (B6), 129S1Sv/ImJ (129), NOD/ShiLtJ (NOD), NZO/H1LtJ (NZO), CAST/EiJ (CAST), 

PWK/PhJ (PWK), and WSB/EiJ (WSB), to investigate cardiac aging in a genetic and phenotypically diverse 

model (23,24). We analyze transcriptome data from RNA sequencing (RNA-seq) and protein data from 

mass-spectrometry analysis of heart tissues collected from healthy DO mice at ages 6, 12 and 18 months. 

At 6 months of age, the mice have reached full maturity. At 18 months, most mice are healthy and are 

only beginning to show signs of age-related decline. Thus, we are looking at changes in transcripts and 

proteins that are not influenced by developmental programs and are also not reflecting late-stage disease 

progression (25). These data can reveal broad patterns of change in biological processes and in specific 

cellular compartments. To characterize molecular and cellular changes in the aging mouse heart, we first 

identify the transcripts and proteins that are changing with age and identify functionally related groups 

of genes using gene-set enrichment analysis (26,27). We then examine the maintenance of protein 

complex stoichiometry. Finally, we investigate how genetic variation modulates age-related changes in 

the heart. The molecular profiling data from the mouse heart are freely available to support further 

investigations of the molecular basis of aging in mammals (https://qtlviewer.jax.org/viewer/agingheart).  
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RESULTS 

 

Transcriptomics reveals age-related changes in muscle cell differentiation, contraction, and 

inflammation  

We used RNA-Seq data from the hearts of 192 DO mice of both sexes aged to 6, 12 or 18 months 

to identify transcripts that change with age (Figure 1). Transcripts that change with age are referred to 

throughout as age-related transcripts, and their magnitude and direction of change are referred to as age 

effects, reported in unit of log2 fold change per year. For the transcriptome data, we used DESeq2 (28) to 

identify 2,287 transcripts (out of 20,932) with significant age-related changes (false discovery rate, FDR < 

0.1; Supplementary File 1). These transcripts include genes that are known to play a role in the aging heart, 

as well as genes that have been implicated in aging but have not been previously reported as changing in 

the heart, or genes that play a role in heart disease or heart development but have not been reported to 

change with age. They are enriched for functional annotations across 85 biological processes (FDR < 0.05), 

the most significant of which are muscle cell migration, regulation of muscle cell differentiation, ion 

transport pathways, and acute-phase response (Figure 2).  

Some of the age-related transcripts possess functions relevant to cardiac pathological conditions 

and heart development (Table 1). Both Adamts1, present in the muscle cell migration pathway, and 

Serpine1, present in both muscle cell migration and ion transport pathways, increase with age (Adamts1: 

age effect = 0.15; Serpine1: age effect = 0.19; Figure 3A). These genes have been shown to induce collagen 

1 deposition and fibrosis in the heart (29–31). The increased expression of transcripts involved in fibrosis 

is indicative of age-related changes in cellular composition including an increase in the proportion of 

fibroblasts and myofibroblasts in the heart. Comparing the age-related transcripts reported here with 

published single-cell RNA-seq data (18), we observe an increase in expression of fibroblast markers 

including Timp1 (age effect = 0.3) and Mt2 (age effect = 0.4), and an increase in myofibroblast markers 

including Postn (age effect = 0.3) and Cthrc1 (age effect = 0.46). We also observed increased expression of 

Nov (age effect = 0.18; Figure 3A), which plays a role in heart development by blocking terminal 

differentiation and increasing the proliferation rate of myoblasts (34, 35).  

The gene Myocd, whose expression decreases with age (age effect = -0.12; Figure 3B), is involved 

in both muscle cell migration and muscle cell differentiation, and it is an important regulator of cardiac 

function by maintaining cardiomyocyte cell structure and function (34). Ppara also decreases with age 

(age effect = -0.11 – Figure 3B), and it plays a role in the regulation of cardiac fatty acid metabolism and is 
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implicated in several pathologic heart conditions associated with aging (35,36). Many age-related 

transcripts that are associated with calcium ion transport, including Pln, Cacna1g and Dhrs7c, decrease 

with age (Table 1 and Figure 3B). These genes have functions associated with cardiac muscle contraction, 

play a role in cardiomyopathy, and are downregulated in heart failure models but have not been 

previously described in the aging heart (37–39).  

Acute phase response pathway genes, which are involved in inflammation, increase with age 

except for Stat5b, which decreases (age effect = -0.07; Figure 3B). Although its function in heart is not 

established, STAT5B interacts with the insulin receptor, coordinating changes in gene expression through 

insulin signaling (40,41). In addition, STAT5B was proposed to inhibit acute-phase response by modulating 

the activation of STAT3 (42). Transcripts in the acute phase response pathway that increase with age 

include Ahsg (age effect = 0.3; Figure 3A), which controls the binding of free fatty-acid to inflammatory 

receptors and protects against vascular calcification (43,44), and Tnfsf11 (age effect = 0.52 – Figure 3A), 

which is involved in aortic valve calcification in response to inflammation, a feature prevalent in the elderly 

(45). We observe an age-related increase in expression of immune cell-specific markers, such as B cells 

(Cd79a, age effect = 0.46), macrophages (Cd68, age effect = 0.19) and monocytes (Plac8, age effect = 0.6), 

indicating immune cell infiltration in the aging heart. The increase in expression of immune response genes 

with age in multiple tissues of the mouse, including heart, has been reported previously (46). 
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Study design  

 

Figure 1. Study Design. We carried out a cross-sectional aging study of DO mice, which are descendant from 8 

founder inbred strains and are maintained as an outbred stock with high levels of heterozygosity. Heart tissue from 

DO mice aged 6, 12 or 18 months was collected for RNA-seq and mass-spectrometry analysis. The transcriptome and 

proteome data were analyzed to evaluate age-related changes in transcript and protein abundance using gene set 

enrichment, QTL mapping and protein complex stoichiometry. 
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Enriched gene ontology terms for age-related transcripts  

 

Figure 2. Enriched gene ontology terms for age-related transcripts. The most significant gene ontology categories 

for age-related transcripts in DO mouse hearts are shown. Gene-set enrichment analysis reveals that age-related 

transcripts are involved in muscle cell migration, regulation of muscle cell differentiation, ion transport and acute-

phase response (FDR < 0.05). Major nodes indicate enriched categories and adjacent nodes identify transcripts 

within each category. Transcripts involved in muscle cell migration, muscle cell differentiation and ion transport both 

increase and decrease with age. Transcripts from the acute-phase response increase except for Stat5b. The color 

scale represents the age effect for each transcript in units of log2 fold change (LFC) per year. 
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Individual-level expression of age-related transcripts  

 

Figure 3. Individual-level expression of age-related transcripts. Transcripts highlighted in Table 1 are shown across 

age groups (6, 12 and 18 months). Transcripts increase (A) or decrease (B) with age. Solid points represent the age 

group mean expression +/- 1 standard error (SE), and points with transparency show individual mouse expression 

levels. Expression levels (Y axis) are counts normalized by the DESeq2 variance stabilizing transformation. 
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Proteomics reveals age-related changes in mitochondrial metabolism and intracellular protein 

transport 

 

We obtained proteomics data from 190 of the 192 DO mice that had transcriptome data (Figure 

1). In order to test for age-related changes at the protein level, we fit a regression model of protein 

abundances with a linear term for age and covariates as described in Methods. We identified 1,161 age-

related proteins (out of 4,062; FDR < 0.05; Supplementary File 2). A higher proportion of proteins exhibited 

change with age when compared to transcripts, and thus we applied a more stringent FDR threshold to 

focus on the proteins with greatest change. These proteins are enriched (FDR < 0.05) for gene ontology 

categories that include positive regulation of cellular proliferation, intracellular protein transport and 

several mitochondrial categories (Figure 4; Table 2). Changes in the mitochondrial respiratory chain 

complexes were also reported in recent studies of single-cell RNA-seq and proteome data of multiple 

tissues in aging mice (46,47). Interestingly, there was no overlap of enrichment terms for proteins and 

those found in our transcriptome analysis. The proteome data also highlight different cell-specific markers 

(18). In addition to fibroblast markers, we see an increase with age in markers of smooth muscle (VTN, 

age effect = 0.58), epicardium (CLU, age effect = 0.38) and endothelium cells (FABP4, age effect = 0.39 and 

PECAM1, age effect = 0.3) that were not seen in the transcriptome data. Thus, the protein data reveal 

unique features aging that are not seen at the transcript level.  

The serine/threonine kinases AKT1 and AKT2 are highly abundant in cardiomyocytes and regulate 

cellular proliferation and intracellular protein transport pathways. Both are significantly increasing in 

abundance with age (AKT1: age effect = 0.36; AKT2: age effect = 0.27 – Figure 5A). AKT1 and AKT2 respond 

differently to growth factors and extracellular ligands (48), but they both participate in the regulation of 

cardiac hypertrophy in aging through interaction with Sirtuins (49). Knockout mouse models have shown 

that the lack of AKT1 constrains the ability of cardiomyocytes to respond to physiological hypertrophy. 

Alternatively, AKT2 mutant mice showed reduced glucose oxidation in heart cells, but normal response to 

exercise-induce hypertrophy, demonstrating that these two proteins regulate heart remodeling in 

response to stress in distinct ways (48,50,51). Along with AKT2, other proteins associated with fetal 

metabolism increase with age, including ACACB (age effect = 0.14), which inhibits fatty acid oxidation, and 

GYS1 (age effect = 0.23), which plays a role in glucose metabolism (50,52,53). 

RAB family proteins are Ras-like GTPases that regulate protein trafficking by vesicle formation and 

fusion throughout the cell (54,55). Among the 22 RAB proteins that change with age, 19 are increasing 
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(Supplementary File 2). Some RAB proteins are activated during mitophagy, which is mediated by 

RABGEF1 in mammalian cultured cells (56). Notably, RABGEF1 is the RAB family member with the greatest 

age-related increase (age effect = 0.74; Figure 5A), suggesting that mitophagy may play a substantial role 

in the aging heart. Increased myocardial RAB abundance is associated with myocardial hypertrophy. Mice 

overexpressing RAB1A showed contractile depression with impaired calcium reuptake and developed 

hypertrophy that progressed to heart failure (54). RAB1A and RAB1B are mostly identical in structure and 

function (57) and RAB1B is one of the few RAB proteins that decreased with age in our dataset (age effect 

= -0.356; Figure 5B).  

We observed distinct patterns of age-related changes in proteins of the mitochondrial respiratory 

complexes (Figure 5 - Figure supplement 1). Among 16 proteins in the cytochrome C oxidase (COX) 

complex, i.e., mitochondrial respiratory chain complex IV, 7 show significant age-related changes and, of 

those, 6 increase in abundance with age. The exception is ACTN3 (alpha-actinin-3), which was decreasing 

with age (age effect = -1.8; Figure 5B). A role for ACTN3 has not been described in the heart, but in skeletal 

muscle, it is known to be a negative regulator of oxidative metabolism. Depletion of ACTN3 results in 

overexpression of COX proteins and to higher mitochondrial oxidative metabolism (58,59). Our findings 

suggest that there is an increase in oxidative mitochondrial metabolism in the aging heart (Figure 5A; 

Figure 5 – Figure supplement 1). Most proteins from the SDH and ATP families (succinate dehydrogenase 

complex – Complex II and ATP synthase complex – Complex V, respectively) increase with age (Figure 5A; 

Figure 5 – Figure supplement 1). In contrast, subunits from the mitochondrial complex I, i.e. NDUF family 

(NADH: ubiquinone oxidoreductase supernumerary subunits – Complex I), change in both directions with 

age (Figure 5A; Figure 5B; Figure 5 – Figure supplement 1). 
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Enriched gene ontology terms for age-related proteins  

 

Figure 4. Enriched gene ontology terms for age-related proteins. The most significant gene ontology categories for 

age-related proteins in DO mouse hearts. Gene-set enrichment analysis reveals that proteins changing with age are 

involved in positive regulation of cell proliferation, intracellular protein transport, mitochondria membrane complex 

and respiratory chain complex (FDR < 0.05). Major nodes indicate enriched gene ontology terms and adjacent nodes 

identify age-related proteins within each category. Most age-related proteins increase in abundance with age, 

including proteins involved in intracellular protein transport and positive regulation of cell proliferation. Color scale 

represents the age effect in units of LFC per year. 
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 Individual-level expression of age-related proteins 

 

Figure 5. Individual-level expression of age-related proteins. Abundance of proteins highlighted in Table 2 across 

age groups (6, 12 and 18 months) shows proteins that increase (A) or decrease (B) with age. Solid points represent 

the age group mean expression +/- 1 standard error (SE), and points with transparency show individual mouse 

abundance. Abundances (Y axis) are normalized log2 values from mass-spec quantification (Methods). 
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Dysregulation of protein complex stoichiometry with age 

 Loss of stoichiometry in protein complexes has been shown to occur with age in a number of 

organisms (60–63). We examined the balance of gene-pairs, for both transcript expression and protein 

abundance, in the mouse heart for 16 complexes as defined in the CORUM database (64).  We selected 

complexes with transcripts and proteins present in our data, including 26S proteasome, nuclear pore 

complex, cytoplasmic ribosomal small subunit, cytoplasmic ribosomal large subunit, mitochondrial 

ribosomal large subunit, coat protein I (COPI) vesicle transport, coat protein II (COPII) vesicle transport, 

mitochondrial ribosomal small subunit, mitochondrial respiratory chain complexes (I-V), mitochondrial 

pyruvate dehydrogenase complex, mitochondrial inner membrane presequence translocase complex, and 

mitochondrial outer membrane translocase complex. We computed the Pearson correlations between all 

pairs of proteins and among all pairs of transcripts within each complex and estimated the age-related 

changes in correlation (Methods).  We evaluated the significance of these changes using a permutation 

procedure (65).  

 We identified 123 protein-pairs (out of 2074) with significant changes in correlation with age (FDR 

< 0.1) (Supplementary File 3). Of these, 4 are in the cytoplasmic ribosomal small subunit complex, 11 are 

in the COPII complex, 27 are from the mitochondrial respiratory chain complexes (5 from mitochondrial 

complex I, 2 from mitochondrial complex II, 5 from mitochondrial complex III, 4 from mitochondrial 

complex IV and 11 from the mitochondrial complex V), and 81 are in the 26S proteasome complex. The 

majority (115 out of 123 pairs) of the protein-pair correlations decrease with age, consistent with the 

expected loss of stoichiometric balance in these complexes. 

As mentioned above, changes associated with the 26S proteasome complex were outstanding, 

specially at the protein level. For individual protein pairs, the age effects (change in correlation per year) 

for all the gene-pairs, including the non-significant ones, range from 0.37 to -0.73, while for their 

transcripts, the range is 0.56 to -0.5 (not significant; Figure 6A-D). The 26S proteasome complex is 

composed of two subcomplexes, a core particle (20S proteasome) and a regulatory particle (19S 

proteasome). The core particle of the proteasome is made up of α and β subunits (proteins from the PSMA 

or PSMB families), while the regulatory particle includes proteins from the PSMC and PSMD families (66). 

Even though both subcomplexes show significant changes in correlation with age, PSMD14, from the 

regulatory particle, was found in the greatest number of protein-pairs that change in correlation with age 

(14), followed by proteins PSMD13 (10) and PSMD11 (9). This suggests that the age-related changes 

mostly affect the regulatory particle of the proteasome (Figure 6D2). 
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  Among transcripts, only 20 pairs (out of 2042) showed significant correlation change with age 

(FDR < 0.1). All of these are in mitochondrial complexes (3 from mitochondrial complex III, 15 from 

mitochondrial complex V, and 2 pairs from the mitochondrial pyruvate dehydrogenase complex). 

Interestingly, all of these transcript-pairs increase in correlation with age (Supplementary File 3). Only two 

of these pairs also showed a significant change at the protein level (Atp5b – Atp5a1 Mitochondrial 

complex V: protein age effect = -0.40; transcript age effect = 0.21, and Uqcrc2 – Uqcrh Mitochondrial 

complex III: protein age effect = 0.38; transcript age effect = 0.30).  

As an alternative approach to assess coordinated changes across an entire protein complex, we 

fit a joint model to each set of within-complex correlations with a random intercept term for each gene-

pair and a common slope to capture the average correlation change for the complex (Methods). We 

applied the same permutation test to evaluate statistical significance, but because there is one test per 

complex, we applied a nominal significance threshold (p < 0.05) per complex. Mitochondrial complex III 

showed an overall change in correlation at the transcript level (age effect = 0.3). We observed changes in 

only protein correlations for the mitochondrial outer membrane translocase (age effect = -0.21), nuclear 

pore complex (age effect = -0.16), cytoplasmic ribosomal large subunit (age effect = -0.1) and 26S 

proteasome (protein age effect = -0.2) (Figure 6E). Mitochondrial complexes IV and V showed change in 

correlation for both transcripts and proteins (transcript age effect ˜ 0.2; protein age effect ~ -0.15). We 

plotted the age effects at the transcript and protein levels for all 16 complexes (Figure 6E), and note that 

most complexes, regardless of statistical significance, show an increase in transcript correlations and a 

decrease in protein correlations. Our findings are consistent with previous reports of protein complex 

stoichiometry changes reported in killifish brain (62), where protein complexes showing the greatest 

change with age include the mitochondrial complexes IV and V, the cytoplasmic ribosome, and the 26S 

proteasome complex. 
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Correlation between protein complex members changes with age  

  

Figure 6. Correlation between protein complex members changes with age. Heatmaps show the correlation 

coefficients between gene-pairs in the 26S proteasome complex at 6 months (A), 12 months (B) and 18 months (C) 

at the transcript level (1) and at the protein level (2). D) Heatmaps show the change in correlations between 

members of the 26S proteasome complex. Correlations among transcripts are generally increasing with age but the 

change is not statistically significant (D1). The majority of correlations among proteins (D2) are decreasing with age. 

Dots on the heatmap indicate significant changes in correlations with age (FDR < 0.1). E) Standardized age effects on 

correlation for 16 protein complexes are shown for transcripts (x-axis) and proteins (y-axis). Color indicates the 

significance of the age effect on transcripts, proteins, both or neither. Even though many of the complexes do not 

show a significant change with age, the direction of changes tends to be increasing for transcripts and decreasing 

for proteins. Age effects are estimated by linear regression and reported as change in the correlation coefficient per 

year.  
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Genetic variants alter the age trajectory of functionally related groups of proteins 

We carried out genetic mapping analysis of transcripts and proteins to identify quantitative trait 

loci (eQTL and pQTL, respectively) that regulate their expression/abundance levels.  The additive effects 

of genetic variation on transcripts and proteins have been widely documented (67–71) and will not be 

discussed here. Our interest is to investigate how genetic variants influence the rate or direction of change 

with age of transcripts and proteins.  To identify these age-interactive QTL (age-QTL), we evaluate an age-

by-genotype interaction term in a linear mixed model of genetic effects (Methods) for each transcript and 

protein. We computed genome-wide adjusted significance using permutation analysis (Methods) and 

declare age-QTL when the age-interactive LOD score (LODint) > 7.75.   We have provided access to the data 

and webtool (QTLviewer) that can be used to explore both the additive and age-interactive genetic effects 

on transcripts and proteins in the aging mouse heart (https://qtlviewer.jax.org/agingheart). A users’ guide 

for the QTLviewer can also be found at this website (https://qtlviewer.jax.org/userguide).  

We found 824 transcript age-QTLs (age-eQTL; Figure 7A; Supplementary File 4). Most age-eQTL 

mapped to locations that are distant from their coding genes, which suggests that genetic modification of 

age-related changes is largely not due to direct regulation of gene expression but rather occur in response 

to other age-related changes. There are, however, five local age-eQTL.  A local age-eQTL for the gene Cluh 

(LODint = 7.9) is located on chromosome 12. This gene binds RNAs of nuclear-encoded mitochondrial 

proteins, regulating mitochondrial metabolism by translation control and mRNA decay (72,73). Cluh 

orchestrates mitochondrial metabolic switching from glycolysis to oxidative phosphorylation that 

happens after birth (73). Genetic variation in Cluh might influence the return to the fetal metabolism in 

the aging heart.   

We found 463 protein age-QTLs (age-pQTL; Figure 7B; Supplementary File 4), all of which are 

distant from the coding gene. The protein PARK7, which mapped to a distal age-pQTL on chromosome 9 

(LODint = 10.5) at ~95Mb, is a redox-sensitive chaperon that protects the murine heart from oxidative 

damage (74).  SIRT2, another protein with relevant function to the aging heart, has a distal age-pQTL on 

chromosome 13 at ~111Mb (LODint = 9.6). SIRT2 regulates cardiac homeostasis and remodeling through 

activation of AMP-activated protein kinase (AMPK) and repression of the nuclear factor of activated T-

cells (NFAT), playing a protective role in the heart (75,76).   
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Genomic hotspots for age-interactive eQTL and pQTL  

 

Figure 7. Genomic hotspots for age-interactive eQTL and pQTL. Age-QTL identify the genetic loci involved in age-

by-genotype interactions that alter the aging trajectories of transcript (A) or protein (B). In the upper panels in A) 

and B) points indicate the location of the QTL peak (x-axis) and the location of the coding gene (y-axis) for significant 

age-QTL (LODint > 7.75). The lower panels show the number of age-QTL detected in 4Mb windows along the genome. 

Most age-QTL are distant from the coding gene. Age-QTL can occur in clusters or hotspots where a single genetic 

locus interacts with many transcripts or proteins. Hotspots can be seen as vertical bands in the upper panels and as 

peaks in the density plot of age-QTL shown in the lower panels.  
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Many of the age-QTL co-locate to the genome in hotspots (Figure 7). We identified an age-eQTL 

hotspot on chromosome 4 and three age-pQTL hotspots on chromosomes 3, 5 and 12, respectively 

(Methods). Genome-wide significant age-QTL meet stringent statistical criteria that can result in missing 

weaker but biologically relevant age-QTL. Therefore, at each hotspot, we also considered transcripts or 

proteins with suggestive QTL (LODint > 6). We then computed the correlation of all candidate transcripts 

or proteins within each hotspot and retained only those with absolute mean correlation greater than 0.3. 

This filter removed genes with age-QTL that are not tightly correlated with other genes at the hotspot and 

thus less likely to share common genetic regulators. For the age-eQTL hotspot on chromosomes 4, none 

of the transcripts met this criterion suggesting that the hotspot genes are regulated by multiple 

independent genetic variants. However, all three age-pQTL hotspots included highly correlated proteins, 

with 167 at the chromosome 3 locus, 130 at the chromosome 5 locus, and 177 proteins at the 

chromosome 12 locus (Figure 7 – figure supplement 1; Supplementary File 4). 

To determine if the proteins that map to the age-pQTL hotspots share common biological 

functions, we performed enrichment analysis. The proteins in the chromosome 3 hotspot are enriched 

(FDR < 0.05) for genes in the proteasome complex, including one protein from the core particle (PSMA 

family) and several proteins from the regulatory particle (PSMC and PSMD families), including PSDM11 

and PSMD14, which are the proteins most affected by age in our correlation analysis (Figure 6D2). Proteins 

that mapped to the hotspot on chromosome 3 are also involved in the myosin filament, including MYH6 

and MYH3 that are responsible for muscle cell structure; and the nucleosome, which is composed of the 

histone families H1, H2 and H3 (Figure 8A). The proteins that mapped to the chromosome 5 hotspot are 

associated with 24 enriched GO categories (FDR < 0.05). The two most significant are the endoplasmic 

reticulum lumen, composed of proteins of the endoplasmic reticulum stress response, such as PDIA4, 

HSPA5 and HSP9B1, and the contractile fiber containing proteins associated with the muscle contraction 

apparatus, such as Titin and Desmin (Figure 8B). Finally, for the chromosome 12 hotspot, we found more 

than 40 GO categories (FDR < 0.05), the most significant of which is muscle contraction that includes 

proteins related to muscle cell organization, such as myosins and actin, as well as proteins involved in 

calcium transportation (CACNA2D1) and mitochondria energy generation (NDUFS6) (Figure 8C). Another 

significant category at the chromosome 12 hotspot is non-coding RNA (ncRNA) transcription, which is 

associated with chromatin organization, and includes histone H2 family members and a histone 

chaperone (NPM1) (Figure 8C).  
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Enriched pathways for proteins in the age-pQTL hotspots 

 

Figure 8. Enriched pathways for proteins in the age-pQTL hotspots. Top enriched GO categories for proteins 

mapping to the age-pQTLs hotspots are shown. The three hotspot regions regulate proteins involved in distinct 

biological processes. Proteins that map to the chromosome 3 hotspot (A) are primarily associated with myosin 

filament, nucleosome and proteasome complex, while proteins that map to the chromosome 5 hotspot (B) 

participate in contractile fiber and endoplasmic reticulum lumen. Proteins that map to the chromosome 12 hotspot 

(C) are associated with muscle contraction and ncRNA-transcription.  
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To investigate how changes in protein abundance with age can vary due to genetic factors, we 

estimated the age-effects attributable to each DO founder allele by fitting a regression of the first principal 

component (PC 1) of the hotspot proteins onto the hotspot genotypes of the DO mice (Figure 9). Each 

hotspot had a distinct pattern of founder allele effects. For the hotspot on chromosome 3, the effects of 

the B6 and PWK alleles exhibit opposing trends with age (Figure 9A). For chromosome 5, the effect of the 

AJ allele on protein abundance shows a pronounced trend with age that is not seen for the other founder 

alleles (Figure 9B). At the chromosome 12 hotspot, the 129 and NOD alleles have larger effects with 

increasing age but in opposite directions (Figure 9C). 

We confirmed that the allele effects for individual hotspot proteins correspond to the estimates 

based on PC1 but note that some proteins are negatively correlated with PC1 and have opposite direction 

of change with age (Figure 9). The chromosome 3 hotspot includes members of the histone families 

(H2AFY and H3F3B), that participate in chromatin structuring and are positively correlated 

(Supplementary File 4). For these proteins, B6, CAST or WSB alleles drive decreasing abundance with age, 

while the PWK allele is associated with increasing abundance with age (Figure 9A).  

Chromosome 5 hotspot proteins HSPA5 and PDIA4 participate in the physiological endoplasmic 

reticulum (ER) stress response and are positively correlated and, for mice with the AJ allele, increases with 

age (Supplementary File 4). Whereas TTN, a protein responsible for sarcomere structuring and muscle 

contraction, is negatively correlated and, for mice with the AJ allele, TTN abundance decreases with age 

(Figure 9B).  

Proteins related to chromatin structure, including H2AFY, H2AFY2 and NPM1 are found in the 

chromosome 12 hotspot. Interestingly, H2AFY also mapped to the chromosome 3 hotpsot. The histone 

proteins, H2AFY and H2AFY2, are positively correlated and, for mice carrying the 129, decrease in 

abundance with age. The protein NPM1, which encodes a histone chaperone, is negatively correlated to 

both H2AFY and H2AFY2, and shows opposite allele effects (Figure 9C).  

The QTL hotspots identify loci where genetic variation that presumably acts on gene(s) local to 

the hotpot, influences multiple proteins with distant coding genes. Therefore, we looked for genes within 

the QTL support intervals of the hotspots that could be the genetic drivers. Contiguous to the hotspot on 

chromosome 3 (~145 – 150Mb), we identified a suggestive local pQTL (LODint = 7.01) for the protein 

SH3GLB1, also known as BIF-1. The gene is located between 144.68 – 144.72Mb and has an age-by-

genotype allele effects pattern similar to the PC 1 allele effects (Figure 9A), consistent with a shared 
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genetic driver and, given the genomic location of SH3GLB1, consistent with the hypothesis that SH3GLB1 

modulates the proteins that mapped to the chromosome 3 hotspot. We note that BIF-1 plays a role in 

autophagy regulation (77,78), an important component of protein quality control system that declines 

with age (79). We propose BIF-1 as positional candidate driver of the age-related changes in proteins that 

mapped to the chromosome 3 hotspot. Examination of the chromosome 5 and chromosome 12 hotspot 

regions did not identify any strong candidate genes.  
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Allele effects on protein abundance at age-pQTL hotspots 

 

Figure 9. Allele effects on protein abundance at age-pQTL hotspots. Protein abundances associated with DO 

founder alleles at age-QTL hotspots were estimated for each age group. Estimates are shown for the first principal 

component (PC 1) of all proteins in the hotspot and for selected individual proteins. Error bars denote +/- 1 SE. 

Protein SH3GLB1, also known as BIF-1, is located near the hotspot on chromosome 3, and it is positively correlated 

to PC 1 (A). Proteins H2AFY and H3F3B, in the same hotspot, participate in the nucleosome complex, and are 

negatively correlated with PC 1, showing inverted allele-specific patterns of change with age (A). HSPA5 and PDIA4, 

in the chromosome 5 hotspot, participate in the endoplasmic reticulum stress response. These proteins are 

negatively correlated to PC 1 and show similar allele effect patterns (B). Another chromosome 5 hotspot protein, 

TTN, which is involved in sarcomere structure, shows opposite allele effects with age (B). H2AFY and H2AFY2, 

associated with chromatin structuring, mapped to the chromosome 12 hotspot, are positively correlated to PC 1, 

and share similar allele effect patterns (C). The protein NPM1, also involved in chromatin structure as a histone 

chaperone, shows inverted allele effects with age (C). 
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DISCUSSION 

By analyzing both transcripts and proteins in the mouse heart we were able to detect distinct 

biological processes that are altered through the course of natural aging.  We and others have found that 

age-related transcriptional changes are not necessarily followed by a change in their proteins and likewise, 

age-related changes in proteins are not preceded by transcriptional changes (12,13,62,80). We found that 

transcripts decreasing in expression with age are associated with cardiomyocyte contraction and survival, 

and fatty-acid metabolism. These findings are consistent with previous reports describing disrupted Ca2+ 

handling, progressive loss of myocytes, and metabolism switch in the aging heart, which may reflect a 

compensatory mechanism to improve contractility (3,4,81). Transcripts increasing in expression with age 

are involved in the acute-phase response and cardiac fibrosis, which suggest chronic inflammation and 

loss of cardiomyocytes that stimulate extracellular matrix remodeling during the aging process (82–84).  

Proteomics reveals major features of the aging heart that are not detected at the transcript level. 

We saw changes in mitochondrial respiratory chain proteins, as well as intracellular protein and vesicular 

transport pathways, in agreement with previous proteome analysis of the aging mouse heart (85,86). We 

observed that most of the proteins from the RAB and AKT families increase their abundance with age, 

suggesting growth of cardiomyocytes and increased cellular synthesis, which is commonly observed in 

hypertrophic hearts (1). Proteins of the mitochondrial respiratory complexes II, III and IV increase with age 

while proteins from Complex I change in both directions. This increase in proteins across most of the 

mitochondrial complexes could act as a compensatory mechanism in response to an input deficiency from 

early steps in oxidative phosphorylation.  

We found that ACTN3, which is involved in the structuring of sarcomeric Z line and the regulation 

of the contraction apparatus, decreases with age. Actn3 expression has been observed in the skeletal 

muscle, but has not been reported previously in the heart of either mice or humans (87). In knockout mice, 

the deficiency of ACTN3 in the skeletal muscle promotes a switch from fast-anaerobic metabolism towards 

a more efficient aerobic metabolism, leading to better exercise performance (58,59). The same study also 

speculated that the Actn3 null allele has been under positive selection in modern humans, suggesting that 

aerobic metabolism boosting may confer a fitness advantage (59). In humans, ACTN2 and ACTN3 appear 

to have functional redundancy, and Actn2 was recently linked to heart failure in a multi-omic analysis 

(87,88). Our data suggests that ACTN3 may participate in the regulation of metabolic efficiency not only 

in the skeletal muscle, but also in the mouse heart, and might contribute to the physiological changes in 

muscle efficiency during the aging process.  
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We observed that proteins associated with fetal metabolism increase with age. A return to 

embryo/fetal gene program occurs in some pathological heart conditions and it is thought to play a 

protective role (89,90). The fetal heart is under constant stress conditions, including hemo-dynamic load 

and hypoxia, and uses carbohydrates as a primary energy source to maintain cardiac efficiency (89,91). 

The aging heart undergoes different types of stress including the accumulation of reactive oxygen species, 

cardiomyocyte loss, mitochondrial dysfunction and hypoxia (81,92). These stressors are even more 

pronounced when they co-occur with other age-related comorbidities, such as diabetes mellitus and 

hypertension. Studies have demonstrated a return to the fetal gene program in diabetic rats with cardiac 

diseases (93,94). We propose that a return to the fetal program happens in mice during the normal aging 

process and may play an adaptive role to compensate for age-related decline in other biological functions 

of the heart. 

The protein data suggest age-related changes in the stoichiometry between members of protein 

complexes. In general, the correlations between proteins within complexes decrease with age. In contrast, 

correlations at the transcript level tended to increase with age, although these effects were less 

pronounced. This dynamic suggests that stochiometric regulation in protein complexes is largely post-

transcriptional. These observations are consistent with previous studies that have shown that the 

production of protein complex subunits is not always perfectly stoichiometric and post-translational 

mechanisms play an essential role in removing extra subunits and promoting the balance of these 

complexes (61). Here, in concordance with previous findings using different organisms and tissues (62,63), 

we propose an age-related loss of stoichiometry across multiple protein complexes, including the 

mitochondrial respiratory chain complexes, and complexes related to the protein quality control system, 

notably including the 26S proteasome. Taken together, these findings suggest that age-related protein 

complexes accumulate stoichiometric imbalance during the aging process.  

The proteasome plays a crucial role in regulating the abundance and stoichiometry of proteins in 

the cell (95), and several studies have attempted to understand why proteasome activity declines with 

age (96–98). One hypothesis is that reduced expression of proteasome subunits can lead to the decline of 

proteasome activity in the heart, however, disruption in protein degradation was already observed 

without reduction in proteasome abundance (98). In this work, we did not observe a reduction in the 

expression of proteasome subunits, in fact, most of them increase with age (Supplementary File 1; 

Supplementary File 2). It also has been proposed that post-translational modifications and the excess of 

oxidized proteins contribute to the decline in proteasome activity in the heart (98,99). Here, supported by 
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previous findings (62,63), we propose that age disrupts the balance of proteasome subunits in the heart, 

which potentially contributes to a vicious cycle of progressive protein quality control  breakdown during 

the aging process.  

For the first time, we found that genetic variation can modulate the dynamics of proteins involved 

in protein quality control. Most age-QTLs are distant, indicating that genetic variation is not primarily 

acting on proximal genes, which supports the importance of post-transcriptional mechanisms in regulating 

protein homeostasis during aging (11,13). Proteins that map to the hotspot loci are functionally related 

and many have established roles in aging.  

Proteins that map to hotspots on chromosomes 3 and 5 are enriched for functions in the 

proteasome complex and endoplasmic reticulum (ER) lumen, respectively (Figure 8A/B). Proteosome 

complex proteins PSMD13 and PSMD14 that were also implicated in the loss of stoichiometry (Figure 6D2). 

These findings suggest that genetic variation can potentially affect the stoichiometry of the proteasome 

complex. Both the ER and the proteasome complex are part of the protein quality control system that 

coordinates proteostasis and cell survival (100). The ER contains transmembrane proteins that sense the 

presence of misfolded proteins, which then activates transcription factors that up-regulate the expression 

of ER stress response genes (100). Some misfolded proteins are marked by ubiquitination and transferred 

to the cytosol, where they are degraded by the proteasome complex (100). The proteins HSPA5, HSP90B1 

and PDIA4, present in the chromosome 5 hotspot (Figure 8B), are known to be downstream targets of the 

ATF6 branch of the ER unfolded protein response and this pathway was found to be adaptive and 

cardioprotective in several studies (101–104). 

Enrichment analysis of the hotspots on chromosomes 3 and 12 identified proteins associated with 

chromatin structure (Figure 8A/C), including histones and histones chaperones, such as NCL and NPM1 

(Figure 8C). Loss of chromatin structure was previously reported in aging models for yeast and human 

fibroblasts (105,106), and leads to dysregulation of global gene expression, increased genomic instability, 

and promiscuous access of DNA damaging agents to the chromatin (107,108). It is interesting to note that 

all histone proteins in our data decrease with age (Supplementary File 2), suggesting that age-related loss 

of chromatin structure also occurs in the heart.  

We identified the protein SH3GLB1 (BIF-1) as a potential driver of the age-related dynamics of 

proteins that mapped at the chromosome 3 hotspot. SH3GLB1 is a member of endophilin protein family 

that plays a role in mitochondrial fission, vesicle formation and autophagy (77,109,110). As mentioned 
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earlier, the protein quality control system contributes to the aging process and studies suggest that 

increased autophagy may be a compensatory effect when the proteasome complex is disrupted (111,112). 

In addition, autophagy plays an important role in maintaining chromosomal stability, and loss of Sh3glb1 

was shown to induce DNA damage due to metabolic stress (113). Autophagy is crucial for maintaining 

cardiac function - mice with disrupted autophagy show anomalies in sarcomere and mitochondria 

structure (114). Our findings suggest that genetic variation in the DO mice, near the Sh3glb1 locus, 

influences individual rates of change with age of proteins involved in the proteasome complex, chromatin 

structuring and muscle apparatus organization.  

In summary, we have described changes that occur with normal aging in heart tissue from DO 

mice that suggest a scenario of mitochondrial dysfunction, physiological hypertrophy, and a return to the 

fetal gene expression program. The proteome data revealed aspects of aging in the heart that are not 

seen at the transcript level, including the loss of stoichiometry within protein complexes involved in 

protein trafficking and sorting. We found that genetic variation can influence the age-related dynamics of 

members of the protein quality control system and other biological processes that play a role in aging. 

These genetic effects are distal and complex, likely acting through a gene or set of genes near the hotspot 

locus that indirectly modulates the expression of functionally related groups of proteins. Our findings 

illustrate how transcriptome and proteome profiling data collected in a genetically diverse model system 

can reveal broad patterns of change in the molecular dynamics of the aging heart. 

  

MATERIAL AND METHODS 

 

Study cohort and tissue collection 

The cross-sectional aging study was initiated with 600 DO mice (300 of each sex) bred at The 

Jackson Laboratory (stock no. 009376) across five waves representing breeding generations 8 through 12 

of the DO stock. Mice were maintained on a standard rodent chow (LabDiet 5K52, St. Louis, MO) in an 

animal room that was free of pathogens, had a set temperature ranging from 20-22°C, and a 12-hour 

light/dark cycle. The full study was populated across 6 generations of DO breeding over a period of two 

years. Animals were housed at 4 mice per pen and pens were randomly assigned to 6, 12, and 18 month-

aged groups for tissue collection. Whole hearts were dissected, flash-frozen, pulverized and aliquoted. A 

subset of 192 samples, balanced across age groups and sexes were selected for RNA-seq and shotgun 
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mass spectrometry. This set included 34 females and 30 males at age 6 months, 31 females and males at 

age 12 months, and 31 females and 35 males at age 18 months. The representation of generational waves 

included 43 mice from generation 8, 35 mice from generation 9, 38 mice from generation 10, 39 mice 

from generation 11, and 37 mice from generation 12. The mass spectrometry was performed for 190 of 

the 192 mice (1 female and 1 male in the 12 months were not included). The Jackson Laboratory 

Institutional Animal Care and Use Committee approved all procedures used in this study.  

 

Sample size determination 

The sample size required to detect a significant age effect is determined by the expected size of 

the effect (difference in means between the 6- and 18-month age groups) relative to the within age-group 

variance.  Therefore, we define the strength of an effect in units of standard deviation (SD) of the within 

group variance.  Based on standard power calculations (115), with a sample size of ~64 animals per age 

group we can expect to achieve power = 0.80 to detect an age effect of 0.5SD at an unadjusted type I error 

of 0.05.  In practice, because of the high precision of the RNA and protein quantification, this enabled us 

to detect age effects in the majority of genes tested even after applying a false discovery error rate 

correction for multiple testing (116). To evaluate the power for genetic mapping, we referred to 

simulations conducted by Gatti et al. (2014) (117). After applying family-wise error rate for multiple testing 

of the genome-scan, our sample of 188 animals has expected power = 0.80 to detect a QTL that explain 

20% of the total variation in RNA or protein expression.   

 

Bulk RNA extraction 

The frozen and pulverized heart tissue was lysed in Ambion TRIzol reagent (Thermo Fisher 

Scientific #15596026, Waltham, Massachusetts). Bulk RNA was isolated using the miRNeasy Mini kit 

(Qiagen Inc. #217004, Germantown, MD), according to the manufacture’s protocols with the DNase digest 

step. RNA concentration and quality ratios were assessed using the Nanodrop 2000 spectrophotometer 

(Thermo Fisher Scientific) and RNA 600 Nano LabChip assay (Aligent Technologies, Santa Clara, CA).  

 

RNA sequencing and quantification 
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Poly(A) RNA-seq libraries were generated using the TruSeq Stranded mRNA Library Prep Kit 

(Illumina, San Diego, CA). Libraries were pooled and sequenced 100 bp single-end on the HiSeq 2500 

(Illumina) using TruSeq SBS Kit v4 reagents (Illumina). The RNA-seq experiment was performed in two 

replicates for each sample distributed across 8 lanes. The replicates of each sample were carried out in 

different lanes to avoid lane effects.  

Expectation-Maximization algorithm for Allele Specific Expression (EMASE) was used to quantify 

multi-parent allele-specific and total expression from RNA-seq data (118) using the Genotype by RNA-seq 

(GBRS) software package (https://gbrs.readthedocs.io/en/latest/) (RRID:SCR_020963). Transcripts were 

removed if they did not have at least one read in at least half of the samples, resulting in a total of 20,932 

transcripts for further analysis.  RNA-Seq counts were normalized relative to total read counts using the 

variance stabilizing transform (VST) as implemented in DESeq2 (RRID:SCR_015687) (28). For the genetic 

mapping analysis only, in order to minimize the impact of outliers, we transformed the vst normalized 

data to rank normal scores (119). 

 

 

Mass spectrometry and protein quantification 

Mass spectrometry (MS) experiment and protein quantification were performed as described in 

Chick et al. (2016) (69). In summary, tissue from the total heart samples were homogenized in 1 ml lysis 

buffer, which consisted of 1% SDS, 50 mM Tris, pH 8.8 and Roche complete protease inhibitor cocktail 

(Roche # 11697498001, Clifton, NJ). Peptide measurements were performed using Tandem Mass Tags 

(TMT) and carried out in batches of 10 samples each. MS spectra assignments were made using the 

Sequest algorithm (120) with the Ensembl database (mouse: Mus_musculus NCBIM37.61), and protein 

abundances were estimated from their component peptides. Samples were assigned to batches in 

randomized order. Sample labels were not masked and there were no technical replications performed.  

Prior to protein abundance estimation, we filtered out peptides that contained polymorphisms in 

DO mice relative to the mouse reference genome in order to minimize false pQTL signals that can occur 

due to failure to detect polymorphic peptides. To estimate and normalize protein abundance from 

component peptides, we followed Huttlin et al. (2010) (121) and calculated:  

Equation 1 
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Protein!" = log# +∑ Peptide!$% 𝑠! + 12 

where 𝐾	represents the set of observed peptides that map to protein 𝑗 for mouse 𝑖 and 𝑠!  is a scaling 

factor for standardizing samples within a batch. 𝑠! =	 ∑ Peptide!"#

max(∑ Peptide$"	|$	Î	&[!])#
, where 𝐿 is the set of all 

peptides observed for a sample, 𝑏[𝑖] denotes the batch of sample 𝑖, and max(∑ Peptide45 ∶ 	𝑄	Î	𝑏[𝑖])6  

is the maximum sum of peptides for all the samples in batch 𝑏[𝑖]. Protein abundance levels that were 

missing (NA) were imputed to be zero. Proteins with zeros for more than half the samples were excluded, 

resulting in a total of 4,062 proteins for further analysis.  

The MS experiment was performed in batches of 10 samples processed and quantified 

simultaneously. Batch effects were removed using a linear mixed effect model (LMM) fit with the lme4 

package (RRID:SCR_015654) (122). The batch effect, estimated as a best linear unbiased predictor (BLUP), 

was subtracted from each protein abundance, while age (as a categorical variable with three levels) and 

sex were included as fixed effect covariates in the model. For genetic mapping analysis, protein 

abundances were transformed to rank normal scores to minimize the effect of outliers (119). 

 

Age effect on transcript expression 

We used the DESeq2 package (28) to test for transcripts whose expression changed with age. 

Briefly, we fit the following GLM using the negative binomial distribution in DESeq2:  

Equation 2 

Transcript! = 	Sex[𝑖] + Gen[𝑖] + Age[𝑖] 
where Transcript!  is the total count for each transcript from mouse 𝑖, Sex[𝑖] is the effect corresponding 

to the sex of mouse 𝑖, Gen[𝑖] is the effect corresponding to the generation of mouse 𝑖, and Age[𝑖] is the 

effect corresponding to the age of mouse 𝑖, fit as a continuous variable at the year scale (0.5, 1, 1.5 years) 

obtained by dividing the age groups by 12. The age effect was tested using its Wald statistic and it 

estimates the log2 fold change per year of life. Transcripts with a significant age effect on expression were 

determined after FDR adjustment to account for multiple testing across all transcripts (FDR < 0.1). 

 

Age effect on protein abundance 
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To detect proteins with age effects, we fit a log-normal linear model with predictors similar to 

Equation 2:  

Equation 3 

Protein! = 	Sex[𝑖] + Gen[𝑖] + Age[𝑖] +	e!  
where Protein!  is the log-scale abundance of each protein from mouse 𝑖, as defined in Equation 1, e!  is 

the residual, and all other terms as previously defined. The age effect corresponds to the slope of the 

regression model and it estimates the log2 fold change per year of life. Proteins with significant age effects 

were identified after FDR adjustment (FDR < 0.05). 

 

Age effect in the correlation of genes coding for protein complexes 

To investigate the stoichiometry of protein complexes (64) (CORUM database) we adapted a 

method described in McKenzie et al (2016) (65). We computed the Pearson correlation between the 

expression of each gene-pair in the protein complexes for both transcript and protein data and for each 

age group. Then for each protein complex and data type (transcript and protein), we regressed the 

correlation coefficients of each gene-pair on age and recorded the slope, which represents the age effect, 

in units of change in correlation per year, as in Equation 4: 

Equation 4 

Correlation$!," = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 	𝐴𝑔𝑒[𝑘] +	e$ 

where Correlation$!,"  is the correlation between proteins 𝑖 and 𝑗 at age 𝑘, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 is the overall 

intercept, 𝐴𝑔𝑒 is the age effect, fit from a continuous encoding of age at the year scale, 𝐴𝑔𝑒[𝑘] = 	𝛽89: ∗
𝑘, and e$ 	is the residual at age 𝑘. In order to determine significance, we shuffled the mouse IDs and 

repeated the slope estimation 1,000 times to obtain FDR estimates using the DGCA package 

(RRID:SCR_020964) (65). Significant age effects were declared at FDR < 0.1.	
We also fit a model to compute the overall age effect for each protein complex, without fitting 

separate models per gene-pair. We fit a linear mixed model using the R/lme4 package to jointly model 

gene-pairs with a random effect, allowing the intercept and age slope for each gene-pair:  

Equation 5 

Correlation!"$ = 	𝜇 + 	𝑢[𝑖𝑗]	+	(βAge	+	𝑣Age[𝑖𝑗])𝑥$ +	𝜀!"$ 		 
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where Correlation!"$ is the correlation between proteins 𝑖 and 𝑗 at age 𝑘,  𝜇 is the overall intercept, 𝑢[𝑖𝑗] 
is the random deviation on the intercept specific to the pairing of proteins 𝑖 and 𝑗, βAge is the overall age 

effect, 𝑣Age[𝑖𝑗] is the random deviation on the age effect specific to the paring of proteins 𝑖 and 𝑗, 𝑥$ is 

the age (6, 12, or 18 months), and 𝜀!"$ is random noise on the correlation for proteins 𝑖 and 𝑗 at age 𝑥$. 

The protein pair-specific random terms are modeled as u	~ N(0,	I𝜏#) and vAge	~ N(0,	I𝜏Age# ), and the error 

as 𝜀!"$ 	~ N(0,	I𝜎#). We used the permutations procedure from McKenzie et al (2016) (65) to determine 

significance, using a p-value cut-off of 0.05, for each protein complex. 

 

Additive QTL mapping 

Although the results of additive QTL mapping are not reported here, it is useful to describe the 

methods used as a prelude to the description of age-interactive QTL mapping analysis. For each transcript 

or protein, we transformed the data to rank-normal scores (119) and fit the following model at ~64,000 

equally spaced loci across the genome: 

Equation 6 

y!" =	QTL=[i]	+	Sex[𝑖] + Age[𝑖] + 𝑢=!" +	e!"  

where y!"  is the transcript or protein 𝑗 expression/abundance for mouse 𝑖, QTL=[i] is the expected dosage 

of founder haplotype alleles for mouse 𝑖 at locus 𝑚, 𝑢=!"  is a random kinship effect that accounts for the 

correlation between individual DO mice due to shared genetic effects excluding the chromosome of locus 

𝑚. The kinship effect is modeled as 𝐮	~	Nh𝟎, 𝐊tK#k, where K is a realized genomic relationship matrix and 

tK
#  is the variance component underlying the kinship effect (123). The log10 likelihood ratio (LOD score) 

was determined by comparing the QTL model (Equation 4) to the null model without the QTL term.  

  

Age-interactive QTL mapping 

 We performed a second set of genome scans to identify age-interactive QTL loci where the rate 

of change of a transcript or protein is dependent on genotype. Genome scans for age-QTL are based on 

the following model: 

Equation 7 

y!" =	QTL=[i]×Age[i]	+	QTL=[i]	+	Sex[𝑖] + Age[𝑖] + 𝑢=!" +	e!"  
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where QTL=[!]×Age[i]	is the interaction effect between the QTL genotype and age of mouse 𝑖. All other 

terms are as previously defined. The null model for the age-interactive genome scans is the model from 

Equation 6, thus only the interaction term is being tested. To determine significance thresholds for age-

QTL we required a more elaborate permutation procedure than the standard used for additive QTL (124). 

For each transcript or protein, we fit the following model: 

Equation 8 

y!" = 	Sex[𝑖] + Age[𝑖] + 𝑢!" +	e!"  

Where the kinship term uij includes effects of all loci, including the additive effect of the locus under 

evaluation. We then computed the residuals by subtracting the fitted values of model predictors: 

Equation 7 

e!" =	y!" 	-	Sex[i]o +Age[i]o +𝑢ABp  

To construct a permutation test, we generate null data by summing the fitted effect values with 

a randomly permutated of the residuals from Equation 7. We repeated the age-interactive scans on the 

residual-permuted phenotypes 1000 times to obtain a null distribution sample of the LODint statistic. 

Signficance thresholds for the maximum LODint scores were based on the 95th percentile of this 

distribution and a suggestive threshold was determined using the 37th percentile. Transcript and protein 

age-QTLs were considered significant when LODint > 7.75 and suggestive when LODint > 6.0. All QTL 

analyses were performed with the R/qtl2 package (RRID:SCR_020965) (125).  

 

Distal QTL hotspot analysis 

Using a sliding window of 4 Mb, we counted the density of suggestive age-QTL (LODint > 6) for 

transcripts and proteins (Figure 7). We defined a genomic region as a hotspot based on having more than 

40 age-QTLs. We used the hotspots to defines sets of transcripts and proteins that mapped to these 

regions. We further refined the hotspot sets by filtering out transcripts or proteins with a mean Pearson 

correlation coefficient < 0.3 with the other hotspot members, removing genes that are not highly 

correlated with other genes that map to the hotspot.  

 

Age-specific allele effects 
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Proteins with shared genetic drivers, which could cause distal age-QTL hotspots, should have 

similar allele effects. To investigate this, we computed the principal components (PCs) from the refined 

hotspot proteins. We then estimated age-specific allele effects for the first principle component (PC1), 

and for each protein that mapped to the hotspot, using the function fit1() from R/qtl2 package (125). We 

fit the model separately to each age group, including sex as an additive covariate, to estimate the age-

specific effects associated with each of the eight founder alleles that are present in DO mice. 

 

Functional enrichment analysis  

   We performed functional enrichment analysis for transcript and protein gene sets with significant 

age effects and also to sets of genes in the refined age-QTL hotspots. We used the ClusterProfiler package 

(RRID:SCR_016884) (26) to identify enriched gene ontology terms (biological processes, cellular 

compartments and molecular functions) for each set. We used stringent (FDR < 0.05) and lenient (FDR < 

0.1) cut-offs to defined enriched categories for reporting. 

 

Software 

All data analysis and figures were generated using R v3.6.0 (RRID:SCR_001905) based on the 

packages tidyverse v1.3.0 (RRID:SCR_019186) and ggplot2 v3.3.0 (RRID:SCR_014601). The R Scripts used 

for all the analysis performed on this work can be found on Github ( 

https://github.com/isabelagyuricza/Aging_Heart_DO_analysis) and on Figshare (DOI: 

10.6084/m9.figshare.12430094.v1).  

 

Data access 

The RNA fastq files can be found on on NCBI SRA repository under bioproject PRJNA510989. The 

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 

PRIDE partner repository (http://www.proteomexchange.org/ - PXD023724). Both raw and normalized 

transcript expression matrices, as well as the protein abundance data have been deposited to Figshare 

(10.6084/m9.figshare.12378077). Genotype data is deposited the DODb database (https://dodb.jax.org/). 

All data and QTL results are available for download and interactive analysis using the QTLViewer for user 
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driven queries (https://qtlviewer.jax.org). Raw and normalized quantification of transcripts and proteins 

and the genotype data are included in the download in a Rdata format suitable for further analysis.  
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Supplementary material legends 

Figure 5 – figure supplement 1. Standardized age effects for the expression/abundance of all the subunits from the 

mitochondrial complexes (I-V) at the transcript (x-axis) and protein (y-axis) levels. Color indicates the significance of 

the age effect at the transcript level (FDR < 0.1), protein level (FDR < 0.05), both or neither. For all the complexes, 

significant age-related changes are predominant at the protein level, and, with exception of mitochondrial complex 

V, they tend to change in both directions. Age effect corresponds to the linear trend with age in units of LFC per 

year. 

Figure 7 – figure supplement 1. Heatmaps for the Pearson correlation coefficients between transcripts or proteins 

that mapped to the age-QTL hotspots. A) Correlations between transcripts that mapped to the chromosome 4 age-

eQTL hotspot show that there is no evidence for correlation in this group of transcripts. B) Correlations between 

proteins that mapped to the chromosomes 3 (B1), 5 (B2) and 12 (B3) age-pQTLs hotspots identify tightly correlated 

groups of proteins (positive or negative) that are potentially regulated by shared genetic variation. 

 

Supplementary File 1. List of transcripts with significant age-related changes in expression. 

 

Supplementary File 2. List of proteins with significant age-related changes in abundance.  

 

Supplementary File 3. List of gene-pairs members of protein complexes that have a significant change in their 

pairwise correlations with age at the transcript or at the protein level.  

 

Supplementary File 4. Annotation of all the suggestive age-eQTLs and age-pQTLs. 
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Highlighted transcripts that change with age 

 

Table 1. Highlighted transcripts that change with age. 

 
 

 

Transcript symbol Direction of change Function highlights Reference index 

Adamts1 Increases Cardiac fibrosis (29) 

Ahsg Increases Free fatty-acid signaling (43) 

Nov Increases Heart development (32,33) 

Olfm2 Increases 
Vascular smooth muscle cell 

regulation 
(126) 

Serpine1 Increases Cardiac fibrosis (30,31) 

Tnfsf11 Increases Aortic valve calcification (45) 

Cacna1g Decreases Cardiac muscle contraction (127,128) 

Myocd Decreases Cardiomyocytes survival (34) 

Naca Decreases Sarcomere organization (129–131) 

Pln Decreases Cardiac muscle contraction (37) 

Ppara Decreases Fatty acid metabolism (132–134) 

Stat5b Decreases Insulin signaling (40,41) 
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Highlighted proteins that change with age 

 

Table 2. Highlighted proteins that change with age. 

  

Protein symbol Direction of change Function highlights Reference index 

AKT1 Increases Physiological cardiac growth (48,50) 

AKT2 Increases Cardiac glucose metabolism (48,51) 

COX4I1 Increases 
Mitochondrial respiratory chain complex IV 

cytochrome c subunit 
(135) 

NDUFB6 Increases 
Mitochondrial respiratory chain complex I 

subunit 
(136,137) 

RABGEF1 Increases Mitophagy induction (56) 

SDHD Increases 
Mitochondrial respiratory chain complex III 

cytochrome b subunit 
(138) 

ACTN3 Decreases Muscle anaerobic metabolism (59) 

ATP1F1 Decreases Inhibition of mitochondrial ATPase activity (139,140) 

CRIP2 Decreases 
Smooth muscle tissue differentiation and 

cardiomyocyte survival 
(141–143)  

NDUFA1 Decreases 
Mitochondrial Respiratory Chain Complex I 

subunit 
(144) 

RAB1B Decreases Cardiac hypertrophy (145) 

TIMM29 Decreases 
Translocase of inner mitochondrial 

membrane (Complex 22) 
(146) 
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