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GenomeScope 2.0 and Smudgeplot for reference-
free profiling of polyploid genomes
T. Rhyker Ranallo-Benavidez 1✉, Kamil S. Jaron 2,3 & Michael C. Schatz1,4

An important assessment prior to genome assembly and related analyses is genome profiling,

where the k-mer frequencies within raw sequencing reads are analyzed to estimate major

genome characteristics such as size, heterozygosity, and repetitiveness. Here we introduce

GenomeScope 2.0 (https://github.com/tbenavi1/genomescope2.0), which applies combi-

natorial theory to establish a detailed mathematical model of how k-mer frequencies are

distributed in heterozygous and polyploid genomes. We describe and evaluate a practical

implementation of the polyploid-aware mixture model that quickly and accurately infers

genome properties across thousands of simulated and several real datasets spanning a broad

range of complexity. We also present a method called Smudgeplot (https://github.com/

KamilSJaron/smudgeplot) to visualize and estimate the ploidy and genome structure of a

genome by analyzing heterozygous k-mer pairs. We successfully apply the approach to

systems of known variable ploidy levels in the Meloidogyne genus and the extreme case of

octoploid Fragaria × ananassa.
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G
enome sequencing has become an integral part of modern
molecular biology. The majority of the available analysis
methods, however, are designed for established model

organisms with chromosome-level reference genomes and detailed
annotation readily available. In contrast, genome assemblies of
non-model organisms are often fragmented, incomplete, or non-
existent. Furthermore, model organisms usually have relatively
modest complexity, and are typically haploid or diploid species
with relatively low genetic diversity and low repetitive content.
Conversely, non-model species often have higher ploidy or higher
rates of heterozygosity, and thus are substantially more difficult to
analyze. As a result, polyploid species or species with other unu-
sual genome structures are greatly underrepresented among
genomics studies.

This underrepresentation reduces the generality of biological
insights that can be gleaned from such studies. Notably, poly-
ploids are known to be common, especially among plants and
fungi. More than 70% of flowering plants are polyploid1 including
many common crops essential for human consumption and use,
such as apples, bananas, potatoes, strawberries, and wheat2.
Higher ploidy levels have also been documented in many fungal
species3. Polyploidy in animals is less common than in these
other taxa, but is far from rare, including many species of frogs4,
fish5, crustaceans, and molluscs6, as well as many species of
nematodes7. The nematode species that are major pests of poly-
ploid crops also happen to be polyploid8. More generally, poly-
ploidization events have important consequences to genome
evolution9,10. Developing tools to analyze fragmented and poly-
ploid genomes is therefore essential for our understanding of how
polyploidy affects genome and species evolution11.

The methods to analyze polyploid genomes typically rely on
mapping reads to a haploid reference. However, obtaining a
complete haploid reference is usually a challenging task12 as the
assembly often results in mixed ploidy levels among the assem-
bled sequences13. Genome assembly has an extra layer of com-
plexity when the basic genomic features of the species are
unknown (e.g., size, heterozygosity, and even ploidy). In the
context of diploid organisms, several computational approaches

have been developed to estimate genome characteristics directly
from unassembled sequencing reads, including genome size and
heterozygosity14–16 or repetitiveness and heterozygosity17. How-
ever, none of these approaches model polyploid genomes.

We previously introduced GenomeScope18, for reference-free
analysis of diploid genomes using a statistical analysis of k-mers
in unassembled reads, also called the k-mer spectrum. Here, we
present GenomeScope 2.0, which extends this approach with a
polyploid-aware mixture model to computationally infer genome
characteristics from unassembled sequencing data. GenomeScope
2.0 fits a mixture of negative binomial distributions to the k-mer
spectrum of the sequencing data, with additional components to
capture k-mers across higher ploidy levels. To further assist in the
analysis of species we also develop Smudgeplot, a visualization
technique of genome structure to estimate the ploidy, which is
often unknown in non-model organisms. We show that these
tools quickly and accurately analyze sequencing data from an
ensemble of simulated polyploid genomes and from several real
polyploid genomes (see Supplementary Table 1 for a summary of
the 11 species analyzed). These tools can be used to improve the
assessment and interpretation of genome assemblies and will
substantially aid future studies of polyploid or otherwise complex
genomes.

Results
Methods overview. We have extended the GenomeScope mod-
eling for polyploid genomes. Similar to GenomeScope 1.018,
GenomeScope 2.0 takes as input the k-mer spectrum, performs a
nonlinear least-squares optimization to fit a mixture of negative
binomial distributions, and outputs estimates for genome size,
repetitiveness, and heterozygosity rates. For example, Fig. 1 shows
the k-mer profiles, fitted models, and estimated parameters for
diploid Arabidopsis thaliana and triploid nematode Meloidogyne
enterolobii. The diploid has two major peaks at ~22 and 44, and
the triploid has three major peaks centered at ~150, 300, and 450.
Occasionally, it is difficult to determine whether a peak in the k-
mer spectrum is a major peak. For this reason, GenomeScope 2.0
analyzes a transformed k-mer spectrum (see “GenomeScope
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Fig. 1 GenomeScope plots for heterozygous species. K-mer spectra and fitted models for (a) diploid Arabidopsis thaliana and (b) triploid Meloidogyne

enterolobii. Note that the diploid plot has two major peaks, while the triploid plot has three major peaks. Both also have high frequency putative error k-mers

with coverage near 1.
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Implementation”) in which the heights of higher-order peaks are
increased. If the ploidy is still uncertain the user may run our
Smudgeplot tool (see “Smudgeplot”).

Furthermore, the relative heights of the peaks in a k-mer
spectrum are proportional to the heterozygosity of the species.
For example, for a diploid species, increasing heterozygosity will
result in a higher first peak and a lower second peak. For a
polyploid species, the relationship is more complicated, but in
general increasing heterozygosity will result in a higher first peak
and lower subsequent peaks. Lastly, higher coverage peaks of the
k-mer spectrum represent increasingly higher copy repetitive
sequences in the genomes.

Simulated polyploid sequencing data. We first applied Geno-
meScope 2.0 on 13,704 simulated datasets with varying ploidy (3,
4, 5, and 6), repetitiveness (0, 10, and 20%), and nucleotide
heterozygosity rates (0, 0.5, 1, 1.5, and 2% for ploidies 3 and 4; 0,
1, and 2% for ploidies 5 and 6). For each ploidy, we also simulated
all the possible topological relationships between the homologous
chromosomes. For example, for tetraploid organisms there are
two possible topologies (see Fig. 2 for the corresponding repre-
sentations in Newick notation19). For pentaploid organisms there
are five possible topologies, and for hexaploid organisms there are
sixteen possible topologies (see Supplementary Methods for fur-
ther explanation).

Each triploid topology consists of two nucleotide heterozygos-
ity forms (e.g., aab and abc), while each tetraploid, pentaploid,
and hexaploid topology consists of three, four, and five
heterozygosity forms, respectively. Thus, we simulated 75 triploid
datasets (3 repetitiveness values, 5 heterozygosity values for each
of the two heterozygosity forms, one topology), 750 tetraploid
datasets (3 repetitiveness values, 5 heterozygosity values for each
of the three heterozygosity forms, two topologies), 1215
pentaploid datasets (3 repetitiveness values, 3 heterozygosity
values for each of the four heterozygosity forms, five topologies),
and 11,664 hexaploid datasets (3 repetitiveness values, 3

heterozygosity values for each of the 5 heterozygosity forms, 16
topologies).

For the simulated data, we simulated 15x coverage per
homolog and 1% sequencing error, to test GenomeScope 2.0 in
relatively poor data quality conditions. Each simulated dataset
was created with a generative model using a random 1Mbp
monoploid genome as aprogenitor. To test GenomeScope’s
robustness on genomes of varying size, we also simulated using
progenitor genomes of size 1, 10, 100Mbp, and 1 Gbp. The mean
absolute errors of the estimated parameters on the simulated
datasets are shown in Table 1, which demonstrate that
GenomeScope 2.0 is highly accurate. For the full results, see
Supplementary Data 1.

We then performed more specific testing to validate Genome-
Scope 2.0’s performance at predicting nucleotide divergence,
repetitiveness, and length. Specifically, for each of these three
parameters, we held the others constant, and varied only the
parameter of interest:

(1) For nucleotide divergence, we systematically evaluated
across 0–25% in 0.5% increments, for a total of 51 values.
We used a 100Mbp progenitor genome, 15x coverage per
homolog, and 1.0% sequencing error. Figure 3 shows the
difference between the estimated and true nucleotide
divergence as a function of the true nucleotide divergence,
for ploidies 2, 3, 4, 5, and 6.

(2) For repetitiveness, we evaluated a parameter sweep from 0-
50% in 1% increments, for a total of 51 values. We used a
100Mbp progenitor genome, 15x coverage per homolog,
and 1.0% sequencing error. Figure 4 shows the difference
between the estimated and true repetitiveness as a function
of the true repetitiveness, for ploidies 1, 2, 3, 4, 5, and 6.

(3) For genome length, we evaluated progenitor genomes of
size 1, 10, 100Mbp, and 1 Gbp. We sequenced 15x coverage
per homolog, and 1.0% sequencing error. Figure 5 shows

the relative error in the length
� LengthEstimated � LengthTrue

LengthTrue

�

as a

function of the true length (log scale), for ploidies 1, 2, 3, 4,
5, and 6.

When compared with GenomeScope 1.0, GenomeScope 2.0 is
more robust and accurate, especially on low coverage diploid
data. Specifically, GenomeScope 1.0 failed to converge for 35 of
the 51 simulated heterozygosity datasets, converged to the wrong
peak due to low sequencing coverage for 15 of the datasets, and
produced accurate results for only one dataset. GenomeScope 1.0
failed to converge on 2 of the 51 simulated repetitiveness datasets
and converged to the wrong peak for the other 49 datasets. Lastly,
GenomeScope 1.0 failed to converge for three of the four
simulated length datasets and produced inaccurate results for the
other dataset. Based on these results, we encourage all users to use
GenomeScope 2.0 for diploid datasets.

Finally, we validated Smudgeplot on simulated data. In each
case, we simulated 25x coverage per homolog and 1% sequencing
error using a random 10Mbp monoploid genome as a “progeni-
tor”. We simulated both the allotetraploid and autotetraploid
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Fig. 2 Autotetraploid and allotetraploid topologies. a The autotetraploid

topology, notated as (, (, (, ))); in Newick notation, corresponds to the

following nucleotide heterozygosity forms: aaaa, aaab, aabc, abcd. b The

allotetraploid topology, notated as ((, ), (, )); in Newick notation,

corresponds to the following nucleotide heterozygosity forms:

aaaa, aabb, aabc, abcd.

Table 1 Mean absolute errors of parameters on simulated polyploid datasets.

Mean absolute errors Triploid Tetraploid Pentaploid Hexaploid

Repetitiveness (d) 2.29 × 10−3 6.61 × 10−3 9.64 × 10−3 1.67 × 10−2

Nucleotide divergence 3.58 × 10−4 7.38 × 10−4 1.13 × 10−3 3.76 × 10−3

Monoploid length 2182 bp 4320 bp 5138 bp 7969 bp

Simulated datasets include 75 simulated triploid datasets, 750 simulated tetraploid datasets, 1215 simulated pentaploid datasets, and 11,664 simulated hexaploid datasets. Nucleotide divergence refers

the proportion of loci along the genome for which the nucleotides across all the homologs are not all the same.
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topologies for ploidy 4, and a single topology for ploidies 2, 3, 5,
and 6. For nucleotide divergence, we systematically evaluated
across 0.5–25% in 0.5% increments while holding the repetitiveness
constant at 10%, for a total of 50 values. For repetitiveness, we
evaluated a parameter sweep from 0-50% in 1% increments while
holding the nucleotide divergence constant at 2.0%, for a total of 51
values.

For the nucleotide divergence sweep, Smudgeplot correctly
estimates ploidy for the diploid simulated data over all
heterozygosity values, for the triploid data up to 24.0%
heterozygosity, for the allotetraploid data up to 18.0% hetero-
zygosity, for the autotetraploid data up to 23.5% heterozygosity,
for the pentaploid data up to 24.0% heterozygosity, and for the

hexaploid data up to 24.0% heterozygosity. Above these
heterozygosity thresholds, Smudgeplot underestimates the ploidy
due to the k-mers in a k-mer pair being more than one nucleotide
different and thus not identified. For the full results, see
Supplementary Table 3.

For the repetitiveness sweep, Smudgeplot correctly estimates
ploidy for the diploid simulated data up to 39% repetitiveness, for
the triploid data up to 38% repetitiveness, for the allotetraploid
data up to 43% repetitiveness, for the autotetraploid data up to
38% repetitiveness, for the pentaploid data over all repetitiveness
values, and for the hexaploid data over all repetitiveness values.
Above these repetitiveness thresholds, Smudgeplot overestimates
the ploidy due to the signal from repetitive k-mers dominating
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the signal from heterozygous k-mers. For the full results, see
Supplementary Table 4.

Real polyploid sequencing data. We then applied GenomeScope
2.0 on the real polyploid genomes listed in Supplementary
Table 1. Table 2 shows a summary of the GenomeScope estimates
for polyploid genome size (see Supplementary Table 2 for the full
GenomeScope results). Here, we highlight a few notable results
from this analysis, and the complete GenomeScope and Smud-
geplot plots are available as Supplementary Figs. 1–23.

Coastal redwoods (Sequoia sempervirens) are evergreen trees
that can reach towering heights and are some of the longest living
organisms on Earth. Sequoia sempervirens is known to be
hexaploid, with recent evidence suggesting that it is an
autohexaploid20. This aligns with the Smudgeplot analysis, which
inferred a triploid ploidy for these data, which come from the
haploid megagametophyte extracted from a seed. Furthermore,
the genome size of the coastal redwood is larger than the human
genome, with a recent assembly by the Redwood Genome Project

spanning 26.5 Gbp. The estimated genome size of the coastal
redwood output by GenomeScope is 27.0 Gbp, revealing great
concordance with the recent assembly (see Supplementary Figs. 1
and 2).

Marbled crayfish (Procambarus virginalis) are freshwater
crustaceans that undergo parthenogenetic reproduction, in which
a female gamete develops into an individual without fertilization.
Based on a Smudgeplot analysis, we inferred the ploidy to be
triploid, which aligns with the current understanding of this
organism21. We ran GenomeScope 2.0 with a triploid model to
estimate the genome characteristics. Specifically, GenomeScope
estimates a polyploid genome size of 9.7 Gbp, while the current
assembly spans 3.3 Gbp (see Supplementary Figs. 7 and 8). It is
clear that the assembly only spans one homolog of the triploid
genome.

Root-knot nematodes (Meloidogyne arenaria, Meloidogyne enter-
olobii, Meloidogyne floridensis, Meloidogyne incognita, and Meloi-
dogyne javanica) are parasitic roundworms that infect the roots of
plants. Based on Smudgeplot analyses, we inferred thatMeloidogyne
enterolobii, Meloidogyne floridensis, and Meloidogyne incognita
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Table 2 Summary of polyploid genomes analyzed.

Common name Species name Estimated genome size Assembly size

Coastal redwood Sequoia sempervirens 27.0 Gbp 26.5 Gbp

Cotton Gossypium barbadense 2.293 Gbp 2.267 Gbp27

Cotton Gossypium hirsutum 2.349 Gbp 2.347 Gbp27

Marbled crayfish Procambarus virginalis 9.5 Gbp 3.3 Gbp21

Root-knot nematode Meloidogyne arenaria 290.4Mbp 163.7Mbp7

Root-knot nematode Meloidogyne enterolobii 268.7Mbp 162.4Mbp7

Root-knot nematode Meloidogyne floridensis 201.7Mbp 74.9Mbp7

Root-knot nematode Meloidogyne incognita 207.4Mbp 122.0Mbp7

Root-knot nematode Meloidogyne javanica 280.2Mbp 142.6Mbp7

Potato Solanum tuberosum 3.0 Gbp 778.7Mbp29

Wheat Triticum aestivum 14.1 Gbp 15.34 Gbp23

The genome size refers to the polyploid genome size that is estimated by GenomeScope 2.0. The assembly size for the coastal redwood is from the Redwood Genome Project.
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were triploid, whileMeloidogyne arenaria andMeloidogyne javanica
were tetraploid. Running GenomeScope 2.0 with the corresponding
ploidies, we determined estimates for the genome characteristics.
For the five root-knot nematodes the GenomeScope estimates
for genome size are 1.65–2.69 times larger than the current
best assemblies7, suggesting the assemblies have partially collapsed
the homologous chromosomes (see Supplementary Figs. 9–18).

Bread wheat (Triticum aestivum) is an allohexaploid which
consists of three subgenomes22. A Smudgeplot analysis inferred
that the ploidy was diploid, because the individual subgenomes are
highly divergent from each other. Specifically, if the homologous
k-mers from different subgenomes are highly divergent (more
than one SNP different), while the homologous k-mers from the
same subgenome are only one SNP different, and then we would
expect to see three k-mer pairs. Each of these pairs would have an
estimated sum of coverages of 2λ and an estimated relative minor
coverage of 1

2
, and would thus be interpreted by Smudgeplot as

coming from the genomic structure AB. The current best assembly
spans 15.34 Gbp23, while the GenomeScope estimate is 14.1 Gbp
(see Supplementary Figs. 21 and 22).

Allotetraploid vs. autotetraploid. One important application of
GenomeScope is to distinguish between allotetraploid and auto-
tetraploid species based on the distinct patterns of nucleotide
heterozygosity rates that occur. For example, it is known in cotton
that during meiosis homologous chromosomes from the same
subgenome form bivalents and preferentially pair with each
other24. This phenomenon is also prominent in many other
allotetraploid species25. Thus, for allotetraploids we would expect
a high proportion of aabb and a low proportion of aaab since
preferential pairing would ensure that two homologs from the
first subgenome and two homologs from the second subgenome
are present after recombination. Conversely, it is known in potato
that during meiosis the majority of cells contain quadrivalents26.
In this case, after recombination an individual might have 0, 1, 2,
or 3 homologs from a given subgenome. Thus, aaab would be
expected to be more prominent than aabb since it is more likely
that there are one or three copies of a subgenome rather than
exactly two copies of a subgenome (see Supplementary Methods
for a more in-depth discussion).

For cotton and potato, we see that the GenomeScope estimates
for nucleotide heterozygosity rates follow these expectations (see
Fig. 6). For the two allotetraploid cotton species, aaab is estimated
to be ~0 and aabb is estimated to be >5%. The estimated genome
size is also highly accurate, and GenomeScope estimates the
polyploid genome lengths to be 2.293 and 2.349 Gbp, while the
current best assemblies span 2.267 and 2.347 Gbp, respectively27

(see Supplementary Figs. 3–6). For potato28, aaab is greater than
aabb as we would expect after recombination. Here, the estimated
genome size is approximately three times larger than the current
best assembly (3.0 Gbp vs. 778.7Mbp) (see Supplementary Figs. 19
and 20). This is expected since the assembly was filtered to form a
pseudo-haploid representation that reports a single homolog29.
Thus, the GenomeScope estimates can determine whether a novel
polyploid organism is an allopolyploid or autopolyploid.

Discussion
We have shown on simulated and real datasets that Genome-
Scope 2.0 is able to quickly and accurately estimate the genomic
characteristics of polyploid organisms without a reference gen-
ome. The core of GenomeScope 2.0 is a polyploid model using the
Möbius inversion formula which accounts for the k-mers
occurring at higher ploidy levels. Users provide the k-mer spec-
trum as input and GenomeScope performs a nonlinear optimi-
zation using the Levenberg–Marquardt algorithm. We have also
introduced Smudgeplot as a visualization and analysis technique
that can be used to reveal the structure of a novel species. The
core of this analysis is the identification and statistical analysis of
k-mer pairs that differ by exactly one nucleotide.

The coverage of the dataset must be sufficient for these
methods to resolve the error peak with the haploid peak. In
general, having at least 15x coverage per homolog for Genome-
Scope and 25x coverage per homolog for Smudgeplot is required.
Currently, GenomeScope and Smudgeplot only support low error
short read sequencing. Future work remains to extend these
techniques for single molecule sequencing with high error rates
that currently prevent k-mer based analysis. Smudgeplot works
well under moderate heterozygosity and repetitiveness where the
signal from heterozygous k-mer pairs is stronger than the signal
from repetitive k-mer pairs. For eight of the real polyploid
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organisms analyzed, Smudgeplot produces an accurate estimate
of ploidy. Species with extreme heterozygosity and high repeti-
tiveness, such as cotton and wheat, can confuse a Smudgeplot
analysis. Another example is the diploid Fragaria iinumae
strawberry genome, where more k-mer pairs come from the
“AABB” smudge than from the “AB” smudge, which leads to the
incorrect inference of tetraploidy (see Supplementary Fig. 23).
Upon further analysis, Smudgeplot is correctly finding k-mer
pairs in the genome, though they actually represent repetitive k-
mer pairs, not k-mer pairs at a higher ploidy level. However,
GenomeScope results reveal very low levels of heterozygosity and
high rates of duplications, which highlight that using these tools
in conjunction with one another can help unravel the properties
of a genome.

In addition, polyploid species, especially allopolyploids, often
have highly divergent genomic copies (e.g., >12% different at the
nucleotide level). Thus, one limitation of using a k-mer-based
technique is that in these cases too few k-mers may actually be
shared between the homologous copies. This can lead Smudgeplot
to infer diploidy even for polyploid species. However, in these
cases the divergence of the homologs may be so high that they
will be separated during the assembly process. The polyploidy will
then very likely be revealed by standard genome quality assess-
ment of conserved single-copy orthologs (BUSCO)30.

It is important to run GenomeScope with the correct value for
the ploidy parameter. If p is greater than the true value this can
lead to overfitting where the model contains a greater number of
negative binomial distributions than is necessary. In real poly-
ploid data, especially for highly heterozygous genomes, it is dif-
ficult to know a priori whether shorter higher-order peaks truly
represent the data or whether they are due to an incorrect ploidy
parameter. In addition, in order to accurately estimate genome
size for highly repetitive genomes, it is important to create a k-
mer histogram that is not truncated. By default, KMC and Jel-
lyfish truncate the histogram at 10,000. We suggest running these
tools without a maximum counter. The model fit that is output by
GenomeScope can also be used to identify poor fit or incomplete
datasets. However, in general, the best indicator of a good model
fit is inspecting the plots to ensure the model matches the
empirical data across the distribution.

Even with these caveats, GenomeScope and Smudgeplot are
able to rapidly and accurately infer genomic properties for large,
highly heterozygous, and polyploid genomes. GenomeScope
accurately predicts genomic properties for the nearly 9 Gbp
coastal redwood genome, for the highly heterozygous allote-
traploid cotton genomes, and for the hexaploid wheat genome.
Furthermore, GenomeScope is able to distinguish between allo-
polyploid and autopolyploid species, which can help researchers
gain valuable biological insights for novel organisms without
needing to perform costly experiments. Finally, Smudgeplot is
able to correctly predict ploidy even in the extreme case of
octaploid Fragaria × ananassa. These tools will open up future
analysis of complex organisms that are underrepresented in
current genomics pipelines.

Methods
GenomeScope diploid model. GenomeScope 1.0 statistically analyzes the k-mer
profile and fits a mixture of four negative binomials, the first two representing
unique heterozygous and homozygous k-mers, and the next two representing two-
copy heterozygous and homozygous k-mers. For example, Fig. 1a shows the k-mer
profile, fitted model, and estimated parameters for a highly heterozygous diploid
Arabidopsis thaliana representing an F1 cross between two divergent accessions
(Col-0 × Cvi-0)31.

The four negative binomials are equally spaced apart and occur at λ, 2λ, 3λ, and
4λ, where λ= 22.2 is the average k-mer coverage for the diploid genome. More
generally, the ith peak corresponds to the contributions from k-mers that occur
exactly i times in the diploid genome. It should be noted that although

GenomeScope does not fit negative binomials for repetitive regions that occur more
than twice, this does not greatly affect the fit on the peaks corresponding to less
repetitive regions. This is because the proportion of the genome modeled by a given
copy number repeat typically follows a Zeta distribution and hence quickly falls
off32.

The underlying GenomeScope 1.0 model is given by:

f ðxÞ ¼ G
X

4

i¼1

αiNB x; iλ;

iλ

ρ

� �

; ð1Þ

where f(x) is the k-mer spectrum (i.e., the frequency of the k-mers at coverage
depth x) and G is the number of distinct k-mers (i.e., repetitive k-mers are counted
only once) in the monoploid genome. Within polyploids, the basic chromosome set
from which the other sets are derived is called the monoploid chromosome set,
while the chromosomes present in the gametes of a species constitute the haploid
chromosome set. Thus, the monoploid genome consists of a single chromosome
set, while the haploid genome typically consists of half of the total number of
chromosome sets33. Under this model, αi is, for a single distinct k-mer of the
monoploid genome, the expected frequency contribution of the corresponding k-
mers across the two homologs to peak i of the k-mer spectrum, NB(x, μ, size) is the
negative binomial distribution that approximates the sequencing coverage with
mean μ and dispersion parameter size, λ is the average k-mer coverage for the
diploid genome, and ρ is a bias parameter proportional to PCR duplication and
other sequencing biases.

The next crucial step for the model is to mathematically determine the αi values
in terms of the repetitiveness, heterozygosity, and k-mer length. In the diploid case,
we have:

α1 ¼ð1� dÞð2ð1� ðraaÞ
kÞÞ þ dð2ððraaÞ

kÞð1� ðraaÞ
kÞ þ 2ð1� ðraaÞ

kÞ
2
Þ

α2 ¼ð1� dÞððraaÞ
kÞ þ dðð1� ðraaÞ

kÞ
2
Þ

α3 ¼ dð2ððraaÞ
kÞð1� ðraaÞ

kÞÞ

α4 ¼ dðððraaÞ
kÞ

2
Þ;

ð2Þ

where d is the proportion of distinct k-mers of the monoploid genome that occur
twice, raa is the homozygosity rate, and k is the k-mer length.

GenomeScope polyploid model. To account for the higher ploidy levels in
polyploid organisms, the underlying GenomeScope 2.0 model now fits 2 × p
negative binomial distributions, where p is the ploidy, according to:

f ðxÞ ¼ G
X

2p

i¼1

αiNB x; iλ;

iλ

ρ

� �

: ð3Þ

Similar to the diploid case, each of the 2p negative binomials are equally spaced
apart and occur at λ, 2λ, …, and 2pλ, where λ is the average k-mer coverage of the
polyploid genome. Again, the i-th peak corresponds to the contributions from k-
mers that occur exactly i times in the polyploid genome.

The next step for the model is to mathematically determine the αi values in
terms of the ploidy, repetitiveness, heterozygosity, and k-mer length. In the
polyploid case, this calculation is much more involved and requires utilizing the
Möbius inversion formula on partially ordered sets, a classical combinatorics
theorem34. For the derivation of this calculation, please refer to Supplementary
Methods.

GenomeScope implementation. In order to determine the parameters that best fit
the input data, GenomeScope uses a nonlinear least-squares minimization tech-
nique. While GenomeScope 1.0 uses the nls function in R based on the
Gauss–Newton algorithm, GenomeScope 2.0 instead uses the nlsLM function.
nlsLM utilizes the Levenberg–Marquardt algorithm, with support for lower and
upper parameter bounds. Like the Gauss–Newton method, the
Levenberg–Marquardt algorithm starts from an initial naive estimate and performs
an iterative procedure to update the parameters. However, Levenberg–Marquardt
introduces a damping parameter that is adjusted as the iterative process continues,
making it more robust. Notable, in many simulated and real datasets with higher
ploidy, the nlsLM function is able to converge, while the nls function is not.

For datasets with high heterozygosity and/or high ploidy, the k-mer spectrum
does not show clearly defined higher-order peaks. In these cases, fitting to the
transformed k-mer spectrum improves the model’s ability to converge. We define
the transformed k-mer spectrum as a plot of frequency times coverage (y-axis)
versus coverage (x-axis) instead of the typical frequency versus coverage.
Transforming the k-mer spectrum effectively increases the heights of higher-order
peaks, overcoming the effect of high heterozygosity. This increases the signal in the
higher-order peaks, especially the homozygous peak, which allows the model to
converge. Even for datasets with low heterozygosity and low ploidy, we find fitting
to the transformed k-mer spectrum yields accurate results. Consequently,
GenomeScope 2.0 now by default fits to the transformed k-mer spectrum, and the
mathematical equation for the model used during the nonlinear optimization is
adjusted accordingly. After the fitting process, GenomeScope 2.0 outputs the
estimated parameters along with four plots of the best fit model overlaying the k-
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mer spectrum: (1) untransformed linear, (2) untransformed log, (3) transformed
linear, and (4) transformed log.

Smudgeplot. GenomeScope 2.0 is able to accurately analyze organisms given a
known ploidy. However, in many cases researchers studying a novel organism may
not know the ploidy a priori. For this reason, we have implemented Smudgeplot to
visualize genome structure and infer ploidy directly from the k-mers present in
sequencing reads.

For this method, we take as input the set of sequenced k-mers, such as the k-
mer frequency files produced by KMC35 or jellyfish36. Then, we search for all
pairs of k-mers that differ at exactly one nucleotide through a systematic scan of all
input k-mers. To avoid pairing k-mers produced by sequencing errors with

genomic k-mers, we search only those k-mers which exceed a coverage threshold
and assume that such k-mers represent real genomic k-mers. Given how many
possible k-mers exist for sufficiently large k (e.g., over four trillion for k= 21), it is
very unlikely that two independent genomic k-mers will have the same sequence in
all but one nucleotide simply by chance. Thus, the two k-mers in a k-mer pair are
homologous and can either represent different alleles of the same locus
(heterozygous k-mers) or different loci (paralogs, e.g., duplicated genes or
transposable elements). In a reasonably heterozygous genome, the signal from
heterozygous k-mers will dominate and therefore can be used to generate an
estimate of ploidy.

We denote the two k-mers in each k-mer pair as A and B such that the coverage
of A (CovA) is always greater than or equal to the coverage of B (CovB). Within
every pair, both A and B can be present in one or more genomic copies and
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therefore CovAþ CovB 2 2λ; 3λ; 4λ; 5λ; :::f g, where λ is the monoploid genome
coverage. Plotting CovA+ CovB versus CovB

CovAþCovB
will result in each distinct

genomic structure projecting on a different position (i.e., “smudge”) in 2D space
(see Fig. 7).

By plotting the total coverage of the k-mer pair, CovA+ CovB, versus the
relative minor k-mer coverage, CovB

CovAþCovB
, we can identify individual “smudges” that

correspond to different haplotype structures. Due to the Poisson nature of the
coverages of each position along the genome that is typical in sequencing
experiments, the k-mer pairs will not have the exact coordinates as given in Fig. 7.
However, it is usually possible to resolve the smudge to which each pair belongs.
Figure 8a shows an ideal case, where the sequencing coverage is sufficient to
completely separate all the smudges, providing very strong evidence of triploidy.
The brightness of each smudge is determined by the number of k-mer pairs that fall
within it.

The Smudgeplot estimates of monoploid coverage and ploidy allow users to
visualize and discover properties about genomes with high levels of imperfect
duplications, various ploidy levels, and high heterozygosity (see Supplementary
Methods for details). Smudgeplot provides users with a results table that indicates
the number of k-mer pairs that fall within each annotated smudge. We recommend
using these values in addition to the ploidy estimate to help determine the structure
of the genome. Smudgeplot is a visualization tool that is especially powerful in
combination with GenomeScope, as both independently estimate monoploid
coverage by exploiting different genomic properties. Notably, Smudgeplot is able to
accurately predict that Fragaria x ananassa is octaploid (see Fig. 8b).

Data availability
Genuine sequencing data are available using the accession codes listed in Supplementary

Table 1. The code and parameters used for generating the simulated datasets are available

in the GenomeScope 2.0 GitHub repository. The full results of modeling the simulated

datasets are available in Supplementary Data 1.

Code availability
All code supporting the current study is deposited in GitHub at https://github.com/

tbenavi1/genomescope2.0 and https://github.com/KamilSJaron/smudgeplot. Permanent

repositories are available at https://doi.org/10.5281/zenodo.3657798 and https://doi.org/

10.5281/zenodo.3658220. We also have a web-enabled version of GenomeScope available

at http://genomescope.org/genomescope2.0/.
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