
Genome analysis

GenomeScope: fast reference-free genome

profiling from short reads

Gregory W. Vurture1,†, Fritz J. Sedlazeck2,†, Maria Nattestad1,

Charles J. Underwood1, Han Fang1,3, James Gurtowski1 and

Michael C. Schatz1,2,*

1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,
2Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, MD 21218, USA and
3Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Bonnie Berger

Received on September 18, 2016; revised on February 28, 2017; editorial decision on March 15, 2017; accepted on March 17, 2017

Abstract

Summary: GenomeScope is an open-source web tool to rapidly estimate the overall characteristics

of a genome, including genome size, heterozygosity rate and repeat content from unprocessed

short reads. These features are essential for studying genome evolution, and help to choose par-

ameters for downstream analysis. We demonstrate its accuracy on 324 simulated and 16 real data-

sets with a wide range in genome sizes, heterozygosity levels and error rates.

Availability and Implementation: http://genomescope.org, https://github.com/schatzlab/genome

scope.git.

Contact: mschatz@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput sequencing enables the sequencing of novel gen-

omes on a daily basis. However, even the most basic characteristics

of these genomes, such as their size or heterozygosity rate, may be

initially unknown, making it difficult to select appropriate analysis

methods e.g. read mapper, de novo assembler, or SNP caller

(Smolka et al., 2015). Determining these characteristics in advance

can reveal if an analysis is not capturing the full complexity of the

genome, such as underreporting the number of variants or failure to

assemble a significant fraction of the genome. Experimental meth-

ods are available for measuring some of these properties, although

can require significant cost and labor.

A few computational approaches are now available for estimat-

ing the genome size from unassembled sequencing reads (Chikhi and

Medvedev, 2014; Melsted and Halldorsson, 2014) and some gen-

ome assemblers internally compute related statistics to guide the al-

gorithm (Bankevich et al., 2012; Gnerre et al., 2011). These

methods follow earlier work to infer the length of BAC sequences

from shotgun Sanger sequencing that analyze the frequency of se-

quences in the reads (Li and Waterman, 2003). However, only a few

methods are available for measuring more complex characteristics

such as the rate of heterozygosity and these methods can be difficult

to use or interpret. Simpson (2014) proposed a computational

method to estimate some of these properties from sequencing reads

using de novo assembly techniques. However, this method is compu-

tationally intensive and can be difficult to interpret as results are re-

ported relative to the assembly graph, such as the variant-induced

branch rate rather than the more direct rate of heterozygosity. The

GCE method (Liu et al., 2013) also attempts to determine genome

size and heterozygosity rate, but is not fully automated and requires

users to manually specify several cutoffs. It also uses a Poisson

coverage model that can lead to poor estimates with real sequencing

data, and the heterozygosity model is limited to genomes without re-

petitive sequences.
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2 Materials and methods

Here we introduce GenomeScope to estimate the overall genome

characteristics (total and haploid genome length, percentage of re-

petitive content and heterozygosity rate) as well as overall read char-

acteristics (read coverage, read duplication and error rate) from raw

short read sequencing data. The estimates do not require a reference

genome and they can be automatically inferred via a statistical ana-

lysis of the k-mer profile. The k-mer profile (sometimes called k-mer

spectrum) measures how often k-mers, substrings of length k, occur

in the sequencing reads and can be computed quickly using tools

such as Jellyfish (Marcais and Kingsford, 2011) or approximated

using faster streaming approaches (Melsted and Halldorsson, 2014).

The profiles reflect the complexity of the genome: homozygous gen-

omes have a simple Poisson profile while heterozygous ones have a

characteristic bimodal profile (Kajitani et al., 2014). Repeats add

additional peaks at even higher k-mer frequencies, while sequencing

errors and read duplications distort the profiles with low frequency

false k-mers and increased variances (Kelley et al., 2010; Miller

et al., 2011).

Aware of these possible complexities, GenomeScope fits a mix-

ture model of four evenly spaced negative binomial distributions to the

k-mer profile to measure the relative abundances of heterozygous

and homozygous, unique and two-copy sequences (Supplementary

Eq. S2). GenomeScope uses a mixture model of negative binomial

model terms rather than Poisson terms since real sequencing data is

often over-dispersed compared to a Poisson distribution (Miller

et al., 2011). The model fitting is computed using a non-linear least

squares estimate as implemented by the nls function in R (Bates and

Watts, 1988). To make the model fitting more robust, GenomeScope

attempts several rounds of model fitting excluding different fractions

of low frequency k-mers that are likely caused by sequencing errors,

and adjusting for the ambiguity in determining the correct heterozy-

gous and homozygous peak. The final set of parameters is selected as

those parameters that minimize the residual sum of squares errors

(RSSE) of the model relative to the observed k-mer profile.

Afterwards, sequence errors and higher copy repeats are identified by

k-mers falling outside the model range, and the total genome size is

estimated by normalizing the observed k-mer frequencies to the aver-

age coverage value for homozygous sequences, excluding likely

sequencing errors. See Supplementary Note S1 for a detailed descrip-

tion of the model and fitting procedure.

GenomeScope is available open-source as a command line R appli-

cation and also as an easy-to-use web application. Either version has

minimum user requirements, consisting of (i) a text file of the k-mer

profile computed by Jellyfish or other tools, (ii) the value used for k

and (iii) the length of the sequencing reads. Either the command line

or online version of GenomeScope typically completes in less than

1 min with modest RAM requirements, and outputs publication qual-

ity figures as well as text files with the inferred genome properties. If

the modeling fails to converge, typically because of low coverage or

low quality reads, the k-mer profile is plotted without the model par-

ameters displayed so users can inspect the likely causes.

3 Results

We first applied GenomeScope to analyze 324 simulated datasets

varying in heterozygosity (0.1%, 1%, 2%), average rate of read

duplication (1, 2, 3), sequencing error rate (0.1%, 1%, 2%), cover-

age (100�, 50�, 25�, 15�) and organism (E.coli, A.thaliana,

D.melanogaster) (Supplementary Table S3, Supplementary Note

S2). A subset of the results for A.thaliana are displayed in Figure 1A

(left), and show that the GenomeScope results are highly concordant

with the true simulated rates over many conditions. The results were

also highly concordant to a standard short-read variant analysis

pipeline using BWA-MEM (Li, 2013) and SAMTools (Li et al.,

2009) or through whole genome alignment using DnaDiff (Phillippy

et al., 2008) of the original and mutated reference sequence.

We next evaluated ten E.coli datasets where genuine sequencing

reads from two divergent strains were synthetically mixed together

(Fig. 1A, middle). This allowed us to evaluate GenomeScope on real

sequencing reads where the finished genome sequences, and hence

their heterozygosity rates, could be precisely computed. We find

high concordance to the results of the whole genome alignment

of the reference genomes, although mapping the reads and calling

variants resulted in artificially lower rates of heterozygosity because

the short reads failed to map over the most heterozygous and re-

petitive regions. We also note that DnaDiff tends to underreport the

rate of heterozygosity, especially if one genome is appreciably

larger than the other, as it bases its estimate on those regions of

the genomes that can be confidently aligned to each other while

GenomeScope performs a more comprehensive genome-wide ana-

lysis (Supplementary Note S3).

Finally, we applied GenomeScope to six different genuine plant

and animal datasets up to 1.1 Gbp in size with significant levels of

heterozygosity and an assembled reference genome (Supplementary

Note S4). Since the available references were haploid, it was not pos-

sible to validate the results with whole genome alignment, but they

were compared to the short read mapping results. The results are

generally concordant, although the GenomeScope heterozygosity es-

timates were modestly higher than those from read mapping, similar

to the E.coli results caused by short read mapping deficiencies, and

most discrepant for the lowest quality draft genomes.

When examining real sequencing data, we introduced a param-

eter to exclude extremely high frequency k-mers (default: 1000� or

greater), since those often represented organelle sequences or spike-

in sequences occurring hundreds to thousands of times per cell in

A.thaliana that artificially inflated the genome size (Fig. 1B;

Supplementary Note S1.3.2). After accounting for the artificially

high copy sequences, the inferred genome sizes of the real datasets

were 99.7% accurate as confirmed by orthogonal technologies, such

as the established reference genomes or flow cytometry when avail-

able (Supplementary Note S4).

4 Discussion

We have shown on 340 datasets that GenomeScope is a fast, reliable

and accurate method to estimate the overall genome and read char-

acteristics of datasets without a reference genome. Using the web ap-

plication, users can upload their k-mer profile and seconds later

GenomeScope will report the genomic properties and generate high

quality figures and tables. As such, we expect GenomeScope to be-

come a routine component of all future genome analysis projects.

For most genomes and for the experiments shown here, we rec-

ommend using k¼21, as this length is sufficiently long that most

k-mers are not repetitive but is short enough that the analysis will be

more robust to sequencing errors. Extremely large (haploid

size�10 GB) and/or very repetitive genomes may benefit from

larger values of k to increase the number of unique k-mers. Accurate

inferences requires a minimum amount of coverage, at least 25�
coverage of the haploid genome or greater, otherwise the model fit

will be poor or not converge (Supplementary Note S2).

GenomeScope also requires relatively low error rate sequencing,
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such as Illumina sequencing, so that most k-mers do not contain

errors. For example, a 2% error rate is supported as it corresponds

to an error only every 50 bp on average, which is greater than the

typical k-mer size used. However, raw single molecule sequencing

reads from Oxford Nanopore or Pacific Biosciences, which currently

average 5–20% error, are not supported as an error will occur on

average every 5–20 bp and thus infer with nearly every k-mer

(Goodwin et al., 2016). Finally, GenomeScope is only appropriate

for diploid genomes because the heterozygosity model it uses only

considers the possibility for two alleles. In principle the analysis

could be extended to higher levels of ploidy by considering add-

itional peaks in the k-mer profile.

Future work remains to extend GenomeScope to support poly-

ploid genomes and genomes that have non-uniform copy number of

their chromosomes, such as aneuploid cancer genomes or even un-

equal numbers of sex chromosomes. In these scenarios the reported

heterozygosity rate will represent the fraction of bases that are hap-

loid (copy number 1) versus diploid (copy number 2) as well as any

heterozygous positions in the other chromosomes. Addressing these

conditions will require extending the k-mer model to higher copy

number states.
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Fig. 1. (A) GenomeScope heterozygosity, total genome size, and unique genome size estimates: (left) twenty seven simulated A.thaliana datasets with vary

amounts of heterozygosity, sequencing error or read duplications; (middle) ten synthetic mixtures of real E.coli sequencing data; and (right) six genuine plant

and animal sequencing datasets: L.calcarifer (Asian seabass), D.melanogaster (fruit fly), M.undulates (budgerigar), A.thaliana Col-Cvi F1 (thale cress),

P.bretschneideri (pear), C.gigas (Pacific oyster). Also displayed are the true simulated values (Simulated), the results from a mapping and variant calling pipeline

(Mapping), and a whole genome alignment (DnaDiff) where available. (B) GenomeScope k-mer profile plot of the A.thaliana dataset showing the fit of the

GenomeScope model (black) to the observed k-mer frequencies (blue). The unusual peak of very high frequency k-mers (�10 000� coverage) were determined to

be highly enriched for organelle sequences
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