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Abstract: Ubiquilin-4 (UBQLN4) is a proteasomal shuttle factor that directly binds to ubiquitylated
proteins and delivers its cargo to the 26S proteasome for degradation. We previously showed
that upregulated UBQLN4 determines the DNA damage response (DDR) through the degrada-
tion of MRE11A. However, the regulatory mechanism at DNA level, transcriptionally and post-
transcriptional levels that control UBQLN4 mRNA levels remains unknown. In this study, we screened
32 solid tumor types and validated our findings by immunohistochemistry analysis. UBQLN4 is
upregulated at both mRNA and protein levels and the most significant values were observed in
liver, breast, ovarian, lung, and esophageal cancers. Patients with high UBQLN4 mRNA levels had
significantly poor prognoses in 20 of 32 cancer types. DNA amplification was identified as the main
mechanism promoting UBQLN4 upregulation in multiple cancers, even in the early phases of tumor
development. Using CRISPR screen datasets, UBQLN4 was identified as a common essential gene
for tumor cell viability in 81.1% (860/1,060) of the solid tumor derived cell lines. Ovarian cancer
cell lines with high UBQLN4 mRNA levels were platinum-based chemotherapy resistant, while
they were more sensitive to poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi).
Our findings highlight the utilities of UBQLN4 as a significant pan-cancer theranostic factor and a
precision oncology biomarker for DDR-related drug resistance.

Keywords: Ubiquilin-4; MRE11A; chemotherapy resistance; PARPi; genome amplification; prognosis;
DDR

1. Introduction

Cancer cells have various repairing mechanisms to maintain genomic integrity after
DNA lesions caused by exogenous and endogenous factors [1]. DNA double-strand
breaks (DSB) are the most toxic lesions in the human genome that can be induced by
radiation therapies and chemotherapies [2]. Unrepaired DNA DSBs enhance mutation
rate, chromosomal instability, and cell death [3]. Cancer cells have developed essential
mechanisms to avoid cell death that enhance the two main DNA DSB repair pathways,
homologous recombination (HR) and canonical non-homologous end-joining (NHEJ) [4].
The activation of HR or NHEJ is crucial for repairing DNA damage; however, the balance
between HR and NHEJ is critical to determining single nucleotide variant (SNV) rates and
genomic stability in cancer cells [5].
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Ubiquilins (UBQLNs) family, which includes UBQLN1-4 and UBQLN-L, are key
factors in the regulation of protein degradation in cells [6]. All these family members
contain a ubiquitin-associated (UBA) domain at the C-terminus and a ubiquitin-like (UBL)
domain at the N-terminus. The UBA domain directly binds to ubiquitylated proteins
and the UBL domain is responsible for the interaction with the proteasome. UBQLN4
has been identified as a critical molecule functioning as an essential proteasomal shuttle
factor that delivers ubiquitylated proteins to the 26S proteasome for degradation [7–9].
Previous studies from our group showed that UBQLN4 is activated by the proximal kinase
ataxia telangiectasia mutated (ATM). Upon activation, UBQLN4 interacts and controls the
protein levels of meiotic recombination 11 homolog A (MRE11A). MRE11A is an essential
component of the MRE11–RAD50–NBS1 (MRN) complex and plays a key role in DSB repair,
and DNA damage response (DDR) in esophageal squamous cell cancer (ESCC), breast
cancer, and neuroblastoma [7–9].

As part of the Ubiquitin–proteasome system (UPS), specific proteasome subunits
recognize ubiquitylated proteins for degradation [10]. In addition to that, the proteasome
shuttle factors provide an additional selectivity by mediating target recognition. UBQLN4
has been reported to be involved in the degradation of a wide range of accessory ubiqui-
tylated proteins [7–9,11–15]. Our group has shown that UBQLN4 determines the balance
of DDR pathways through the degradation of MRE11A which leads to resistance to DNA
damaging agents and sensitivity to poly (ADP-ribose) polymerase inhibitor (PARPi), such
as Olaparib in specific cancers [7]. Briefly, our previous studies showed that UBQLN4
binds to ubiquitylated MRE11A, which facilitates ubiquitylated MRE11A mediated 26S
proteasome degradation [7,8]. MRE11A degradation repressed HR, while favoring the
overactivation of the NHEJ pathway for DNA repair [7]. As a predictive biomarker of
drug resistance, UBQLN4 mRNA levels are associated with the efficacy of neoadjuvant
chemotherapy (NAC) including platinum-based chemotherapeutic agents in ESCC [8].
We have shown that elevation of UBQLN4 relates to triple-negative breast cancer (TNBC)
and neuroblastoma outcomes [7,9]. However, the regulation of UBQLN4 overexpression
and its utility as a predictive biomarker in various types of solid tumor cancers remains
uncharacterized. Therefore, understanding the mechanism at DNA level, transcriptionally
and post-transcriptional levels that control UBQLN4 mRNA levels may provide broad
insights and decision-making for precision oncology therapeutic strategies and predictive
value for chemotherapy responses inducing DNA damage in specific types of solid cancers.

The aim of this study is to perform a comprehensive pan-cancer analysis of UBQLN4
using large cohorts of cancer patient datasets. The UBQLN4 data analysis described in
this study has been obtained from 9,962 tumor tissue samples of 32 different solid tumor
types and 719 adjacent normal tissues of ten organ types using The Cancer Genome
Atlas (TCGA) and 4.918 normal tissues of sixteen organ types using Genotype-Tissue
Expression (GTEx) [16]. The relation between UBQLN4 and treatment resistance was
analyzed from 1,060 cell lines of the CCLE database. Our results demonstrated that
UBQLN4 upregulation derived from frequent DNA amplification was observed in various
solid tumors. Confirmatory immunohistochemistry (IHC) analyses for UBQLN4 were
performed in paired tissue samples from 48 patients. UBQLN4 was associated with poor
prognosis across multiple cancer types. UBQLN4 was detected as a common essential gene
across various types of cancer cell lines. High UBQLN4 mRNA levels have been significantly
associated with the DNA repair pathway gene set. Consequently, increased UBQLN4 levels
were associated with cisplatin resistance and Olaparib sensitivity in pan-cancer cell lines.

2. Materials and Methods
2.1. Analysis of Public Datasets

Datasets from The Cancer Genome Atlas (TCGA) [17] and Genotype-Tissue Expression
(GTEx) [16] were downloaded through the University of California Santa Cruz (UCSC)
Xena [18]. Datasets from The Cancer Cell Line Encyclopedia (CCLE) [19], Genomics of Drug
Sensitivity in Cancer (GDSC) [20], Profiling Relative Inhibition Simultaneously in Mixtures
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(PRISM) Repurposing Secondary Screen 19Q4 [21], CRISPR gene effect scores inferenced
by Chronos [22] and CRISPR gene dependency probability data [23] were downloaded
through the Cancer Dependency Map portal (DepMap Portal, http://depmap.org, accessed
on 28 April 2022).

2.2. Immunohistochemistry

A tissue microarray (TMA, BCN962a) for multiple solid tumor types (AJCC Stage I, II,
and III) and respective adjacent normal tissues were obtained from US Biomax (Derwood, MD,
USA). The TMA slide was stained with UBQLN4 monoclonal Ab (mAb; #A700-145, Bethyl
Laboratories, Montgomery, TX, USA) at the dilution of 1:100 as previously described [9].

2.3. DNA Copy Number Analysis

For TCGA analysis, focal-level copy number variation values were generated by
using GISTIC2 [24]. For CCLE data analysis, gene-level copy number values utilized
were inferred from whole genome sequencing (WGS), whole exome sequencing (WES), or
SNP array depending on the availability of the data type. SNP array-based copy number
amplification (CNA) profiling was measured experimentally using the Affymetrix Genome-
Wide Human SNP Array 6.0 platform at the Broad TCGA genome characterization center
and downloaded from the University of California Santa Cruz (UCSC) Xena [18]. In the
TCGA analysis, patients with focal UBQLN4 copy number values larger than 0.3 were
defined as UBQLN4 gene amplified patients.

The CNA analysis in adjacent normal tissues was performed using the TCGA datasets.
The data of somatic copy number alterations for 1708 adjacent normal tissues from 27 cancer
types in TCGA was obtained from a previous study [25].

2.4. Statistical Evaluation of DNA Amplification Recurrence

The recurrence of CNA for each gene was performed using the PART method as
previously described [26,27]. In brief, a matrix of CNA profiles based on the TCGA
dataset was generated for each cancer type. These matrixes consist of binary values
indicating the presence of amplification in each gene and sample, which were indexed
in rows and columns, respectively. For each gene, the number of samples with CNA
was obtained as a statistical value that measured amplification recurrence and the rate of
amplification was calculated for each sample. The significance of the statistical recurrence
was examined based on a Poisson binomial distribution using sample-wise amplification
rates as parameters [26]. Next, a parameter-based approach was used to calculate the
p-values for the recurrence of amplification. To calculate p-values in the Poisson binomial
tests, the Poisson binomial cumulative probability function in the R package poibin was
used (http://cran.r-project.org/web/packages/poibin/index.html, accessed on 28 April
2022). Log scaled p-values were converted to q-values for multiple testing corrections using
the Benjamini-Hochberg procedure [28].

2.5. CRISPR Screen Datasets

CRISPR screen datasets were obtained from the Cancer Dependency Map portal
(DepMap Portal, http://depmap.org, accessed on 28 April 2022) [29]. In brief, gene effect
scores were derived from CRISPR knockout screens published by Broad’s Achilles and
Sanger’s SCORE projects. A negative score for each gene indicates cell growth inhibition
and/or death when its gene is knocked out by the CRISPR screen. Scores are normal-
ized such that nonessential genes have a median score of 0 and independently identified
common essentials have a median score of −1, as previously described [30]. Gene Effect
scores were inferenced by Chronos [22]. Integration of the Broad and Sanger datasets was
performed as previously described [29].

http://depmap.org
http://cran.r-project.org/web/packages/poibin/index.html
http://depmap.org
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2.6. Identification of Common Essential Genes

Common essential genes were identified as previously described [23]. A gene which,
in a large, pan-cancer screen, ranks in the top 10 percentile among the most depleting genes
in at least 90% of cell lines. The dependency score values were calculated by Chronos and
obtained from the DepMap Portal website.

2.7. Gene Set Enrichment Analysis

The association between UBQLN4 mRNA levels from the CCLE dataset [19] and
previously defined gene sets were analyzed by gene set enrichment analysis (GSEA).
Previously defined gene sets based on their biological functions were obtained from the
Molecular Signatures Database v5.2 (http://software.broadinstitute.org/gsea/msigdb/
index.jsp, accessed on 28 April 2022). Research manuscripts reporting large datasets that
are deposited in a publicly available database should specify where the data have been
deposited and provide the relevant accession numbers. If the accession numbers have not
yet been obtained at the time of submission, please state that they will be provided during
review. They must be provided prior to publication.

2.8. Drug Sensitivity Analysis

The area under the dose–response curve (AUC) was downloaded from the DepMap
Portal website. AUC values were scaled between 0 and 1 for curves with lower asymptotes
less than 1, where lower AUC values indicate increased sensitivity to the treatment.

2.9. Identification of Candidate miRNAs That Bind to UBQLN4 mRNA

Four publicly available databases, TargetScan (http://www.targetscan.org/, accessed
on 28 February 2022), DIANA TOOL (http://diana.imis.athena-innovation.gr/DianaTools/,
accessed on 28 February 2022), miRcode (http://www.mircode.org/, accessed on 28 Febru-
ary 2022), and miRDB (http://mirdb.org/miRDB/, accessed on 28 February 2022) were
utilized to determine the miRNAs that bind to the 3′-UTR of UBQLN4 mRNA.

2.10. Biostatistics Analysis

Statistical analyses were performed using R version 4.1.2 (https://www.r-project.org/,
accessed on 28 February 2022) in a two-tailed way. The distribution and variation within
each group of data were assessed before statistical analysis. Two groups were compared
using the Mann–Whitney U test. The correlation was determined using Pearson’s cor-
relation test. In survival analysis using TCGA datasets, patients were divided into high
UBQLN4 mRNA expression and low UBQLN4 mRNA expression groups using the mini-
mum p-value approach [31]. Overall survival (OS) curves were plotted using the Kaplan-
Meier method and p-values were calculated using the log-rank test. A p-value < 0.05 was
considered statistically significant. All figures were unified using Adobe Illustrator CC
(Adobe, San Jose, CA, USA).

3. Results
3.1. UBQLN4 Is Upregulated in Various Types of Cancer

In silico analyses were performed using TCGA and GTEx databases to explore how fre-
quent UBQLN4 upregulation was observed in different types of cancers respective to their
normal cell origin. UBQLN4 mRNA levels were upregulated in various types of cancers
compared to normal tissues or adjacent normal tissues, which include Liver Hepatocellular
Carcinoma (LIHC), Breast Invasive Carcinoma (BRCA), Lung Adenocarcinoma (LUAD),
Ovarian Serous Cystadenocarcinoma (OV), Cervical Squamous Cell Carcinoma and Endo-
cervical Adenocarcinoma (CESC), Uterine Corpus Endometrial Carcinoma (UCEC), Lung
Squamous Cell Carcinoma (LUSC), Bladder Urothelial Carcinoma (BLCA), Skin Cutaneous
Melanoma (SKCM), Esophageal Carcinoma (ESCA), Testicular Germ Cell Cancer (TGCT),
Stomach Adenocarcinoma (STAD), Rectal Adenocarcinoma (READ), Colon Adenocarci-
noma (COAD), Low Grade Glioma (LGG), Thyroid Carcinoma (THCA), Kidney Renal

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://www.targetscan.org/
http://diana.imis.athena-innovation.gr/DianaTools/
http://www.mircode.org/
http://mirdb.org/miRDB/
https://www.r-project.org/
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Papillary Cell Carcinoma (KIRP), and Prostate Adenocarcinoma (PRAD) (Figure 1A,B, and
Table S1). Moreover, UBQLN1-3 showed upregulation when comparing tumors to normal
respective specimens obtained from GTEx, but not when compared to tumor adjacent
normal tissue using TCGA datasets (Figure S1A,B). These results were further validated by
immunohistochemistry (IHC) in paired analysis in tumor tissue and respective adjacent
normal tissues using a tissue microarray (TMA) containing tissue samples from 48 patients.
Pan-cancer tumor tissues showed higher UBQLN4 protein levels than paired adjacent
normal tissues (Figure 1C). The most significant elevation of UBQLN4 was seen in BRCA,
OV, and ESCA (Figure 1C). To summarize, UBQLN4 mRNA levels are upregulated in 20 of
32 cancer types, resulting in the upregulation of UBQLN4 at protein levels.
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PAAD, PCPG, SARC, SKCM, and UCEC patients according to UBQLN4 mRNA expression in TCGA 
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Figure 1. UBQLN4 mRNA levels are upregulated in various types of solid tumors. (A) UBQLN4
mRNA levels in tumor tissues (TCGA dataset) and normal tissues (GTEx dataset). Statistical differ-
ences were calculated by the Mann–Whitney U test. (B) UBQLN4 mRNA levels in tumor and adjacent
normal tissues from TCGA dataset. Statistical differences were calculated by the Mann–Whitney U
test. (C) UBQLN4 protein levels in paired tumor and adjacent normal tissues from BRCA, OV, LUAD,
ESCA, CESC, BLCA cancers. IHC analysis in the TMA were performed with UBQLN4 mAb (1:100).
The insets represent the whole image of the core in the TMA. Scale bars = 200 µm. The magnifications
represent an enlarge image of a specific site in the cores of the TMA. Scale bars = 200 µm. (D–Q).
Kaplan–Meier curves for ACC, BRCA, CESC, COAD, KIRC, KIRP, LIHC, LUAD, MESO, PAAD,
PCPG, SARC, SKCM, and UCEC patients according to UBQLN4 mRNA expression in TCGA datasets.
Statistical differences were evaluated using the log-rank test. Abbreviation lists can be found in the
materials and methods section.

3.2. UBQLN4 Upregulation Is Associated with Poor Prognosis

Next, we assessed the prognostic significance of UBQLN4 mRNA levels across different
tumor types. Previous studies from our and other groups showed that high UBQLN4 mRNA
levels are associated with poor overall survival (OS) in specific solid tumors [7–9,32,33].
Hence, we evaluated the survival rates across various cancer types according to UBQLN4
mRNA levels. TCGA data analysis demonstrated that patients with high UBQLN4 mRNA
levels had significantly lower OS than patients with low UBQLN4 mRNA levels in Adreno-
cortical Carcinoma (ACC), BRCA, COAD, CESC, Kidney Renal Clear Cell Carcinoma
(KIRC), KIRP, LIHC, LUAD, Mesothelioma (MESO), Pancreatic Adenocarcinoma (PAAD),
Pheochromocytoma and Paraganglioma (PCPG), Sarcoma (SARC), SKCM, and UCEC.
(Figure 1D–Q, Table S1). Of note, patients diagnosed with ACC, KIRC, MESO, SKCM,
and UCEC cancer types and advanced—American Joint Committee on Cancer (AJCC)
stage III and IV tumors who had high UBQLN4 mRNA levels showed a worse prognosis
than patients with low UBQLN4 mRNA levels (Figure S2A–E, Table S1). These results
indicate that UBQLN4 mRNA levels are significantly upregulated and associated with
disease outcomes and tumor progression in specific solid tumors.
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3.3. MiRNA and DNA Methylation Do Not Significantly Control UBQLN4 Gene Expression

Based on the above studies (Figure 1 and Table S1), we performed a comprehensive
analysis of single nucleotide variants (SNV), DNA methylation, and miRNA profiles to
investigate potential mechanisms regulating the UBQLN4 gene. First, we focused on
UBQLN4 SNV. Only 194 functional SNVs of the UBQLN4 gene in 40,549 patients for
40 cancer types (0.48%) and 86 functional SNVs of UBQLN4 in 10,953 patients (0.79%)
in 32 cancer types were detected using the Catalogue of Somatic Mutations In Cancer
(COSMIC) and TCGA datasets, respectively (Figure S3A). Thus, UBQLN4 SNVs are rare
and do not explain UBQLN4 mRNA upregulation.

We then focused on the epigenetic regulation of UBQLN4. The TCGA HM450K
methylation dataset contains 18 probes allocated across genomic regions of the UBQLN4
gene (Figure S3B, Top). One probe targets a CpG site located in the gene body, another CpG
site is located in the 3′ untranslated region (UTR), and the other sixteen probes are designed
for a CpG island located in the promoter region of UBQLN4. Overall, the two CpG sites
located in the gene body and 3′ UTR showed DNA hypermethylation, while the rest of
the CpG sites in the promoter region showed DNA hypomethylation (Figure S3B, Upper).
All the cancer types analyzed did not show statistical differences in DNA methylation
profiles between tumor and normal tissue samples. Additionally, the DNA methylation
levels at the promoter region of the UBQLN4 gene were not significantly correlated with
UBQLN4 mRNA levels (Figure S3B, Lower). These findings demonstrated that DNA
methylation does not have a major role in controlling the UBQLN4 mRNA levels across
different solid tumors.

A previous study in hepatocellular carcinoma (HCC) showed that miR-370 decreases
UBQLN4 mRNA/protein levels [32]. Additionally, UBQLN4 overexpression reversed
tumor suppressive functions mediated by miR-370 in HCC. We performed in silico analysis
and did not identify miR-370 as common miR targeting UBQLN4 (Figure S4A,B). Expression
levels of miR-370 showed statistically significant but only small positive correlation values
with UBQLN4 mRNA levels in the pan-cancer comparisons (Figure S4C, Pearson correlation
coefficient = 0.18, p < 0.001). Focusing on individual cancers, PAAD and READ showed
a downregulation in miR-370 and a negative correlation between miR-370 and UBQLN4
levels, but the correlation values were not significant or statistically significant but small
(Figure S4D, PAAD: Pearson correlation coefficient = −0.28, p < 0.0001, READ: Pearson
correlation coefficient = −0.0092, p = 0.26). In silico analysis also identified miR-7-5p
as the only common miRNA targeting UBQLN4 (Figure S4A). MiR-7-5p demonstrated
no significant correlation values with UBQLN4 mRNA levels in pan-cancer comparisons
(Figure S4E,F, Pearson correlation coefficient = −0.021). Thus, in silico analysis does not
support the possibility that miRs or genome DNA methylation are significant regulators of
UBQLN4 mRNA levels in a pan-cancer analysis.

3.4. Copy Number Amplification in The Early Phases of Cancer Induces UBQLN4 Upregulation

UBQLN4 is localized on chromosome 1q22, a region commonly amplified in solid
tumors [8]. Solid tumor tissues from 32 cancer types and adjacent normal tissues from
27 cancer types in the TCGA databases were screened and analyzed to determine the
frequency of UBQLN4 copy number variation (CNV). A high proportion of samples in
various types of cancers had CNA for UBQLN4 (Figure 2A). Other UBQLN family members
1, 2, and 3 were assessed for CNA, even though UBQLN3 is specifically expressed on testes.
Lower frequencies for CNA were observed for UBQLN1-3 (Figure S5A–C). Moreover, the
CNV for UBQLN4 positively correlated with UBQLN4 mRNA expression in the following
solid tumors: UCS, LIHC, CHOL, BRCA, OV, LUAD, CESC, SKCM, LUSC, ESCA, and
UCEC (Figure 2B and Table S1, Pearson correlation coefficients = 0.77, 0.63, 0.83, 0.66, 0.66,
0.69, 0.63, 0.67, 0.60, 0.64, respectively). Furthermore, we estimated the frequency of CNA
for each chromosomal position in individual cancers using single nucleotide polymorphism
(SNP) array-based CNV profiling. As shown in Figure 2C, the chromosomal region 1q22,
which contains UBQLN4, was identified as the frequently amplified chromosome region in
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all these cancer types (Figure 2C, FDR q-value < 0.0001). In contrast, the CNVs in adjacent
normal tissues were observed in 4.6% (78 of 1,708) of patients (Figure S6A). As for the
chromosome 1q region, 1.1% (18 of 1,708) of patients had CNVs in 1q. The CNV gains in
1q in the adjacent normal tissues were detected only in nine patients (Figure S6B). These
findings strongly suggested that DNA amplification controls UBQLN4 overexpression.
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between UBQLN4 mRNA expression, DNA copy number, and the proportion of UBQLN4 amplified
samples in TCGA. Samples with the values of log2 (copy number/2) larger than 0.3 are categorized
as amplified samples. Sizes of dots represent the proportion of amplified samples, while colors of
dots represent the Pearson correlation coefficient between mRNA expression and DNA CNA of
UBQLN4. (C) Chromosomal regions are significantly affected by copy number amplifications (CNA).
Statistical significance for recurrence of CNAs was evaluated by PART analysis. Blue lines indicate
the chromosomal region of UBQLN4 in the 1q22 chromosomal region. (D) Pearson’s correlation
between DNA copy number, mRNA expression, and protein expression of UBQLN4 of pan-cancer
cell lines in the CCLE datasets. (E) Integration of UBQLN4 analysis. Each number indicates the
number of cancer types satisfying each criterion.
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UBQLN4 protein levels positively correlated with the CNV and mRNA levels in the
Cancer Cell Line Encyclopedia (CCLE) datasets (Figure 2D). Data integration showed that
in patients with LIHC, BRCA, LUAD, UCEC, SKCM, and CESC cancer types, UBQLN4
gene amplification positively correlated with enhanced UBQLN4 mRNA levels and is
a prognostic factor for OS in all stages (Figure 2E). Collectively, UBQLN4 upregulation
can be explained by genomic DNA amplification and have prognostic utility in different
solid tumors.

Interestingly, UBQLN4 mRNA levels did not change across different histopathology
subtypes, such as 1) among the different subtypes of BRCA, and 2) between adenocarcinoma
and mucinous carcinoma in COAD/READ and, 3) between esophageal adenocarcinoma
(ESAD) and ESCC (Figure S7). Additionally, UBQLN4 mRNA levels did not significantly
change across different AJCC stages for different tumors (Figure S8). Of note, UBQLN4
amplification and overexpression were observed in individual tumor types from patients
diagnosed even with AJCC stage I (Figures S8 and S9). These results suggest that UBQLN4
amplification may occur in the early stages of cancer. For example, patients with LIHC
showed the highest UBQLN4 amplification rate. Furthermore, patients with UBQLN4
amplification in stage I or stage I/II had a worse prognosis compared to patients with
no UBQLN4 amplification (Figure S10A,B). These results support UBQLN4 as a potential
pan-cancer diagnostic biomarker to assess aggressive early-stage LIHC lesions that will
progress or develop resistance.

3.5. UBQLN4 Is an Essential Gene for Pan-Cancer Cells

We assessed the importance of UBQLN4 across multiple established solid tumor
cancer cell lines using CRISPR screen datasets [22]. In total, 81.1% of the cell lines (860
of 1060) showed high dependency scores on UBQLN4, but not on UBQLN1, UBQLN2,
or UBQLN3. Furthermore, UBQLN4 was identified as a common essential gene, and the
dependency scores were ranked in the top 10 percentile across all genes in at least 90%
of the cell lines (Figure 3A–E), suggesting a key role in cancer cell lines establishment
and perpetual survival. We previously demonstrated that ubiquitylated-MRE11A at the
DNA damage site interacts with UBQLN4 during DNA damage induced by cisplatin, to be
efficiently targeted to the proteasome for degradation, and alternative DDR pathways are
consequently activated [8]. MRE11 also showed high dependency scores (Figure 3D,E), but
the dependency scores of UBQLN4 and MRE11 were negatively correlated in various solid
cancers (Figure 3F,G). This result indicated that MRE11A is not necessarily required for
cancer cell lines which highly depend on UBQLN4 expression. Taken together, these results
indicate that UBQLN4 plays an essential role in cancer cell lines growth and perpetuation
suggesting that genomic alterations promoting UBQLN4 mRNA levels are also conserved
in in vitro models.
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Figure 3. Utility of UBQLN4 as a biomarker of prognosis and treatment resistance. (A) His-
togram of UBQLN4 dependency scores of all cell lines in the Cancer Cell Line Encyclopedia (CCLE)
datasets. (B) Histogram of UBQLN4 dependent probability scores of all cell lines in CCLE datasets.
(C) Frequency of UBQLN4-dependent cancer cell lines by different cancer types in the CCLE dataset.
Cell lines that have a larger UBQLN4 dependent score than 0.5 are defined as UBQLN4 dependent.
(D) The relationship of UBQLN1-4 and MRE11 between a gene’s score rank in a cell line and the cell
line’s rank for that gene using dependency scores of all cell lines in CCLE datasets, with gene ranks
in their 90th percentile of least dependent lines highlighted. (E) Distribution of gene ranks for the
90th percentile of least dependent cell lines for each gene and dependency score in 90th percentile
lines. Black dotted lines indicate the top 10 percentile most depleting genes in at least 90% of cell
lines. The y-axis is equivalent to the y-axis in D at the 90th percentile mark, as indicated by the blue
dotted lines. (F) Volcano plot of Pearson’s correlation coefficients between UBQLN4 gene dependency
scores and dependency scores of each gene of all cancer cell lines in CCLE datasets. (G) Pearson’s
correlation of UBQLN4 and MRE11 dependency scores of all cancer cell lines in CCLE datasets.
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3.6. UBQLN4 mRNA Levels Predict Cisplatin and Olaparib Responses

Our results have demonstrated that UBQLN4 upregulation promotes NHEJ by in-
creasing MRE11A degradation [7,8]. Thus, UBQLN4 levels may have potential utility as a
predictive biomarker for the usage of DNA damage drugs. Our previous study showed
that UBQLN4 protein levels were significantly higher in tissue biopsies obtained from non-
responder than in responder ESCC patients to cisplatin-based neoadjuvant chemotherapy
(NAC) [8]. To explore the potential utility of UBQLN4 as a predictive marker for drug
sensitivity in pan-cancer, we examined the association between UBQLN4 mRNA expression
and drug sensitivity using the combined datasets of CCLE and Profiling Relative Inhibition
Simultaneously in Mixtures (PRISM) Repurposing Secondary Screen datasets [21]. Cell
lines with high UBQLN4 mRNA levels had significantly altered DNA repair pathways
(Figure 4A). Then, we evaluated the sensitivity of ovarian cancer cell lines to cisplatin.
Sensitivity was assessed based on area under the curve (AUC) values, meaning that cell
lines with higher AUC will be more resistant to treatment. The results showed that cancer
cell lines with high UBQLN4 mRNA levels had higher cisplatin AUC values in all cancer
types (Figure 4B). In ovarian cancer cell lines, UBQLN4 mRNA levels positively correlated
with cisplatin AUC values (Figure 4C, Pearson correlation coefficient = 0.58, p = 0.0050).
Ovarian cancer cell lines with high UBQLN4 mRNA levels had the lowest sensitivity to
cisplatin treatment (Figure 4D, Mann–Whitney U test: p = 0.0041).

Previous reports showed that UBQLN4 upregulation improves the sensitivity to PARPi
by repressing HR activity through the degradation of MRE11A [7,8]. Cancer cell lines with
high UBQLN4 mRNA levels were associated with a better Olaparib response (Figure 4E).
In ovarian cancer cell lines, UBQLN4 mRNA levels negatively correlated with Olaparib
AUC values (Figure 4F, Pearson correlation coefficient = −0.31, p = 0.18). The Genomics
of Drug Sensitivity in Cancer 2 (GDSC2) datasets also showed a negative correlation
between UBQLN4 mRNA levels and Olaparib AUC values (Figure 4G, Pearson correlation
coefficient = −0.5, p = 0.011). Similar analyses were performed only in BRCA1/2 wild-type
ovarian cancer cell lines. No significant differences in UBQLN4 mRNA levels were observed
in BRCA1/2 mutants versus wild-type ovarian cancer cell lines (Figure S11A). Additionally,
BRCA1/2 wild-type cell lines with UBQLN4 high mRNA levels showed significantly lower
sensitivity to cisplatin and significantly higher sensitivity to Olaparib (Figure S11B–E).
Interestingly, the ovarian cancer cell line OVK18, which showed the highest UBQLN4
mRNA levels in CCLE had the highest sensitivity to Olaparib, despite having the lowest
sensitivity to cisplatin treatment (Figure 4C,F). These results support that UBQLN4 is a key
factor to maintain an important balance of DDR and thus, elevated UBQLN4 mRNA levels
determined resistance to cisplatin, while improving PARPi sensitivity in cancer cell lines.
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Figure 4. High UBQLN4 mRNA levels are associated with cisplatin and Olaparib responses. (A) All
cell lines from CCLE dataset were divided according to the median UBQLN4 mRNA levels and gene
set enrichment analysis (GSEA) was performed to compare the difference between the two groups.
(Right) Bar plot showing the six significantly enriched gene sets in high UBQLN4 mRNA group.
The x-axis indicated the minus logarithm of FDR values of each gene set. (Left) Comparison of the
normalized enrichment score for the DNA repair pathway determined by GSEA. FDR, false discovery
rate; NES, normalized enrichment score. (B) Comparison of cisplatin area under curve (AUC) values
in low UBQLN4 expression cell lines and high UBQLN4 expression cell lines in all cancer types
in PRISM Repurposing Secondary Screen datasets. Statistical difference was evaluated using the
Mann–Whitney U test. (C) Pearson’s Correlation between UBQLN4 mRNA levels and cisplatin
AUC values in ovarian cancer (OV) cell lines in PRISM Repurposing Secondary Screen datasets. The
red dots indicated the cell lines containing BRCA1 or/and BRCA2 mutations. (D) Comparison of
cisplatin AUC values in ovarian cancer (OV) cell lines with low and high UBQLN4 mRNA levels
in PRISM Repurposing Secondary Screen datasets. The red dots indicated the cell lines containing
BRCA1 or/and BRCA2 mutations. Statistical difference was evaluated using the Mann–Whitney U
test. (E) Comparison of Olaparib AUC values in low and high UBQLN4 mRNA in all cancer types
in PRISM Repurposing Secondary Screen datasets. Statistical difference was evaluated using the
Mann–Whitney U test. (F) Pearson’s correlation between UBQLN4 mRNA expression and Olaparib
AUC values in OV cell lines in PRISM Repurposing Secondary Screen datasets. The red dots indicated
the cell lines containing BRCA1 or/and BRCA2 mutations. (G) Comparison of Olaparib AUC values
in low and high UBQLN4 mRNA levels cell lines in OV in Sanger GDSC2 datasets. The red dots
indicated the cell lines containing BRCA1 or/and BRCA2 mutations. Statistical difference was
evaluated using the Mann–Whitney U test.
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4. Discussion

In this study, we showed that both UBQLN4 mRNA and protein levels are upregulated
in various solid cancers driven by UBQLN4 gene DNA amplification. Importantly, we
demonstrated that UBQLN4 DNA amplification is a positively selected mechanism in
cancer progression and this mechanism is observed frequently even in the early phases of
cancer development. A previous study showed that DNA amplification is an early event in
cancer with clonal patterns that are preserved in the matched metastatic samples [34]. We
previously demonstrated that in ESCC FFPE tissues from endoscopic core biopsies with
high UBQLN4 mRNA expression could predict the worse response to NAC [8]. These results
suggested that UBQLN4 DNA amplification mechanisms in the early stage are acquired
clonally within the tumor through cancer progression, thus even small tissue biopsies can
be used to detect UBQLN4 mRNA upregulation. Though tumor heterogeneity remains a
major cause of the prognostic and therapeutic difficulty in the management of advanced
stages of cancer [35], clonal transcriptomic biomarkers such as UBQLN4 upregulation
can be very useful in precision oncology treatment decisions. This is also important in
assessing tumor tissue by biopsies for potential drug resistance. The prognostic utility
of UBQLN4 may represent a potential novel therapeutic target to overcome specific drug
treatment resistance.

We demonstrated that cell lines with high UBQLN4 mRNA levels have significantly
altered the DNA repair pathway, and the cell lines that depend on UBQLN4 do not depend
on MRE11 for survival. These results are consistent with our previous functional studies
indicating that UBQLN4 accelerates the NHEJ pathway through MRE11A degradation.
Moreover, the analysis of CRISPR screen datasets showed that UBQLN4 is essential in 81.1%
of all cancer cells (860 out of 1060). UBQLN4 has been reported to have an impact on the
degradation of a wide range of ubiquitylated proteins [12,13,36–40]. For example, UBQLN4
targets misassembled ER-localized proteins to the 26S proteasome and harbors a protective
role by reducing proteotoxic cell stress [11]. Furthermore, our recent study has shown
that UBQLN4 targets STING in triple-negative breast cancer [9]. Nuclear DNA damage
leads to the accumulation of cytosolic-DNA, which in turn leads to activation of the STING
pathway, and the following transcription of pro-inflammatory cytokines [41]. Notably,
we have shown that UBQLN4 promotes STING degradation during DNA damage—and
STING agonist-induced STING activation, and this may be one of the central mechanisms
controlling STING downstream activation during treatment [9]. These studies also indi-
cated a potential integration of DNA damage responses, UBQLN4, and immune responses
in solid tumors. These previous reports support that UBQLN4 is closely related to DNA
repair pathways through the interactions with specific response pathways such as key
immune factors. The studies also demonstrate the UBQLN4 has multiple functions in
responding to DNA damages [7,8,11,15,42] and regulating protein clearance to prevent
proteotoxic cell stress an event that would be quite active in proliferating cancer cells.

Our analysis showed that UBQLN4 mRNA levels are associated with current chemother-
apies resistance in cancer cells such as cisplatin resistance and Olaparib sensitivity in many
different cancer cell lines. Interestingly, ovarian cancer cell lines which have high mRNA
levels of UBQLN4 showed cisplatin resistance and Olaparib sensitivity at the same time. Both
drugs are used in treating advanced stages of ovarian cancer [43,44]. The same results were
observed in BRCA1/2 wild-type ovarian cancer cell lines. Our findings suggest that UBQLN4
mRNA levels allowed for triaging ovarian cancer patients that will receive platinum drugs or
PARPi therapies. Additional studies are required to (1) validate our findings and determine
whether UBQLN4 mRNA levels can improve clinical decisions in precision medicine thera-
peutic strategies; and (2) to determine whether the effect of HRD induced by the UBQLN4
upregulation is synergistic to HRD induced by BRCA1/2 mutations.

5. Conclusions

In conclusion, this study provides new evidence that UBQLN4 mRNA and protein
levels are regulated by CNA. UBQLN4 has clinical translational implications as a diagnostic,
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prognostic, and treatment resistance biomarker for adjuvant platinum-based drugs or
PARPi therapies.
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