Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

Permalink

https://escholarship.org/uc/item/2jn3805v

Author

Prochnik, Simon E.
Publication Date
2011-04-04

Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

One-sentence Summary:
Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity.

Authors and affiliations: Simon E. Prochnik, 1* James Umen,2* \dagger Aurora Nedelcu, 3 Armin Hallmann,4 Stephen M. Miller,5 Ichiro Nishii,6 Patrick Ferris, 2 Alan Kuo, 1 Therese Mitros, 7

Lillian K. Fritz-Laylin, 7 Uffe Hellsten,1 Jarrod Chapman, 1 Oleg Simakov, 8 Stefan A. Rensing, 9 Astrid Terry,1 Jasmyn Pangilinan,1 Vladimir Kapitonov, 10 Jerzy Jurka, 10 Asaf Salamov, 1 Harris Shapiro,1 Jeremy Schmutz,11 Jane Grimwood,11 Erika Lindquist,1 Susan Lucas,1 Igor V. Grigoriev,1 Rüdiger Schmitt,12 David Kirk,13 Daniel S. Rokhsar1,7†

* these authors contributed equally
\dagger corresponding author

1 U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
2 The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
3 University of New Brunswick, Dept. of Biology, Fredericton, New Brunswick, Canada
4 Department of Cell. and Devel. Biol. of Plants, University of Bielefeld, Germany

5 Dept. Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

6 Biological Sciences, Nara Women’s University, Nara-shi, Nara Pref. 630-8506, Japan.
7 Center for Integrative Genomics, Dept. of Mol. and Cell Biol., UC Berkeley, Berkeley, CA 94720, USA.

8 EMBL, Heidelberg, Germany.
9 Faculty of Biology, University of Freiburg, Germany.
10 Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.

11 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
12 Genetics, University of Regensburg, D-93040 Regensburg, Germany.
13 Dept. Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.

Abstract

The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the $\mathbf{1 3 8} \mathbf{~ M b}$ genome of V. carteri and compared its $\sim \mathbf{1 4 , 5 0 0}$ predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

Multicellularity and cellular differentiation evolved independently in diverse lineages including green and red algae, animals, fungi, plants, Amoebozoa and Chromalveolates (1)(Fig. S1A), yet the genetic changes that underlie these transitions remain poorly understood. The volvocine algae, which include both unicellular and multicellular species with various levels of morphological and developmental complexity, are an appealing model for studying such an evolutionary transition (2) (Fig. S2, supporting online text). Multicellular Volvox carteri (hereafter Volvox) has two cell types: $\sim 2,000$ small, biflagellate somatic cells that are embedded in the surface of a transparent sphere of glycoprotein-rich extracellular matrix (ECM), and ~ 16 large reproductive cells (termed gonidia) that lie just below the somatic cell monolayer (Fig. 1A, S1B,S2) (2). The somatic cells resemble those of Chlamydomonas reinhardtii, a model unicellular volvocine alga (3) (Fig. 1B). The evolutionary changes that produced Volvox from a Chlamydomonas-like unicellular ancestor have clear parallels in other multicellular lineages and took place more recently than in land plants and animals (4).

To begin to characterize the genomic features associated with volvocine multicellularity, we sequenced the 138 million base pair (Mbp) Volvox genome to $\sim 11.1 \times$ redundant coverage (~ 2.9 million reads) using a whole genome shotgun strategy (5). The assembly captures over 98% of known mRNA sequences and ESTs (5). The Volvox nuclear genome is $19.6 \mathrm{Mbp}(17 \%)$ larger than the Chlamydomonas genome (Table 1), primarily due to increased repeat content in Volvox relative to Chlamydomonas (5) (Table S1). While a few repeat families show bursts of expansion in the Volvox and Chlamydomonas lineages, most have changed gradually (Fig. S4) (5).

The sequence divergence between Volvox and Chlamydomonas is comparable to that between human and chicken (which diverged $\sim 310 \mathrm{MYA}$), human and frog ($\sim 350 \mathrm{MYA}$) and Arabidopsis and poplar ($\sim 110 \mathrm{MYA}$) based on the frequency of synonymous transversions at
fourfold degenerate sites (4DTV distance) (5, 6)(Table S2). Although conserved synteny between Volvox and Chlamydomonas genomes is evident, the volvocine algae show higher rates of genomic rearrangement than vertebrates and eudicots (Tables S2-4, Fig. S5)

We predicted 14,566 proteins (at 14,520 loci) in Volvox (5) (Tables 1, S5-7). Volvox and Chlamydomonas have similar numbers of genes (Table 1)(3) and more than most unicells (Table S8). Genes in both algae are intron-rich (Table 1), like those of most multicellular organisms (Table S8), and introns are longer on average in Volvox (Fig. S6) (5). Novel protein domains and/or combinations are proposed to have contributed to multicellularity in metazoans (7) and such expansions are evident in both the plant and animal lineages (Fig. 2A, Table S9). In contrast, the numbers of domains and combinations in Volvox are very similar to those in Chlamydomonas and other unicellular species (Fig. 2A, Table S9) (5). microRNAs have been identified in Chlamydomonas, most of which have no homologs in Volvox (8, 9). It is likely that Volvox also possesses miRNAs, but these have yet to be characterized.

To investigate protein evolution in Chlamydomonas and Volvox we constructed families containing both orthologs and paralogs from twenty diverse species including animals, plants, fungi, protists and bacteria (5) (Table S10). We assigned 9,311 (64\%) Volvox and 9,189 (63\%) Chlamydomonas protein sequences to 7,780 families (Fig. 2B), of which $80 \%(5,423)$ contain one ortholog from each alga (Table S11). 1,835 families (26\%) contain orthologs only from Volvox and Chlamydomonas (i.e. are volvocine-specific) (Fig 2B). Only 32 EST-supported Volvox gene models lack detectable homologs in Chlamydomonas or other species (5) (Tables S12, S13), suggesting that limited protein-coding innovation occurred in the Volvox lineage.

Gene family expansion or contraction is an important source of adaptive variation (10, 11). In a density plot of proteins per family in Volvox versus Chlamydomonas (Fig. 2C), most points lie
on or near the diagonal, showing that the majority of families have approximately equal membership from each alga. Exceptions include the gametolysin/VMP (Volvox matrix metalloprotease) family whose substrates are cell wall/ECM proteins (12) (Fig. 2C 'g'), and a family containing leucine rich repeat proteins (LRRs) whose functions in green algae have not been well-defined (Fig. 2C, 'L'). Conversely, families containing core histones and ankyrin repeats have more members in Chlamydomonas (Fig. 2C, 'a'). In contrast, the subset of 1,835 volvocine-algaespecific families (5) shows a strikingly different distribution (Fig. 2D) with a significant bias towards more members in Volvox ($\mathrm{p}=2 \mathrm{E}-120$, heterogeneity chi-squared test). These families include ECM proteins such as VMPs and pherophorins that both participate in ECM biogenesis (12)), and an algal subgroup of cysteine proteases (Fig. 2D, 'c').

Although some of the genomic differences between Volvox and Chlamydomonas may reflect environmental adaptations that have not been extensively investigated (5), we expected many of the changes to be in protein families associated with the large differences in organismal complexity. Therefore, we investigated in detail pathways related to key developmental processes that are either novel or qualitatively different in Volvox relative to Chlamydomonas (2). These include: protein secretion and membrane trafficking (potentially involved in cytoplasmic bridge formation via incomplete cytokinesis $(13,14)$), cytoskeleton (potentially involved in Volvoxspecific basal body rotation, inversion and asymmetric cell division (15)), ECM and cell wall proteins (involved in ECM expansion, sexual differentiation and morphogenesis) (12) (Fig. S2) and cell cycle regulation (potentially involved in cell division patterning or asymmetric cell division). The components of these pathways are nearly identical in Volvox and Chlamydomonas (Table S14). Transcription-related proteins also have highly similar repertoires in the two species (Fig. S7, Table

S15) (5). Thus, with three noteworthy exceptions (see below), we found little difference in the complements of proteins that might underlie developmental complexity in Volvox.

The ECM comprises up to 99% of an adult Volvox spheroid and is larger and more structurally complex than the ancestral Chlamydomonas-like cell wall from which it was derived (12) (Fig. S3; supporting online text). These changes are mirrored by at least two dramatic changes in ECM protein family size in Volvox compared to Chlamydomonas, pherophorins (49 versus 27 members) and VMPs (42 versus 8 members)(Fig. 3A, S8, Table S14). We found expanded Volvoxspecific clades of pherophorins and VMPs as well as species-specific duplications in both algae (Fig. 3A,S8). Besides their role in ECM structure, Volvox pherophorins have evolved into a diffusible sex-inducer glycoprotein that has replaced nitrogen deprivation (used in Chlamydomonas and other volvocine algae) as the trigger for sexual differentiation (16). The co-option of an ECM protein for sexual signaling shows parallels in the sexual agglutinins of Chlamydomonas that are themselves related to cell wall/ECM proteins (17). The Volvox ECM proteins pherophorins and VMPs diversified and then presumably were recruited to novel developmental roles in Volvox, thus representing a source of adaptive plasticity specific to the volvocine algae.

The Volvox and Chlamydomonas cell cycles are fundamentally similar, but Volvox has evolved additional regulation of timing, number, and types of cell divisions (symmetric and asymmetric) among different subsets of embryonic cells (2). The division program of males and females is further modified during sexual development to produce sperm and eggs (18). While most of the core cell cycle proteins of Volvox and Chlamydomonas have a 1:1 orthology relationship, the cyclin D family is notably larger in Volvox. In addition to three pairs of D-cyclins that have Chlamydomonas orthologs (cycd2, cycd3, cycd4), Volvox has four D1-related cyclins (cycd1.1cycd1.4) whereas Chlamydomonas has only one (Fig. 3B). D cyclins bind cyclin-dependent kinases
and target them to phosphorylate retinoblastoma (RB)-related proteins (19). In Chlamydomonas the RB-related protein MAT3 controls the timing and extent of cell division (20), so it is plausible that the expanded D type cyclin family in Volvox plays a role in regulating its cell division program during development-

The genetic changes that brought about the evolution of multicellular life from unicellular progenitors remain obscure (2, 21, 22). For example, many proteins associated with animal multicellularity, such as cadherins and receptor tyrosine kinases (23) evolved in the unicellular ancestor of animals and are specific to its descendants. Other critical components of metazoan multicellularity, including key transcription factors and signalling molecules, are absent from the closest unicellular relatives of animals (22), suggesting that animal multicellularity also involved protein-coding innovation. Our comparisons of Volvox and Chlamydomonas indicate that with the interesting exceptions of pherophorins, VMPs and D cyclins, the developmental innovations in the Volvox lineage did not involve major changes in the ancestral protein repertoire. This is consistent with previous observations indicating co-option of ancestral genes into new developmental processes without changes in copy number or function (24-20). However, our analyses do suggest that expansion of lineage-specific proteins occurred preferentially in Volvox and provided a key source of developmental innovation and adaptation. Further studies of gene regulation (27) and the role of non-coding RNAs (28) will be enabled by the Volvox genome sequence, allowing a more complete understanding of the transformation from a cellularly complex Chlamydomonas-like ancestor to a morphologically and developmentally complex "fierce roller."

References and Notes

1. S. L. Baldauf, Science 300, 1703 (2003).
2. D. L. Kirk, Bioessays 27, 299 (2005).
3. S. S. Merchant et al., Science 318, 245 (2007).
4. M. D. Herron, J. D. Hackett, F. O. Aylward, R. E. Michod, Proc Natl Acad Sci U S A 106, 3254 (2009).
5. Materials and methods are available as supporting material on Science Online.
6. R. R. Reisz, J. Muller, Trends Genet 20, 237 (2004).
7. N. H. Putnam et al., Science 317, 86 (2007).
8. T. Zhao et al., Genes Dev 21, 1190 (2007).
9. A. Molnar, F. Schwach, D. J. Studholme, E. C. Thuenemann, D. C. Baulcombe, Nature 447, 1126 (2007).
10. O. Lespinet, Y. I. Wolf, E. V. Koonin, L. Aravind, Genome Res 12, 1048 (2002).
11. J. Zhang, Trends Ecol Evol 18, 292 (2003).
12. A. Hallmann, Int Rev Cytol 227, 131 (2003).
13. K. J. Green, D. L. Kirk, J Cell Biol 91, 743 (1981).
14. K. J. Green, G. I. Viamontes, D. L. Kirk, J Cell Biol 91, 756 (1981).
15. D. Kirk, Volvox: Molecular-genetic origins of multicellularity and cellular differentiation. (Cambridge University Press, Cambridge, 1998).
16. A. Hallmann, Plant J 45, 292 (2006).
17. P. J. Ferris et al., Plant Cell 17, 597 (2005).
18. P. Ferris et al., Science 328, 351 (2010).
19. L. De Veylder, T. Beeckman, D. Inze, Nat Rev Mol Cell Biol 8, 655 (2007).
20. S. C. Fang, C. de los Reyes, J. G. Umen, PLoS Genet 2, e167 (2006).
21. L. W. Buss, The Evolution of Individuality. (Princeton University Press, Princeton, 2006), pp. 224.
22. N. King et al., Nature 451, 783 (2008).
23. N. King, C. T. Hittinger, S. B. Carroll, Science 301, 361 (2003).
24. S. M. Miller, D. L. Kirk, Development 126, 649 (1999).
25. I. Nishii, S. Ogihara, D. L. Kirk, Cell 113, 743 (2003).
26. Q. Cheng, R. Fowler, L. W. Tam, L. Edwards, S. M. Miller, Dev Genes Evol 213, 328 (2003).
27. S. B. Carroll, Cell 134, 25 (2008).
28. K. J. Peterson, M. R. Dietrich, M. A. McPeek, Bioessays 31, 736 (2009).
29. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC0205CH11231 and by NIH R01 GM078376 and Coypu Foundation to JU; Natural Sciences and Engineering Research Council - Canadato AN; NSF IBN-0444896 and IBN- 0744719 to SMM, NIH 5 P41 LM006252 to VK. We thank M. Cipriano for Pfam annotations; E. Hom, E. Harris, and M. Stanke for Augustus u9 gene models and R. Howson for artwork. Sequence data from this study are deposited at DDBJ/EMBL/GenBank under the project accession ACJH00000000.

Supporting Online Material
Supporting Materials and Methods S1A-S1R
Supporting Text S2A-D
Figs S1-S8
Tables S1-16

Figure legends

Fig. 1: Volvox and Chlamydomonas. (A) Adult Volvox comprise $\sim 2,000$ Chlamydomonas-like somatic cells (s) and ~ 16 large germ-line gonidia (g) (bar = $200 \mu \mathrm{~m}$)(see also Fig. S1B); (B) Chlamydomonas cell showing apical flagella (f), chloroplast (c) and eyespot (e) $(\mathrm{bar}=10 \mu \mathrm{~m})$. Microscopy described in (5).

Fig. 2: Comparisons of protein domains and families. (A) Total number of Pfam domains in the multicellular (green) and unicellular (blue) species: Chlamydomonas (cre); Volvox carteri (vca); Arabidopsis thaliana (ath); Thalassiosira pseudonana (tps); Phaeodactylum tricornutum (ptr); Monosiga brevicollis (mbr); Nematostella vectensis (nve); and Homo sapiens (hsa). (B) The numbers of protein families from Volvox, Chlamydomonas and other species (5) are shown in a Venn diagram. The number of Volvox and Chlamydomonas members per protein family are plotted for all families (C) and for the volvocine-algae-specific subset (D). In these density plots, the position of each square represents the number of family members in Volvox (x axis) and Chlamydomonas (y axis), with coloring to indicate the total number of families plotted at each position. The Pfam domains for outlier families are abbreviated as: a Ankyrin repeat, c cysteine protease, g gametolysin, h histone, L Leucine rich repeat.

Fig 3: Diversification of key protein families with known or predicted roles in Volvox development. Unrooted maximum likelihood trees (5) are shown for pherophorins (A) and cyclins (B). Protein sequences are from Volvox (Vc; green) and Chlamydomonas (Cr; blue). Incomplete gene models were not included ; Volvox-specific clades with poorly-resolved branches are collapsed into triangles; bootstrap support $\geq 50 \%$ is indicated on branches. Red asterisks indicate pherophorins whose mRNA levels are up-regulated by sex inducer (16).

Table 1: Comparison of the Volvox and Chlamydomonas genomes.

Group	Species	Genome Size (Mbp)	Number of chromosomes	\%GC	Protein coding loci	$\%$ coding	\% genes with introns	Introns per gene	Median intron length (bp)
CHLOROPHYTA	Volvox carteri	138	14*	56	14,520	18.0	92	7.05	358
	Chlamydomonas reinhardtii	118	17	64	14,516	16.3	91	7.4	174

* see (15)

Fig. 1

Fig. 2

Fig. 3

A

B

Supplemental Online Material for the Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

Table of Contents

1) MATERIALS AND METHODS 3
A. Nuclear genome sequencing and assembly 3
B. Comparison and annotation of repeats in Volvox and Chlamydomonas 4
B1. Overview of repeat analysis 4
B2. Analysis of satellite repeats in Volvox and Chlamydomonas 5
B3. Generation annotation and filtering of RepeatScout Libraries5
C. Analysis of repeat expansions. 7
D. Calculation of corrected 4-fold degenerate transversion (4DTV) distances 7
E1. Synteny and genomic rearrangements 8
E2. Definition of C-score 9
F. Loss of synteny through genomic rearrangements 9
G. cDNA library construction and EST sequencing 10
H. Prediction of gene models 11
I. Volvox has longer introns than Chlamydomonas 13
J. Pfam protein domain assignments 13
K. Pfam domain combinations unique to Chlamydomonodales 13
L. Pfam domain combinations specific to Volvox or specific to Chlamydomonas or both. 14
M. Construction of protein families 14
N. Volvox-specific genes 15
O. Chlamydomonas-specific genes 16
P. Volvocine algae-specific protein families 16
Q. Analysis of Transcription Associated Proteins 17
R. Annotation of genes associated with developmental biological processes in Volvox 19
Membrane trafficking proteins 19
Cell cycle proteins 19
Cytoskeletal proteins 20
Cell wall and extracellular matrix proteins 20
Phylogenetic analyses 20
2) SUPPORTING TEXT 22
A. Volvocine algae as a model for the evolution of multicellularity 22
B. The Volvox vegetative life cycle 23
C. The Volvox sexual cycle 23
D. The Volvox ECM 23
E. Environmental adaptations of Volvox and Chlamydomonas 24
3) SUPPLEMENTAL FIGURES 25
Fig. S1: Volvox phylogeny, morphology and development. 25
Fig. S2: The algae of the volvocine lineage 27
Fig. S3: Schematic diagram of ECM in Volvox 29
Fig. S4: Histograms of Jukes-Cantor distance between repeats 31
Fig. S5: Synteny dotplot between Volvox and Chlamydomonas genomes 33
Fig. S6: Intron lengths in Volvox and Chlamydomonas 35
Fig. S7: Scatter plot of family size in transcription associated proteins. 37
Fig. S8: Diversification of Volvox matrix metalloprotease family 39
4) SUPPLEMENTAL TABLES 41
Table S1: Summary of repeats in Volvox and Chlamydomonas genomes 41
Table S2: Genome evolution in green algae, animals, plants and diatoms 42
Table S3: Counts of filtered genes that were used to build syntenic blocks. 42
Table S4: Counts of Volvox and Chlamydomonas genes making up syntenic blocks with selected numbers ofintervening genes allowed for real and scrambled gene order.42
Table S5: Counts of gene models predicted in Volvox by initial automated annotation, classified by method 43
Table S6. EST and homology evidence supporting initial Volvox and Chlamydomonas gene models 44
Table S7: Gene structure statistics of Volvox and Chlamydomonas gene models. 44
Table S8: Comparison of Volvox genome statistics to selected other genomes 45
Table S9: Pfam domain counts and combinations in Volvox and Chlamydomonas compared to selected otherspecies.46
Table S10: Complete predicted protein sets used to build protein families 46
Table S11: Protein family size distribution in Volvox and Chlamydomonas 48
Table S12: Volvox-specific gene models with EST evidence 48
Table S13: Chlamydomonas-specific gene models with EST support 49
Table S14: Proteins involved in processes that are associated with increased developmental complexity in Volvox relative to Chlamydomonas 49
Table S15: Predicted numbers of TAPs 55
Table S16: Summary of RepeatScout libraries 58
5) SUPPLEMENTAL REFERENCES 59

1) MATERIALS AND METHODS

A. Nuclear genome sequencing and assembly

We prepared high quality genomic DNA from a vegetative culture of female Volvox carterif. nagariensis, Eve (S 1), a subclone of $\mathrm{HK} 10(\mathrm{~S} 2,3)$, which is a standard female lab strain of Volvox carteri (hereafter Volvox) that was originally isolated in 1965 by Richard Starr from a pond associated with a rice paddy near Kobe, Japan. The genomic DNA was prepared by a standard protocol involving CsCl gradient banding to separate it from RNAs (S1), but it could not be separated from chloroplast and mitochondrial DNA. The genome sequences of these two organelles have already been determined (S4).

Paired-end whole-genome shotgun (WGS) sequencing (S5) of three libraries with insert sizes of 2-3 kb (AOBN); 6-8 kb (ABSY) and 35-40 kb (AOBO) generated $1,430,397,1,269,395$ and 230,112 reads respectively, covering 1,361, 1,310 and 235 Mb raw sequence respectively, together totaling $2,906 \mathrm{Mb}$ of raw sequence. The reads were screened for vector sequence using Cross_match (S6) and trimmed for vector and low quality sequences. Reads shorter than 100 bases after trimming were excluded from the assembly leaving 1,343,753 2-3 kb insert reads ($94 \%, 836 \mathrm{Mb}$ of sequence); 1,207,057 6-8 kb insert reads ($95 \% 760 \mathrm{Mb}$) and 224,372 35-4o kb insert reads (98%, 113 Mb).

The filtered and trimmed read sequences were assembled using JAZZ 1.0.3 (S7). A word size of 14 was used for seeding alignments between reads. The 'unhashability threshold' parameter was set to 40 , meaning that words present over 40 times in the data set were not used to seed alignments. A mismatch penalty of -30.0 was used that generally allows assembly of sequences that are more than $\sim 97 \%$ identical.

The initial assembly contained 147.4 Mb of scaffold sequence, of which 12.5 Mb (8.5\%) was gaps. There were 7,391 scaffolds, with a scaffold N50/L50 of 35/1.41 Mb , and a contig N50/L50 of 795/42.7 kb Scaffolds $<1 \mathrm{~kb}$ long as well as redundant scaffolds (those scaffolds shorter than 5 kb long with $>80 \%$ identity to another scaffold whose length was greater than 5 kb) were removed from the assembly. This left 141.5 Mb of scaffold sequence, of which 12.4 Mb (8.8\%) was gaps. The filtered assembly contained 1,327 scaffolds, with a scaffold N50/L50 of $33 / 1.50 \mathrm{Mb}$, and a contig N50/L50 of $729 / 45.4 \mathrm{~kb}$. The sequence depth derived from the assembly was 11.1 ± 0.2.

To estimate the completeness of the assembly with respect to transcribed genes, 72 Volvox mRNAs that were known prior to the genome project were downloaded from the nr database at NCBI (S8) and aligned to the assembly using BLAT (S9) with default parameters. All 72 mRNAs had hits to the assembly with $>97 \%$ identity over most of their lengths.

As a second test of completeness relative to transcribed loci, we considered 129,528 dideoxy-sequenced ESTs that had $\leq 40 \%$ of unmasked sequence after removal of low complexity and simple repeat regions (see below). Of these ESTs, 127,056 (98.0\%) aligned to the assembly with BLAT (S9) (>90\% identity over > 50% of their length). The 2,472 filtered ESTs that did not align to the genome were examined further. Approximately $1 / 3$ (857) had hits with BLASTX (S10) (Evalue $<1 \mathrm{e}-10$) to known proteins from the UniProt database (S11). These included 408 ESTs (48\% of unmapped ESTs with hits) with best hits to proteins annotated as "ribosomal protein" and 93 ESTs (11% of unmapped ESTs with hits) so annotated as related to chlorophyll binding. We do not rule out the possibility that these and other unmapped ESTs are derived from loci not included in the genome assembly because they are embedded in repetitive sequence. Overall, we can conservatively estimate that the completeness of the Volvox genome assembly with respect to transcribed loci captured by ESTs is likely better than 98\%.

B. Comparison and annotation of repeats in Volvox and Chlamydomonas

B1. Overview of repeat analysis

The Volvox genome assembly is $19,621,448 \mathrm{bp}$ longer than that of Chlamydomonas reinhardtii (hereafter Chlamydomonas) (Table 1). We compared the repeat content of the two genomes to determine the contribution made by repeats to the difference in genome size. To do this, we built and annotated a custom repeat library for each algal genome and ran RepeatMasker (S12) on each assembly with the appropriate custom repeat library and the'gccalc' option (Table S1).

The custom Volvox repeat library was assembled from five component libraries:
i) 45 Volvox carteri-specific and 72 Chlamydomonas-specific repeat sequences from RepBase (20080611 update) (S13);
ii) 147 sequences that had been generated by analysis of the Chlamydomonas genome (S14);
iii) 33 repeat elements from the Volvox assembly that were generated using the same approach as had been used previously for the Chlamydomonas genome (S14). (We estimate the curated set from the Volvox genome is $20-25 \%$ complete);
iv) a library of 1,704 satellite repeat sequences (with lengths ranging from 20 to $1,162 \mathrm{bp}$) built by searching the whole genome shotgun reads for over-represented 16 -mers and assembling overlapping 16-mers (as described below), and
v) 1,511 repeats identified by RepeatScout (S15) (Table S16). The repeat sets were annotated and filtered leaving 1,449 sequences (as described below).

In parallel, a custom Chlamydomonas repeat library was assembled from:
i) Volvox- and Chlamydomonas-specific repeat sequences from RepBase (20080611 update) (S13));
ii) 147 Chlamydomonas repeat sequences identified as in ii) above;
iii) 33 Volvox repeats identified as in iii) above;
iv) a library of 100 satellite sequences (with lengths $25,92,107,181$ or 184 bp) (see below) and
v) 1,057 repeats identified by RepeatScout. After filtering the library contained 1,013 repeats (Table S16 and see below).

B2. Analysis of satellite repeats in Volvox and Chlamydomonas

A library of all 16 nt long sequences (16 -mers) that occur at least 500 times was generated from approximately half the WGS reads (all reads from the AOBN library). 16 -mers that overlap each other were assembled into longer sequences by repeatedly looking for 15 nt overlaps and extending by a single nucleotide overhang until either no further extensions were possible (in which case extensions in the opposite direction were explored) or the sequence looped back on itself. Both the sequences that could not be extended further and the circular sequences were added to the library of putative satellite sequences as long as they were at least 20 nt long.

B3. Generation annotation and filtering of RepeatScout Libraries

Generation of libraries of repeats with RepeatScout (S15) and their subsequent filtering and annotation was accomplished as follows. First, RepeatScout was run on the Volvox assembly. This produced a library of 1,511 repeat sequences (Table S16). Next RepeatScout was run on the Chlamydomonas assembly, generating 1,057 sequences. The repeat sequences in these two libraries were classified as described in the set of rules below.

To annotate and filter repeat sequences in the RepeatScout libraries generated from the Volvox and Chlamydomonas genomes, we first masked the Volvox genome with the 1,511 sequence RepeatScout library using RepeatMasker(S12) with the '-gccalc' option. We then counted the number of times each repeat sequence hit the genome. We also counted the percentage of repeat instances in the genome that also overlapped gene models and ESTs by two criteria: $\geq 200 \mathrm{nt}$ length and $\geq 80 \%$ of the length of the repeat. Sequences in the repeat library were
assigned Pfam domains by running HMMPFAM, part of the HMMER package (S16), on the library with an E-value cutoff of 1E-5. Repeat sequences with Pfam domain assignments were sub-divided into those with a TE-associated Pfam (PFoo075, PFoo078, PFoo665, PFo3372, PF03732, PFo7727, PFo1527) and those with non-TE associated Pfam domains (all other Pfam domains). We also ran tRNAScan-SE (S17) on the repeat sequences.

To assign TE classes to sequences in the Volvox RepeatScout library that have homology to known TE classes, we ran RepeatMasker on the Volvox RepeatScout library with each of two repeat libraries (as these two libraries contain partially overlapping sequences): in the first run, the custom library of repeats that we had curated manually (see above) was used to mask the RepeatScout repeat library; in the second run, RepeatMasker was run with the option '-species chlamydomonodales' to use the volvocine algae repeat sequences in the 20080611 release of RepBase Update (S13). In cases where the longest repeat that masked a RepeatScout library sequence was in the class 'Simple_repeat' or 'Low_complexity', this annotation was ignored as RepeatMasker has dedicated algorithms for finding repeats of these two classes that are based solely on sequence composition, rather than homology to known TEs. In cases where the longest annotation in the RepeatScout repeat sequence was not a Simple_repeat or non Low_complexity-repeat, the repeat sequence was assigned the class 'Complex_repeat'. If the RepBase Update library found a complex repeat and our curated library did not, then the complex repeat that was found was used for the classification.

For all the sequences still without a 'Complex_repeat' classification, in which either RepeatMasker detected a tRNA in the sequence or tRNAScan-SE predicted a tRNA with score > 22 and the length of the repeat < 120 nt , the repeat was given the classification 'tRNA'.

Sequences were classified as 'Satellite' or 'rRNA' if RepeatMasker assigned either of these classifications to a sequence.

Sequences that still had not been given a classification and also had Pfam domains were classified 'non_TE_PFAM' if the Pfam domain is not associated with TEs or 'TE_associated_PFAM' if the Pfam domain is associated with TEs (see above).

122 repeat sequence that still had not been classified met all of the following three criteria and we therefore reasoned that these repeat may be novel and classified them as 'Putative_novel' (Table S16). The three criteria were:
i) either there were no instances of the repeat sequence in the genome that overlapped an EST by at least 200 bp or no instances in the genome that overlapped an EST by at least 80% of the length of the repeat sequence;
ii) either there were no instances of the repeat sequence in the genome that overlapped a gene model by at least 200 bp or no instances in the genome that overlapped a gene model by at least 80% of the length of the repeat sequence; and
iii) the length of the repeat was over 500 nt .

The remaining 911 sequences were classified 'Unknown'. To see if these unknown repeats could be classified further, InterProScan (S18) was run on the 911 sequences to assign Pfam domains using specific gathering thresholds for each HMM. This is more accurate than using a single E-value cutoff for all domains. Hits were manually inspected and 62 sequences with Pfams that are not associated with TEs were deleted from the RepeatScout library. This left 1,449 (Table S16).

A parallel analysis in Chlamydomonas starting with a RepeatScout library of 1,057 sequences produced a filtered and annotated set of 1,103 sequences (Table S16)

C. Analysis of repeat expansions

The Volvox genome was masked with RepeatMasker using the RepeatScout library (see above), which was annotated as described above. All repeat sequences in the Volvox genome longer than 500 nt and belonging to a known class of TE were collected and their Jukes-Cantor distance, corrected for multiple substitutions ($\mathrm{K}=-3 / 4 \times \ln (1-4 \mathrm{i} / 3)$, where i is percent nucleotide dissimilarity from the repeat consensus) from the RepeatScout consensus repeat sequence were plotted in a histogram (Fig. S4A-C). A parallel analysis was performed for Chlamydomonas (Fig. S4D-E).

Bursts of TE expansion appear as secondary peaks in the histogram to the right of the descending curve that starts at a Jukes-Cantor distance of zero. No secondary peaks are apparent in the total repeat histograms for Volvox or Chlamydomonas (Fig S4A,4D), but they are present in plots for specific TE families such as Gypsy and Copia in Chlamydomonas (Figs. S4E,4F).

D. Calculation of corrected 4-fold degenerate transversion (4DTV) distances

The frequency of transversions at the third position of four-fold degenerate codons (4DTV) can be used to measure the rate of neutral evolution as these transversions do not change the amino acid that is encoded. We calculated 4DTV distances between orthologous protein sequences in pairs of genomes using a previously described method (S19). Briefly, we identified a set of mutual best BLASTP hits (MBH) between all predicted proteins in each pair of species and used them to align coding regions. The number of transversions at conserved
four-fold degenerate sites divided by the total number of four-fold degenerate sites gives the 4DTV frequency. This raw calculation is then corrected for multiple substitutions using the formula 4 DTV C $=-1 / 2 \ln \left(1-2 \times 4 \mathrm{DTV}_{\mathrm{U}}\right)$, where $4 \mathrm{DTV}_{\mathrm{C}}$ is the corrected 4 DTV and 4 DTV U the uncorrected 4 DTV .

E1. Synteny and genomic rearrangements

Synteny dotplots for Volvox-Chlamydomonas and human-chicken are shown in Fig. S5 and reveal the extent of conserved gene order.

We used the updated Volvox v2 assembly (http://genome.jgipsf.org/Volca1/Volca1.download.ftp.html) and the Chlamydomonas v4 assembly (http://www.phytozome.net/chlamy) for the following analysis of synteny between Volvox and Chlamydomonas. The Chlamydomonas v4 assembly has 17 chromosomes and 61 minor scaffolds; the Volvox v2 assembly has 434 scaffolds (compared to 1,265 for v 1).

At the time of analysis, neither the Volvox v2 assembly nor the Chlamydomonas v 4 assembly had been annotated with gene model annotations so we mapped Volvox v1 and Chlamydomonas v3.1 transcripts to their respective updated assemblies using blat (S9) with default parameters and taking the best hit to the assembly. After mapping and filtering (see below), 4,349 of the 4,804 (91\%) Volvox gene models were on scaffolds containing 25 or more genes, permitting useful synteny analysis.

Syntenic segments were constructed between pairs of genomes as follows. We only considered the longest gene model at any locus because the commonest problem with gene prediction for a genome with incomplete EST coverage is truncation.

1) Gene models whose translations did not have a WU-BLASTP (S10) hit to the other proteome (E -value $<1 \mathrm{E}-10$) were removed.
2) Tandem expansions were collapsed: if two or more neighboring genes encode similar proteins (WU-BLASTP E-value < 1E-10) and had no more than 2 intervening genes, only the longest gene model of the two or more similar, neighboring, genes was retained as a representative of the duplication.
3) Gene models whose best hit to the other proteome had a C-score (see below) less than 0.8 were removed.
4) Gene models with more than 10 hits (E-value $<1 \mathrm{E}-10$) to the other proteome were removed because large gene families can seed false syntenic blocks in many different genomic locations.
5) The remaining gene models were ordered along chromosomes (or scaffolds in the case of the Volvox assembly). The chromosomes/scaffolds in Fig. S5 were arranged in decreasing order of the numbers of gene models contained. In multiple iterations, the gene models were used to seed syntenic blocks (defined as containing two or more genes with conserved gene order) in each genome with different numbers of intervening genes in the range zero to ten being picked in each iteration (data from zero to four intervening genes are shown in Table S 4).
6) As the number of intervening genes allowed between two genes in a syntenic block increases, so does the chance of finding such blocks by chance. In order to establish a "null" model for each condition the order of the filtered genes was scrambled and the number of syntenic blocks formed with different number of intervening genes was determined (Table S4).

The number of genes remaining in syntenic blocks after this filtering process is shown in Table S3. A comparison of the synteny dotplots of Volvox vs. Chlamydomonas (Fig. S5A) and human vs. chicken (Fig. S5B) shows that the human-chicken genes tend to lie on longer (up to whole chromosome arm) syntenic segments than in the two algae. Furthermore, the syntenic blocks that are present in the algae are broken up by micro-inversions to a greater extent. Overall, there has been less overall rearrangement in vertebrates (Fig. S5B) than in Volvox-Chlamydomonas Fig. S5A.

Where whole genome duplication (WGD) has taken place, it is visible in plots of this type as repeated diagonal stretches in a row or column. There is no evidence of WGD in Volvox, Chlamydomonas, or their common ancestor (Fig. S5), unlike yeasts, higher plants and metazoans (S2O) where WGDs have played a significant role in genome evolution.

E2. Definition of C-score

We used the metric C-score as a measure of similarity between a protein from one predicted proteome and the proteins from a second predicted proteome. The C-score for protein X in one species and protein Y in a second species (C_{XY}) is defined as the BLAST score of X against Y divided by the best BLAST score for protein X against all of the proteins in species Y. The C-score can be used to detect the presence of both orthologs (defined as mutual best BLAST hits) as well as potential paralogs. If X and Y are mutual best hits, then C_{XY} and C_{YX} will both equal 1. Recent paralogs of X will have a C-score of slightly less than 1 relative to Y; similarly, recent paralogs of Y will have a C-score of slightly less than 1 relative to X .

F. Loss of synteny through genomic rearrangements

To quantify the amount of rearrangement on the gene by gene scale, we used the following metric: we calculated the fraction of all pairs of neighboring syntenic
orthologs from each set of two genomes (ascertained in the previous section) that were not adjacent to each other in the other genome in the pair, reasoning that this would have been caused by a rearrangement since the two genomes diverged (Table S2).

G. cDNA library construction and EST sequencing

We extracted total RNA from Volvox carterif. nagariensis female strains Eve and Eve10 and male strain 69-1b. For Eve and 69-1b, we extracted RNA from samples $1.5,10,24,48$ hours after sexual-induction and pooled the samples. For Eve10, we extracted RNA from 2-4 and 32-128 cell stages and pooled the samples. Poly A+ RNA was isolated from total RNA using the Absolutely mRNA Purification kit and manufacturer's instructions (Stratagene, La Jolla, CA). cDNA synthesis and cloning used a modified procedure based on the "SuperScript plasmid system with Gateway technology for cDNA synthesis and cloning" (Invitrogen, Carlsbad, CA). 1-2 $\mu \mathrm{g}$ of poly A+ RNA, SuperScript II reverse transcriptase (Invitrogen) and oligo dT-NotI primer
(5 ' GACTAGTTCTAGATCGCGAGCGGCCGCCCT ${ }_{15} \mathrm{VN} 3$ ' , where V is any nucleotide except T and N is any nucleotide) were used to synthesize first strand cDNA. Second strand synthesis was performed with E. coli DNA polymerase I, DNA ligase, and RNaseH followed by end repair using T4 DNA polymerase. An adaptor including the overhanging pre-cut SalI site at the 5 ' end (5 ' TCGACCCACGCGTCCG 3 ' and 5 ' CGGACGCGTGGG 3') was ligated to the cDNA that was then digested with NotI (New England BioLabs, Ipswich, MA), and size selected by gel electrophoresis (1.1\% agarose). The cDNA inserts were ligated into the SalI and NotI digested vector pCMVsport6 (Invitrogen). The ligation was transformed into ElectroMAX T1 DH10B cells (Invitrogen). In total, five cDNA libraries were constructed.

Library quality was assessed in two ways. First we ensured that the number of clones without inserts was less than 10% by randomly selecting 24 clones and PCR amplifying the cDNA inserts with the primers M13-F
(5’ GTAAAACGACGGCCAGT 3') and M13-R (5 ' AGGAAACAGCTATGACCAT 3'). Second, a test production run of a single 384-well plate was undertaken (as described below) and sequence quality, diversity and length were investigated. For the main production run, cells from each library were plated onto agarose plates (254 mm plates from Teknova, Hollister, CA) at a density of approximately 1,000 per plate. Plates were grown at $37^{\circ} \mathrm{C}$ for 18 hours then individual colonies were picked and each used to inoculate a well containing LB media with appropriate antibiotic in a 384 well plate (Nunc, Rochester, NY). Clones were grown in selective media in 384 well plates and plasmid DNA for sequencing was produced by rolling circle amplification (S21) (Templiphi, GE Healthcare, Piscataway, NJ). Inserts were sequenced from both ends using primers complimentary to the flanking vector sequence with the following sequences: Fwd: 5’ ATTTAGGTGACACTATAGAA and Rev: 5’ TAATACGACTCACTATAGGG)
and Big Dye terminator chemistry on ABI 3730 DNA Analyzers (ABI, Foster City, CA). We generated pairs of reads (from both 5 ' and 3 ' ends of each cDNA clone), generating 42,240, 51,456 and 72,192 reads from Eve, Eve10 and 69-1b respectively, giving a grand total of 165,888 ESTs (Expressed Sequence Tags).

All 165,888 ESTs were processed through the JGI EST pipeline. Phred (S6, 22) was used to call bases and generate quality scores. Vector, linker, adapter, polyA/T, and other artifact sequences were removed using the Cross_match software $(S 6,22)$ and an internally-developed short pattern finder. Low quality regions of the read were identified using internally-developed software, masking regions with a combined quality score of less than 15 . The longest high quality region of each read was considered to be the sequence of the EST. ESTs shorter than 150 bp as well as those containing common contaminating sequences from e.g. E. coli, common vectors, and sequencing standards were removed from the data set. After these filtering steps, 132,038 ESTs were left (33,407, 37,354, and 61,277 from Eve, Eve10 and 69-1b respectively. An additional 2,510 ESTs were not included in the analysis of assembly completeness (see above) due to their having $>40 \%$ low complexity and repetitive sequence as determined by mdust (S23) run with the '-v 20' setting. This left 129,528 ESTs for consideration in analysis of assembly completeness.

Clustering the EST sequences involved first generating all-by-all pairwise alignments between the 132,0338 filtered reads. ESTs sharing an alignment of at least 98% identity were then assigned to the same cluster. In addition, ESTs not sharing alignments but derived from opposite ends of the same cDNA clone were assigned to the same cluster. Clusters of ESTs were assembled into consensus sequences, contigs or singlets using CAP3 (S24). A total of 16,569 assembled consensus sequences were generated.

H. Prediction of gene models

The 1,265 Volvox v. 1 scaffolds were masked using RepeatMasker (http://www.repeatmasker.org/) and a library of 1,015 transposable elements (TEs), including manually curated Volvox and Chlamydomonas TEs (http://www.girinst.org/).

After masking, the JGI annotation pipeline was used to generate gene models. This pipeline employs gene prediction programs that are based on a variety of methods, as follows:

1) ab initio methods (FGENESH; http://www.softberry.com/);
2) homology-based methods (FGENESH+ and Genewise; http://www.ebi.ac.uk/Wise2/) seeded by Blastx alignments against sequences of nr, IPI (http://www.ebi.ac.uk/IPI/), and JGI Chlamydomonas annotation v3 (http://www.jgi.doe.gov/chlamy/);
3) cDNA-based methods (EST_map; http://www.softberry.com/) seeded by 13,722 EST cluster consensus sequences derived from 87,866 Volvox ESTs. At the time the JGI annotation pipeline was run, 87,593 seqeuences had already been sequenced by the JGI (see above). The remaining 273 EST sequences were downloaded from the nr database at GenBank (S8);
4) synteny-based methods (FGENESH-2; http://www.softberry.com/) using the JGI Chlamydomonas assembly and annotation
(http://www.jgi.doe.gov/chlamy/).
Genewise models were completed using scaffold data to find start and stop codons. EST clusters were used to extend, verify, and complete the predicted gene models. The resulting set of models was then filtered for the "best" models, based on criteria of completeness, length, EST support, and homology support, to produce a non-redundant representative set. This representative set was subject to protein functional analysis and manual curation, as described in the next sections.

The function of the translations of the predicted gene models was predicted using TMHMM (http://www.cbs.dtu.dk/services/TMHMM/), InterProScan (http://www.ebi.ac.uk/interpro/), and hardware-accelerated double-affine Smith-Waterman alignments (http://www.timelogic.com/decypher_sw.html) against SwissProt (http://www.expasy.org/sprot/), KEGG (http://www.genome.jp/kegg/), and KOG (http://www.ncbi.nlm.nih.gov/COG/). Finally, KEGG hits were used to map EC numbers (http://www.expasy.org/enzyme/), and Interpro and SwissProt hits were used to map GO terms (http://www.geneontology.org/).

We initially predicted 15,544 gene models in the genome of Volvox. 23% of these gene models were seeded by alignments of proteins in nr against the Volvox genome, while 67% were predicted ab initio and 10% were seeded using synteny with Chlamydomonas reinhardtii gene models (Table S5). Complete models with start and stop codons comprise 85% of the 15,544 initial gene predictions; 34% are consistent with ESTs and 70\% align with proteins in Swissprot (http://www.expasy.org/sprot/) (Table S6).

The average Volvox gene is 5.27 kb long, the average gene density is 113 genes/ Mb , and the average transcript has 7.78 exons (Table S 7). The average protein length is 558 aa. We predicted that 4% of the proteins possess at least one transmembrane domain, 30% possess a signal peptide, and 2% possess both. We assigned 1,757 distinct GO terms to 4,566 proteins (30\%), and we assigned 3,062 proteins (20\%) to KEGG pathways, totaling 625 distinct EC numbers. We assigned 9,889 proteins (64\%) to 3,145 distinct KOGs.

Knowing that the repeat masking was incomplete, as a last step, we filtered the initial set of 15,544 gene models, removing all those that endcoded proteins with homology to transposable elements or were assigned TE-associated Pfam domains by InterProScan (S18). 1,103 protein models were removed from the set of 15,544 , leaving 14,520 (Table S6).

Web-based editing tools available at the JGI genome portal were used to examine and improve predicted gene structures, and to record textual annotations and protein function. As of December 15, 2009, 1,628 genes (11\%) have been manually curated. All annotations, both automatic and manual, may be viewed at a dedicated JGI portal (http://www.jgi.doe.gov/volvox/).

I. Volvox has longer introns than Chlamydomonas

The median intron size in Volvox is about twice that of Chlamydomonas (358 bp vs. 174 bp; Table 1, Fig. S6). (Mean length and S.D. in Volvox are 491 bp and 749 respectively, and 371 bp and 527 in Chlamydomonas respectively (Table S7)) This differential accounts for 10.5 Mb of the longer assembly in Volvox. 3.5Mb of the Volvox introns are made up of repeats, the composition of which reflects the overall repeat class composition of the genome (see above). The length of introns at conserved positions between orthologous exons in Volvox vs. Chlamydomonas divide into three subpopulations (Fig. S6), each of which has a mean that is significantly different from the others (Welch's t-test, $\mathrm{p}<2.2 \mathrm{E}-16$). The majority (93\%) orthologous introns are >100 bp long and show no size correlation between the two species (Pearson's $\mathrm{r}^{2}=0.0044$), though the mean length in Volvox (440 bp) is significantly longer than in Chlamydomonas (313 bp) (Welch's t-test, $\mathrm{p}<2.2 \mathrm{E}-16$). A small (3%) subset of introns are short ($\sim 60-100$ bp) in both species lie near the diagonal (although only weakly correlated, Pearson's correlation coefficient $=0.39$) suggesting the existence of a common yet unknown selective mechanism. The third small subset of Volvox introns (4\%) are around 60-100 bp long but have an uncorrelated length in Chlamydomonas (Pearson's $r^{2}=-0.0096$) and appear as a horizontal distribution across the bottom of the plot.

J. Pfam protein domain assignments

To assign Pfam domains to proteins in a predicted proteome, we made a set of the longest protein sequence at each locus and ran the HMMPFAM module within InterProScan (S18) with Pfam v20 on these sequences. This algorithm assigns Pfam domains based on the gathering threshold specific to each HMM rather than using the same E-value for every domain.

K. Pfam domain combinations unique to Chlamydomonodales

The last common ancestor of Volvox and Chlamydomonas is represented by the clade Chlamydomonodales (taxonomy ID 3042) in the NCBI taxonomy (S8). To compare the protein domains found in species inside this clade to those found
outside, we took our Pfam annotations in Volvox and Chlamydomonas (see above) and added all Pfam domain annotations in Uniprot (ftp://ftp.pir.georgetown.edu/databases/iproclass/; release date 9/3/o8) from all other species that are descended from the Chlamydomondales node.

To date, no protein domains unique to the Chlamydomondales have been deposited in the Pfam database. 2,650 domains are found in species within and outside the Chlamydomonodales while 7,690 are only found in species outside this group.

L. Pfam domain combinations specific to Volvox or specific to Chlamydomonas or both

We counted the number of different pairwise domain combinations in various species (Table S9), considering only unique pairs of protein domain types, regardless of how many times any domain occurs in a protein. In a search for Pfam domain combinations that are present in the volvocine algae (the clade represented by descendants of the last common ancestor of Volvox and Chlamydomonas), but not in other species, we found only a single domain combination in Volvox or Chlamydomonas and not other species in uniprot (ftp://ftp.pir.georgetown.edu/databases/iproclass/; release date 9/3/o8). After this analysis, the JGI released a genome portal for another species in Chlorophyta, Chlorella sp. NC64A (http://genome.jgipsf.org/ChlNC64A_1/ChlNC64A_1.home.html). The domain combination is found in Chlorella too. From this, we conclude that there are no volvocine algaespecific domain combinations.

We also found 199 domain combinations that are present in Volvox but not Chlamydomonas or other species and, conversely, 122 that are present in Chlamydomonas but not Volvox or other species. The majority of the gene models in these two sets have no EST support across their lengths and are on short, poorly assembled scaffolds that often include only one WGS read's length of sequence at each end and an internal gap several kb in length, suggesting that the gene models may span more than one genetic locus. This suggests there are few Pfam domain combinations found in one alga and not the other.

M. Construction of protein families

We compared the reference set of 14,520 predicted proteins from Volvox and 14,516 predicted proteins from Chlamydomonas to each other and to proteins from twenty other organisms spread across the entire tree of life, including animals, plants, fungi, amoebae, chromalveolates and bacteria (Table S10). [In addition to these species, the recently-published predicted proteomes of two Micromonas species (S25) were used in the analysis of protein families specific to the Volvocine algae (see below)]. Protein comparisons were performed using WU-BLASTP 2.0MP-WashU [04-May-2006] (S10) with filtering from low-
complexity sequences and simple repeats and Smith-Waterman post-processing. (To determine the cutoff for protein family construction, we manually examined BLASTP alignments at different E-values. We found that a cutoff of E-value $<1 \mathrm{E}$ 10 included proteins with distinct regions of homology compared to E-values \geq $1 \mathrm{E}-10$ that had scattered regions of similarity in the alignments that appeared to be present by chance.) Mutual best hits (E -value $<1 \mathrm{E}-10$) between a protein in Volvox and a protein in any of the 21 other species including Chlamydomonas (as well as mutual best hits between a protein in Chlamydomonas and a protein in any of the 21 other species including Volvox) were used to establish orthology. Paralogs were added according to empirically-determined criteria that include inparalogs. In a final step, proteins that were not in families were pledged to a family if their best hit (E -value $<1 \mathrm{E}-20$, coverage $>50 \%$) was in a family, another good hit (E-value $<1 \mathrm{E}-20$, coverage $>50 \%$) was in the same family, and the family had 50 or fewer proteins in it before pledging. This E-value and coverage cutoffs were determined by chosing a few dozen families and comparing the range of E-values and coverages of proteins within families to those of proteins that had similarity, yet had not been included in the protein familes, making them candidates for pledging.

There are 7,612 mutual best hit relationships between Volvox and Chlamydomonas proteins. These, together with 168 mutual best hits between another species and either Volvox or Chlamydomonas form the backbone of 7,78o families (with the latter 168 families lacking proteins from either Volvox or Chlamydomonas). After addition of paralogs 7,293 contain 9,311 (64\%) Volvox proteins and 7,233 contain 9,189 (64\%) Chlamydomonas proteins. We found that 3,683 families (containing 3,809 Volvox proteins) are also conserved in moss (5,765 proteins) and 3,204 families (containing 3,309 Volvox proteins) are also conserved in Arabidopsis (4,141 proteins).

Notably, 10 of these families have a single member in Chlamydomonas and more than five members in Volvox whereas only two families have a single Volvox member and more than five Chlamydomonas members (Table S11). There are only 80 families (1.1\%) with over 5 proteins from Chlamydomonas and/or Volvox. 295 families contain a single Volvox protein and 2-5 Chlamydomonas proteins, while 282 families contain a single Chlamydomonas protein and 2-5 Volvox proteins.

N. Volvox-specific genes

We were interested in identifying how many novel protein coding genes had appeared in the Volvox lineage since divergence from Chlamydomonas, since these proteins could encode Volvox-specific functions. From a starting set of 5,209 Volvox proteins that had not been placed into a protein family (see above), we identified 142 putative potentially Volvox-specific proteins based on the following three criteria: these proteins had no TBLASTN hit to the

Chlamydomonas genome assembly (E-value < 1E-10); at least one splice site supported by EST evidence and no BLASTP hit (E-value $<1 \mathrm{E}-10$) to any protein from any of the proteomes we had used to make the protein families (Table S10 and see above).

We found 84 of the 142 proteins had BLASTP homology (E-value $<1 \mathrm{E}-10$) to at least one other protein in the set, suggesting they are part of a protein family; the remaining 58 were singletons (Table S12). The quality of each of the 142 putative Volvox-specific gene models was inspected manually on the JGI genome browser at http://www.jgi.doe.gov/volvox. Many of these models were short and/or based solely on ab initio gene modelling and/or had no EST evidence or conflicted with EST evidence. Nonetheless, 25 gene models were completely consistent with EST evidence, and a further 11 gene models have partial EST support (Table S12). When we searched these 36 gene models against the protein sequences from the two Micromonas genomes (S25) using BLASTP (E-value < 1E-5) we found no detectable homology.

Intriguingly, none of the known Volvox developmental regulators was in this set of Volvox-specific proteins. Our analyses suggest that there are a small number of Volvox-specific proteins, despite substantial differences in developmental complexity between Volvox and Chlamydomonas.

O. Chlamydomonas-specific genes

In a parallel analysis to that performed for Volvox-specific genes, we identified 757 putative Chlamydomonas-specific genes from a starting set of 5,327 proteins that we were not able to place in a protein family. The larger number of Chlamydomonas-specific proteins compared to the number of Volvox-specific proteins may in part be due to deeper EST coverage in Chlamydomonas.

We found 238 of the 757 proteins had BLASTP homology (E-value $<1 \mathrm{E}-10$) to at least one other protein in the set, suggesting they belong to a Chlamydomonasspecific protein family; the remaining 519 were singletons (Table S13). We chose a random sample of 50 putative Chlamydomonas-specific gene models from each of the above classes and examined the gene models manually at http://genome.jgi-psf.org/Chlre3/Chlre3.home.html and hence estimate that 32% and 60% of the models respectively are completely consistent with EST data (Table S13). We extrapolate this analysis to suggest that Chlamydomonas may have up to 400 novel proteins.

P. Volvocine algae-specific protein families

We investigated three classes of proteins that are only found in volvocine algae (defined as the group of organisms that includes Volvox and Chlamydomonas, as well as other species, such as Gonium, Pandorina, Eudorina and Pleodorina for which genome sequences are not yet available (Fig. S2) and see below). We
discuss the results in this section and the next two sections, where presence or absence of a protein was based on the protein families described above. The first class of proteins is those found in both Volvox and Chlamydomonas but not other organisms. The second class consists of proteins that are only found in Volvox, and the third class consists of proteins that are only found in Chlamydomonas. These last two classes of proteins (together with various changes in regulation) might be associated with specific developmental and ecological adaptations in each species (see below).

We found 1,835 volvocine-specific protein families out of the total of 7,780 (Fig. 2B). To perform this analysis, we included data from the genomes of two Micromonas species that have been published recently (S25). These prasinophytes are substantially less reduced than the related Ostreococcus species that we had used in constructing protein families. We re-examined the 2,018 volvocine-specific families from our protein families in the light of this new data. We compared all Volvox and Chlamydomonas proteins in these families to all proteins in the predicted proteomes of Micromonas pusilla CCMP1545 v2.0 (http://genome.jgi-psf.org/MicpuC2/MicpuC2.home.html) and Micromonas pusilla sp. Rcc299 v3.0 (http://genome.jgipsf.org/MicpuN3/MicpuN3.home.html) using WU-BLASTP (S1o) (E-value < 1E10). We removed 183 families containing a Volvox and/or Chlamydomonas protein that had a mutual best blast hit to a Micromonas protein. This left 1,835 volvocine-specific families. (Fig. 2B,D). Although these families have not be extensively characterized, they are expected to function in processes that are specific to volvocine algae and indeed, they include families of extracellular matrix proteins that participate in formation of the cell wall and ECM (Fig. 3A, S8).

Q. Analysis of Transcription Associated Proteins

Transcription associated proteins (TAPs) include transcription factors (TFs, proteins that bind to cis-regulatory elements enhancing or repressing gene transcription) and transcriptional regulators (TRs, proteins with indirect regulatory functions, such as the assembly of the RNA polymerase II complex, functioning as scaffold proteins in enhancer/repressor complexes or controlling chromatin structure by modifying histones or the DNA methylation).

To identify the TAPs in Volvox and Chlamydomonas, we combined three sets of TAP classification rules for plants, PlantTFDB (S26), PlnTFDB (S27) and PlanTAPDB (S28), and expanded them to yield a set of classification rules for 111 families. Conflicts between the initial three sources were manually evaluated and resolved based on an analysis of the scientific literature. The resulting set was then expanded by adding recently defined families or subfamilies from published sources. The rule set for each family consists of at least one entry defining a "should" rule, i.e. a mandatory domain for that particular family. Additional
entries may define further "should" or "should not" (forbidden) domains. All domains relevant for classifying the TAPs were represented by a full length, global (termed "ls") HMM. If available, the HMMs were retrieved directly from the 'PFAM_ls' database (S29). For the remaining domains, HMMs were custommade using multiple sequence alignments (MSAs) to identify the conserved domain(s) of interest. The MSAs used for creating the custom HMMs were downloaded from PlnTFDB (S30). For domains not represented in this database, MSAs were created as follows. BLAST searches with a protein query containing the respective domain yielded homologous hits defined by having at least 30% sequence identity with the query over a minimum length of 80 amino acids. Those hits were aligned using MAFFT (S31) and manually curated using Jalview (S32). The conserved domain of interest was extracted and the HMM calculated with HMMER 2.0 (http://hmmer.janelia.org/) using 'hmmbuild' with the default parameters to generate ls HMMs and subsequently 'hmmcalibrate' with the option '--seed o' which sets the random starting seed to a constant value and hence obtains reproducible results during the calibration process.

Gathering cutoff (GA) values were defined for each custom HMM. The GA was set as the lowest score of a domain-containing protein (true positive) after a 'hmmpfam' search (using an E-value cutoff of $1 \mathrm{E}-5$) against the full proteome sets of several different species and considering the alignments of all hits. In order to avoid sampling bias, only fully sequenced genomes were used in this study. For each organism, the complete set of proteins derived by conceptual translation of the nuclear gene models (using the filtered/selected model per locus) was combined with the proteins encoded by the respective mitochondrial and plastid genome, if available. All proteins can be unambiguously identified via their fasta id. We used a unique five letter code for each organism followed by "mt" (mitochondrial) or "pt" (plastid), if applicable, and the accession number of the gene model.

Using all proteins of the investigated organisms as query, 'hmmpfam' searches were performed against an HMM library containing all 129 domains necessary for the TAP classification. The GA was used during this procedure to minimize the number of false positive hits, with GA values either provided with the Pfam HMMs or defined as described above. The classification rules were subsequently applied to all proteins for which at least one significant domain hit was found. In cases where the domain composition of a protein matched more than one classification rule, the 'should' rule with the highest score determined the family into which the protein was categorized.

Highly similar domains which are often found in the same or overlapping regions of a protein were treated in similar fashion, i.e., the domain with the lowest Evalue/highest score was used for the subsequent classification. This procedure was necessary for four sets of domains, namely i) Myb_DNA-binding and G2like_Domain, ii) NF-YB, NF-YC and CCAAT-Dr1_Domain, iii) PHD and Alfin-
like and iv) GATA and zf-Dof. In addition, a Boolean OR rule was applied to three families. In these cases one out of two domains was found to be necessary and sufficient for a protein to be classified into the corresponding family. This rule was applied to the bZIP, HD-Zip and GARP_ARR-B families. Whenever the presence of a combination of domains led to more than one possible family classification, TF was favored over TR or PT (putative TAPs). This situation was encountered in 14 cases.

In Volvox, the proportion of all proteins that are transcription factors is 347/14,520; in Chlamydomonas it is 297/14,516 (Table S15). This proportion is not significantly higher ($\mathrm{p}=0.02831$, one-tailed Fisher Exact test) in Volvox compared to Chlamydomonas. A scatter plot of the number of Volvox vs. Chlamydomonas proteins in each TAP family (Fig. S7) shows that most families lie on or near the diagonal, with the larger families showing slight overrepresentation of Volvox proteins.

R. Annotation of genes associated with developmental biological processes in Volvox

Membrane trafficking proteins

We started with a set of SNARE and Rab GTPase proteins from Chlamydomonas (S14, 33) and searched for appropriate gene models in homologous regions in the Volvox genome using TBLASTN (E-value < 10). Reciprocal searches were conducted to identify the mutual best hit pairs between the two species. The NCBI nr protein database (S8) was also queried with each protein from Volvox to identify the best hit in another species such as human, Arabidopsis and yeast (S34) which were then used as the query protein in searches against the Volvox and Chlamydomonas genomes. Finally, to assign a family name to each protein, we performed phylogenetic analysis for Rab proteins (aligning proteins and building 1,000 bootstrap neighbor-joining trees using CLUSTAL X 1.82 (S35)) and Syp proteins (aligning proteins with CLUSTAL X 1.82 (S35) and MUSCLE (S36), and building 100 boostrap maximum parsimony trees with PAUP* 4.0 beta 10 (S37)) using Volvox and Chlamydomonas proteins and Arabidopsis and human homologs found by BLAST searches at the nr database at GenBank (S8).

Cell cycle proteins

We started with a set of cell cycle proteins from Chlamydomonas (S38) and searched for homologs in Volvox using BLASTP and TBLASTN (E-value < 10). Reciprocal searches were conducted to identify mutual best hit pairs between the two species. The NCBI nr protein database (S8) was also queried with each predicted cell cycle protein from Volvox and Chlamydomonas to identify the best hit in another species, which was then used as the query protein in searches against the Volvox and Chlamydomonas genomes and predicted proteomes. This process was iterated until all significant BLAST hits between cell cycle proteins
and gene models in Chlamydomonas and Volvox had been identified. For each cell cycle gene model identified in Volvox, flanking genes were used to identify synteny with the putative orthologous model in Chlamydomonas. In all cases the synteny was in agreement with orthology assignments based on mutual best hits. In addition, an identical approach was used to identify Volvox and Chlamydomonas orthologs, this time starting with all Volvox proteins with PFAM or KOG domain assignments specific to cell cycle regulation.

Cytoskeletal proteins

We searched the GenBank nr database (S8) for members of known cytoskeletal protein families (S39), and used sequences identified from Arabidopsis (or Drosophila when Arabidopsis hits were not found) as queries in TBLASTN searches (E-value < 0.01) against the Volvox and Chlamydomonas genome assemblies at the Volvox or Chlamydomonas genome portal at the JGI. We assumed proteins without a hit were not encoded in the algal genome. The best gene model from the hit results was chosen, based on E-value, EST evidence and homology to the other algal genome and generally gave best hit E-values < 1E-7 when queried back against GenBank by BLASTP. Each protein model obtained in this way was next used as query in a second TBLASTN (E-value $<1 \mathrm{E}-5$) against both algal genomes to identify additional homologs. This process was repeated until all members of the family were identified. Orthology between Volvox and Chlamydomonas proteins was inferred when the candidates were mutual best hits in TBLASTN searches and the Vista track at the JGI browser showed significant conservation at the DNA level.

Cell wall and extracellular matrix proteins

We started with a set of known extracellular proteins/ECM proteins /cell wall proteins from Volvox (S40, 41).

We made TBLASTN searches (E-value $<1 \mathrm{E}-7$) with the protein sequences against both, the Volvox and Chlamydomonas genomes. All hits were searched reciprocally against the other algal genome, also using TBLASTN.

Whenever TBLASTN hits corresponded to an existing gene model, the model was used, or the model was edited or a new model was generated using the JGI portal.

Phylogenetic analyses

The following describes the phylogenetic analyses used to generate the trees in Fig. 3. Homologous protein sequences were aligned with MUSCLE (S36). Poorlyaligning end regions were trimmed and the sequences were realigned. The process was repeated until no further improvements could be made. Positions with gaps were removed prior to construction of phylogenies. ProtTest (S42) was used to select the best model of protein evolution for each set of proteins. Maximum likelihood trees were constructed using PhyML 3.0 (S43, 44) under
the following parameters: 100 bootstrap replicates; four-category gamma distribution; proportion of variable sites estimated from the data.

2) SUPPORTING TEXT

A. Volvocine algae as a model for the evolution of multicellularity

In addition to its strengths as a developmental-genetic model, Volvox, together with its relatives in the "volvocine lineage" (Fig. S2), provides an unrivalled opportunity to explore the details of a pathway by which multicellular organisms with differentiated cell types evolved from a unicellular ancestor - one of the most complex and interesting steps in the evolution of higher organisms (S45). Formation of a multicellular body of predictable shape and size has usually required the invention of novel morphogenetic mechanisms, while differentiation of two or more distinct cell types within such a body has required elaboration of novel spatial patterns of gene expression. This is likely true in Volvox too. Multicellularity has evolved not just once but repeatedly and independently in a highly diverse array of taxa (S46-48). However, in most cases the transition to multicellularity has occurred so long ago (more than 500 MYA in many cases (S47, 49, 50) that most details of the molecular genetic changes leading to multicellularity have diverged so much they can no longer be studied.

It has long been suggested, however, that the volvocine algae provide an interesting exception to the preceding generalization. The volvocine lineage comprises several genera of green flagellates that can be arranged in a conceptual series according to increasing complexity (Fig. S2) -Chlamydomonas, Gonium, Pandorina, Eudorina, Pleodorina, Volvox - within which there are progressive increases in cell number, size of adult organisms, volume of ECM per cell, and the tendency to produce sterile, terminally differentiated somatic cells. Recent molecular-phylogenetic analyses not only indicate that these algae constitute a coherent, monophyletic group that began its radiation within the last ~ 200 MYA (S_{51}) (S52), but also that the sequence indicated above serves as a reasonable first approximation of the historical sequence in which members of the group evolved (S53). Furthermore the allure of volvocine algae as an evolutionary model system is significantly enhanced by the finding that the kind of germ-soma division of labor that has traditionally earned an alga membership in the genus Volvox has arisen independently on at least four separate branches of the volvocine family tree (S54)

Molecular-genetic studies of Volvox embryogenesis have already indicated that different aspects of the evolution of Volvox from a Chlamydomonas-like ancestor have involved qualitatively different amounts of genetic change. For example, the $g l s A$ gene (whose product is required for the asymmetric divisions that set apart the germ and somatic cell lineages of Volvox embryos) (S55) obviously was adopted for this novel function with no significant changes, because the orthologous GAR1 gene of Chlamydomonas is fully capable of substituting for it (S56), even though there is no known asymmetric division in the Chlamydomonas life cycle. Similarly, the inv A gene (whose product is a kinesin
that the Volvox embryo requires for inversion at the end of embryogenesis) can be replaced by its Chlamydomonas ortholog, IAR1 (S57), indicating that this gene was also adopted to play an entirely novel morphogenetic role without any significant evolutionary modification of the protein that it encodes. In marked contrast, Chlamydomonas lacks any recognizable ortholog of the regA gene of Volvox that plays a central role in differentiation and programmed death of somatic cells (apparently by repressing chloroplast biogenesis; (S58) (S59)): regA encodes an entirely novel combination of pre-existing and new protein domains, of which only the sequence of the presumed DNA-binding domain can be traced back to its Chlamydomonad ancestry (S6o).

The attractiveness of Volvox as a developmental and evolutionary model is enhanced by the availability of several important molecular tools, including a variety of selectable markers (S61-64), a transposon-tagging system (S65, 66), a nuclear transformation system (S67), and a reporter gene (S68).

B. The Volvox vegetative life cycle

Volvox has two cell types: ~2,000 small, biflagellate Chlamydomonas-like somatic cells that are embedded in the surface of a transparent sphere of glycoprotein-rich extracellular matrix (ECM), and ~ 16 large reproductive cells (termed gonidia) that lie just below the somatic cell monolayer (S69).Each gonidium grows, divides and undergoes morphogenesis to produce the next generation (Fig. S1B). Asymmetric cell divisions during embryogenesis determine the germ-line precursors. Following cleavage, the embryo turns inside-out in a process called inversion; inverted juveniles expand by the deposition of ECM, and finally hatch out of the mother colony to complete the life cycle.

C. The Volvox sexual cycle

Sexual development in Volvox and Chlamydomonas is controlled by a large, multigenic, haploid mating locus ($M T$) that segregates as a single Mendelian trait. $M T$ occupies the same chromosome in both species, but is five times larger in Volvox relative to Chlamydomonas (S70). Both sexes of Volvox have the same vegetative developmental cycle that is described in the preceding section. However, in response to a diffusible sex inducer protein Volvox males and females undergo modified developmental programs to produce sperm packets and eggs, respectively (S71). This developmental response to sex inducer involves changes in the timing of asymmetric cell division, altered gametic gene expression (S72, 73), and male germ cell divisions into sperm packets.

D. The Volvox ECM

The Volvox ECM comprises up to 99% of the spheroid volume (reached in the adult shortly before release of daughter spheroids) and provides a highly organized substrate that compartmentalizes its interior space (Fig. S3). It is likely to be involved in intercellular signaling and nutrient transport (S4O).

Evolutionarily, the Volvox ECM can be understood as a massive elaboration of the cell wall of Chlamydomonas. In both organisms the cell wall and ECM are composed of hydroxyproline-rich glycoproteins (HRGPs) that form rod-like structures and which often have additional globular domains at each end (S74). In Volvox, individual pherophorin subtypes are associated with distinct regions of the ECM, and each subtype is likely to be involved in the assembly and/or specific function of these ECM subdomains (also referred to as ECM subzones) (S74).

E. Environmental adaptations of Volvox and Chlamydomonas

Volvox and Chlamydomonas are cosmopolitan species and occupy overlapping habitats (S75). Chlamydomonas can proliferate in more transient bodies of water than Volvox, thanks to its faster generation time and smaller size. While Chlamydomonas is often portrayed as a soil alga, it is usually collected from soil in the form of environmentally resistant and dormant zygospores which can travel long distances and last for years under unfavorable conditions (S75, 76). Thus, the places where Chlamydomonas is collected provide only a partial indication of the environment to which it was adapted and in which it proliferates. On the other hand, Volvox and other multicellular volvocine algae are generally collected as live specimens from permanent or semi-permanent bodies of water; but such collection sites are biased against transient and unreliable locations. Thus, the specific environmental adaptations that may have arisen in the two species have not been systematically examined.

3) SUPPLEMENTAL FIGURES

Fig. S1: Volvox phylogeny, morphology and development.

(A) The phylogenetic position of Volvox and Chlamydomonas (within Chlorophyceae, green) is shown in an unrooted schematic cladogram of the eukaryotic tree of life (Sfrom 47); open and filled triangles denote clades consisting of solely unicellular lineages, and clades comprising both unicellular and multicellular lineages, respectively. (B) The asexual life cycle of Volvox with photomicrographs, taken as described in (S66), of a newly-hatched adult (top left, bar $=200 \mu \mathrm{~m}$) and of an adult Volvox (lower right, bar $=500 \mu \mathrm{~m}$) as well as scanning electron micrographs of an embryo after the first asymmetric cell division at cleavage cycle 6 (top right inset) and of a post-cleavage embryo during inversion (middle right inset). Each micrograph is placed near its corresponding developmental stage in the schematic diagram.
Fig. SI

Fig. S2: The algae of the volvocine lineage

The volvocine algae comprise dozens of species that range in complexity from Chlamydomonas through colonial forms that have evolved different types of developmental traits. Photomicrographs of representative species from key genera are arranged along the top of the chart. The presence of the developmental traits listed along the left side is indicated in the grid by a ' X '. The photomicrographs were taken as described in (S66). Strains used are as follows: Chlamydomonas reinhardtii strain c-239+ (S77); Gonium pectorale strain kaneko3 (S78); Pandorina morum strain NIES-877; Eudorina elegans strain NIES-721; Pleodorina starii (female) (S79)

Developmental trait(s)	Chlamydomonas reinhardtii	Gonium pectorale	Pandorina morum	Eudorina elegans	Pleodorina starrii	
Unicellular	X					
Cell sheets Partial inversion		X				
Spherical colonies Full inversion Incomplete cytokinesis			X	X	X	X
Expansion of ECM				X	X	X
Anisogamy				X	X	X
Partial division of labor					X	
Complete division of labor Asymmetric cell division Bifurcated cell division program						X

$\tilde{\sim}$
io
io

Fig. S3: Schematic diagram of ECM in Volvox

In this schematic cross-section of a Volvox adult (redrawn from (S71, 75, 80) , the elaboration of the ECM into deep, cellular and boundary and flagellar zones is shown, with the three subzones of the cellular and boundary zones surrounding a single zoomed in somatic cell. Fibrous cellular zone 1 is attached to the somatic cell body plasmalemma, cellular zone 2 is relatively amorphous; fibrous cellular zone 3 forms compartments around the somatic cells. The boundary zone is continuous except where interrupted by flagella, the dense fibrous boundary zones 1 and 3 flank the tripartite boundary zone 2 . Deep zone 1 is an band of filaments and surrounds the amorphous deep zone 2 (S75).

$\underset{\text { in }}{\sim}$

Fig. S4: Histograms of Jukes-Cantor distance between repeats

Histograms plot the distribution of sequence divergence (as measured by JukesCantor distance) between repeats within Volvox (top row, A-C) and Chlamydomonas (bottom row, D-F). They show the distances between all repeats identified by Repeat Scout (A,D), Copia elements only (B,E) and Gypsy elements only (C,F).

あ
분

∞

X0＾／O＾

Ш

sеиошорイшеІЧЈ

Fig. S5: Synteny dotplot between Volvox and Chlamydomonas genomes

Conserved gene order plots for (A) Volvox-Chlamydomonas and (B) humanchicken, showing locations of syntenic orthologs (max 2 intervening genes, segment size 2 or more genes). Syntenic genes lie along the two axes. These are arbitrarily numbered as follows: syntenically orthologs are numbered along scaffolds (Volvox) or chromosomes (Chlamydomonas v4 assembly, human and chicken) from largest to smallest, arbitrarily starting at 1 for the x-axes and 100,000 for the y-axes. unmap, chicken scaffolds that have not been mapped to a chromosome.
Fig. S5
<
∞

خ

Fig. S6: Intron lengths in Volvox and Chlamydomonas

The length of introns at conserved positions between orthologous exons in Volvox vs. Chlamydomonas is shown in a scatter plot (see above). Three subpopulations are evident (boxes). The majority (93\%) orthologous introns are >100 nt long, longer in Volvox and show no size correlation between the two species. A small (3%) subset of introns are short ($\leq 100 \mathrm{nt}$) in both species and when plotted, lie near the diagonal meaning that they have similar sizes in the two species. Finally, a third small subset of Volvox introns (4\%) are around 60100 nt long but vary over a wide size range in Chlamydomonas and appear as a faint horizontal smear across the bottom of the plot.

Fig. S7: Scatter plot of family size in transcription associated proteins

 The number of Volvox proteins in a transcription-associated protein family is plotted against the number of Chlamydomonas proteins in the same family. The diagonal line marks the positions of families with equal numbers of proteins from each species. The names of families with more than five members from each species are indicated.

N

Fig. S8: Diversification of Volvox matrix metalloprotease family.

 Unrooted maximum likelihood tree of Volvox matrix metalloproteases. Protein sequences are from Volvox (Vc; green) and Chlamydomonas (Cr; blue). Incomplete gene models were not included ; Volvox-specific clades with poorlyresolved branches are collapsed into triangles; bootstrap support $\geq 50 \%$ is indicated on branches. Red asterisks indicate proteins whose mRNA levels are up-regulated by sex inducer.

4) SUPPLEMENTAL TABLES

Table S1: Summary of repeats in Volvox and Chlamydomonas genomes

The extent (and percentage in parentheses) of the Volvox and Chlamydomonas genomes that are masked by different classes of repeat family/subfamily and simple repeats are shown. Repeat masking was performed with RepeatMasker and the custom library that we had built for the genome.

Repeat family/subfamily	Volvox assembly	Chlamydomonas assembly
SINEs	298,781 (0.22\%)	125,738 (0.11\%)
LINEs	2,681,727 (1.95\%)	4,544,976 (3.84\%)
LTR elements	5,067,964 (3.68\%)	890,315 (0.75\%)
LTR/Copia	218,136	89,130
LTR/Gypsy	675,620	403,108
DNA elements	1,861,025 (1.35\%)	2,003,374 (1.69\%)
Jordan	152,065	0
Unclassified	18,267,323 (13.25\%)	7,206,766 (6.10\%)
Total Interspersed Repeats	28,176,820 (20.44\%)	14,771,169 (12.50\%)
Satellites	145,736 (0.11\%)	489,348 (0.41\%)
Simple Repeats	4,561,091 (3.31\%)	6,184,379 (5.23\%)
Low Complexity	1,246,389 (0.90\%)	1,799,865 (1.52\%)
Total non-Interspersed Repeats	5,953,216 (4.32\%)	8,473,592 (7.17\%)
Total Repeats	34,130,036 (24.76\%)	23,244,761 (19.66\%)

Table S2: Genome evolution in green algae, animals, plants and diatoms

We compare neutral nucleotide substitutions (4DTV), species divergence time, genome rearrangements and protein evolution (mutual best hits) for selected species pairs. N.D. not determined because at least three whole genome duplications since speciation prevented clear assignment of orthologs.

Species pair	Corrected 4DTV	Time since divergence (Myr)	Neighbor rearrangements $(\%)$	Median distance between rearrangements in genome $1 /$ genome 2 (kb)	Similarity between mutual best BLAST hits (\%)
Volvox/Chlamydomonas (green algae)	0.71	~ 220 $($ S51)	34	$6 / 6$	73.8
human/chicken (vertebrates)	0.57	~ 310 $($ S81)	15	$113 / 40$	75.9
human/frog (vertebrates)	0.80	~ 350 $(S 82)$	14	$83 / 49$	71.8
Arabidopsis/Populus (angiosperms)	0.68	~ 110 $(S 83)$	N.D.	N.D.	72.0
Thalassiosira/Phaeodactylum (diatoms)	1.94	~ 90 $(S 84)$	45	$2 / 2$	54.9

Table S3: Counts of filtered genes that were used to build syntenic blocks

The numbers of genes in the table correspond to syntenic orthologs after tandem duplicates and high-copy gene were removed.

Species	Filtered genes
Human	8,612
Chicken	8,159
Frog	8,158
Chlamydomonas	4,890
Volvox	4,804

Table S4: Counts of Volvox and Chlamydomonas genes making up syntenic blocks with selected numbers of intervening genes allowed for real and scrambled gene order
This table shows the number of syntenic orthologs that are part of syntenic blocks that were generated when a range of zero to four intervening genes were allowed between syntenic orthologs for both the real gene order, and randomized gene order.

Maximum no. intervening genes	Real gene order	Scrambled gene order
0	2,839	8
1	3,363	24
2	3,589	40
3	3,712	58
4	3,775	84

Table S5: Counts of gene models predicted in Volvox by initial automated annotation, classified by method

The number of gene models that were generated with the automated JGI gene annotation pipeline are shown partitioned into the different methods that generated them. The gene models shown here are the raw output before genes with homology to Transposable Elements were filtered.

Method used to generate gene model	Number of gene models
Based on homology to proteins in nr database at GenBank	$3,645(23 \%)$
Ab initio gene prediction	$10,217(67 \%)$
Based on EST cluster consensuses	$143(1 \%)$
Based on synteny with C. reinhardtii	$1,539(10 \%)$
Total initial models	$15,544(100 \%)$

Table S6. EST and homology evidence supporting initial Volvox and Chlamydomonas gene models

The numbers of gene models in the initial predictions that are complete from the start to the stop, have EST support or homology to a protein in Swissprot are shown. The models included in this table are those that were the output of the automated JGI annotation pipeline for Volvox and the frozen GeneCatalog (S14) that was submitted to GenBank (S8) (Accession ABCNoooooooo).

Evidence	Volvox	Chlamydomonas
Complete models	$13,134(85 \%)$	$8,919(58 \%)$
Models with EST alignment	$5,356(34 \%)$	$7,894(51 \%)$
Models with Swissprot alignment	$10,947(70 \%)$	$10,760(71 \%)$

Table S7: Gene structure statistics of Volvox and Chlamydomonas gene models
A variety of statistics are shown for the set of Volvox gene models after removing those with homology to Transposable Elements and the manually-curated set of Chlamydomonas gene models that were submitted to GenBank (S8) (Accession ABCNo1000000).

	Volvox	Chlamydomonas
Protein-coding loci	14,520	14,516
Mean gene span (nt)	5,269	4,375
Total length of spliced transcripts (nt)	$27,126,224$	$23,675,605$
Mean transcript length (nt)	1,833	1,631
Mean protein length (aa)	568	454
Mean exon length (nt)	194	232
Mean intron length (nt)	491	371
Mean no. exons	7.78	8.42

${ }^{1}$ Introns less than 20 nt long are ignored

* This is the set of gene models that was submitted to GenBank under the Accession ACJHoooooooo

Table S8: Comparison of Volvox genome statistics to selected other genomes.

Group	Species	Genome Size (Mb)	Number of chromo- somes	\%GC	Protein coding loci	$\%$ coding	\% genes with introns	Introns per gene	Median intron length (bp)
CHLOROPHYTA	Volvox carteri	138	14*	56	14,520	18.0	92	7.05	358
	Chlamydomonas reinhardtii	118	17	64	14,516	16.3	91	7.4	174
STREPTOPHYTA	Physcomitrella patens	480	27	34	35,938	17.9	86	3.9	205
	Arabidopsis thaliana	140.1	5	36	26,541	23.7	80	4.4	55
OPISTHOKONTA	Homo sapiens	2851	23	41	23,328	1.2	83	7.8	20,383
	Nematostella vectensis	450	15	40	27,273	6.0	68	4.3	290
	Monosiga brevicollis	42	N.A.	55	9,196	39.4	89	6.6	135
	Neurospora crassa	40	7	54	10,107	36.4	80	1.7	72
AMOEBOZOA	Dictyostelium discoideum	34	6	22	13,574	62.2	68	1.3	236
CHROMALVEOLATA	Thalassiosira pseudonana	34.5	24	47	11,390	49.4	60	1.5	57

* see (S75)
N.A. not available

Table S9: Pfam domain counts and combinations in Volvox and Chlamydomonas compared to selected other species

	Volvox	Chlamydomonas	Arabidopsis	Monosiga	sea anemone	human
Total number of domains in proteome	10,318	10,168	38,887	11,786	30,535	42,057
No. different PFAM domains	$2,43 \mathrm{I}$	2,354	3,028	2,232	3,078	3,832
No. different pairwise combinations	1,392	1,219	1,838	2,128	2,723	4,038
No. proteins with I domain	5,368	5,437	15,547	4,154	12,843	11,570
No. proteins with 2 domain types	989	880	3,639	1,157	2,456	3,543
No. proteins > 2 domain types	287	267	1,193	494	797	1,799

Table S10: Complete predicted protein sets used to build protein families

The genus and species, together with abbreviations used in e.g. Table S12 as well as their version and notes are shown for all proteomes used to make protein families (see above).

Species name	Abbreviation	Version and Notes
Cyanidioschyzon merolae 10D	Cme	release Apr 8, 2004; http://merolae.biol.s.u- tokyo.ac.jp/download
Synechocystis sp. PCC 6803	Syn	complete genome - 0..3573470 GenBank Accession NC_000911
Pseudomonas aeruginosa PA01	Pae	complete genome - 0..6264403 GenBank Accession NC_002516
Staphylococcus aureus subsp. aureus N315	Sau	complete genome - 0..2814816 GenBank Accession NC_002745
Dictyostelium discoideum	Ddi	dictyBase.org; Full Chromosomes made 10/05/2004; Primary Features made 7/11/2005
Tetrahymena thermophila SB210	Tth	Tetrahymena Genome Database (TIGR) Aug 2004
Phytophthora ramorum	Pra	JGI v.1 http://genome.jgi- psf.org/Phyra1_1/Phyra1_1.home.html
Phytophthora sojae	Pso	JGI v.1 http://genome.jgi- psf.org/sojae1/sojae1.home.htmlsojae1

Neurospora crassa	Ncr	http://fungal.genome.duke.edu, genome neurospora_crassa.20020212.nt.gz					
Prochlorococcus marinus str. MIT9313	Pma	2003 JGI/ORNL http://genome.jgi- psf.org/prom9/prom9.home.html					
Arabidopsis thaliana	Ath	TAIR6, updated 11.2005 from NCBI ftp://ftp.ncbi.nih.gov/genomes/Arabidopsis_thaliana					
Homo sapiens	Hsa	NCBI 36 from ensembl build 38	$	$	Caenorhabditis elegans	Cel	WS 150 from ensembl build 38
:---	:---	:---					
Ostreococcus tauri	Ota	JGI v2.0 http://genome.jgi- psf.org/Ostta4/Ostta4.home.html					
Ostreococcus Iucimarinus	(O. pacifica; Ostreococcus CCE9901) JGI v. 2.0 http://genome.jgi- psf.org/Ost9901_3/Ost9901_3.home.html						
Physcomitrel/a patens	Ppa	JGI v. 1 http://genome.jgi- psf.org/Phypa1_1/Phypa1_1.download.ftp.html					
Monosiga brevicollis	Mbr	JGI v. 1 http://genome.jgi- psf.org/Monbr1/Monbr1.home.html					
Thalassiosira pseudonana	Tps	JGI v. 3.0 http://genome.jgi- psf.org/Thaps3/Thaps3.home.html					
Naegleria gruberi	Ngr	JGI v.1 http://genome.jgi- psf.org/Naegr1/Naegr1.home.html					
Paramecium tetraurelia	Pte	peptides from macronuclear genome downloaded from Paramecium DB release date 28-MCH-2007					
Chlamydomonas reinhardtii	Cre	JGI v.3.1 freeze for GenBank submission 9/13/2007 from http://genome.jgi- psf.org/Chlre4/Chlre4.download.ftp.html					
JgI v1 freeze from http://genome.jgi-							
psf.org/Volca1/Volca1.download.ftp.html							

Table S11: Protein family size distribution in Volvox and Chlamydomonas

The number of protein families containing 1, 2-5 or more than 5 proteins from Chlamydomonas (columns across) and Volvox (rows down) are shown.

	Chlamydomonas proteins in family		
Volvox proteins in family	1	$2-5$	>5
1	5,423	295	2
$2-5$	282	669	13
>5	10	19	33

Table S12: Volvox-specific gene models with EST evidence
Presence of EST support and its quality is shown as counts of putative Volvox-specific genes that either have homology to another putative Volvox-specific gene (left column) or do not have such homology (right column), suggesting that these proteins might belong to Volvox-specific families, or might represent singleton Volvox-specific proteins respectively.

Does protein have a hit to another putative Volvox- specific protein?	yes	no
Full-length EST support	16	9
EST support over part of the gene model	11	0
Problem with EST support	57	47
Total	84	58

Table S13: Chlamydomonas-specific gene models with EST support

Presence of EST support and its quality is shown as fractions of a random sample of putative Chlamydomonas-specific genes that either have homology to another putative Chlamydomonas-specific gene (left column) or do not have such homology (right column), suggesting that these proteins might belong to Chlamydomonas-specific families, or might represent singleton Chlamydomonas-specific proteins respectively.

Does protein have a hit to another putative Chlamydomonas-specific protein?	Yes	No
Consistent EST support	32%	60%
EST probably supports gene model	30%	16%
Problem with EST support	38%	24%

Table S14: Proteins involved in processes that are associated with increased developmental complexity in Volvox relative to Chlamydomonas

In the table, the names given are gene symbols, with synonyms given after a forward slash. Symbols of paralogs/co-orthologs are separated by semi-colons. The JGI protein ID and defline are given in the next two columns. The following columns show information for Chlamydomonas (co-)orthologs. Where there is no gene symbol and protein ID in a column, a homolog could not be found. The ID of the protein family the proteins belong to is shown after the Chlamydomonas defline and is followed by abbreviations of all the species that have a member in that protein family. If the protein does not belong to a family, this columns shows 'unclustered'. The abbreviations used are as follows: Cme, Cyanidioschyzon merolae; Syn, Synechocystis sp.; Pae, Pseudomonas aeruginosa; Sau, Staphylococcus aureus; Ddi, Dictyostelium discoideum; Tth, Tetrahymena thermophila; Pra, Phytophthora ramorum; Pso, Phytophthora sojae; Ncr, Neurospora crassa; Pma, Prochlorococcus marinus; Ath, Arabidopsis thaliana; Hsa, Homo sapiens; Cel, Caenorhabditis elegans; Ota, Ostreococcus tauri; Olu, Ostreococcus lucimarinus; Ppa, Physcomitrella patens; Mbr, Monosiga brevicollis; Tps, Thalassiosira pseudonana; Ngr, Naegleria gruberi; Pte, Paramecium tetraurelia; Cre, Chlamydomonas reinhardtii; Vca, Volvox carteri.

TubB1 TubB2	7591077081	beta tubulin (tubB2)	TUB1 TUB2	129876129868	129876129868	Au9.Cre12.9542250; Au9.Cre12.9549550	beta tubulin 1 beta tubulin 2	6571720	Cme Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tps Nar Pte Cre Vca
	80553	Gamma tubulin	TUG1	188933	188933	Au9.Cre06.9299300	Gamma tubulin was TUG	6576302	Cme Ddi Tth Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
TubD	60395	Delta tubulin	UNI3	136082	136082	Au9.Cre03.9187350	delta tubulin	6572439	Tth Pra Hsa Ppa Mbr Nar Pte Cre Vca
TubH	116596	Eta tubulin	TUH1	154376	154376	Au9.Cre 12.9513450	Eta tubulin was TUH	6574884	Nar Cre Vca
TubE	56250	Epsilon tubulin	TUE1	188195	188195	Au9.Cre03.9172650	Epsilon tubulin was TUE	6574637	Tth Pra Pso Hsa Ppa Mbr Nar Pte Cre Vca
centrin CnrA	10984566997	putative centrin	VFL2/CEN1	159554	159554	Au9.Cre11.0468450		6577172	Tth Pra Pso Ath Hsa Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
KatA	82654	katanin catalytic subunit 60 kDa	KAT1	53314	53314	Au9.Cre 10.9427600	katanin catalytic subunit 60 kDa	6574921	Tth Pra Pso Ath Hsa Cel Ppa Mbr Nar Pte Cre Vca
KatB	76999	katanin p60 catalytic subunit	VPS4	98650	98650	Au9.Cre 10.9446400	katanin p60 catalytic subunit was KAT2	6572037	Tth Pra Pso Ath Hsa Ppa Mbr Tps Nar Pte Cre Vca
KatC	94919	microtubule severina protein katanin p80 subunit	PF15	80954	80954	Au9.Cre03.9160450		6573852	Pra Pso Ath Hsa Poa Mbr Nar Cre Vca
Map1	99065	microtubule associated protein (MAP) 1a						unclustered	unclustered
MorA	121331	microtubule organizing protein MorA	TOG1	175143	175143	Au9.Cre03.9149800	Microtubule associated protein	6572022	Cme Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Va
map65	120144	microtubule-associated protein MAP65	MAP65	193464	394462	Au9.Cre 14.9614050		6575396	Ath Ppa Cre vca
EB1	107043	microtubule plus-end binding protein EB1	EBP1/EB1	194209	194209	Au9.Cre 17.9741200	microtubule plus-end binding protein	6573189	Cme Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tps Nar Pte Cre Vca
Clasp	120833	CLIP-associating protein	CLASP	206206	206206	Au9.Cre09.9415700	CLIP-associatina protein	6575258	Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Nar Cre Vca
Spr1	103536	putative cortical microtubule associated protein SPIRAL1	SPR1			Au9.Cre02.9130150		6571789	Pra Pso Ota Olu Ppa Cre Vca
Gcp2	105911	gamma tubulin interactina protein	GCP2	150712	150712	Au9.Cre12.9525500	Gamma tubulin interactina protein	6576345	Ddi Tth Pra Pso Ncr Ath Hsa Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
Gcp 3	97867	gamma tubulin interactina protein	GCP3	152585	152585	Au9.Cre22.9764400	Gamma tubulin interactina protein	6576345	Ddi Tth Pra Pso Ner Ath Hsa Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
Gcp4	118030	gamma tubulin interacting protein	GCP4	146323	146323	Au9.Cre01.9019150	Gamma tubulin interacting protein	6573454	Tth Pra Pso Ath Hsa Ota Olu Ppa Mbr Nar Pte Cre Vca
PldA	99461	putative MT associated signaling protein phospholipase D	PLD1	190403	190403	Au9.Cre13.9591900	putative MT associated signaling protein	6573958	Pae Tth Pra Pso Hsa Olu Mbr Pte Cre Vca
D1buc	92778	Cytoolasmic dynein 16 liaht intermediate chain D1bLic		130394	130394	Au9.Cre02.a135900	Cytoplasmic dynein 1b light intermediate	6572451	Tth Pra Pso Hsa Cel Nar Cre Vca
DIbHC	64869	Cytoplasmic dynein 1b heavy chain	DHC12/DHC1B	24009	24009	Au9.Cre06.9250300		6571949	Ddi Tth Pra Pso Ner Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
Asp	121726	microtubule-associated protein Asp	ASP	174686	306828	Au9.Cre06.9281150	abnormal spindle protein	6573164	Pra Pso Hsa Olu Ppa MbrTps Nar Cre Vca
	79641			115172	402056	Au9.Cre06.a304100		6572424	Cme Ssp Pae Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
THA	59059	tubulin tyrosine ligase	TL1	170153	401790	Au9.Cre06.9300250	Tubulin tyrosine liqase	6575448	Tth Pra Pso Ath Tps Pre Cre Vca
THB	30444	tubulin tvrosine ligase	TTL2/FAP267	100760	100760	Au9.Cre 17.9699500	Tubulin tyrosine liaase	6573843	Ddi Tth Pra Pso Hsa Cel Ota Olu Ppa Mbr Nar Pte Cre Vca
THC	${ }^{65051}$		TL3	119250	119250	Au9.Cre01.9059200	Tubulin tvrosine ligase	6572934	Tth Pra Pso Hsa Mbr Pte Cre Vca
THD	105441							6576582	Tth Hsa Pte Vca
THE	107180		TTL5	190829	513852	Au9.Cre 12.9547700	Tubulin tvrosine ligase	6574391	Cre Vca
THF	69077		TL6	146893	146893	Au9.Cre01.9050450	Tubulin tyrosine ligase	6571683	Pra Mbr Cre Vca
THG	99465		CYG40/TLT	190398	190398	Au9.Cre 13.9591700	Tubulin tyrosine liqase	unclustered	unclustered
TUH	108470		TLL8	176529	417267	Au9.Cre02.a120750	Tubulin tyrosine ligase	6570722	Tth Pso Hsa Cel Mbr Tos Nar Pte Cre Vca
Basal Body P									
bbs5	78967	Bardet-Biedl syndrome 5	${ }^{\text {BBS5 }}$	182299	182299	Au9.Cre06.9267550	Bardet-Biedl syndrome 5 protein	6570754	Th Pra Pso Hsa Cel Mbr Nar Pte Cre Vca
SFA	84701 78311	SF-assemblin putative TRP protein for flagaelar function	$\begin{array}{\|l\|} \hline \text { SFA } \\ \hline \text { BBSS } \\ \hline \end{array}$	127995	$\begin{array}{\|l\|} \hline 127995 \\ \hline 140113 \\ \hline \end{array}$		SF-assemblin TRP protein for ciliary function	$\begin{array}{\|l\|} \hline 6577509 \\ 6571806 \\ \hline \end{array}$	Pra Pso Ota Olu Nar Cre Vca
bbs8	78311	putative TRP protein for flagaelar function	$\begin{array}{\|l} \hline \text { BBS8 } \\ \hline \text { BBS7 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140113 \\ \hline 190054 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140113 \\ \hline 190054 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Au9.Cre 16.9666500 } \\ \hline \text { Au9.Cre01.9043750 } \\ \hline \end{array}$	TRP protein for ciliary function Bardet-Biedl syndrome 7 protein	$\begin{array}{\|l\|} \hline 6571806 \\ \hline 6574722 \\ \hline \end{array}$	Tth Pra Pso Hsa Cel Mbr Nar Pte Cre Vca Tth Pra Pso Hsa Cel Mbr Nar Pte Cre
Bbs4	66874	Bardet-Biedl syndrome protein 4	BB54	129948	129948	Au9.Cre 12.9548650	Bardet Biedl syndrome 4 protein	6577091	Ddi Tth Pra Pso Ncr Hsa Cel Mbr Nar Pte Cre Vca
aff8	70270	small Arf-related GTPase	BBS3B	24475	24475	Au9.Cre 16.9664500	Bardet-Biedl svidrome protein 3B	6572906	Th Pra Pso Hsa Cel Nar Pte Cre Vca
Bbs2	121664	Bardet-Biedl syndrome protein 2	BBS2	126758	126758	Au9.Cre06.9257250	Bardet-Biedl syndrome protein 2	6578098	Pra Pso Hsa Cel Mbr Nar Pte Cre
Bbs1	84205	Bardet-Biedl syndrome protein 1	BBS1	132537	132537	Au9.Cre 17.9741950	Bardet-Biedl svndrome protein 1	6576237	Tth Pra Pso Cel Mbr Nar Pte Cre Vca
Ofd1	90133	basal bodv protein	OFD1	31640	31640	Au9.Cre 17.9703600	basal bodv protein	6576652	Tth Pda Pte Cre Vca
Vfl3	84510	protein conserved onlv in organisms with motile cilia	VFL3	130542	130542	Au9.Cre06.9279900	protein required for templated centriole	6577987	Tth Pra Pso Hsa Ppa Mbr Pte Cre Vca
bld	57967	basal body protein	BLD10	166062	166062	Au9.Cre 10.9418250	basal body protein	6573326	Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Tps Nar Pte Cre Vca
							Bardet-Biedl sydrome 9; Bardet-Biedl		
bos9 ${ }_{\text {Kinesin Motor }}$	119731	Bardet-Biedl svndrome 9	BBS9	101137	101137		svndrome 9 protein	6572522	Th Pra Pso Hsa Mbr Nar Pte Cre Vca
	93532	kinesin-like protein		191502				unclustered	unclustered
flaj	107307	Kinesin-II Motor Protein	FLA10	185750	185750	Au9.Cre17.9730950		6573133	Cme Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
flat/klpA	103736	kinesin-like protein	flas	150766	150766	Au9.Cre 12.9522550	Kinesin-II motor subunit	6573133	Cme Ddi Tth Pra Pso Ncrath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
	97023	putative Kif3C kinesin		175469	345354	Au9.Cre09.9415450		6574543	Tth Pra Pso Hsa Cel Ota Olu Ppa Nar Pte Cre Vca
	58470	Kif9 tvpe kinesin similar to C. reinhardtii KLP1	KLP1	186414	186414	Au9.Cre02.9073750	Kinesin-like protein	6575085	Tth Pra Pso Hsa Ppa Mbr Nar Pte Cre Vca
	94697			146648				unclustered	unclustered
	${ }_{7}^{64266}$	Kif6 type kinesin-like protein						6573711	Tth Pra Pso Hsa Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
	76107	putative Kif9 kinesin		186275				unclustered	unclustered
inva	127192	kinesin inva kinesin-like protein	IAR1	${ }_{1}^{126081}$	126081	Au9.Cre 10.9418950	kinesin family protein	${ }^{6576834}$	Cre Vca
	127421	kinesin-like protein		149713	149713	Au9.Cre09.0386700	kinesin motor family protein	unclustered	unclustered
	127422	kinesin-like protein		13743	13743	Au9.Cre03.9202000	Kinesin family member heavy chain	6573133	Cme Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tps Nar Pte Cre Vca
	127423	kinesin-like protein		187696				unclustered	unclustered
	105173	kinesin-like protein		188286				unclustered	unclustered
	99650	subfamily 14A kinesin		147592				unclustered	unclustered
	${ }_{12520} 127417$	kinesin-like protein kinesin-like protein		${ }_{1}^{1939888}$				$\frac{\text { unclustered }}{6570717}$	
	95391	kinesin related to Arabidopsis ATK5		194730				unclustered	unclustered
	127355	Kar3 member kinesin-like protein		131637				6575670	Tth Pra Pso Ath Ota Olu Ppa MbrTps Nar Pte Cre Vca
	127424	kinesin-like protein						unclustered	unclustered
	93886	kinesin-like protein		194730				unclustered	unclustered
	127418	kinesin-like protein		192784				unclustered	unclustered
	106268	$\frac{\text { kinesin-like protein }}{\text { simiar }}$		141042				6577255	Cre Vca
	${ }_{9} 94482$	similar to kinesin FAP125	FAP125	190816	190816	Au9.Cre 12.9546100	kinesin-like protein	6573456	${ }^{\text {Ddi Tth Ath Hsa Pte Cre Vca }}$ Pra Pso Ppa Vca
	96903	kinesin-like protein		143993				unclustered	unclustered
	98132	putative Kif21-type kinesin		167999				6571365	Cre vea
	127414	kinesin-like protein		143714				6577520	Pra Cre Vca
	31481			106906	408759	Au9.Cre 17.9735200		6570716	Ath Ppa Cre Vca
	127427			180630				6577263	Tth Pra Pso Ota Olu Ppa Mbr Nar Pte Cre Vca
	${ }_{127427}^{4415}$	Kiffa trpe kinesin kinesin-like protein		142871				${ }^{6575075}$ unclustered	Pso Ppa Cre Vca unclustered
Cell wall and Extracellular Matrix Volvox pherophorin homologs									
$\frac{\text { ssha }}{\text { phI }}$	104381	extrocellular matrix alycooprotein pherophorin I						6577727	Cre Vca

wee1	127274	wee1 kinase ortholog	WEE1	194589	194589	Au9.Cre07.9355250	CDK inhibitory kinase	6575995	Cme Ddi Pra Ncr Ath Hsa Olu Ppa Mbr Tps Nar Cre Vca
cks1	127315	CKS1 homoloa	CKS1	182779	182779	Au9.Cre03.a180350		6574039	Cme Tth Pra Ncr Ath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
$\frac{\text { mat }}{\text { e2fi }}$	${ }_{1}^{12737253}$	E2F transcription factor family homoloa.	MAT3	${ }_{2}^{187248}$	187248	Au9.Cre06.9255450	retinoblastoma protein	6574768	Cme Ddi Pso Ath Hsa Ota Olu Ppa Nar Cre Vca
dp1	121369	putative DP transcriotion factor	DP1	206363				6577455	Cme Ddi Tth Pra Pso Ath Hsa Cel Ota Olu Ppa Mbr Tos Nar Pte Cre Vca
e2fr 1	127270	related to E2F and DP transcription factors	E2FR1	168563	168563	Au9.Cre 13.9573000	related to E2F and DP transcription factors, Chlamydomonas specific; transcription factor E2F and DP-related	unclustered	unclustered

Table S15: Predicted numbers of TAPs
The number of proteins that were predicted in each Transcription Associated Protein (TAP) family in Volvox and Chlamydomonas are shown.

TAP	Volvox	Chlamydomonas
ABI3/VP1	1	1
Alfin-like	1	1
AP2/EREBP	21	12
ARF	0	0
Argonaute	2	3
ARID	2	3
AS2/LOB	0	0
Aux/IAA	0	0
BBR/BPC	0	0
BES1	0	0
bHLH	2	3
bHSH	0	0
BSD domain containing	3	1
bZIP	11	6
C2C2_CO-like	2	1
C2C2_Dof	1	1
C2C2_GATA	9	8
C2C2_YABBY	0	0
C 2 H 2	8	6
C3H	23	15
CAMTA	0	0
CCAAT_Dr1	0	2
CCAAT_HAP2	0	0
CCAAT_HAP3	3	1
CCAAT_HAP5	2	2
Coactivator p15	1	1
CPP	2	1
CSD	2	1

CudA	0	0
DBP	0	0
DDT	0	0
Dicer	0	0
DUF246 domain containing	0	0
DUF296 domain containing	0	0
DUF547 domain containing	1	1
DUF632 domain containing	0	0
DUF833 domain containing	0	0
E2F/DP	3	3
EIL	0	0
FHA	11	12
GARP_G2-like	4	4
GARP_ARR-B	1	1
GeBP	0	0
GIF	1	1
GNAT	33	28
GRAS	0	0
GRF	0	0
HB	0	1
HB_KNOX	0	0
HD-Zip	0	0
HMG	9	7
HRT	0	0
HSF	2	2
IWS1	1	1
Jumonji	0	0
LFY	0	0
LIM	0	0
LUG	0	0
MADS	1	2
MBF1	1	1
MED6	0	1
MED7	1	0

mTERF	3	1
MYB-related	12	9
MYB	19	15
NAC	0	0
NZZ	0	0
OFP	0	0
PcG_EZ	0	0
PcG_FIE	1	1
PcG_VEFS	0	0
PHD	16	10
PLATZ	3	4
Pseudo ARR-B	0	2
RB	0	1
Rcd1-like	1	2
Rel	0	0
RF-X	0	0
RRN3	1	0
Runt	0	0
RWP-RK	9	14
S1Fa-like	0	0
SAP	0	0
SBP	20	21
SET	16	13
Sigma70-like	1	1
Sin3	1	1
Sir2	3	2
SOH1	1	0
SRS	0	0
SWI/SNF_BAF60b	1	2
SWI/SNF_SNF2	26	18
SWI/SNF_SWI3	0	0
TAZ	4	2
TCP	0	0
TEA	0	0

TFb2	0	1
TRAF	20	28
Trihelix	0	0
TUB	3	2
ULT	0	0
VARL	13	9
VOZ	0	0
Whirly	1	1
WRKY	2	1
zf_HD	0	0
tify	0	0
Zinc finger, AN1 and A20 type	2	1
Zinc finger, MIZ type	2	0
Zinc finger, ZPR1	1	1
Zn_clus	0	$\mathbf{2 9 7}$
Total	$\mathbf{3 4 7}$	

Table S16: Summary of RepeatScout libraries

A summary of the number of repeat sequences (and their mean length) generated from running RepeatScout on the Volvox and Chlamydomonas assemblies is shown.

	Volvox	Chlamydomonas
Sequences in raw repeat library	1,511	1,057
Putative novel repeat sequences	122	58
Mean repeat sequence length	919	595
No. sequences left after removing unknown sequences with non-TE Pfam domains	1,449	1,013

5) SUPPLEMENTAL REFERENCES

S1. C. R. Adams et al., Curr Genet 18, 141 (1990).
S2. R. C. Starr, Arch Protistenkd 111, 204 (1969).
S3. R. C. Starr, Dev Biol Suppl 4, 59 (1970).
S4. D. R. Smith, R. W. Lee, BMC Genomics 10, 132 (2009).
S5. J. L. Weber, E. W. Myers, Genome Res 7, 401 (May, 1997).
S6. B. Ewing, L. Hillier, M. C. Wendl, P. Green, Genome Res 8, 175 (Mar, 1998).

S7. S. Aparicio et al., Science 297, 1301 (Aug 23, 2002).
S8. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, E. W. Sayers, Nucleic Acids Res 37, D26 (Jan, 2009).
S9. W. J. Kent, Genome Res 12, 656 (Apr, 2002).
S10. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J Mol Biol 215, 403 (Oct 5, 1990).
S11. T. U. Consortium, Nucleic Acids Res 38, D142 (Jan, 2010).
S12. A. F. A. Smit, R. Hubley, P. Green, http://www.repeatmasker.org, (19962004).

S13. J. Jurka et al., Cytogenet Genome Res 110, 462 (2005).
S14. S. S. Merchant et al., Science 318, 245 (Oct 12, 2007).
S15. A. L. Price, N. C. Jones, P. A. Pevzner, Bioinformatics 21 Suppl 1, i351 (Jun, 2005).
S16. S. R. Eddy, Bioinformatics 14, 755 (1998).
S17. T. M. Lowe, S. R. Eddy, Nucleic Acids Res 25, 955 (Mar 1, 1997).
S18. E. Quevillon et al., Nucleic Acids Res 33, W116 (Jul 1, 2005).
S19. G. A. Tuskan et al., Science 313, 1596 (Sep 15, 2006).
S20. A. Coghlan, E. E. Eichler, S. G. Oliver, A. H. Paterson, L. Stein, Trends Genet 21, 673 (Dec, 2005).
S21. J. C. Detter et al., Genomics 80, 691 (Dec, 2002).
S22. B. Ewing, P. Green, Genome Res 8, 186 (Mar, 1998).
S23. T. G. I. Project.
S24. X. Huang, A. Madan, Genome Res 9, 868 (Sep, 1999).
S25. A. Z. Worden et al., Science 324, 268 (Apr 10, 2009).
S26. A. Y. Guo et al., Nucleic Acids Res 36, D966 (Jan, 2008).
S27. D. M. Riano-Pachon, S. Ruzicic, I. Dreyer, B. Mueller-Roeber, BMC Bioinformatics 8, 42 (2007).
S28. S. Richardt, D. Lang, R. Reski, W. Frank, S. A. Rensing, Plant Physiol 143, 1452 (Apr, 2007).
S29. R. D. Finn et al., Nucleic Acids Res 36, D281 (Jan, 2008).
S30. P. Perez-Rodriguez et al., Nucleic Acids Res 38, D822 (Jan, 2009).
S31. K. Katoh, K. Kuma, H. Toh, T. Miyata, Nucleic Acids Res 33, 511 (2005).
S32. M. Clamp, J. Cuff, S. M. Searle, G. J. Barton, Bioinformatics 20, 426 (Feb 12, 2004).
S33. A. Sanderfoot, Plant Physiol 144, 6 (May, 2007).

S34. S. Rutherford, I. Moore, Curr Opin Plant Biol 5, 518 (Dec, 2002).
S35. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, D. G. Higgins, Nucleic Acids Res 25, 4876 (Dec 15, 1997).
S36. R. C. Edgar, Nucleic Acids Res 32, 1792 (2004).
S37. D. Swofford. (Sinauer Associates, Sunderland, MA, 2003).
S38. K. Bisova, D. M. Krylov, J. G. Umen, Plant Physiol 137, 475 (Feb, 2005).
S39. M. Berriman et al., Science 309, 416 (Jul 15, 2005).
S40. A. Hallmann, Int Rev Cytol 227, 131 (2003).
S41. E. H. Harris, Stern, D.B., and Witman, G.B., The Chlamydomonas Sourcebook. (Academic Press, 2009).
S42. F. Abascal, R. Zardoya, D. Posada, Bioinformatics 21, 2104 (May 1, 2005).
S43. S. Guindon, O. Gascuel, Syst Biol 52, 696 (Oct, 2003).
S44. S. Guindon, F. Lethiec, P. Duroux, O. Gascuel, Nucleic Acids Res 33, W557 (Jul 1, 2005).
S45. E. Szathmary, J. M. Smith, Nature 374, 227 (Mar 16, 1995).
S46. J. T. Bonner, Integr Biol 1, 27 (1998).
S47. S. L. Baldauf, Science 300, 1703 (Jun 13, 2003).
S48. R. K. Grosberg, R. Strathmann, Annu Rev Ecol Evol Syst 38, 621 (2007).
S49. G. A. Wray, Genome Biol 3, REVIEWSooo1 (2002).
S50. H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto, D. Bhattacharya, Mol Biol Evol 21, 809 (May, 2004).
S51. M. D. Herron, J. D. Hackett, F. O. Aylward, R. E. Michod, Proc Natl Acad Sci US A 106, 3254 (Mar 3, 2009).
S52. H. Rausch, N. Larsen, R. Schmitt, J Mol Evol 29, 255 (Sep, 1989).
S53. T. Nakada, K. Misawa, H. Nozaki, Mol Phylogenet Evol 48, 281 (Jul, 2008).

S54. H. Nozaki, Biologia, Bratislava 58, 425 (2003).
S55. S. M. Miller, D. L. Kirk, Development 126, 649 (Feb, 1999).
S56. Q. Cheng, R. Fowler, L. W. Tam, L. Edwards, S. M. Miller, Dev Genes Evol 213, 328 (Jul, 2003).
S57. I. Nishii, S. Ogihara, D. L. Kirk, Cell 113, 743 (Jun 13, 2003).
S58. M. M. Kirk et al., Development 126, 639 (Feb, 1999).
S59. M. Meissner, K. Stark, B. Cresnar, D. L. Kirk, R. Schmitt, Curr Genet 36, 363 (Dec, 1999).
S60. L. Duncan et al., J Mol Evol 65, 1 (Jul, 2007).
S61. H. Gruber, S. D. Goetinck, D. L. Kirk, R. Schmitt, Gene 120, 75 (Oct 12, 1992).

S62. A. Hallmann, A. Rappel, Plant J 17, 99 (Jan, 1999).
S63. T. Jakobiak et al., Protist 155, 381 (Dec, 2004).
S64. A. Hallmann, S. Wodniok, Plant Cell Rep 25, 582 (Jun, 2006).
S65. S. M. Miller, R. Schmitt, D. L. Kirk, Plant Cell 5, 1125 (Sep, 1993).
S66. N. Ueki, I. Nishii, Genetics 18o, 1343 (Nov, 2008).
S67. B. Schiedlmeier et al., Proc Natl Acad Sci U S A 91, 5080 (May 24, 1994).
S68. A. Hallmann, M. Sumper, Eur J Biochem 221, 143 (Apr 1, 1994).

S69. D. L. Kirk, Bioessays 27, 299 (Mar, 2005).
S70. P. Ferris et al., Science 328, 351 (Apr 16, 2010).
S71. A. Hallmann, K. Godl, S. Wenzl, M. Sumper, Trends Microbiol 6, 185 (May, 1998).
S72. A. Hallmann, Planta 226, 719 (Aug, 2007).
S73. N. Aono, T. Inoue, H. Shiraishi, J Biochem 138, 375 (Oct, 2005).
S74. A. Hallmann, Plant J 45, 292 (Jan, 2006).
S75. D. Kirk, Volvox: Molecular-genetic origins of multicellularity and cellular differentiation. (Cambridge University Press, Cambridge, 1998).
S76. D. Stern, G. Witman, E. Harris, (Jan 1, 2009).
S77. T. Kubo, J. Abe, T. Saito, Y. Matsuda, Curr Genet 41, 115 (May, 2002).
S78. T. Hamaji et al., Genetics 178, 283 (Jan, 2008).
S79. H. Nozaki, T. Mori, O. Misumi, S. Matsunaga, T. Kuroiwa, Curr Biol 16, R1018 (Dec 19, 2006).
S8o. D. L. Kirk, R. Birchem, N. King, J Cell Sci 8o, 207 (Feb, 1986).
S81. R. R. Reisz, J. Muller, Trends Genet 20, 237 (May, 2004).
S82. M. Goodman, G. W. Moore, G. Matsuda, Nature 253, 603 (Feb 20, 1975).
S83. H. Wang et al., Proc Natl Acad Sci U S A 106, 3853 (Mar 10, 2009).
S84. C. Bowler et al., Nature 456, 239 (Nov 13, 2008).

LEGAL DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

