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Abstract: The recent invasion, rapid spread, and widescale destruction of the maize crop by the fall
armyworm (FAW; Spodoptera frugiperda (J.E. Smith)) is likely to worsen the food insecurity situation
in Africa. In the present study, a set of 424 maize lines were screened for their responses to FAW
under artificial infestation to dissect the genetic basis of resistance. All lines were evaluated for
two seasons under screen houses and genotyped with the DArTseq platform. Foliar damage was
rated on a scale of 1 (highly resistant) to 9 (highly susceptible) and scored at 7, 14, and 21 days
after artificial infestation. Analyses of variance revealed significant genotypic and genotype by
environment interaction variances for all traits. Heritability estimates for leaf damage scores were
moderately high and ranged from 0.38 to 0.58. Grain yield was negatively correlated with a high
magnitude to foliar damage scores, ear rot, and ear damage traits. The genome-wide association
study (GWAS) revealed 56 significant marker–trait associations and the predicted functions of the
putative candidate genes varied from a defense response to several genes of unknown function.
Overall, the study revealed that native genetic resistance to FAW is quantitative in nature and is
controlled by many loci with minor effects.

Keywords: maize; fall armyworm; genomic analysis; native genetic resistance; single nucleotide
polymorphism

1. Introduction

Maize (Zea mays L.) is a staple food for over 300 million people on the African
continent [1]. To achieve maize-based food security in the region by 2050, the current
average maize production of about 1.5 tons/ha has to increase to 6.8 tons/ha [2]. In the
context of the present and forecasted climatic patterns, overall maize production in the next
three decades has been projected to reduce by about 10% [3]. The fall armyworm (FAW)
destructive pest, first reported in 2016 in Africa [4] but now confirmed in 46 of Africa’s
54 countries, is likely to establish itself as a multi-generational pest of economic importance
in Africa due to its natural distribution capacity, high fecundity level, favorable sub-tropical
climates, wide host range, voracious appetite, and migratory activities [5,6].

FAW foliar feeding, especially on the furl and whorl leaves, destroys the plant growing
points and retards maize growth and development. Yield reduction has been attributed
to both FAW stem tunneling, which disrupts water and nutrient uptake, as well as the
extensive leaf feeding damage which causes a direct loss of photosynthates [7]. FAW-
damaged ears are also predisposed to fungal attacks, rots, and mycotoxin contamination,
which adversely impact grain quantity and quality [8]. Globally, about 6–19% of the total
maize production is lost to insect-pests herbivory [9]. Failure to manage the FAW infestation
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in sub-Saharan Africa is projected to result in an annual loss of approximately 12% of the
total area under maize cultivation (~37 million hectares), which translates to economic
losses of up to US $6.3 billion per annum [6]. A wide distribution of direct and indirect
maize yield losses has been reported throughout the FAW’s native and invasive range [10].
In sub-Saharan Africa for instance, annual losses of up to US$ 13 billion have been estimated
in crops such as maize, rice, sorghum, and sugarcane [11,12].

Transgenic Bt crops provide an effective FAW control but impose a high selection pres-
sure which results in the emergence of resistant FAW biotypes [13,14], while the application
of synthetic pesticides in FAW control raises environmental toxicity concerns [15] and could
also be ineffective in the future due to the emergence of resistant FAW biotypes [16]. The
majority of African farmers facing maize yield losses due to FAW infestation are resource-
poor and have limited local access to partially effective chemical and biological FAW control
measures [17]. These farmers extensively rely on their ecological knowledge to manipulate
plant ecology in favor of a few FAW natural predators [18]. The high density of pest
populations also renders the eco-friendly, cultural FAW control practices ineffective [19].
The need to protect the maize crop from FAW foliar damage and mitigate yield losses
using a multi-pronged strategy that fosters agricultural sustainability is of outmost priority.
Cultivating maize varieties endowed with inherent native resistance to foliar damage is
not only compatible with biological, chemical, and cultural insect-pest control methods,
but is also ecologically and economically sustainable [20].

Host plant resistance is conferred by the plant’s biochemical constituents [21], struc-
tural features [22], and genetic composition [23]. The breeding efficiency for trait improve-
ment has increased significantly with the integration of genomic tools such as genomic-wide
association studies (GWAS) [24], linkage mapping [25], and genomic selection (GS) [26]
with traditional breeding approaches. Genome-wide signals associated with resistance
to major lepidopteran pests of maize such as the European corn borer [27], Asian corn
borer [28], Southwestern corn borer [29], Sugarcane borer [30], and FAW [31,32] have
been detected with improved accuracy and speed in light of the current advances in plant
molecular biology, high throughput sequencing technology, and the development of robust
statistical data analysis tools. GWAS has received tremendous attention as a quick new
alternative for directly scanning diverse sets of maize germplasm for functional polymor-
phisms at the sequence level [33]. For selecting complex traits like FAW resistance, GS is a
promising option. GS can accomplish this by employing genome-wide dense markers for
predictions, and therefore can support association analyses to determine the genetic basis
of key traits [34].

In the African context, FAW resistance breeding is less well studied [32]. The utilization
of African-adapted tropical maize lines developed by CIMMYT could speed up FAW
resistance breeding and provide a framework for efficiently pyramiding multiple beneficial
alleles [35] in elite but susceptible genotypes. Thus, the objectives of the present study
were to (i) assess the genetic architecture of FAW resistance traits such as foliar damage ear
damage and grain yield; (ii) identify the significant quantitative trait nucleotides (QTNs)
and putative candidate genes for FAW resistance traits in tropical maize germplasm; and
(iii) assess the potential of utilizing GS in the improvement of FAW resistance traits. Results
from this study could provide baseline information in the genomic-assisted development
and release of FAW-resistant maize, which promotes prospects of a better farmer harvest.

2. Materials and Methods
2.1. Plant Material and Experimental Design

A set of 424 DH lines developed by CIMMYT and 11 elite lines were evaluated for their
responses to FAW under artificial infestation. All lines were screened for two seasons in
screen houses at the Kiboko experimental station (2◦15’S and 37◦75’ E, 975 m asl) in Kenya
in 2020 and 2021. To control random variation, the experiment utilized an α lattice design
with two replications. Test plots consisted of single rows 3 m long and 0.75 m apart. Each
year by location combination was considered as a separate test environment. Standard
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agronomic management practices were implemented up to physiological maturity when
the ears were harvested.

2.2. Artificial Infestation and Phenotypic Evaluation

Mass FAW rearing was conducted at the insectary within the Kenya Agricultural and
Livestock Research Organization, Katumani Agricultural Experimental Station in Machakos
county, Kenya using a nutritionally adequate CIMMYT artificial diet [36] under ambient
laboratory conditions (temperature of 25 ± 1◦C, 12 h day and 12 h dark photoperiod, and
relative humidity of 75 ± 5%). Neonate larvae emerged 24 h after eggs hatching. Trial
planting dates were adjusted to ensure the desired plant growth stage coincided with peak
periods of larvae emergence at the insectary. Eight first instar FAW larvae were manually
applied at the furl and whorl leaves of each plant using a camel brush at the V3 stage of
maize development [37]. Since leaf tissues are soft at the V3 maize growth stage, it suits
the larvae to have them conditioned to the host environment to feed and survive. Fewer
FAW larvae have been reported to survive when maize plants were infested at the 12-leaf
stage of growth compared to the 8-leaf stage [38]. As the plant growth progresses, leaf
tissues become more fibrous and difficult for the larvae to feed on. Previous studies have
demonstrated the level of damage sustained by both resistant and susceptible genotypes
infested with FAW decline as plants mature [39–41]. Therefore, the plants were chosen to
be infested with FAW larvae at the V3 stage.

All plots were infested on the same day to ensure the uniformity of infestation. The
level of leaf feeding damage for each plant per plot was rated 7, 14, and 21 days after artifi-
cial infestation using a visual rating scale of 1–9 [42]. On this scale, 1 = no visible damage,
2 = a few short holes on several leaves, 3 = short holes on several leaves, 4 = several leaves
with short holes and a few long lesions, 5 = several holes with long lesions, 6 = several
leaves with lesions < 2.5 cm, 7 = long lesions common on one-half of the leaves, 8 = long
lesions common on one-half to two-thirds of leaves, and 9 = severe damage, most leaves
with long lesions, and complete defoliation. After harvesting, rotten ears were counted
per plot and the data were expressed in percentages. FAW-damaged maize kernels are
predisposed to infections by Aspergillus flavus; as a result, rots develop on individual kernels
or part of the ear and result in rotten ears. Grain yield was obtained from the shelled grain
weight adjusted to 15% and converted to tons per hectare. Ear damage was rated on a scale
of 1–9, where 1 = no visible damage to the ear, 2 = damage to a few kernels ( < 5) or less
than 5% damage to an ear, 3 = damage to a few kernels (6–15) or less than 10% damage
to an ear, 4 = damage to (16–30) kernels or less than 15% damage to an ear, 5 = damage
to (31–50) kernels or less than 25% damage to an ear, 6 = damage to (51–75) kernels or
more than 35% but less than 50% damage to an ear, 7 = damage to (76–100) kernels or more
than 50% but less than 60% damage to an ear, 8 = damage to >100 kernels or more than
60% but less than 100% damage to an ear, 9 = almost 100% damage to an ear. Considering
each year by location as a separate test environment, phenotypic data were taken in two
environments with two replications per environment.

2.3. Phenotypic and Genotypic Data Analyses

Data from each trait met all the assumptions of the applied statistical model, i.e.,
normally distributed, constant variance, and independent [43]; as a result, no data transfor-
mation was applied. Analyses of variance (ANOVA) was performed for each and across
environments, and the restricted maximum likelihood (REML) approach was used in the
META-R program [44]. Variance components were calculated with a linear mixed model.
The following linear mixed-effects model was used to estimate the variance components in
a single environment:

Yijk = µ + Block j(Repi) + Genk + Cov + eijk

where Yijk is the trait of interest, µ is the grand mean of the trait, Repi is the effect of the ith
replicate, Block j(Repi) is the effect of the jth incomplete block within the ith replicate, Genk
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is the effect of the kth genotype, Cov is the covariate, and eijk is the error term associated
with the ith replication, jth incomplete block, and the kth genotype. Blocks were considered
as random effects while the replicates and genotypes were considered as fixed effects.

New terms were added to the model when performing trait analysis cross environ-
ments. The new linear model used was as follows;

Yijkl = µ + Envi + Repj(Envi) + Blockk
(
EnviRepj

)
+ Genl + Envi x Genl + Cov + eijkl

where the new terms Envi and Envi x Genl are the effect of the ith environment and the
environment by genotype interaction, respectively. The study treated replication as a fixed
effect and all other treatments as random effects. On an entry-mean basis, the broad-
sense heritability was estimated using the genotypic to phenotypic variance ratio from
the derived variance components. Furthermore, to determine the genotypic effects of the
investigated lines for each and across environments, a best linear unbiased estimation
(BLUE) and best linear unbiased prediction (BLUP) were obtained.

For GWAS, BLUPs were used. On the other hand, BLUEs were used for GS analyses.
Comparisons of variability between entries were made using the least squared differences
(LSD) at a 5% significance level. The performance analytics R package [45] was used to
compute pairwise Pearson’s correlation coefficients among BLUPs of the phenotypic traits.

Maize leaf tissue samples were collected from eight young, healthy seedlings raised
under screen house conditions at the V3 stage (3–4 weeks old). A composite sample of
tissues collected from each line was stored at −80 ◦C and later freeze dried for 72 h. High
quality genomic DNA was isolated from freeze-dried tissues using the standard CIMMYT
laboratory protocol [46]. The Diversity Array Technology (DArT) marker platform was
used to develop 12,906 SNPs. Trait analysis by aSSociation Evolution and Linkage (TaS-
SEL) [47] was used to summarize genotype data by site, determine the allele frequencies,
and implement quality screening. SNP variants that were monomorphic, called at repeat
loci, had a heterozygosity of >0.05, and had a minor allele frequency of <0.05 were filtered
and 7950 high-quality SNPs were retained for downstream genomic analysis.

2.4. Population Structure, Kinship, Linkage Disequilibrium, and GWAS

Principal component analysis (PCA) was implemented using 7950 markers that were
distributed across the ten maize chromosomes. A two-dimensional plot of the first two
principal components was generated using the multi-locus random SNP effect mixed linear
model ‘mrMLM.GUI’ R package version 4.0.2 [48]. Marker-based kinship analysis was
used to account for cryptic relatedness in the association mapping panel. A genomic rela-
tionship matrix was constructed using a restricted maximum-likelihood (REML) estimate
of probability of two alleles at a locus being identical in state [49]. Estimates of linkage
disequilibrium (LD) decay over genetic distances were determined by plotting the squared
correlation coefficients (r2) between pairs of SNPs against their pairwise physical distance
in base pairs using TaSSEL version 5.2 [50]. A non-linear regression model was fitted in the
R environment [51] and a population specific critical value of r2 = 0.1 was taken, beyond
which LD could be due to linkage.

Kinship and population structure were incorporated as covariates in the association
analyses. The R package ‘FarmCPU-fixed and random model Circulating Probability
Unification’ with GAPIT (Genome Association and Prediction Integrated Tool) was used for
GWAS analysis [52]. To evaluate the suitability of the GWAS models used, the relationships
between the observed and expected theoretical uniform distribution of p-values across all
evaluated SNPs were inspected using the diagnostic quantile–quantile plots (Q–Q plots)
generated in the R environment using the ‘qqman’ R package [53]. On the Q–Q plots,
negative logarithms of the p-values from the model fitted in GWAS were plotted against
their expected values under the null hypothesis of no association. To summarize GWAS
results per chromosome, Manhattan scatter plots were generated by plotting the genomic
positions of the SNPs against their negative log base 10 of the p-values obtained from the
GWAS model, and an F-test was conducted for the null hypothesis on the Y-axis. The
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source sequences of the significantly associated SNPs were used to perform BLAST searches
against the B73 maize reference genome version 3 with a view to identify candidate genes
located within a 10 kb window. The inferred biological functions of the candidate genes
were retrieved from the maize genome database [54] and published literature.

BLUEs across environments for each trait were used in the GS analysis. The ridge-
regression BLUP (RR-BLUP) [55] with a fivefold cross-validation for each trait was used for
the analysis. A sample of 6400 SNPs with all data values, equally distributed throughout
the genome, and MAF > 0.05 were chosen from the DART data. The GWAS panel was
sampled to form a training and prediction set. For each trait, 100 iterations were done for
the sampling of the training and validation sets. The prediction accuracy was calculated as
the correlation between the observed phenotypes and genomic estimated breeding values
(GEBVs) divided by the square root of heritability [56].

3. Results
3.1. Phenotypic Data Analyses

The frequency distribution of the BLUEs for foliar damage scores at 7, 14, and 21 days
after artificial infestation, ear damage, ear rot, and grain yield exhibited approximately
near normal distributions (Figure 1). Evaluation of the frequency distributions of the
phenotype data indicated that further parametric tests could therefore be implemented
without violating the model assumptions of normality. The best performing lines under the
artificial infestation of FAW over two seasons are listed in Table 1. Leaf damage scores 7, 14,
and 21 days after artificial FAW infestation averaged 2.8, 5.3, and 5.1, respectively (Table 2).
Transgressive segregants were observed in both directions of the injury rating scale. Most
lines recorded high injury ratings and were considered as susceptible to FAW leaf feeding
damage, while a few lines exhibited injury ratings that were not significantly different
from those of the resistant CML71 control. These lines were earmarked as good sources
of native resistance to FAW foliar feeding damage. Injury ratings for lines identified as
FAW-susceptible were not significantly different to those of the susceptible CML444 control.
Most lines did not suffer severe ear damage on a scale of 1–9 and therefore the observed
ear damage mean was low (2.3). Ear rot averaged 7.3% while grain yield under artificial
FAW infestation had a mean of 3.4 tons/ha with a range from 1.6 to 6.5 tons/ha.

Table 1. Best performing 15 lines evaluated under artificial infestation of FAW in net houses for
two environments.

Genotype LD1 LD2 LD3 Eardam ER (%) GY (tons/ha)

CKIR04005 2.85 4.83 4.82 1.98 3.16 6.54
CKDHL1920804 2.93 5.41 4.94 2.09 4.14 6.31
CKDHL1922286 2.64 5.09 4.94 2.11 11.18 5.99
CKDHL1920877 2.33 4.83 4.45 2.16 5.96 5.95
CKDHL1923759 3.04 5.56 4.74 1.92 3.42 5.84
CKDHL1921755 2.62 5.48 5.49 2.26 9.67 5.80
CKDHL1922245 2.62 5.06 4.89 2.03 5.55 5.63
CKDHL1922428 2.60 5.43 5.02 2.26 5.72 5.57
CKDHL1922266 2.87 5.24 4.98 2.03 5.87 5.57
CKDHL1922467 2.66 5.11 5.22 2.68 13.53 5.57
CKDHL1920715 2.47 4.93 4.82 2.01 4.34 5.54
CKDHL1920580 3.08 5.51 5.11 2.21 8.32 5.54
CKDHL1924395 2.77 5.39 4.96 2.93 15.31 5.45
CKDHL1922258 3.43 5.81 4.53 2.36 5.86 5.44
CKDHL1924391 2.61 5.27 5.09 2.28 5.15 5.40

LD1, LD2, LD3 = foliar damage rating at 7, 14, and 21 days after artificial FAW infestation, respectively;
Eardam = ear damage, ER= ear rot, GY= grain yield.
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Figure 1. Frequency distribution of means for foliar damage scores 7, 14, and 21 days after artificial
infestation (foliar damage score 1, 2, and 3), ear damage, ear rot (%), and grain yield (t/ha).

Table 2. Genetic parameters for FAW GWAS panel evaluated under artificial infestation of FAW in
net houses for two environments.

Trait Mean σ2
G σ2

GxE σ2
e h2 LSD5% CV (%)

LD1 2.78 0.06 ** 0.04 ** 0.10 0.58 0.42 7.71
LD2 5.32 0.09 ** 0.05 ** 0.35 0.45 0.65 6.21
LD3 5.07 0.08 * 0.18 ** 0.18 0.38 0.59 5.91

Eardam 2.28 0.14 ** 0.14 ** 0.19 0.55 0.62 13.82
ER 7.26 14.78 ** 16.19 ** 21.97 0.52 6.63 46.44
GY 3.45 0.97 ** 0.42 ** 1.54 0.62 1.74 25.69

σ2
G = Genotypic variance; σ2

e = error variance; σ2
GxE = genotype by environment interaction; h2 = broad-sense

heritability; LSD = least square difference; CV = coefficient of variation; LD1, LD2, LD3 = foliar damage rating at
7,14, and 21 days after artificial FAW infestation, respectively; Eardam = ear damage, ER= ear rot, GY= grain yield.
*, ** Significant at p < 0.05 and p < 0.01 level, respectively.

Knowledge on the proportion of genetic variation for the traits of interest is critical to
a breeder when formulating an efficient and effective resistance breeding scheme. Analysis
of variance (ANOVA) was used to partition total variance into genotypic, phenotypic,
and variance due to genotype by environment interaction (Table 1). Across-environment
analyses revealed significant (p < 0.01) genotypic and genotype by environment interaction
variances for all traits. Heritability (h2) estimates for foliar damage scores were moderate
with 0.58, 0.45, and 0.38 at 7, 14, and 21 days after artificial FAW infestation, respectively.
Grain yield recorded the highest (0.62) heritability estimate when compared to the rest
of the traits. Ear damage, ear rot, and grain yield showed moderately high coefficients
of variation estimates, which suggested that the selection of FAW-resistant lines based on
these traits could be effective. Pairwise Pearson correlation analysis revealed significant
but negative correlations between grain yield and the rest of the traits (Figure 2). Foliar
damage scores at 7 days after artificial infestation showed no significant correlation with
ear rot and ear damage. The results showed that ear damage was significant and positively
correlated (0.81) with ear rot.
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Figure 2. Pairwise Pearson correlation analysis for six traits associated with FAW resistance. LD1,
LD2, LD3: foliar damage rating 7, 14, and 21 days after artificial FAW infestation, respectively;
Eardam—ear damage, ER—ear rot, GY—grain yield.

3.2. PCA, Kinship and LD Analysis

GWAS statistical power and resolution is reduced if the phenotypes of interest are
significantly correlated with relatedness or population structure [57]. PCA based on the
observed genotype data showed no clear pattern of population stratification (Figure 3A).
The proportion of total variability explained by the first, second, and third principal com-
ponents (PC1–3) was 9%, 6%, and 5%, respectively. Figure 3A shows a three-dimensional
scatter plot of the first three principal components which together contributed about 20%
of the total variation in the data.

Figure 3B shows the extent of the genome-wide distribution of LD. The y-axis values
represent the squared correlation coefficient (r2) between pairs of SNPs while the x-axis
values represent the physical distance in Mega base pairs (Mbp). The red line is the
moving average of the 10 adjacent markers. Each dot represents a pair of distances between
two markers on the window and their squared correlation coefficient. Across the ten
chromosomes, the magnitude of r2 dropped sharply as the genetic distance between SNP
markers increased. At LD cut off points of r2 = 0.1 (threshold value beyond which LD was
likely to be caused by linkage), the average physical distance was 10 Mbp.
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Figure 3. Population structure analyses of GWAS panel with first three principal components plot
(A) based on the observed genotype data and genome wide linkage disequilibrium (LD) plot (B).
Horizontal blue line in LD plot represents the 95th percentile of the distribution of unlinked r2 while
the inner fitted trend line is the non-linear logarithmic regression curve of r2 on genetic distance.

3.3. Genome-Wide Association Analysis

Results from the genome-wide association analysis of the six traits relevant to FAW
resistance are presented in Manhattan plots (Figure 4). Diagnostic Q–Q plots displayed
beside each Manhattan plot were used to assess the suitability of the GWAS model used.
A set of nine SNPs located on chromosomes 1, 3, 4, 5, 8, and 9 were found to be most
significantly associated with foliar damage scores 7 days after the artificial infestation
of FAW while 11 SNPs distributed across all chromosomes except chromosome 10 were
significantly associated with foliar damage scored on the 14th day after infestation (Figure 4,
Table 3). A total of eight SNPs distributed on chromosomes 1, 2, 4, 7, and 8 were highly
associated with the foliar damage score on the 21st day after artificial FAW infestation. Two
SNPs (DT9_102187311 and DT5_193883551) with the strongest association (p = 10–8) with
foliar damage scores across all infestation durations were found. For ear damage scores,
13 SNPs distributed on chromosomes 1, 2, 3, 4, 5, 6, and 10 were detected. There were
13 SNPs significantly associated with ear rot resistance distributed across all chromosomes
except chromosome 8. SNP DT5_86480332 was commonly detected for both ear damage
and ear rot scores. Grain yield under artificial FAW infestation exhibited large peaks of
association signals on chromosomes 4 and 10 (Figure 4F, Table 3). There were no common
SNPs detected between different foliar damage scores, ear damage, and grain yield data.

The magnitude of the genetic effects of each SNP were determined from the final
GWAS model and the signs of the genetic effect were used to identify the allele influencing
the trait. The major allele increased the expression of the trait while the minor allele reduced
the trait expression. The SNP (DT8_165270110) located on chromosome 8 contributed the
strongest estimated effect size (6.50) for the expression of the leaf feeding damage resistance
trait. A set of putative candidate genes associated with significant SNPs were identified
and their inferred biological functions varied from a defense response to a carbohydrate
metabolic process (Table 3).
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Figure 4. Manhattan plots and associated Q–Q plots derived from the GWAS analysis of six traits:
(A) leaf damage score 1, (B) leaf damage score 2, (C) leaf damage score 3, (D) ear damage, (E) ear rot,
and (F) grain yield. On the Manhattan plots, the x-axis shows SNP locations along the 10 chromosomes
while the y-axis shows the level of statistical significance as measured by the negative log of the
corresponding p-value for each SNP. Genome-wide significance level for marker-trait associations was
plotted as the horizontal dotted line on the Manhattan plots. The y-axis on the Q–Q plots represents
the observed association p-values while the x-axis represents the expected uniform distribution of
p values.
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Table 3. Significantly associated single-nucleotide polymorphisms (SNPs) along with the predicted
gene model and their function detected by genome-wide association studies in CIMMYT association
mapping panel for FAW resistance-associated traits.

SNP Chr MLM-p Value MAF Allele Effect Putative
Candidate Genes

Predicted Function of
Candidate Gene

Foliar damage 1

DT1_86151758 1 1.32 × 10−05 0.34 −0.04 No hit -
DT3_189787778 3 5.43 × 10−05 0.17 −0.06 GRMZM2G024992 Uncharacterized

DT3_3627388 3 1.63 × 10−04 0.31 0.05 GRMZM2G045259 ATP binding, protein serine
threonine kinase activity

DT4_240657423 4 9.17 × 10−05 0.17 0.06 GRMZM2G124151 Transferring glycosyl groups
DT5_193883551 5 8.48 × 10−07 0.11 0.08 No hit -

DT5_172818477 5 1.67 × 10−04 0.40 −0.04 GRMZM2G038536

Base excision repair (BER)
pathway, by catalyzing the

ADP-ribosylation of acceptor
proteins involved in

chromatin architecture and
DNA metabolism.

DT8_174365183 8 8.22 × 10−05 0.46 −0.05 GRMZM2G370044 Uncharacterized
DT9_102187311 9 2.62 × 10−08 0.44 −0.06 GRMZMG036921 Transfer RNA intron lyase

DT9_6789620 9 1.16 × 10−06 0.39 −0.02 GRMZM2G017257
Chloroplast accumulation

movement, ATP-dependent
microtubule motor activity

Foliar damage 2

DT1_26003816 1 1.49 × 10−04 0.43 0.04 GRMZM2G015804 Carbohydrate metabolic
process

DT2_200197508 2 5.45 × 10−06 0.49 0.04 GRMZM2G703307 Integral component of
membrane

DT3_203549581 3 3.39 × 10−05 0.14 −0.06 GRMZM2G078756 Phenylalanyl-tRNA
aminoacylation

DT4_241323024 4 8.75 × 10−06 0.48 0.05 GRMZM2G051004 NAD binding
DT4_24639576 4 5.93 × 10−05 0.39 −0.04 GRMZM2G088169 Cell fate determination
DT5_1996596 5 7.65 × 10−07 0.45 −0.05 GRMZM2G415498 DNA-mediated transposition,

DT6_166058896 6 2.12 × 10−05 0.27 −0.04 GRMZM2G094892 Regulation of long-day
photoperiodism, flowering

DT7_4773701 7 1.63 × 10−05 0.39 0.04 GRMZM2G480002 Uncharacterized
DT7_108615586 7 2.16 × 10−04 0.20 0.06 No hit -
DT8_165429441 8 2.36 × 10−05 0.21 0.06 GRMZM2G016802 Defense response
DT9_96875821 9 8.88 × 10−05 0.40 0.04 GRMZM2GO48919 Uncharacterized

Foliar damage 3

DT1_5722917 1 8.05 × 10−05 0.30 0.07 GRMZM2G319022 Uncharacterized
DT1_6086007 1 1.40 × 10−04 0.29 −0.05 GRMZM2G341918 Uncharacterized

DT2_151852785 2 7.22 × 10−06 0.43 0.06 No hit -
DT4_167218393 4 2.04 × 10−05 0.34 −0.07 GRMZM2G168369 Uncharacterized
DT7_27787652 7 4.50 × 10−06 0.40 0.06 GRMZM2G097719 Uncharacterized

DT7_167536749 7 1.75 × 10−05 0.23 −0.08 GRMZM2G017145 Protein dimerization activity
DT8_151149212 8 5.24 × 10−06 0.39 −0.07 GRMZM2G043117 Hydrotropism

DT8_165270110 8 7.42 × 10−05 0.32 6.50 GRMZM2G114046
Cellular macromolecule,

metabolic process, integral
component of membrane

Ear damage

DT1_34838367 1 1.90 × 10−05 0.36 −0.12 No hit -
DT1_245864468 1 3.17 × 10−05 0.49 −0.12 No hit -

DT2_16546600 2 1.95 × 10−06 0.45 0.00 GRMZM2G042756

Dehydration responsive
element binding protein,

DNA-binding transcription
factor activity

DT2_220742831 2 1.27 × 10−05 0.28 −0.13 GRMZM2G077256 Uncharacterized
DT2_192225273 2 2.31 × 10−05 0.10 −0.14 No hit -
DT3_117394631 3 5.07 × 10−08 0.10 0.20 No hit -

DT4_12954089 4 9.87× 10−08 0.34 0.16 GRMZM2G377115 Chlorophyll catabolic process,
response to water deprivation

DT4_202434317 4 7.31 × 10−05 0.41 −0.08 No hit -
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Table 3. Cont.

SNP Chr MLM-p Value MAF Allele Effect Putative
Candidate Genes

Predicted Function of
Candidate Gene

DT5_174018428 5 2.99 × 10−05 0.27 0.12 No hit -
DT5_86480332 5 8.55 × 10−05 0.22 −0.09 No hit -

DT6_159770879 6 4.30 × 10−07 0.11 0.12 No hit -
DT6_108383751 6 2.65 × 10−04 0.44 0.11 GRMZM5G809695 Regulation of cell growth
DT10_138678949 10 1.71 × 10−04 0.18 −0.09 No hit -

Ear rot

DT1_32439894 1 5.56 × 10−05 0.08 0.15 No hit -
DT2_64332803 2 1.53 × 10−05 0.45 −0.87 GRMZM2G373828

DT2_210205836 2 7.53 × 10−05 0.19 −1.06 GRMZM2G102138
DT3_53768832 3 5.82 × 10−05 0.20 −0.65 No hit -
DT4_4804227 4 3.62 × 10−09 0.33 1.00 AC214255.3_FG008
DT5_86480332 5 7.01 × 10−08 0.22 1.37 No hit -
DT5_15869219 5 2.93 × 10−05 0.15 1.10 No hit -
DT6_99748720 6 1.26 × 10−04 0.17 −0.75 AC215906.3_FG001

DT7_142857000 7 1.46 × 10−04 0.22 0.83 GRMZM2G074472
DT9_23210980 9 7.53 × 10−06 0.36 0.63 No hit -

DT9_130788433 9 2.17 × 10−04 0.47 0.39 GRMZM2G043295 UDP-glycosyltransferase
activity

DT10_8711707 10 4.37 × 10−11 0.15 −1.76 GRMZM2G167999 Transducin/WD40 repeat-like
superfamily protein

DT10_140174620 10 8.46 × 10−06 0.20 1.01 GRMZM5G887345 PF00179:
Ubiquitin-conjugating enzyme

Grain yield

DT4_60154355 4 4.28 × 10−04 0.23 −0.26 No hit -
DT10_145757365 10 2.46 × 10−04 0.40 0.25 GRMZM2G0101264 Uncharacterized
DT10_141438482 10 4.28 × 10−04 0.42 −0.30 No hit -

SNP = Single nucleotide polymorphism, Chr = chromosome, MAF = minor allele frequency, p-value = adjusted
p-values following a false discovery rate control procedure, Effect = allelic effect estimates per SNP. Code names
for markers, e.g., DT4_60154355 indicates a marker in chromosome 4 at position 60154355 base pairs (using B73
maize reference genome version 3); (-) = unknown.

The phenotypic values of the different allele classes of these SNPs in the association
panel for ear damage, foliar damage, and grain yield under FAW infestation are presented
in Figure 5. Among several genomic regions identified for ear damage scores, allelic effects
on FAW resistance were prominent in four selected SNPs (DT1_34838367 (CC/TT) and
DT2_192225273 (AA/CC) and boxplots B with DT5_86480332(AA/TT) and DT6_108383751).
Two SNPs DT1_34838367 (CC/TT) and DT2_192225273 (AA/CC) in a combination of
favorable alleles resulted in the score of 2.0 and 4.9 for ear damage and foliar damage,
respectively (Figure 5A). On the contrary, for the same marker with unfavorable alleles,
the scores were increased to 2.8 and 5.5, respectively. Similarly, for the other two SNPs
DT5_86480332 (AA/TT) and DT6_108383751, a decrease in ear damage score and foliar
damage score and an increase in grain yield were also observed (Figure 5B).

The RR-BLUP model was used to estimate the performance of maize genotypes
for FAW resistance-associated traits (Figure 6). Average prediction accuracies across the
studied genotypes were higher for the foliar damage score on the 21st day after the artificial
infestation of FAW (0.79) and lower for foliar damage on the 7th day after the artificial
infestation of FAW (0.48). In the GWAS panel, we observed the prediction accuracy of 0.48,
0.52. 0.79, 0.77, 0.73, and 0.50 for foliar damage on the 7th day, 14th day, and 21st day, ear
damage, ear rot, and grain yield under FAW infestation, respectively.
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Figure 5. Box plots showing the phenotypic values of the different allele classes with combina-
tion of two SNPs in boxplots A with DT1_34838367 (CC/TT = R1R1/r1r1) and DT2_192225273
(AA/CC -R2R2/r2r2) and boxplots B with DT5_86480332 (AA/TT = R1R1/r1r1) and DT6_108383751
(AA/CC = R2R2/r2r2). R for resistance and r is for susceptible to FAW. These SNPs were identified
for ear damage score and showed their effect also on foliar damage and grain yield under FAW
infestation. The black horizontal lines in the middle of the boxes are the median values for the trait
performance in the respective allele classes.

Figure 6. Box plots showing genomic prediction accuracy for six traits evaluated under artificial FAW
infestations. LD1, LD2, LD3: foliar damage rating at 7, 14, and 21 days after artificial FAW infestation,
respectively; ED—ear damage, ER—ear rot, GY—grain yield.
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4. Discussion

Inadequate maize production, particularly due to insect-pest infestation, does not
only threaten the livelihoods of millions of smallholder farmers who dominate maize
agriculture in Africa, but also undermines the hunger reduction plan envisioned in the
2030 sustainable development goals [58]. The need to sustainably protect maize crop
from FAW foliar damage and to mitigate subsequent yield losses using a multi-pronged
strategy that includes the utilization of maize varieties endowed with native resistance is
a prioritized research agenda in Africa [59]. The objectives of the present study were to
screen maize lines developed by CIMMYT for their reactions to artificial FAW infestation,
identify FAW resistant germplasm for use in future resistance breeding, and investigate the
genetic basis of the resistance trait.

A comparison of injury ratings 7, 14, and 21 days after artificial infestation showed
intensive FAW foliar feeding during the early to mid-whorl vegetative stage of the maize
plant growth and development. This is because FAW feeds intensively during its 5th and
6th growth stages. The most destructive FAW developmental stage may also coincide with
the most susceptible maize growth stage. Maize lines that exhibited injury ratings that
were not significantly different from those of the resistant control (Table 1) could be utilized
in developing novel FAW-resistant populations.

Grain yield, the most important agronomic trait, was low under artificial FAW infesta-
tion. This could also be due to the extensive foliar damage which causes a direct loss of
photosynthates and alteration of the normal functioning of the remaining leaf tissue [60].
Foliar feeding by FAW reduces maize leaf surface area, which negatively affects the photo-
synthesis process and assimilate partitioning, both of which are critical in grain filling. Stem
tunnelling caused by FAW also disrupts water and nutrients uptake, which could adversely
impact grain yield. Estimates of genetic variation among traits of interest provide useful in-
formation when formulating a resistance breeding plan. For all traits, phenotypic variances
were higher than the corresponding genotypic variances, which suggested the considerable
influence of environmental factors as well as genotype by environment interaction on the
expression of these traits.

The potential of phenotypic plasticity to evolve [61] in maize lines endowed with
native resistance to FAW foliar damage due to the strong influence of genotype by environ-
ment (GXE) interaction underscores the importance of conducting multi-year germplasm
evaluations when screening maize germplasm for resistance to FAW foliar damage. Previ-
ous studies have also concluded that the analysis of genotype by environment interactions
could facilitate the identification of cultivars whose yield-stability are related to the linear
effect of an environmental index [62]. The moderately high component of heritable varia-
tion associated with foliar damage scores 7 and 14 days after artificial infestation indicated
that these traits are amenable for improvement. Leaf damage scores 21 days after artificial
infestation had the lowest heritability estimate, which suggested the precise evaluation
of early-stage foliar damage compared to late-stage foliar damage. Heritability estimates
reported in the present work could help optimize the choice of the most progressive breed-
ing method for use in trait improvement. The missing part of heritability [63], however,
can be uncovered by utilization of new genetic study designs that incorporate more novel
types of genotypes to unravel rare alleles of large effect [64]. Although grain yield under
artificial FAW infestation exhibited the highest heritability estimate (0.62), a direct selection
of a FAW resistance germplasm based on grain yield component could be ineffective. This
is because grain yield is also a complex trait influenced by the interaction of various yield
components such as plant height, ear height, and 1000 grain weight [65]. High coefficients
of variation for all traits suggested that the selection of FAW-resistant lines based on these
traits could be effective.

The magnitude and the direction of the correlations for several FAW resistance indi-
cator traits should be examined to understand the desirability of their relationships with
grain yield, which is the most desirable agronomic trait with economic importance. Results
from the correlation analysis indicated that grain yield was negatively correlated with a
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high magnitude to foliar damage scores, ear rot, and ear damage traits. The correlation
between ear rot and ear damage was positive, strong, and highly significant (p < 0.01).
FAW-damaged ears are predisposed to fungal attacks, rots, and mycotoxin contamination
which adversely impact grain quantity and quality [8]. Interestingly, ear damage was not
significantly correlated with the early stage of the foliar damage score but was significantly
and positively correlated with the foliar damage score recorded at later stages (Figure 2).

In the present study, SNPs considered for GWAS had a fairly even marker distribution
spanning the whole maize genome (Supplementary Figure S1). The uneven distribution
of markers may contribute to the detection of false positives and biased estimation of
population structure and relatedness [66]. In the GWAS association test model implemented,
population structure and kinship in the association mapping panel were integrated as
covariates to reduce the detection of spurious associations. The assessment of the diagnostic
Q–Q plots indicated that population structure and kinship were effectively controlled. PCA
and kinship analysis (Supplementary Figure S2) suggested that there was a substantial
amount of genetic differentiation in the association mapping panel and weak evidence to
explain the presence of a population structure.

The rate of linkage disequilibrium decay provides useful information required to
implement meaningful association mapping study [67]. In the present study, LD persisted
over a large genetic distance (r2 < 0.1 within 10 Mega base pairs). The high level of ho-
mozygosity in the maize lines used in the current study may have rendered recombination
ineffective in breaking down LD. Varying estimates of LD decay have been reported in
maize, such as 27.31 kb [68] and 14.97 kb in an IMAS panel [69]. These studies indicated a
rapid decay in the tropical maize germplasm as compared to the temperate germplasm,
which suggests a broader genetic base, resulting from high recombination events [70]. This
provides breeders with an opportunity to select germplasm that integrates high grain yield
with FAW resistance, disease resistance, and abiotic stress tolerance.

GWAS revealed 56 significant marker–trait associations (Table 3). Chromosome 4
accounted for the highest number (15%) of the SNP markers associated with foliar damage.
Chromosomes 4 and 9 have been reported to harbor SNP markers associated with resistance
to major lepidopteran pests in maize [71]. One major effect QTL on chromosome 9 in bin
9.03, reported in previous studies [72,73], coincided with SNP DT9_96875821, detected for
the foliar damage score on the 14th day after infestation. Another major QTL detected on
bin 4.06 coincided with SNP DT4_167218393, detected for the foliar damage score 21 days
after infestation.

The shift in allele frequency proportions has been attributed to the natural or artificial
selection of variants conferring a selective advantage [74]. The results from this study
suggest that the frequency of alleles conferring an increased expression of resistance to
FAW foliar damage are rare and could increase over generations to become fixed or common
in maize populations due to selection. In the present study, SNP loci with high minor
allele frequencies had small effects, while those with low allele frequencies had larger effect
sizes. Whereas the effect sizes of individual loci were small, their potential to confer a
durable and stable resistance to FAW feeding damage depends on their combined effect
sizes [64]. Our results corroborate with previous findings that have linked the genetic basis
of pest resistance in maize to multiple genes of small effects that are scattered across the
genome [29].

Larger peaks on the Manhattan plots were suggestive of a strong association between
the surrounding genomic region and the corresponding phenotypic trait and warrants
further validation. Grain yield under artificial FAW infestation, for instance, exhibited
peaks of association signals on chromosomes 4 and 10 which could be due to strong
selection pressure during the breeding and domestication process [75]. While biological
functions of uncharacterized candidate genes could not be inferred, SNP (DT8_165429441),
strongly associated (p = 10−5) with leaf damage scores 14 days after infestation, was
found within a genomic region containing the GRMZM2G016802 gene that participates
in the defense response by restricting injury occurrence and enhancing recovery after
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injury [23]. The allelic effect of some of the selected markers (two SNPs in boxplots A with
DT1_34838367 and DT2_192225273 and boxplots B with DT5_86480332 and DT6_108383751)
clearly support the effective role in improving the level of FAW resistance (Figure 5). These
consistent regions or SNPs could potentially help the breeders to design an effective strategy
to introgress these QTNs in relevant breeding materials through marker-assisted breeding.

Foliar damage in maize triggers a complex cascade of biological pathways mediated by
various genetic factors, effector molecules, and signaling components and which leads to the
accumulation of secondary metabolites with anti-feedant effects [76]. SNP (DT3_3627288)
located in chromosome 3 and significantly associated with late-stage foliar damage scores,
for instance, was mapped in a genomic region adjacent to the GRMZM2G045259 gene
involved in the phosphorylation–dephosphorylation of proteins in a process catalyzed
serine/threonine kinases to effect signal transductions that play a prominent role in plant
defense mechanisms [77]. The preferential upregulation of genes was implicated in gen-
eral stress responses such as receptor kinases and in plants colonized by foliar feeding
insects [78]. SNP (DT1_26003816), significantly associated with the ear damage trait,
suggested that the putative candidate genes GRMZM2G015804 are involved in the carbohy-
drate metabolic process. In plants under biotic attack [79], photosynthetic genes involved
in metabolic processes have been reported to be downregulated, and this could explain low
grain yield under FAW infestation. Compared to plant–pathogen resistance genes, little
information exists on plan—insect resistance genes. To fully elucidate the genetic basis
of FAW resistance in maize, further investigations are therefore warranted to functionally
validate putative candidate genes with unknown functions reported in this study.

GS facilitates the rapid selection of superior genotypes through ease in genotyping,
which captures the maximum favorable alleles. The potential of GS models in identifying
lines with favorable alleles in maize for different traits has been studied by different
groups [25,69,80]. The moderate to high accuracies observed in this study (Figure 6)
for the association panel offer promise in breeding for FAW resistance. The prediction
accuracy of the association panel was in agreement with various studies on moderately
complex traits such as striga [81], maize chlorotic mottle virus [82], MLN [83], and grey
leaf spot [69]. Significant genetic structure and a high LD between adjacent markers of the
diversity panel result in a moderate prediction accuracy, which could also be attributed
to its moderate heritability [82]. The rapid decline in the cost of genotyping makes it
possible to routinely apply GS in breeding, specifically for complex traits such as FAW
resistance. Combining GWAS and the predictive capabilities of GS will also improve the
prediction accuracy by using information on the major QTLs detected in GWAS. Overall,
the predicted accuracies are moderate, and under the assumption of the three cycles per
year possibility, a high selection gain for complex traits such as FAW resistance is achievable
with optimal resources.

5. Conclusions

To investigate the genetic basis of FAW resistance, we employed a single panel con-
sisting of 423 tropical maize lines for GWAS and genomic prediction. The phenotypic
correlations of the FAW resistance traits investigated indicated that this panel can be used
to select better-performing lines under FAW infestation. GWAS identified 56 SNPs associ-
ated with FAW resistance traits. The genomic regions identified can be used for selection
efforts to enhance FAW resistance. Furthermore, the findings showed that including GS
in maize breeding can successfully support phenotypic selection to improve maize native
genetic resistance. Future work should, therefore, focus on validating the identified SNPs
to enhance the efficacy of maize breeding in SSA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13020251/s1, Figure S1: Density plot showing the number SNPs within 1 Mb window
size from the studied 7100 markers. The number of SNPs is displayed on a scale from green to red;
Figure S2: Kinship analysis of the FAW GWAS panel. The heat map shows the pairwise kinship
matrix based on 7100 filtered SNPs.

https://www.mdpi.com/article/10.3390/genes13020251/s1
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