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Biology, University of California Davis, Davis, California, United States of America, 13 Cambridge Institute for Medical Research, Cambridge, United Kingdom,
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Abstract

Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid
angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of
the fungal kingdom called ‘‘zygomycetes,’’ R. oryzae is also used as a model to study fungal evolution. Here we report the
genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb
genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We
predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and
genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an
ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein
complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The
WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and
signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence
factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14a-
demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole
and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in
mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
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Introduction

The fungal kingdom comprises an estimated 1.5 million diverse

members spanning over 1 billion years of evolutionary history.

Within the fungal kingdom, four major groups (‘‘Phyla’’)—the

Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota—

are traditionally recognized [1,2] (Figure 1). Recent phylogenetic

studies confirm a monophyletic group (the Dikarya) that includes

the ascomycetes and basidiomycetes, and proposed polyphyletic

states for the two basal lineages of chytridiomycetes and

zygomycetes [3]. The majority of fungal genomic resources

generated thus far are for the Dikarya (http://www.ncbi.nlm.

nih.gov/genomes/leuks.cgi) and typically focused on fungi that are

pathogenic. However, many members of the basal lineages also

are important pathogens [4,5] while others serve as outstanding

models for understanding the evolution of the entire fungal

kingdom. This study reports the analysis of the genome sequence

of Rhizopus oryzae, which represents the first fungus sequenced from

the polyphyletic basal lineages described as the zygomycetes [3].
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R. oryzae is a fast growing, filamentous fungus and is by far the

most common organism isolated from patients with mucormycosis,

a highly destructive and lethal infection in immunocompromised

hosts [4,5]. Approximately 60% of all disease manifestation and

90% of all rhinocerebral cases are caused by R. oryzae [6]. The

rapid growth rate and the angioinvasive nature of the disease leads

to an overall mortality of .50% [7]. In the absence of surgical

removal of the infected focus, antifungal therapy alone is rarely

curative, resulting in 100% mortality rate for patients with

disseminated disease [8].

The genus Rhizopus was first described in 1821 by Ehrenberg

and belongs to the order Mucorales in the phylum Zygomycota

[9]. Unlike the Dikarya, fungal species belonging to this basal

lineage are characterized, in part, by aseptate hyphae. If septa are

produced, they occur only between the junctions of reproductive

organs and mycelium, or occasionally between aged mycelia. As a

saprobe, Rhizopus is ubiquitous in nature and a number of species

in the genus are used in industry for food fermentation (e.g.,

tempeh, ragi), production of hydrolytic enzymes, and manufacture

of the fermentation products lactic acid and fumaric acid [10].

There are taxonomic complications within the Rhizopus genus,

including the recently proposed reclassification of R. oryzae

(previous synonym R. arrhizus) to include two species, R. oryzae

and R. delemar [11]. According to this new nomenclature, the

sequenced strain 99–880 would be reclassified as R. delemar, but

will be referred to as R. oryzae in this study in an effort to minimize

confusion until this nomenclature is widely accepted.

Analysis of the R. oryzae genome provides multiple lines of

evidence to support an ancient whole-genome duplication (WGD),

which has resulted in the duplication of all protein complexes that

constitute the respiratory electron transport chain, the V-ATPase,

and the ubiquitin–proteasome system. The ancient WGD,

together with recent gene duplications, have led to the expansion

(2- to 10-fold increase) of gene families related to pathogen

virulence, fungal-specific cell wall synthesis, and signal transduc-

tion, providing R. oryzae the genetic plasticity that could allow

rapid adaptation to adverse environmental conditions, including

host immune responses.

Figure 1. Relationship of major phyla within the fungal kingdom. Phylogeny is shown as a dendrogram using H. sapiens (Metazoa) as the
out-group. B. dendrobatidis (phylum Chytridiomycota) is a unicellular organism with flagellated spores. The terrestrial multicellular fungi include the
monophyletic Dikaryomycota (Ascomycota and Basidiomycota) and the more basal fungal lineages, including R. oryzae. In contrast to the Dikaryomycota
fungi that form hyphae divided by septa (white arrows), the hyphae of R. oryzae are multinucleate but not divided into separate cells (coenocytic).
doi:10.1371/journal.pgen.1000549.g001

Author Summary

Rhizopus oryzae is a widely dispersed fungus that can
cause fatal infections in people with suppressed immune
systems, especially diabetics or organ transplant recipients.
Antibiotic therapy alone is rarely curative, particularly in
patients with disseminated infection. We sequenced the
genome of a pathogenic R. oryzae strain and found
evidence that the entire genome had been duplicated at
some point in its evolution and retained two copies of
three extremely sophisticated systems involved in energy
generation and utilization. The ancient whole-genome
duplication, together with recent gene duplications, has
led to the expansion of gene families related to pathogen
virulence, fungal-specific cell wall synthesis, and signal
transduction, which may contribute to the aggressive and
frequently life-threatening growth of this organism. We
also identified cell wall synthesis enzymes, essential for
fungal cell integrity but absent in mammals, which may
present potential targets for developing novel diagnostic
and therapeutic treatments. R. oryzae represents the first
sequenced fungus from the early lineages of the fungal
phylogenetic tree, and thus the genome sequence sheds
light on the evolution of the entire fungal kingdom.

Genome Duplication of R. oryzae
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Results/Discussion

Genome sequencing and organization
Rhizopus oryzae strain 99–880, isolated from a fatal case of

mucormycosis, was chosen for whole genome sequencing. The

whole genome shotgun reads were generated using Sanger

sequencing technology (Materials and Methods, Table S1). The

genome assembly consists of 389 sequence contigs with a total length

of 45.3 Mb and an N50 contig length of 303.7 kilobases (kb) (that is,

50% of all bases are contained in contigs of at least 303.7 kb). Over

11-fold sequence coverage provides high base accuracy within the

consensus sequence, with more than 99.5% of the sequence having

quality scores of at least 40 (1 error every 104 bases) (Table 1).

An R. oryzae optical map of 52-fold physical coverage, consisting

of 15 linkage groups, was constructed to anchor the assembly and to

generate a physical map. The 22 largest scaffolds (44 Mb),

corresponding to over 96% of the assembled bases, cover 95% of

the optical map (Materials and Methods, Table S2), reflecting the

long-range continuity of the assembly and near complete genome

coverage. The remaining 5% of the optical map falls into gaps in the

assembly or within the highly repetitive ends of linkage groups. We

also linked reads containing telomeric tandem repeats (CCACAA)n
to 12 of the 30 linkage group ends, confirming that the assembly

extends close to telomeric repeats (Materials and Methods, Figure 2).

Repeat and transposable elements
The R. oryzae genome is highly repetitive compared with other

fungal genomes (Materials and Methods, Table S3). Over 9 Mb of

sequence, accounting for 20% of the assembly, consists of

identifiable transposable elements (TEs) (Materials and Methods,

Table 2). These include full-length and highly similar copies of

many diverse types of TEs from both Class I (retrotransposon) and

Class II (DNA transposon) elements. The active transcription of

some TEs is supported by the identification of corresponding

expressed sequence tags (ESTs) (Materials and Methods, Table 2

and Table S4), suggesting that these elements may be currently

active. The Ty3/gypsy-like long terminal repeat (LTR) retro-

transposons are the most abundant type of TEs, accounting for 8%

of the assembly. The overall distribution of these LTR elements

exhibits strong insertion-site preference, often co-localizing with

tRNA genes (Figure S1).

Genome annotation and evidence for a whole-genome
duplication

A total of 17,467 annotated protein-coding genes, including

13,895 genes not overlapping TEs, were predicted in the R. oryzae

genome (Materials and Methods, Table 1). About 45% of the non-

TE proteins have paralogs within the genome and are grouped

into 1,870 multi-gene families. Moreover, 17% of these paralogous

genes are grouped into two-member gene families, more than two-

fold higher than any other representative fungal genome

(Materials and Methods, Figure S2). This high proportion of

duplicated gene pairs prompted an investigation into whether

multiple segmental duplications or an ancestral whole-genome

duplication (WGD) event occurred in R. oryzae.

WGD was first proposed in Saccharomyces cerevisiae based on the

order and orientation of duplicated genes in the corresponding

chromosomes [12]. This was further confirmed by comparison to

a related, non-duplicated species that identified a signature of 457

duplicated gene pairs interleaved with asymmetric gene loss in

duplicated regions [13,14]. In the R. oryzae genome, we identified

648 paralogous gene pairs, which can be uniquely grouped into

256 duplicated regions containing at least three, and up to nine,

duplicated genes (Materials and Methods, Figure S3, and Table

S5, S6). Together the duplicated regions cover approximately 12%

of the genome and span all 15 linkage groups (Figure 2 and Table

S5). The duplicated genes in each of these regions are found in the

same order and orientation, providing evidence of an ancestral

duplicated state for these regions.

In addition to the similarities of the signature of WGD found in

S. cerevisiae, we observed multiple lines of evidence to support

WGD to the exclusion of independent duplications. First, if the

256 duplicated regions in R. oryzae are the cumulative result of

multiple segmental duplications, some of the early duplicated

regions should also be part of later duplication events. Such

regions would be present in the genome as triplets. We estimate

that the probability of segments being duplicated two or more

times approaches a Poisson distribution, in which 47 triplets would

be expected within the 256 duplicated segments. However, we

only detected three potential triplet regions (p,10216) (Materials

and Methods, Table S5), which refutes the model of multiple

segmental duplications. Second, we observed a clear correlation

between the presence of TEs and breakpoints within duplicated

regions, allowing us to extend the initial duplicated regions in the

same orientation into larger blocks that span 23% of the genome

(Materials and Methods, Figure 2).

The comparison of protein sets of R. oryzae and Phycomyces

blakesleeanus, a distantly related fungus in the order Mucorales that

has been recently sequenced at the Joint Genome Institute (http://

genome.jgi-psf.org/Phybl1/Phybl1.home.html), further strength-

ens the WGD argument. A significant excess of gene duplicates is

observed in the R. oryzae genome compared with P. blakesleeanus

Table 1. Rhizopus oryzae genome statistics.

Assembly statistics

Total contig length (Mb) 45.26

Total scaffold length (Mb) 46.09

Average base coverage (Fold) 11

N50 contig (kb) 303.66

N50 scaffold (Mb) 3.1

Linkage groups 15

GC-content (%) 35.6

Coding (%) 40.6

Non-coding (%) 32.6

Coding sequence

Percent coding (%) 39.0

Average gene size (bp) 1212

Average gene density (kb/gene) 2.6

Protein-coding genes 17,467

Exons 57,981

Average exon size (bases) 310

Exons/gene 3.3

tRNA genes 239

Non-coding sequence

Introns 40,514

Introns/gene 2.32

Average intron length (base) 79

Intergenic regions 17,546

Average intergenic distance (bp) 1420

doi:10.1371/journal.pgen.1000549.t001

Genome Duplication of R. oryzae
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(p,10216) (Materials and Methods, Table S7). Out of the 648

paralogous gene pairs retained in the syntenic regions, 507 share

homologs in P. blakesleeanus genome. More than 84% (426) of these

homologous genes pairs match a single P. blakesleeanus gene,

reflecting a 2-to-1 correspondence (p,102150). We further

estimated the relative duplication time for each duplicated region

by averaging the divergences of all the duplicated gene pairs

within the region (Figure 3). If the divergence time between R.

oryzae and P. blakesleeanus is defined as t using midpoint rooting

(Figure 3A), approximately 78% of all these regions were estimated

to be duplicated within one standard deviation (0.115) of the mean

(0.386t), arguing strongly for a single origin for these duplicated

regions (Figure 3B).

Based on the above observations, we conclude that the modern

genome of R. oryzae arose by a WGD event, followed by massive gene

loss. This event resulted in a net gain of at least 648 genes compared to

the pre-duplication ancestor. The gene pairs retained after WGD are

significantly enriched for protein complexes involved in various

metabolic processes (Materials and Methods, Table S8). In

particular, we observed the duplication of all protein complexes that

constitute the respiratory electron transport chain, the V-ATPase,

and the ubiquitin–proteasome systems (Table 3 and Table S9, S10,

S11). These protein complexes contain more than 100 protein

subunits in total, of which about 80% were retained as duplicates

after WGD, including every core subunit of all three complexes.

Because an imbalance in the concentration of the subcomponents of

large protein–protein complexes can be deleterious [15], duplication

of entire complexes should be difficult to achieve by independent

duplication events. This observation provides an additional line of

evidence to support an ancient WGD in R. oryzae.

Large-scale differences exist among the duplicated genes in the

post-WGD genomes of S. cerevisiae and R. oryzae. The increased

copy number of some glycolytic genes in S. cerevisiae may have

conferred a selective advantage in adapting to glucose-rich

Figure 2. R. oryzae genomic structure showing duplicated regions retained after WGD and distribution of LTR transposable elements.
The length of the light blue background for each linkage group is defined by the optical map. For each chromosome, row a represents the genomic
scaffolds positioned on the optical linkage groups. The red oval indicates linkage to telomeric repeat arrays. Row b displays the 256 duplicated regions
capturing 648 gene pairs and spanning 12% of the genome. The shaded backgrounds around some duplicated regions illustrate the duplicated blocks
by merging duplicated regions that are within 200 kb after discounting the transposon sequences. These extended duplicated blocks contain the same
amount of the duplicates but span 23% of the genome. A pair of corresponding duplicated regions between linkage 2 and linkage 9 are shown in the
zoomed images. The numbers in the gene boxes are gene IDs. Row c corresponds to the distribution of the LTR retroelements.
doi:10.1371/journal.pgen.1000549.g002
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environments through rapid glucose fermentation [16]. The

retention of duplicated protein complexes involved in energy

generation in R. oryzae could have provided an advantage related

to the rapid growth of this organism. About 16% of the R. oryzae

duplicates are also retained in S. cerevisiae (BLASTP 1e-5). The

genes retained in both systems are enriched for kinases and

proteins involved in signal transduction (21%), and proteins

involved in transcription/translation processes (21%) (Table S12),

possibly indicating potential selective advantage for these genes in

both fungal species. Among these shared gene pairs, three out of

the four that show accelerated evolution encode enzymatic

activities, such as hydrolase, ligase, and protease activities (Table

S12).

Gene family expansions
Compared to the genomes of sequenced dikaryotic fungi,

several gene families are significantly expanded in R. oryzae,

including the superclass of P-loop GTPases and their regulators,

and the gene families that are essential for protein hydrolytic

activities and cell wall synthesis (Materials and Methods, Table 4,

and Tables S13, S14, S15, S16).

Expansion of P-loop GTPases and their regulators. To

assess the complexity of the basic cellular processes in R. oryzae,

including proteosynthesis, membrane trafficking, cytoskeletal

dynamics, signalling, or cell division, we analyzed in detail a

diverse group of proteins central for these processes —the

superclass of P-loop GTPases (Table S13) and their regulators

(Tables S14). Overall, the general structures of the distinct types of

GTPase superclasses and their regulators are very similar in R.

oryzae compared to dikaryotic fungi. However, a large proportion

of these genes have multiple paralogs in R. oryzae resulting from

gene retention after WGD and additional duplications (Materials

and Methods, Table S13). Therefore, the total number of

GTPases and their regulators in R. oryzae exceeds more than

twice and three times, respectively, the number of genes in the

other genomes analyzed (Table 4). As the molecular switches that

mediate regulatory and signaling steps in diverse cellular processes

[17], such an increase might provide the organism an enhanced

capacity for coordinating growth and metabolism under highly

varied environmental conditions.

Expansion of secreted proteases. The expansion of

protease gene families in R. oryzae suggests an increased ability

of R. oryzae to degrade organic matter (Materials and Methods,

Table S15) and is consistent with its centuries-old use in

fermentation and production of hydrolytic enzymes [10]. The

most noteworthy expansions among the protease gene families

are of secreted aspartic proteases (SAP) and subtilases (Table 4),

which constitute important virulence factors in many pathogenic

fungi [18,19]. The large family of R. oryzae SAP proteins

includes three pairs of genes retained after WGD and three

pairs of nearly identical, tandem duplicates that likely arose

from recent duplications (Figure S4). The expansion of

proteolytic enzymes in R. oryzae may facilitate hyphal

penetration through decaying organic materials or after

establishment of infection through tissues and vessels.

Extracellular proteolytic activity of both SAP and subtilase

proteins has been linked to virulence in pathogenic Rhizopus

isolates [20,21], suggesting the potential utility of this group of

proteins in vaccine or drug development.

Expansion of fungal cell wall synthesis enzymes.

Another important expansion in R. oryzae includes gene families

that are essential for the biosynthesis of the fungal cell wall, a

defining cellular structure that provides physical support and

osmotic integrity. Unlike dikaryotic fungi, the cell wall of R. oryzae

and other Mucorales contains a high percentage of chitin and

chitosan, which are synthesized by chitin synthases (CHS) and

chitin deacetylases (CDA), respectively [22,23]. The R. oryzae CHS

and CDA gene families have expanded to 23 and 34 genes,

respectively, more than double the numbers observed in any

sequenced dikaryotic fungus (Table 4). These families include

three pairs of CHS and four pairs of CDA retained after WGD.

RT-PCR amplification of the CHS catalytic domains

demonstrated that 20 of the 23 CHS, including all the

duplicates, are transcribed, suggesting their potential functional

roles (Materials and Methods, and Figure 4). Cell wall localization

is predicted for 14 of the 34 identified CDA genes based on

potential glycosylphosphatidylinositol (GPI)-modification sites

(Materials and Methods, Table S16). The surface accessibility of

these proteins suggests that they could serve as targets for reliable

diagnosis of this invasive pathogen.

Table 2. Transposable elements (TEs) in the R. oryzae genome.

Elements Total basesa % of assembly Sequence identity (%)b ESTc

Class I transposons 5,589,511 12.13

LTR elements / Ty3 3,700,795 8.03 97% Yes

LINES 1,742,093 3.78 97% Yes

DIRS 146,622 0.32 97% Yes

Class II transposons 3,462,307 7.50

Mariners 1,666,728 3.62 98% Yes

En/Spn 314,481 0.68 98% No

Tigger 262,307 0.57 94% No

Crypton 191,823 0.42 98% No

Helitron 66,534 0.14 99% No

Total 9,051,818 19.63

aThe genomic distribution of the representative elements was identified using the sensitive mode of RepeatMasker version open-3.0.8, with cross_match version
0.990329.

bSequence identity was computed based on the average identity of the full-length copies of each representative against the consensus sequence of each group.
cEST reads overlap with the identified TEs (see Table S6).
doi:10.1371/journal.pgen.1000549.t002

Genome Duplication of R. oryzae

PLoS Genetics | www.plosgenetics.org 5 July 2009 | Volume 5 | Issue 7 | e1000549



Ergosterol pathway. The ergosterol biosynthesis pathway is

conserved in the R. oryzae genome. As a major constituent of the

fungal plasma membrane [24], this fungal-specific biosynthetic

pathway has been the subject of intensive investigation as a target

of antifungal drugs [25]. The conservation of the entire pathway

indicates that azoles, a group of drugs that specifically target this

pathway [26,27], could be used to treat R. oryzae infections.

However, about half the genes involved in ergosterol biosynthesis,

including the major azole target, lanosterol 14a-demethylase

(ERG11, RO3G_11790, RO3G_16595), are present in multiple

copies (Table S17). Acquisition of azole resistance in a clinical

strain of Candida albicans reflected amplification of ERG11 in a gene

copy-dependent manner [28,29]. Although experimental

validation is pending, the copy number increase and divergence

of duplicated protein sequences could contribute to the observed

variable responses of R. oryzae to different azole drugs, including

voriconazole and posaconazole [26,27].

In contrast to the expansions described above, some cell wall

synthesis-related genes are underrepresented in the R. oryzae

genome. For instance, no gene encoding a putative a-1,3-glucan

synthase was detected. Compared to four and three copies of b-

1,3-glucan synthase (GS) reported in S. pombe and S. cerevisiae,

respectively, the R. oryzae genome only contains two GS genes.

Nevertheless, the presence of GS underlies the susceptibility of R.

oryzae to caspofungin acetate, an antifungal agent that inhibits GS

[30].

Iron uptake and pathogenicity
Iron is required by virtually all microbial pathogens for growth

and virulence [31], and sequestration of serum iron is a major host

defense mechanism against R. oryzae infection [32]. Genomic

analysis reveals that R. oryzae lacks genes for non-ribosomal peptide

synthetases (NRPSs), the enzymes that produce the most common

siderophores (hydroxamate siderophores) used by other microbes

to acquire iron. Instead, R. oryzae relies solely on Rhizoferrin,

which is ineffective in acquiring serum-bound iron [33], and

therefore is heavily dependent on free iron for pathogenic growth.

This explains why some patients with elevated levels of available

free iron, including diabetics, are uniquely susceptible to infection

by R. oryzae [34]. At the same time, we observed duplication of

heme oxygenase (CaHMX1) (RO3G_07326 and RO3G_13316),

the enzyme required for iron assimilation from hemin in C. albicans

[35]. Since free iron is usually present at very low concentrations

in human blood, the two copies of the heme oxygenase gene may

increase iron uptake from host hemoglobin, which would be

important for angioinvasive growth. The critical role of iron

uptake during R. oryzae early infection further reinforces the

strategy of treating infections as early as possible with iron

chelators that cannot be utilized by R. oryzae as a source of iron

[36].

Insight into eukaryote evolution
As the first sequenced representative of a fungal lineage basal to

the Dikarya, R. oryzae provides a novel vantage point for studying

fungal and eukaryotic genome evolution. The R. oryzae genome

shares a higher number of ancestral genes with metazoan genomes

than dikaryotic fungi (p,0.00001) (Materials and Methods, Table

S18). The homologs shared exclusively between R. oryzae and

Metazoa include genes involved in transcriptional regulation,

signal transduction and multicellular organism developmental

processes (Figure S5). For example, in contrast to dikaryotic fungi,

the R. oryzae genome encodes orthologs of the metazoan GTPases

Rab32, the Ras-like GTPase Ral, as well as the potential positive

regulators of these GTPases (Table S13, S14, Figure S6). The

presence of these orthologs suggests that R. oryzae might share these

metazoan regulatory modules, which are involved in protein

trafficking, GTP-dependent exocytosis, and Ras-mediated tumor-

igenesis [37,38]. In this respect, R. oryzae could serve as a model

system for studying aspects of eukaryotic biology that cannot be

addressed in dikaryotic fungi.

The genome sequence also sheds light on the evolution of

multicellularity. As in other Mucorales species, R. oryzae hyphae

are coenocytic (Figure 1), meaning that the multinucleated

cytoplasm is not divided into separate cells by septa after mitosis.

Figure 3. Estimation of duplication dates using P. blakesleeanus
as an outgroup. (A) An unrooted tree diagram for the duplicated
gene pairs in R. oryzae and their homologous gene in P. blakesleeanus.
Midpoint rooting is used to calculate of the relative age of each
duplication (R) in relation to the root. The branch lengths as
substitutions per site for the unrooted tree topology were calculated
using the WAG evolutionary model [49] employing a maximum
likelihood-based package, PhyML [50]. The distance between two
duplicated genes in R. oryzae is t1+t2, and the distances between the
duplicates and their orthologous gene in P. blaskesleeanus are t+t3+t1

and t+t3+t2, respectively. (B) The distribution of the relative duplication
time for each duplicated region in comparison to the root (R). R is
normalized within each duplicated region by averaging the divergences
of all the duplicated gene pairs within the region. If the divergence time
between R. oryzae and P. blakesleeanus is defined as t using midpoint
rooting, approximately 78% of all these regions were estimated to be
duplicated within one standard deviation (0.115) of the mean (0.386t).
doi:10.1371/journal.pgen.1000549.g003
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Our analysis suggests that the coenocytic hyphal structure of R.

oryzae may be attributed to the absence of a functional septation

initiation network (SIN), which activates actomyosin ring

contraction and the formation of septa upon completion of

mitosis [39]. The core components of the SIN pathway, as

described in S. pombe, and the homologous mitotic exit network

(MEN) in S. cerevisiae, are common to both fission and budding

yeasts (Table S19), including the protein kinases Sid2 (Dbf2p/

Dbf20p) and Cdc7 (Cdc15p). Our kinome analysis revealed that

R. oryzae lacks the Sid2 ortholog. Even though the fungus

possesses five copies of Cdc7 homologs, the proteins lack the

characteristic C-terminal tail (Figure S7, Table S19). The

chytrid fungus Batrachochytrium dendrobatidis, fruitfly Drosophila

melanogaster and nematode Caenorhabditis elegans all lack Cdc7

orthologs. This omission suggests that Cdc7 in dikaryotic fungi

may have acquired the C-terminal extension, which contributes

a significant role in cytokinesis, after the divergence of the

lineage leading to Rhizopus. Although homologous genes of these

two kinase families are also reported in plants and metazoa,

their functions are diverged from coordinating the termination

of cell division with cytokinesis [40,41]. We therefore hypoth-

esize that the fungal septation pathway may have arisen in the

dikaryotic lineage specifically and the multinucleate R. oryzae

cellular organization may reflect a primitive developmental stage

of multicellularity, supporting the theory that multicellularity

evolved independently in metazoan, plant, and fungal lineages

[42].

Conclusions
Gene duplication plays an important role in genome evolution,

thus whole genome duplication (WGD) is expected to have a large

impact on the evolution of lineages in which it has occurred [43].

The post-WGD retention of entire protein complexes and gene

family expansions could enable R. oryzae to rapidly use more

complex carbohydrates for energy sources and quickly accommo-

date major environmental changes. This outcome of WGD may

underlie its aggressive disease development observed clinically and

its rapid growth rate observed experimentally (Materials and

Methods, Table S20).

Due to the lack of suitable laboratory tests, the diagnosis of

mucormycosis is notoriously difficult [6]. As an acute and rapidly

fatal infection, delayed diagnosis has been associated with a

dramatically worse outcome, thus a timely and accurate diagnostic

assay is essential for earlier treatment [44]. Our analysis illustrates

the value of the R. oryzae genome sequence in understanding the

basis of angioinvasive pathogenicity and suggests ways to improve

diagnosis and treatment. The R. oryzae specific cell wall

glycoproteins (e.g., the chitin deacetylases) identified through this

analysis could serve as targets for reliable diagnosis of this invasive

pathogen and therefore could have a profound impact controlling

the R. oryzae infection.

The R. oryzae genome also provides the first glimpse into the

genome structure and dynamics of a basal fungal lineage,

demonstrating the novel perspective of this model organism for

the study of eukaryotic biology that cannot be addressed in

Table 3. Duplication of protein complexes in the R. oryzae genome*.

Complexes Respiratory chain complexes V-ATPase Ubiquitin–proteasome system

Subunits I II III IV ATPase Total V1 V0 Total Alpha Beta ATPase LID Modifier Total

Reference genes 28 4 9 9 10 60 7 5 12 7 7 6 13 3 36

R. oryzae duplicates 20 3 8 8 8 47 5 3 8 6 6 5 10 2 29

% duplicated genes 71.4 75.0 88.9 88.9 80.0 78.3 71.4 60.0 66.7 85.7 85.7 83.3 76.9 66.7 80.6

*Duplicated protein complexes in R. oryzae retained after WGD. The reference nuclear genes of protein complexes from Saccharomyces cerevisiae or Neurospora crassa
were used to identify homologous sequences in the R. oryzae proteome. We searched for homologous genes using BLASTP (1e–5) and manually checked for short
proteins that usually have higher e-values.

doi:10.1371/journal.pgen.1000549.t003

Table 4. Gene family expansion in the R. oryzae genome.

Species Cell wall synthesis Protein hydrolysis Cell signaling

CHS CDA SAP Subtilases GTPases GTPase regulators

Rhizopus oryzae 23 34 28 23 184 246

Aspergillus fumigatus 9 9 6 4 81 76

Neurospora crassa 7 5 17 8 84 79

Magnaporthe grisea 8 11 8 7 — —

Saccharomyces cerevisiae 7* 2* 7 4 82 76

Candida albicans 8* 1* 14 2 — —

Cryptococcus neoformans 8 4 7 2 78 77

Coprinus cinereus 9 16 2 3 86 83

Ustilago maydis 8 8 6 1 80 77

Expanded gene families in R. oryzae compared to selected dikaryotic fungal genomes.
—, not tested.
*based on the SGD (http://www.yeastgenome.org/) and CGD (http://www.candidagenome.org/) annotation.
doi:10.1371/journal.pgen.1000549.t004

Genome Duplication of R. oryzae

PLoS Genetics | www.plosgenetics.org 7 July 2009 | Volume 5 | Issue 7 | e1000549



dikaryotic fungi. Importantly, R. oryzae gene function can be

experimentally studied using transformation [45]. Ongoing

sequencing projects for other basal fungi, including two other

Mucorales species and at least three chytrids, will further our

understanding of the evolution of the fungal kingdom. In addition,

the R. oryzae sequence also reveals an important observation about

the evolution of multicellular eukaryotes, with R. oryzae represent-

ing a preliminary step toward multicellularity, a trait that evolved

multiple times in the history of the different eukaryotic lineages.

Materials and Methods

Sequencing and assembly
Sanger sequencing technology was employed for the R. oryzae

genome. The sequence was generated using three whole-genome

shotgun libraries, including two plasmid libraries containing inserts

averaging 4 kb and 10 kb, and a Fosmid library with 40-kb inserts

(Table S1), then assembled using Arachne [46].

Optical map
The R. oryzae optical map was constructed using restriction

enzyme Bsu36I [47]. The correspondences of the restriction

enzyme cutting sites and the lengths of assembly fragments based

on in silico restriction were used to order and orient the scaffolds of

the assembly to the map (Table S2).

Telomeres
Telomeric tandem repeats (CCACAA)n of at least 24 bases were

identified in the unplaced reads and linked to scaffolds based on

read pair information.

Repetitive elements
Repeat sequences were detected by searching the genome

sequence against itself using CrossMatch (http://www.genome.

washington.edu/UWGC/analysistools/Swat.cfm) and filtering for

alignments longer than 200 bp with greater than 60% sequence

similarity (Table S3).

Transposable elements (TEs)
The full-length LTR retrotransposons were identified using the

LTR_STRUCT program [48]. The DDE DNA transposons were

identified using EMBOSS einverted (http://emboss.sourceforge.

net/) to locate the inverted repeats, in addition to a BLAST search

for the transposase. The LINE elements, DIRS-like elements,

Cryptons and Helitrons from R. oryzae were detected in a series of

TBLASTN searches of the R. oryzae sequence database, using the

protein sequences as queries. The genomic distribution of the

representative elements was identified using the sensitive mode of

RepeatMasker version open-3.0.8, with cross_match version

0.990329 (Figure S1).

Gene annotation and gene families
Protein-encoding genes were annotated using a combination of

864 manually curated genes, based on over 16,000 EST BLAST

alignments and ab initio gene predictions of FGENESH, FGE-

NESH+ and GENEID. Multigene families were constructed by

searching each gene against every other gene using BLASTP,

requiring matches with E#1025 over 60% of the longer gene

length (Figure S2).

Identification of duplicated regions
A duplicated region was defined as two genomic regions that

contain at least three pairs of genes in the same order and

orientation. The best BLAST hits (2754 gene pairs, among non-

TE proteins) with a threshold value of E#10220 were used to

search for such duplicated regions. Varying the distance between

neighboring gene pairs from 10 kb to 50 kb did not significantly

affect the amount of detected duplications (Table S5). We did not

Figure 4. RT–PCR of R. oryzae chitin synthases (CHSs). Presence of a transcript was detected from mycelia grown with four different growth
phases: 1L, 1-day-old liquid culture; 1S, 1-day-old agar plate; 2S, 2-day-old agar plate; and 3S, 3-day-old agar plate. Gene pairs retained after WGD as
detected in the duplicated regions are shown in blue.
doi:10.1371/journal.pgen.1000549.g004

Genome Duplication of R. oryzae

PLoS Genetics | www.plosgenetics.org 8 July 2009 | Volume 5 | Issue 7 | e1000549



find duplicated regions among sets of genes with randomized

locations (1000 permutation tests), attesting to the statistical

significance of the duplicated regions detected through this

analysis (Figure S3).

If the observed duplicated regions were created through

sequential segmental duplications, the duplicated segments will

follow a Poisson distribution in the genome.

f x; lð Þ~ lx:e{l

x!

where: e = 2.71828;

x is the probability of which is given by the function; and

l is a positive real number, equal to the expected number of

occurrences that occur during the given interval.

When f(x; 1) = 100; f(x; 2) = 18.4, f(x; 3) = 6.13;

That is, for every 100 duplicates, we expect 18.4 triplications.

Thus, for the 256 duplicated regions observed in the R. oryzae

genome, the expected number of triplications would be 47;

however, we only detected three. The probability for this

observation is:

p 3; 47ð Þ~ 473:e{47

3!
~6:7|10{17

Triplets
All the genes within the duplicated regions, including the non-

paralogous genes, were used to compute multiple correspondences

with other duplicated regions (Table S8). At a 10-kb distance

between neighboring paralogs, we observed 174 duplicated

regions, but no triplets, although the expected number of triplets

is 32 if duplications were created through sequential segmental

duplications. At a 20-kb distance, we only detected three potential

triplet regions (Table S5).

Comparative proteomics between R. oryzae to
Phycomyces blakesleeanus

Reciprocal BLAST searches between P. blakesleeanus and R.

oryzae protein sets were conducted using BLASTP, requiring

matches with E#10220 over 60% of the query gene length (Table

S7). For 852 duplicated genes (426 genes pairs) in R. oryzae, and

their corresponding homologous gene in the P. blakesleeanus

genome, we constructed unrooted trees (Figure 3A) using PhyML

[49]. The mean distance of each gene pair among three

homologous genes were calculated using the WAG evolutionary

model [50], where the distance between two duplicated genes in R.

oryzae is t1+t2, and the distances between the duplicates and their

orthologous gene in P. blakesleeanus are t+t3+t1 and t+t3+t2,

respectively. The relative duplication time of each duplicated

region in comparison to the root is calculated as an average

duplication time (R = K (t1+t2)/t) of all the gene pairs within the

region (Figure 3).

Functional enrichment and conservation of retained
genes

The non-TE genes were assigned functional annotation using

the program Blast2GO [51] (BLAST cut-off = 1e–20). GO term

enrichments in the duplicated gene set were determined using

Fisher’s exact test [52] (Table S8).

Characterization of protein complexes, protein families,
and ergosterol pathway

The characterized MRC complex I of Neurospora crassa [53] and

all other complexes from Saccharomyces cerevisiae based on the SGD

annotation (http://www.yeastgenome.org/) were used as refer-

ence sets to search homologous sequences in the R. oryzae

proteome (Table S9, S10, S11, S17).

Comparison of P-loop GTPases and their regulators
The GTPases were identified by BLAST and PSI-BLAST searches

of the database of predicted R. oryzae proteins and the nr database at

NCBI using query sequences of major groups of P-loop GTPases and

regulators of the Ras superfamily of GTPases culled from the

literature. In addition, for identification of proteins containing poorly

conserved regulatory domains, HMMER searches were used with

HMM profiles built from multiple alignments retrieved from Pfam

(http://www.sanger.ac.uk/Software/Pfam/) or SMART (http://

smart.embl-heidelberg.de/) collections. Assignment of mutual ortho-

logs is based mainly on reciprocal BLAST (accession numbers of

individual GTPases from dikaryotic fungal genomes are available

upon request) (Table S13, S14).

Characterization of protein families
Proteolytic enzymes were annotated using HMMER as well as

BLAST hits to the Merops peptidase database http://merops.sanger.

ac.uk/index.htm; protein numbers from other fungi were download-

ed from Merops. BLAST and HMMER (http://hmmer.janelia.org)

searches and manual curation were applied to characterize gene

families of CHS and CDA (Tables 15). Identification of proteins of

probable exocellular locations was determined using Psort algorithms

(http://psort.nibb.ac.jp/form2.html) and the presence of a signal

peptide (http://www.cbs.dtu.dk/services/SignalP/). The ORFs con-

taining a putative extracellular location and signal peptide were

further analyzed for the presence of high levels of serine/threonine

residues and high levels of glycosylation using the program at http://

us.expasy.org/tools/scanprosite/. The presence of a GPI motif was

analyzed with the algorithm located at http://mendel.imp.univie.ac.

at/gpi/fungi_server.html.

Growth rate measurement and reverse transcription
polymerase chain reaction detection of CHS expression

To compare the growth rate of R. oryzae and A. fumigatus, the

strains were cultured at 37uC with 102 spores/5 ml inoculation

(Table S20). For RT-PCR tests, R. oryzae strain CBS 112.07 was

inoculated into a MEB medium or on a MEA plate. RNA was

isolated from harvested mycelia using ISOGEN (Nippon Gene,

Toyma Japan), followed by purification and treatment with

DNase. Detection of each chitin synthase gene transcript was

performed using RT-PCR amplification with primers specific to

the CHS domain sequence of each gene. Amplification was also

performed with RNA that was not treated with reverse

transcriptase to serve as a control to determine if the amplification

product was from DNA contamination. RT-PCR amplification in

a 50 ml reaction mixture with 100 ng of RNA was performed using

the QIAGEN One-Step RT-PCR Kit (Valencia, CA). The

reaction condition was as follows: reverse transcription at 50uC
for 30 min, initial PCR activation step at 95uC for 15 min, 30

cycles of denaturing at 94uC for 30 s, annealing at 50uC for 30 s,

and extension at 72uC for 1 min. A final 10 min of chain

elongation at 72uC was carried out after cycle completion in a

model 9700 thermal cycler (Applied Biosystems). The reaction

condition was as follows: reverse transcription at 50uC for 30 min,

initial PCR activation step at 94uC for 2 min, 40 cycles of
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denaturing at 94uC for 15 s, annealing at 55uC for 30 s, and

extension at 68uC for 2 min. A final 5 min of chain elongation at

68uC was carried out after cycling completion. PCR products were

resolved on agarose gels and detected by staining with ethidium

bromide (Figure 4).

Comparative proteomics
The protein sets of fungal genomes including R. oryzae (non-TE

protein set), Coprinus cinereus, Ustilago maydis, Fusarium verticillioides,

and Neurospora crassa (http://www.broad.mit.edu/annotation/

fungi/fgi/), were searched using BLASTP (E#10220) against the

NCBI metazoan gene sets (combining the mammal, non-

mammalian vertebrates and invertebrates) available at ftp://ftp.

ncbi.nlm.nih.gov/gene/DATA/GENE_INFO (February 21, 2008

version) and the dikaryotic database, including the protein sets

from Ascomycete fungal genomes (Aspergillus nidulans, Botrytis

cinerea, Chaetomium globosum, Coccidioides immitis, Fusarium graminearum,

Magnaporthe grisea, Neurospora crassa, and Sclerotinia sclerotiorum, all

generated at the Broad) and the Basidiomycete fungal genomes

(Ustilago maydis, Coprinus cinereus, and Cryptococcus neoformans serotype

A, generated at the Broad; Phanerochaete chrysosporium http://

genome.jgi-psf.org/whiterot1/whiterot1.home.html and Laccaria

bicolor http://genome.jgi-psf.org/Lacbi1/Lacbi1.home.html, gen-

erated at JGI) (Table S16).

Kinome characterization
A multi-level hidden Markov model (HMM) library of the

protein kinase superfamily was applied to the predicted peptides of

R. oryzae under the HMMER software suite (v. 2.3.2, http://

hmmer.janelia.org), correcting for database size with the ‘-Z’

option. The automatically retrieved sequences were individually

inspected and protein kinase homologies were determined by

building kinase group-specific phylogenetic trees with the

annotated kinomes of S. cerevisiae, S. pombe and Encephalitozoon

cuniculi [54].
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