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Summary

Crenarchaea are ubiquitous and abundant microbial constituents of soils, sediments, lakes

and ocean waters, yet relatively little is known about their fundamental evolutionary,

ecological, and physiological properties.  To better describe the ubiquitous non-

thermophilic Crenarchaea, we analyzed the genome sequence of one representative, the

uncultivated sponge symbiont, Cenarchaeum symbiosum.   C. symbiosum genotypes co-

inhabiting the same host partitioned into two dominant populations, corresponding to

previously described a- and b-type ribosomal RNA variants. Although syntenic,

overlapping a- and b-type ribotypes harbored significant genetic variability.  A single tiling

path comprising the dominant a-type genotype was assembled, and used to explore the

biological properties of C. symbiosum and its planktonic relatives. Out of a total of 2,066

predicted open reading frames, 36% were more highly conserved with other Archaea.  The

remainder partitioned between bacteria (18%), eukaryotes (1.5%) and viruses (0.1%).   A

total of 525 open reading frames were more highly conserved with sequences derived from

marine environmental genomic surveys, most probably representing orthologous genes

found in free-living planktonic Crenarchaea. The remaining genes partitioned between

functional RNAs (2.4%), and hypotheticals (42%) with limited homology to known

functional genes. The latter category likely contains genes specifically involved in mediated

archaeal-sponge symbiosis. Phylogenetic analyses placed C. symbiosum as a basal

crenarchaeon, sharing specific genomic features in common with either Crenarchaea,

Euryarchaea, or both. The genome sequence of C. symbiosum reflect a unique and unusual

evolutionary, physiological, and ecological history, one remarkably distinct from that of

any other previously known microbial lineage.
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Introduction

The Archaea, one of the three major domains of extant life, have traditionally been

subdivided into two distinct kingdoms.  The Euryarchaea, include cultured representatives of

methanogens, extreme halophiles, sulfate-reducers, and thermoacidophiles, while the cultivated

Crenarchaea are comprised mostly of thermophiles and hyperthermophiles (1, 2). Cultivation-

independent surveys led to the discovery of nonthermophilic Crenarchaea in aquatic

environments (3, 4), sediments (5-7) and soils (8, 9) around the globe, and have expanded our

collective view of archaeal distribution, physiology, evolution and ecology.  While the properties

of cultivated Archaea project a picture of microbes that are restricted to very specialized, often

extreme habitats, molecular phylogenetic surveys suggest that Life’s third domain is much more

cosmopolitan and widely distributed.

Planktonic Crenarchaea represent a significant component of marine microbial biomass,

approximately 10
28

 cells total in the world’s oceans (10). Although marine Crenarchaea span the

depth continuum (11), they predominate in waters just below the photic zone (10, 12, 13).

Isotopic analyses have indicated that marine Crenarchaea have the capacity for autotrophic

carbon assimilation (14-17), and the recent isolation of Nitrosopumilus maritimus, a

nonthermophilic marine crenarchaeote demonstrates conclusively that bicarbonate and ammonia

can serve as sole carbon and energy sources respectively, for at least some members of this

lineage (18). Consistent with these observations, comparative environmental genomic studies

have confirmed the presence of a conserved crenarchaeal chemolithoautotrophic ammonia-

oxidizing metabolism distributed across multiple oceanic provinces (19). The identification of

crenarchaeal ammonia oxidation genes in soils also suggests the general importance of these
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organisms in terrestrial systems (20-22). Given the ubiquity and abundance of nonthermophilic

Crenarchaea, there is considerable interest in expanding our knowledge of their evolution,

ecology and metabolism.

 Cenarchaeum symbiosum is the sole archaeal symbiont of the marine sponge Axinella

mexicana (23). Previous analysis of C. symbiosum small subunit ribosomal RNA sequences

(SSU rRNA) place this archeaon within the same lineage that contains the ubiquitous and

abundant planktonic marine Crenarchaea (22-24). Fluorescent in situ hybridization (FISH) of

Archaea within tissues of the sponge A. mexicana indicate that C. symbiosum is an extracellular

symbiont (24). Although yet-uncultivated, C. symbiosum can be harvested in significant

quantities from host tissues, where it comprises up to 65% of the total prokaryotic biomass (23,

24). Fosmid libraries enriched for C. symbiosum genomic DNA were previously constructed and

screened for phylogenetic and functionally informative genes (19, 25, 26). Considering the

extensive conservation of predicted ORFs between C. symbiosum and free-living marine

Crenarchaea (19), we undertook the assembly of the complete genome of C. symbiosum, to

provide a useful reference for comparative genomic analyses within this archaeal lineage.

Results and dicussion

Genome assembly and population structure

The C. symbiosum genome was iteratively assembled from a set of 155 completed fosmid

sequences selected from an environmental library enriched for C. symbiosum genomic DNA (see

methods, Table S1, S2 and Figure S1) (19, 26). The fosmids AF083071 and AF083072

corresponding to previously described a- and b-type ribosomal variants (26) served as nucleation

points for the separation of sequence variants into discrete genomic bins (Table S1, S2). Because
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of the relatively small number of clones comprising this library (see methods), each fosmid is

expected to derive from an independent donor genome. Given this expectation, the library

contains a cross section of the naturally occurring genomic variation found within the population

at the time of sampling. Therefore, any assembly derived from this sample must represent a

composite of related, but non-identical genotypes, for the purposes of this study a population

genome equivalent. Remarkably, a single tiling path containing the complete genomic

complement of C. symbiosum could be assembled from this complex dataset, that corresponded

to the a-type population of sequence variants (Table S3).

C. symbiosum population structure was evaluated by analyzing fosmid sequence variation

over the length of the assembled tiling path (Figure 1). Overlapping fosmid sequences ranged

between ~80-100% nucleotide identity, with the a- and b- type variants dominating at the

extremes. Overlapping a- and b-type fosmids, while virtually indistinguishable at the level of

gene content and organization, differed in average nucleotide identity by ~15% (Figure 1 and

below). Average nucleotide identity within each set of overlapping a- or b-type fosmids was

~98% although the range of variation within the b-type population was considerably higher

(Figure 1). To facilitate analyses, fosmid sequences were partitioned using a 93% identity cut-

off, roughly corresponding to a standard demarcation of bacterial species based on whole

genome analysis (27, 28). A small number of fosmid sequences fell on the margins of a- or b-

type distributions, suggesting the presence of less abundant intermediate genotypes (Figure 1). In

order to estimate the representation of a- and b-type donors in the fosmid library, a- and b-type

sequences were queried against the set of end sequences ≥200 base pairs in length (see methods).

This approach identified on average 11 ends per a-type fosmid, and 8 ends per b-type fosmid,
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consistent with 60% representation of a-type donor genomes in the isolated genomic DNA (see

supplementary online materials for further information).

In order to explore the coherence and diversity of donor genotypes within the a-type

population, fosmid sequences exhibiting >95% nucleotide identity, were evaluated for nucleotide

polymorphisms (see methods). On average, these overlapping sequences exhibited 25-30

nucleotide polymorphisms per 1 kbp. The majority of these cases involved variation within

intergenic regions or synonymous changes within ORFs (77% synonymous compared to 23%

non-synonymous changes). However, “hot-spots” of nucleotide variation were detected in some

orthologous genes (>50-80 polymorphisms/Kb). These changes were often associated with the

presence of a variant allele within one or more of the expanded gene families (see below), which

typically originated from a donor genotype not covered by the sequenced fosmids. The frequency

of highly variable alleles (indicated by large peaks in Figure 1), suggests that selective pressures

act with variable intensity on different regions of the C. symbiosum genome.

Genome Features

The C. symbiosum genome sequence contains 2, 045, 089 base pairs with a 57.74%

average G+C content (Table 1). Based upon the identification of gap spanning paired end

sequences and subsequent fosmid walking excursions, it appears to exist as a singular circular

chromosome (Figure 1, 3). No clear nucleotide transition pattern correlating with an origin of

replication could be identified based upon the methods of cumulative G+C skew (29) or co-

localization with genes predicted to encode components of the replication initiation complex (30)

(data not shown). A total of 2,017 protein encoding genes were predicted in the genome

sequence, as well as a single copy of a linked SSU-LSU ribosomal RNA (rRNA) operon, 1 copy
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of a 5S rRNA, 45 predicted transfer RNAs (tRNA) (Table S4), and 1 copy of a 7S signal

recognition particle RNA. Approximately 57% of all predicted protein encoding genes could be

assigned to functional or conserved roles based upon homology searches (see methods). A more

complete breakdown of genome features including ORF content and taxonomic distribution is

provided in Table 1.  The distribution of tRNAs was uneven, with the clear majority mapping to

two distinct regions of the genome (Figure 2).

Expanded Gene Families

The C. symbiosum genome contains an estimated 79 expanded gene families accounting

for over 25% of its coding potential (see methods, Table S5). The majority of families were

predicted to encode hypothetical proteins with no more than 3 representatives. However, 15

families contained at least 4 representatives (Table S5).  Many families, including the two largest

(containing 34 and 15 members respectively), were predicted to encode hypothetical proteins

with limited homology to surface-layer or extracellular matrix proteins.  This suggests that C.

symbiosum encodes a significant number of surface features with the potential to mediate cell

envelope formation or contact with host tissue. Moreover, representatives of these families often

contained high levels of nucleotide polymorphism, corresponding to “hot-spots” of allelic

diversity (Figure S1, S3). The genomic distribution of the two largest expanded gene families

was inversely related to the distribution of tRNA genes. As visualized in Figure 3, the most

abundant of these families, whose proteins range in size between 2-35 Kbp, is predicted to

encode numerous big archaeal proteins (bap) of unknown function. As a percentage of coding

potential, bap genes represent ~15% of the entire genome and 56% of the sequence covered by

all expanded gene families.
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Gene Content

Because C. symbiosum has resisted cultivation, there are currently few specific details

known about its physiology, metabolism, nutritional versatility, or growth requirements.  The

genome sequence now provides the basis for comparative analyses, and for generating metabolic

models and hypotheses about specific genes, pathways and enzymatic activities.  The metabolic

inventory of C. symbiousm genes, most of which are shared with planktonic Crenarchaea,

provides a starting point for a better understanding of the ecology, evolution and physiology of

this ubiquitous crenarchaeal lineage.

Central Metabolism

In previous analysis of individual fosmid sequences we identified multiple components of

an autotrophic carbon assimilation pathway based on a modified 3-hydroxypropionate cycle, and

a nearly intact oxidative tricarboxylic acid cycle (TCA), suggesting that C. symbiosum is likely a

facultative autotroph, incorporating both carbon dioxide and organic carbon for cell growth (19).

Accordingly, these metabolic subsystems are present in the assembled C. symbiosum genome

sequence. The presence of a single operon encoding oxoacid:ferredoxin oxidoreductase subunits

suggests that C. symbiosum utilizes a horseshoe version of the oxidative TCA cycle for the

production of intermediates in cofactor and amino acid biosynthesis. However, an intact

oxidative TCA cycle cannot be excluded in the absence of functional studies to determine the

specificity of this enzyme complex towards pyruvate, oxoglutarate or ketoglutarate. With the

exception of glucokinase (EC 2.7.1.2) and pyruvate kinase (2.7.1.40), C. symbiosum contains an

intact form of the Embden-Meyerhof-Parnas (EMP) pathway for the metabolism of hexose
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sugars. Several alternatives to glucokinase including 2 genes predicted to encode carbohydrate

kinases of unknown specificity and 1 gene predicted to encode a ROK-family ribokinase were

identified with the potential to mediate the first step in sugar activation. Similarly, a gene

predicted to encode phosphoenolpyruvate synthase, an alternative to pyruvate kinase, mediating

the interconversion of pyruvate and phosphoenolpyruvate was also identified. The absence of

glucose 1-dehydrogenase (EC 1.1.1.47), gluconolactonase (EC 3.1.1.17), and 2-keto-3-deoxy

gluconate aldolase (EC 4.1.2.-) homologues suggests that C. symbiosum does not utilize the

Entner-Duodoroff (ED) pathway, an alternative to the EMP pathway, in the catabolism of hexose

sugars. In addition to the EMP pathway, an intact non-oxidative pentose phosphate pathway was

identified, providing a mechanism for production of NADPH and ribose sugars for nucleotide

biosynthesis.

Energy Metabolism

Key genes associated with chemolithotrophic ammonia oxidation, including ammonia

monooxygenase, ammonia permease, urease, a urea transport system, nitrite reductase and nitric

acid reductase have been previously reported in C. symbiosum (19). Consistent with these

analyses, the complete pathway for urea and ammonia transport and conversion, ammonia

oxidation, and the metabolism of nitrogen oxides is present in the assembled genome sequence.

Several loci, including the ammonia permease and ammonia monooxygenase subunit C were

identified as members of expanded gene families (Table S5). However, homologues for

hydroxylamine oxidoreductase (EC 1.7.3.4) and cytochromes c554 and c552 were not identified,

suggesting that C. symbiosum employs alternative mechanisms for transferring electrons between

hydroxylamine and the electron transport chain.  Consistent with this hypothesis, 14 genes
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predicted to encode domains related of the plastocyanin/azurin family of blue type (I) copper

proteins were identified with the potential to substitue for cytochromes as mobile electron

carriers (31, 32).

Three electron transport complexes, including a complete respiratory NADH

dehydrogenase (complex I), succinate dehydrogenase (complex II), and cytochrome C oxidase

(complex IV) were unambiguously identified. In addition, an operon predicted to encode a

Rieske iron sulfur cluster protein, cytochrome b, and type (I) copper protein with the potential to

function as a cytochrome c reductase (complex III) was identified. Finally, a gene cluster

predicted to encode a complete archaeal ATP synthase (complex V) was identified, completing

the aerobic respiratory circuit required for the indirect coupling of electron transfer to ATP

synthesis. In the case of the NADH dehydrogenase (nuo), a gene cluster encoding the core

respiratory complex nuoABCDHIJKLMN was identified. However, genes encoding the electron

input module nuoEFG, involved in NADH binding and oxidation were not identified, reinforcing

the hypothesis that C. symbiosum uses alternative electron carriers, potentially including type (I)

copper proteins or ferredoxins.  In addition to the proposed pathway of ammonia oxidation

described above, 7 genes predicted to encode Fe-S cluster oxidoreductases and 5 genes predicted

to encode ferredoxins were identified with the potential to contribute electrons into the

respiratory chain, or act as low-potential electron donors for various enzymatic reactions.

Amino Acid and Cofactor Biosynthesis

C. symbiosum encodes the genes required to synthesize all 20 amino acids, with one

exception. Genes predicted to encode pyrroline-5-carboxylate reductase (EC 1.5.1.2) and

ornithine cyclodeaminase (EC 4.3.1.12) involved in the conversion of 1-pyrroline-5-carboxylate
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and ornithine respectively, to L-proline were not identified. However, several genes predicted to

encode aminopeptidases were identified, suggesting that C. symbiosum has the capacity to derive

proline from dietary sources. Consistent with this hypothesis, an oligo-transport system

containing linked permease and unlinked ATPase components with the potential to mediate

uptake of free peptides was identified. A solute binding protein with the potential to interact with

this transport complex was identified in close proximity to the predicted permease components.

Previous studies of microbial host interactions have identified mechanisms of host-derived

nutritional support, including amino acid provisioning (33) and energy transfer (34). The

existence of a proline auxotrophy in C. symbiosum could help explain its commensal relationship

with A. mexicana.

Pathways for cofactor biosynthesis are well represented in the C. symbiosum genome.

Nearly complete sets of genes required for the de novo synthesis of biotin, vitamin B12,

riboflavin, thiamine and pyridoxine were all identified. In the case of folic acid biosynthesis,

genes encoding all steps for the conversion of the C1 carrier tetrahydrofolate (THF) to methyl-

THF were identified. However, the absence of genes encoding dihydrofolate reductase (EC

1.5.1.3) or dihydrofolate synthetase (6.3.2.12) suggests that C. symbiosum is incapable of de

novo folate biosynthesis, deriving 7,8-dihydrofolate (DHF) from dietary sources or regenerating

THF during the conversion of homocysteine to methionine (35, 36).

Transporter Systems

The C. symbiosum genome encodes 47 genes comprising 18 different transport systems.

The largest group consisted of the multisubunit ABC family and included transporters for

Mn
2+

/Zn
2+

, Ni
2+

, Fe
3+

 hydroxamate, phosphate/phosphonate, nitrate/sulfonate/bicarbonate,
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branched chain amino acids, dipeptides, and multidrug resistance. A variety of genes encoding

proteins involved in the transport or exchange of ammonia, urea, Na
+
/H

+
, K

+
/H

+
, Mg

2+
/Co

2+
,

Mn
2+

/Fe
2+

, Ca
+
/Na

+
 and unspecified divalent and heavy metal cations, were also identified.

Protein Translocation and Secretion

The C. symbiosum genome encodes a complete set of archaeal signal recognition particle

(SRP) components for targeting secretary and membrane proteins, including srp19, srp54, a 7S

RNA gene as well as an SRP receptor homologue (ftsY). The ftsY gene was found as part of a

larger gene cluster containing additional secretory pathway components including a secY

translocase homologue, and a second gene predicted to encode an integral membrane protein

with similarity to the Sec accessory subunit YidC. Definitive homologues for secE and secG, two

additional subunits of the archaeal Sec translocation pore complex, were not identified. Three

copies of a conserved hypothetical gene with limited homology to eukaryotic vacuolar sorting

factors and several components of the Sec-independent twin argine translocation (tat) system,

including tatA and tatC were also identified in the genome sequence.

Signaling, Motility and Cell Surface features

C. symbiosum contains numerous genes predicted to encode cell surface features or

associated membrane proteins mediating signaling, cell envelope formation, phospholipid

binding and modification, glycosylation, and serine or metal-dependent protein degradation. The

absence of genes encoding classical two-component sensory and motility systems suggests that

C. symbiosum is a sedentary organism. A total of 6 genes predicted to encode signaling kinases,

including 4 serine/threonine kinases, 1 signal transduction histidine kinase and 1 unusual protein
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kinase of unknown function, were identified with the potential to transduce cell surface events or

regulate cellular function. Consistent with the operation of these gene products in the

development of reversible regulatory networks and signal integration, 2 genes predicted to

encode protein phosphatases specific to serine/threonine and tyrosine respectively, were

identified.

Information Processing and Chromatin dynamics

The C. symbiosum genome contains the full repertoire of genes necessary for

chromosomal replication fork assembly and function, including components of the origin

recognition complex (cdc6), two topoisomerases, single and double strand helicases, 3 copies of

a predicted bacterial/archaeal-type DNA primase, a two-subunit eukaryal/archaeal DNA primase

system, RNase H, sliding clamp, and DNA ligase (cdc9). In addition, genes encoding two

distinct DNA polymerases, a single B family DNA polymerase I elongation subunit related to

sequences derived from thermophilic Crenarchaea (37), and a second euryarchaeal-type

polymerase II consisting of large and small subunits were both identified. Numerous genes

involved in DNA repair were also present, including recA recombinase, nucleotidyltransferase,

O-methyltransferase, and a complete uvr nucleotide excision repair system. In addition to DNA

replication and repair systems, 3 genes predicted to encode ATPases typically associated with

chromosome partitioning and maintenance, including a homologue of structural maintenance of

chromosomes (smc), a membrane-associated ATPase (minD) and a gene predicted to encode the

cell division protein ftsZ, were identified.

In previous analysis based on individual fosmid sequences, a eukaryotic-like histone

homologue was identified in C. symbiosum (38). Accordingly, a single copy of a gene predicted
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to encode a histone H3-H4 was identified in the assembled C. symbiosum genome sequence.

Genes predicted to encode a histone H1 DNA binding protein involved in nucleosome packaging

and 3 genes predicted to encode histone acetyltransferases typically associated with opening the

nucleosome core to promote transcription, were also present. In addition, 27 helicase genes were

identified with varying roles in DNA replication, transcription and repair, including 9

superfamily II members implicated in ATP-dependent chromatin remodeling. Moreover, 25

genes predicted to encode restriction modification methytransferases were identified with the

potential to protect C. symbiosum from exogenous DNA or to modulate transcriptional activity

by tightening the nucleosome core. Only 2 of these genes had close archaeal homologues. The

remaining methyltransferase genes were affiliated with the domain Bacteria, including

Cyanobacteriales, Actinomycetes and Bacteroidetes, and were possibly laterally acquired from

members of the surrounding sponge microbiota.  Five of the methyltransferases could be

unambiguously linked to genes predicted to encode restriction endonucleases of untested

specificity.

C. symbiosum contains a complete set of genes necessary for transcription initiation

including preinitiation complex formation and RNA polymerase assembly. The presence of 3

divergent copies of the TATA binding protein (tbp) and 5 copies of the transcription initiation

factor TFIIB (tfb) indicates that C. symbiosum has the potential to generate alternative

preinitiation complexes. Over 40 genes predicted to encode transcriptional regulators with the

capacity to modulate preinitiation complex formation were identified. The majority of these

genes are predicted to encode members of the Lrp/AsnC family of transcriptional regulators. In

two instances related groups of transcriptional regulators formed expanded gene families

composed of 5 and 4 members, respectively (Table S5).
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A total of 10 translation initiation and 4 elongation factors were identified in the C.

symbiosum genome including 2 copies of the translation initiation factor 2B (eIF2B). In addition,

a single gene predicted to encode a small bacterial-type cold shock protein (cspB) potentially

involved in RNA binding and translational control was also identified.  A highly conserved cspB

gene was previously identified on a genomic DNA fragment derived from a planktonic marine

crenarchaeote, 4B7 (39). So far, crenarchaeal cspB homologues have only been found in

mesophiles or psychrophiles, a feature distinguishing C. symbiosum and cold-living relatives

from other thermophilic lineages.

As mentioned earlier, the C. symbiousm genome contains 45 predicted tRNA genes. Ten

of these predicted tRNAs contain putative introns (Table S4). Most of the exon-intron boundaries

form the conserved bulge-helix-bulge motif (BHB), although several appear to adopt structurally

divergent forms (40). Such divergent features have been previously correlated with the presence

of two distinct copies of the splicing endonuclease (endA) (41-44). Consistent with these

observations, the C. symbiousm genome encodes two copies of endA, corresponding to divergent

crenarchaeal and euryarchaeal homologues respectively.

Aminoacyl-tRNA synthetases are encoded for every amino acid with the exception of

glutamine. However, 4 subunits of a glutamyl-tRNA amidotranseferase (gat) encoded by

separate gatED and gatBA operons likely mediated Glutamyl-tRNA activation. The genomic

distribution of aminoacyl-tRNA synthetases was uneven, coinciding with the pattern observed

for individual tRNAs (see previous and data not shown). Genes predicted to encode

selenophosphate synthase or selenocysteine synthase both required for activation of

selenocysteinyl-tRNA were not identified. However, the identification of a selenocysteine
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specific elongation factor (selB) suggests that C. symbiosum retains the potential for co-

translational insertion of selenocysteine residues into nascent peptide chains (45-47).

C. symbiosum harbors a number of genes predicted to encode chaperonins involved in

cellular stress responses and protein folding and refolding processes.  An operon predicted to

encode a heat-shock or stress response complex composed of the genes grpE,  hsp70 (dnaK), and

hsp40 (dnaJ) was identified. Three additional copies of genes containing dnaK-like domains,

and 2 copies each of the small heat shock protein hsp20, the alpha and beta (gimC) subunits of

prefoldin, and an hsp60 related thermosome alpha and beta subunits, were also identified. In

addition to the classical chaperonin systems, 4 genes predicted to encode peptidyl-prolyl cis-

trans isomerase, and at least 10 genes predicted to encode protein disulfide isomerase or

thioredoxin, were identified with the potential to assist in de novo protein folding and oxidative

stress responses.

Evolutionary Affinities of a Deeply Branching Archaeal Lineage

To better define the evolutionary relationships between C. symbiosum and other archaeal

groups, a total of 57 genes encoding unique ribosomal proteins (r-proteins) identified in the

assembled C. symbiosum sequence were analyzed. Several genes including rpl14e, rpl34e

common to cultured Crenarchaea and basal Euryarchaeota, rpl13e, rps24e and rps25e common

to cultured Crenarchaea,  rpl20a common to most Archaea and rpl35ae common to

Thermococcales and Nanoarchaea, were not identified in the assembled sequence,  or the

complete set of unassembled a-type and b-type fosmids (Table S6). The set of ribosomal proteins

was supplemented with 17 additional taxonomically informative genes involved in translocation,

information processing and DNA recombination and repair (Table S6).  Given the small size of
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most r-proteins, these analyses of individual genes have limited resolving power, reflected in

weak bootstrap support (Table S6). To improve the phylogenetic signal individual r-proteins

were combined into one concatenated alignment set, excluding r-proteins for which horizontal

gene transfer is suspected (see methods) (48). The resulting phylogenetic trees place C.

symbiosum in a deeply branching archaeal lineage (Figure 3, S3), similar in topology to

previously reported relationships of fast evolving and/or deeply branching archaeal genomes (49,

50).  Similar tree topologies were obtained in analyses of the SecY translocase (Figure S4),

nucleotide repair and recombination protein RadA (Table S6) (51) the beta subunit of the DNA

unwinding protein TOPO-VII (Table S6), and the elongation factor EF-1a (Table S6). In

aggregate, the results support a basal position for C. symbiosum with respect to Crenarchaea.

However, it remains unclear whether C. symbiosum truly represents a distinct phylum emerging

near the root of the archaeal tree, or simply  a deeply branching crenarchaeal lineage. Future

analyses incorporating more diverse and basal archaeal representatives, including the

Korarchaeota (52), may help resolve this uncertainty.

Comparative environmental genomics

To explore the shared coding potential between C. symbiosum and its planktonic

relatives, sequences from individual Sargasso Sea (SAR) whole genome shotgun DNA libraries

(53) were aligned to the assembled C. symbiosum genome (Figure 4, see methods). The

distribution of sequences encoding marine crenarchaeal homologues over the entire length of the

C. symbiosum genome varied considerably between samples. Whole genome shotgun coverage

was highest in the SAR3 sample providing over 4,000 unique reads averaging 65% amino acid

identity and 78% amino acid similarity over the length of the aligning read. This represents
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~1.25% of the total sequence population within the SAR3 sample, encompassing over 4 Mb of

WGS sequence (approximately 2 genome equivalents based upon an estimated 2 Mb genome

size). The depth of sequence coverage over the C. symbiosum genome was uneven, varying

between 1 and >20 fold between homologous intervals. More than 20% of the aligning

sequences were derived from mate pairs mapping within the average range of insert sizes (3-6

Kb), suggesting that gene order is conserved between C. symbiosum and its planktonic relatives

over short syntenic intervals. Numerous gaps in sequence coverage were also identified

indicating that a significant proportion of C. symbiosum genes are absent or not well conserved

within planktonic Crenarchaea (Figure 4).

To investigate functional implications associated with the observed variation in sequence

coverage, all protein encoding sequences predicted in the C. symbiosum genome were queried

against a local database containing the Sargasso whole genome shotgun data as well as the set of

public genomes (see methods). The resulting alignments were compared using the BLAST score

ratio (BSR) to identify highly conserved genes shared between C. symbiosum, SAR and public

genomes (Figure 2). The bar heights in circles 3 and 4 of Figure 3 span a range of BSR values

between 30-100, with 100 representing a perfect match and 30 representing the lower cut-off.

The cut-off corresponds to approximately 30-40% amino acid identity. A total of 65 genes with a

BSR ≥30 were more highly conserved between C. symbiosum and the public genomes (Table

S7). Of these, 43 fell into defined COG categories, including 10 genes associated with DNA

replication, recombination and repair (L), 9 genes associated with amino acid transport and

metabolism (E), and 6 genes associated with posttranslational modification, protein turnover, and

chaperones (O). The distribution of genes within these three categories was far from random. For

instance, within the first category, 7 genes were most similar to bacterial associated DNA
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modification methyltransferases, and within the third category, 5 genes were homologous to

serine protease inhibitors (serpins).  A total of 525 genes with a BSR ≥30 were more highly

conserved between C. symbiosum and the Sargasso Sea, corresponding to ~26% of all predicted

protein encoding genes in the C. symbiosum genome (Table S8). This set of shared genes

spanned the complete spectrum of COG categories, with the highest representation in energy

production and conversion (C), amino acid transport and metabolism, (E), translation, ribosomal

structure and biogenesis (J), transcription (K), and DNA replication, recombination and repair

(L). The remaining gene predictions were either shared equally between the SAR and public

genomes or were not well conserved at all (Figure 2 and data not shown). The latter case,

represented by gaps in both the circular genome map (Figure 2) and coverage plots (Figure 4),

encompassed over 800 genes with a BSR <30, corresponding to ~39% of all predicted protein

encoding genes in the C. symbiosum genome (data not shown). Many of these sequences

represented hypothetical genes or belonged to expanded gene families that appear unique to the

C. symbiosum genome, and are likely involved in sponge-associated processes.

Conclusion

Population Structure and Genomic Coherence

The C. symbiosum genome reported here, represents a composite sequence assembled

from individual, highly related sympatric donor genotypes. As such, the genetic variability and

population structure of C. symbiosum cells residing in an individual sponge host is partly

reflected in the sequence. The partitioning of syntenic a- and b-type sequences during assembly

suggests that genetic or physicochemical barriers exist within the host environment.  The average

nucleotide divergence between a- and b-type populations was comparable to the evolutionary
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distance between Escherichia coli and Salmonella spp., estimated to have diverged

approximately 100 million years ago (54). The majority of a-type and b-type donor genomes

therefore, have likely been evolving separately for some time. Given that gene content, order and

orientation in overlapping a- and b-type fosmids is the same, selective forces may be acting on

individual genes, yielding specific physiological adaptations, perhaps allowing colonization of

different niches within the host tissue. It is possible that periodic selection could separate tissue-

specific ecotypes into distinct sequence clusters or monophyletic groups over time (55, 56).  Fine

scale determination of a- and b-type genotype spatial distributions, and deeper exploration of

allelic variation in C. symbiosum populations is required to further test this hypothesis.

Functional and Metabolic Relationships

The results presented here in combination with previous studies (18, 19), further

substantiate that C. symbiousm and its planktonic marine relatives are nitrifiers, deriving cellular

energy from ammonia oxidation, and carbon from CO2.  This suggests a major role for

Crenarchea in nitrogen cycling in the marine environment. Comparison with the Sargasso Sea

whole genome shotgun dataset indicates that the majority of metabolic subsystems identified in

C. symbiosum are conserved within planktonic Crenarchaeota. In addition to core information

processing systems, the C. symbiosum genome encodes complete or nearly complete subsystems

for a wide variety of biosynthetic and housekeeping functions including glycolysis,

gluconeogenesis, pentose phosphate conversion, TCA cycle, cofactor and vitamin metabolism,

amino acid biosynthesis, oxidative phosphorylation, ATP synthesis, and variant pathways for

autotrophic carbon assimilation and chemolithotrophic ammonia oxidation.  Closely related

homologues within each of these subsystems are found in free-living planktonic marine
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Crenarchaeota.  The conservation of oxidative TCA, 3-hydroxypropionate cycle, and genes

involved in ammonia oxidation, strongly support the hypothesis that C. symbiosum (and its

planktonic relatives) are aerobic, facultative ammonia oxidizing chemolithoautotrophs (19).

Given the biogeochemical significance of these metabolic pathways, it will be interesting to

determine whether conserved or divergent forms exist in other Crenarchaea dwelling in diverse

habitats such as marine sediments and the deep subsurface (57, 58).

Evolutionary Relationships

Over 60% of all conserved protein encoding genes predicted within the C. symbiosum

genome partition within the archaeal domain. Although placed within the Crenarchaea based on

rRNA sequence analyses (22, 23), the majority of these sequences exhibit a strong euryarchaeal

signal. Curiously, over 30% of all conserved protein encoding genes predicted in the C.

symbiosum genome are most closely related to bacterial counterparts identified in the public

databases. Whether these observations reflect current biases in database representation, or bona

fide lateral gene transfer between domains, remains to be determined. The answer may be

particularly important with regard to the potential adaptive radiation of this lineage into

“nonextreme” environments, and the acquisition of new physiological traits enabling niche

expansion.

Comparison of 57 concatenated ribosomal protein sequences placed C. symbiosum deep

within the archaeal lineage.   If the hypothesis of deep emergence is true, interesting questions

about the hyperthemophilic nature of the common archaeal ancestor arise.  However, it seems

clear that low and high temperature thermal adaptations have occurred multiple times within the

Crenarchaea (52).  Both low and high temperature adaptation may therefore represent a
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homeoplastic trait in the crenarchaeal lineage.  Strikingly, C. symbiosum and relatives share

numerous characters (including nearest neighbor matching of C. cymbiosum ORFs, individual r-

protein analyses, and the presence of a histone homologue (38), two DNA polymerase II

subunits, and the cell division control genes ftsZ, mind, and the heat shock protein complex

hsp70) with Euryarchaea, but not with other Crenarchaea.  Taking these features into account,

and consistent with rRNA analyses, C. symbiosum (and planktonic marine relatives) seem best

viewed as a  highly divergent sister taxon of cultivated hyperthermophilic Crenarchaea. While

some of the phylogenetic signal observed may be due to long branch attraction, the shared gene

content observed between C. symbiosum and members of the Euryarchaeota support a deep split

of the Crenarchaea into two distinct lineages, one major lineage represented by C. symbiosum

and free-living planktonic relatives. Whether these sister taxa share a common mesophilic or

thermophilic ancestor remains unclear.

Symbiosis

Little is known about the specific nature of the symbiosis between C. symbiosum and the

marine sponge A. mexicana.  However, the C. symbiosum genome sequence does provide several

mechanistic clues regarding potential trophic interactions and hints at regulatory mechanisms

necessary for extracellular contact, communication and defense. In the case of trophism, the host

may provide dietary sources of proline and folate in exchange for the removal of urea and

ammonia waste products by the archaeal symbiont. The sponge cortex is populated by a variety

of commensal and opportunistic microorganisms. A portion of this microbiota forms the basis of

the sponge’s own nutrition.  As a nonmotile extracellular symbiont C. symbiosum has likely

developed or acquired mechanisms to inhibit or evade host consumption and defend against
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bacterial or viral predation. A significant number of predicted genes encode domains reminiscent

of cell surface, regulatory or defense mechanisms, including numerous restriction modification

systems to protect against foreign DNA, autotransporter adhesins potentially involved in

mediating cell-cell contact, proteases with the potential to modify or degrade extracellular matrix

proteins, glycosyltransferases involved in cell wall biogenesis, and secreted seine protease

inhibitors with the potential to mediate evasion of innate host defense systems. Many of these

features do not appear to be encoded in the genomes of C. symbiosum’s planktonic marine

relatives and likely constitute specific adaptive alleles mediating the symbiotic life style. Given

the relative dearth of archaeal/metazoan symbioses, the C. symbiosum genome provides an

unprecedented opportunity to explore the genetic features mediating host contact,

communication and trophic exchange.

Coda

The C. symbiosum genome now provides the basis for a wide variety of functional and

comparative studies relating to both free-living and symbiotic life styles. It also provides a

resource for heterologous expression of archaeal proteins that work at moderate temperatures,

facilitating archaeal/eukaryal in vitro functional  testing of replication, transcription or translation

properties. As well, the C. symbiosum genome provides a valuable reference for identifying key

genes involved in carbon and nitrogen cycling within mesophilic Crenarchaea, and a useful

phylogenetic reference point for inferring the evolutionary relationships among various members

of the archaeal domain.  Future comparisons of the C. symbiosum genome with the recently

isolated ammonia-oxidizing crenarchaeon, Nitrosopumilus marina (18), should be particularly

enlightening.
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Materials and Methods

Library construction, specifications and sequencing

C. symbiosum cell enrichment, DNA extraction from sponge tissue, and fosmid library

construction have been previously described (19, 59) The fosmid library used in the present

study contains 2100 clones arrayed in twenty-two 96-well plates, with an estimated average

insert size ~40 thousand base pairs (Kb) per clone. Prior to fosmid selection, end sequencing

generated 2,779 non-redundant reads greater than 200 base pairs (bp) per read, averging 500 bp

per read. Of the set of non-redundant reads, 1,041 clones were represented by paired-ends

covering both the 5’ and 3’ ends. Overall, 66.2% of the library was represented by at least one

end sequence, and 49.6% was represented by paired-end sequences.

Sequencing and assembly approach

Five successive phases of fosmid selection, sequencing and assembly, were conducted

over a four-year period. Initial selection was based on the following three criteria: (1) paired end

sequences predicted to contain ORFs most similar to archaeal genes, (2) linkage with previously

reported fosmids harboring phylogenetic anchors including genes encoding the small subunit

ribosomal RNA, radA recombinase (51) and DNA polymerase subunits (37)and sets of paired

ends, assembled in opposing orientations and predicted to contain ORFs homologous to two or

more archaeal genes.  Two previously described fosmids, AF083071 and AF083072, harboring

a-type and b-type SSU ribosomal RNA genes respectively were included as seeds for fosmid

walking excursions (26) (Figure S1). Refer to supporting online material for information relating
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to the JGI sequencing pipeline and assembly of raw trace files, and information related to tiling

path construction can be found in the supplementary on-line material (SOM).

DNA Sequence Analysis

Contigs were annotated using the FGENESB pipeline for automatic annotation of

bacterial genomes from Softberry (http://www.softberry.com/berry.phtml, Mount Kisco, NY)

using the following parameters and cut-offs: open reading frame size = 100 aa, Expectation = 1e-

10. Predicted ORFs were queried against  the KEGG, COG and GenBank non-redundant (NR)

databases. SSU and LSU rRNA genes were identified by blastn query against NR with

expectation cut-offs of 1X10
-8

. Automated FGENESB annotation of fosmids was manually

refined and corrected using the genome annotation and visualization tool Artemis

(http://www.sanger.ac.uk/Software/Artemis) (60). Putative tRNA genes were identified using the

program tRNAscan-SE 1.21 (http://www.genetics.wustl.edu/eddy/tRNAscan-SE) (61) set to the

archaeal tRNA covariance model, and SPLITS 1.0 (http://splits.iab.keio.ac.jp) (J. Sugahara, N.

Yachie, Y. Sekine, A. Soma, M. Matsui, M. Tomita, and A. Kanai, submitted) set to the

following parameters; -d 2 -p 0.65 -F 5. The putative tRNA genes containing possible intron(s)

detected with only tRNAscan-SE 1.21 were verified by the prediction of the bulge-helix-bulge

motif for the hallmark of the exon-intron boundaries (Marck, C. and Grosjean, H. (2003), RNA,

9, 1516-1531) by using SPLITS 1.0. The 5S rRNA sequence was initially identified on the basis

of blastn searches of the unassembled fosmid sequences using representative archaeal reference

sequences. The 7S RNA sequence was initially identified on the basis of blastn searches using a

17-nt conserved region (AGG(C/T)CCGGAAGGGAGCA) deduced from archaeal 7S sequences.

The tentative 5’ and 3’ ends of the gene were assigned from the conservation between a- and b-

type genome sequences. The similarity of the predicted secondary structures to the consensus
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folding of 7S RNA and the presence of conserved motifs (Zwieb C, van Nues RW, Rosenblad

MA, Brown JD, Samuelsson T. (2005) RNA. 11, 7-13) were also considered. The complete tiling

path was assembled in Artemis by sequential addition of ordered and oriented contigs and gap

spanning fosmids with accompanying feature tables, and visualized with the program

GenomeViz http://www.uniklinikum-giessen.de/genome/genomeviz/download.html (62).

Nucleotide polymorphism determination

To identify orthologous regions (defined here as the reciprocal best matches using the

blastn algorithm (63) and a minimum cut-off of 50% identity over a minimal 700 base pair

interval), the complete genomic scaffold was divided into 1,000 base pair (1 kbp) long,

consecutive fragments, and searched against the set of fosmids. The same analysis was

performed at the gene level as well, using the set of genes annotated on the genomic scaffold as

reference sequences. When the total length of ortholgous sequences (gene-level comparisons)

between a fosmid and the genomic scaffold was longer than 5 kbp, the fosmid was considered to

derive from C. symbiosum and the average nucleotide identity between the fosmid and the

genome was calculated directly from the resulting blastn output. Ortholgous regions between C.

symbiosum fosmids (1-kbp window comparisons) were subsequently aligned using clustalw (64).

The number of invariable and variable bases in the 1 kbp fragments, which is shown in Fig.1 was

calculated directly from the clustalw alignments for the fosmids that showed >95% average

nucleotide identity to the genomic scaffold.

Comparative analysis between C. symbiosum, public genomes and Sargasso Sea
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The Sargasso Sea database contained the complete set of unassembled, vector-trimmed,

whole genome shotgun sequences (53), while the public genomes database included all whole-

genome sequences accessible through NCBI’s ftp site as of December of 2006 (260 genomes in

total). Since the Sargasso average read length is only ~818 bases, C. symbiosum proteins longer

than 300 amino acids were split into 300 amino acid long consecutive fragments, which where

then queried against the Sargasso database. Use of the whole-genome sequences (as opposed to

annotated protein sequences for the public genomes) avoided inconsistencies between differently

annotated genomes, thereby facilitating comparison to the unannotated Sargasso database.

Evaluation of gene conservation was based upon analysis of BLAST score ratios (BSR) between

C. symbiosum, Sargasso Sea and public genomes (65) using tblastn. The BSR represents the ratio

of the bit score for the set of predicted C. symbiosum proteins queried against the Sargasso Sea or

public genomes database divided by the bit score of C. symbiosum queried against itself (self-

match). Application of the BSR reduces biases associated with database size and the length of

matching segments by normalizing the bit scores derived from blast algorithms.

Coverage plots relating the set of whole genome shotgun (WGS) reads from individual

Saragsso Sea (SAR) sample bins, SAR1-7 (http://www.venterinstitute.org/sargasso/)  (53) to the

C. symbiosum genomic scafffold were generated using the Promer program implemented in

MUMmer3.18 (66). Promer generates amino acid alignments based on the translation of both

query and subject sequences in all six ORFs. The following parameters and cut-offs were used:

breaklength = 60, minimum cluster length = 20, and match length = 10. Test alignments intended

to explore the specificity and depth of coverage of SAR alignments to the C. symbiousm genome

were performed with the following archaeal reference genomes: Archaeoglobus fulgidus

(NC_000917), Methanothermobacter thermautotrophicus (NC_000916), Thermoplasma
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volcanium (NC_002689), Pyrobaculum aerophilum (AE009441) and Sulfolobus solfataricus

(NC_002754). Resulting delta files were converted into coordinate files for plotting and

sequence analysis using the show-coords program and visualized in graphical format (coverage

plot) using the mummerplot program.

Phylogenetic Analysis

Phylogenetic analyses were performed using maximum-likelihood (ML) methods

implemented in PHYML (http://atgc.lirmm.fr/phyml/) (67). For the set of ribosomal protein s

(Rbp) individual analyses of each RBp was performed prior to the construction of a concatenated

alignment to assess the relative phylogenetic signal of each protein. Resulting trees were left

unrooted to maximize the number of useful positions in the alignments and to limit the risk of

long-branch attraction (LBA). Several r-proteins, including Rpl2e, Y and Z were excluded from

the concatenated dataset based on prior studies indicating lateral gene transfer between archaeal

groups (48). Additional information related to the phylogenetic analysis can be found in the

supplementary online material (SOM).

Supporting Online Material

All supporting information is available on the XXXX web site (http://www.XXXX.org).

Complete genome annotation files are available through the Joint Genome Institute’s Integrated

Microbial Genomes system (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) and through the NCBI

web portal (http://www.ncbi.nlm.nih.gov/). Individual fosmid sequences can be obtained from

GenBank under the accession numbers DQ397540-DQ397640 and DQ397827-DQ397878
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corresponding to a- and b-type population bins respectively. The complete a-type genome

sequenced can be obtained from GenBank the accession number XXXX.
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Table 1. C. symbiosum genome features
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Figure Legends

Figure 1. C. symbiosum fosmid population structure and mosaic genome assembly

(Top) Fosmids partition into two distinct population bins corresponding to a-type and b-type

ribosomal variants. Average nucleotide identity of each fully sequenced fosmid is plotted against

the position of each fosmid in the assembled a-type scaffold. Blue lines represent the set of

fosmids falling within the a-type population and red lines indicate the set of fosmids falling

within the b-type population. The inset histograms represent the overall sequence divergence

among and between overlapping fosmids using the in BLAST algorithm. The distribution of

observed sequence similarity (percent identity) in high-scoring segment pairs (HSPs) for

alignments (left) between fosmid clones assigned to population “a”, (middle) between “a+b”

populations, and (right) between fosmid clones assigned to population “b”. (Bottom) Number of

nucleotide polymorphisms per 1Kb of orthologous sequence shared between overlapping

fosmids within the a-type population exhibiting  >95% nucleotide identity to the genomic

scaffold. Gaps in the distribution represent genomic intervals covered by a single fosmid clone

(see methods).

Figure 2. The Cenarchaeum symbiosum genome

Nested circles from outermost to innermost represent the following information: 1) Gene content

predicted on the forward strand. 2) Gene content predicted on the reverse strand. The color of

predicted open reading frames (ORFs) is based on COG functional categories (see key for color

designations). ORFs were assigned to COG categories according to their top match against the

COGs database, using the blastp algorithm set to a minimum cut-off of 30% amino acid identity
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over at least 70% of the length of the gene. 3) Conservation of predicted C. symbiosum genes in

the set of published and completed microbial genomes (see methods). 4) Conservation of

predicted C. symbiosum genes in the unassembled set of whole genome shotgun data from the

Sargasso Sea. The height of the bars in circles 3 and 4 indicates the BLAST score ratio (BSR) for

the set of predicted C. symbiosum proteins queried against the public genomes and Sargasso Sea

respectively using a baseline cut-off >30 (see methods). 5)  The extent of polymorphisms within

the type-a population shown in figure 1 mapped on the genome (see figure 1 for details).

6) Expanded gene families (discussed in the text, see key for color designations and Table S5

additional information) ; notice that high number of polymorphisms (circle 5) frequently coinside

with the expanded protein families, i.e., these proteins families are frequently hot-spots of

diversity within the type-a population. 7) tRNA and rRNA gene positions. 8) G+C content

deviation from the mean (57.5%) in 1, 000 base pair windows.

Figure 3. Phylogenetic position of C. symbiosum

Bayesian phylogenetic tree constructed using MrBayes v3_0b4 (68) with a mixed model of

amino acid substitution and a Γ-law (8 discrete categories plus a proportion of invariant sites) to

take into account among site rate variation. Numbers in bold associated with each branch

represent the posterior probabilities from the Bayesian analysis performed with Mr. Bayes

whereas other numbers are the bootstrap values from the maximum likelihood analysis

performed with PHYML (JTT model and Γ-law (8 discrete categories plus a proportion of

invariant sites) (67). The scale bar represents the average number of substitutions per site.

Figure 4. Comparative analysis of C. symbiosum and Saragasso Sea sample bins
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Coverage plots for individual SAR sample bins aligned to the C. symbiosum genomic scaffold

(see methods). Each vertical bar represents an individual whole genome shotgun (WGS) read.

The average percent amino acid identity (top) and similarity (bottom) for SAR WGS reads

aligning to the C. symbiosum genome is shown to the far right of each coverage plot. For

simplified visualization of gaps in the alignment, all matches are replotted near the base of the x-

axis to form a normalized 1D plot spanning the reference sequence. To illustrate the gene content

of gaps within the distribution of aligning WGS reads several regions corresponding to expanded

gene families 1-3 (Table S3) unique to the C. symbiosum genome are highlighted. Sampling

parameters, including the pore size of pre-filtration and collection filters used for each sample

bin: (0.8-0.1 µm for SAR sample 1 and 7, 0.8-0.22 µm for SAR samples 2-4, 20-3.0 µm for SAR

sample 5, and 3-0.8 µm for SAR sample 6) and collection dates (2/25/2003 for SAR samples 3-4,

2/26/2003 for SAR samples 1-2 and 5/15/2003 for SAR samples 5-7) (53). The late February

collection dates for SAR samples 1-4 were at a time of deeper nutrient-rich water mixing with

surface waters.
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Table 1. C. Symbiosum genome features

Specifications*

Size (bp) 2,045,089

Average G+C Content (%) 57.74

Predicted open reading frames (ORFs) 2,066

ORF Density (gene/Kb) 0.986

Average ORF length (bp) 924

Coding percentage (%) 91.2

ORF Content

Predicted functional 1,070

Predicted functional in COGs 1,024

Conserved hypothetical 86

Hypothetical 861

RNA genes

16S-23S rRNA operon 1

5S rRNA 1

tRNAs 45

7S RNA 1

Expanded gene families †

Number of families 79

Number of genes in families 263

Coding percentage (%) 26.78

Taxonomic Distribution of functional and conserved ORFs^

Archaea 64.41

Bacteria 32.68

Eukarya 2.87

Virus 0.04

* see methods for fosmid assembly parameters

† based on following cutoffs: expection ≥ 1e-20, bitscore ≥ 100, identity ≥ 40% and overlap ≥ 100 aa

^ GenBank queries based on blastp searches constrained to expectation cut-off ≥ 1e-10 
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