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Viruses are the most common biological entities in the oceans by
an order of magnitude. However, very little is known about their
diversity. Here we report a genomic analysis of two uncultured
marine viral communities. Over 65% of the sequences were not
significantly similar to previously reported sequences, suggesting
that much of the diversity is previously uncharacterized. The most
common significant hits among the known sequences were to
viruses. The viral hits included sequences from all of the major
families of dsDNA tailed phages, as well as some algal viruses.
Several independent mathematical models based on the observed
number of contigs predicted that the most abundant viral genome
comprised 2–3% of the total population in both communities,
which was estimated to contain between 374 and 7,114 viral types.
Overall, diversity of the viral communities was extremely high. The
results also showed that it would be possible to sequence the
entire genome of an uncultured marine viral community.

Marine viruses, the majority of which are phages, have
enormous influences on global biogeochemical cycles (1),

microbial diversity (2, 3), and genetic exchange (4). Despite their
importance, virtually nothing is known about marine viral biodi-
versity or the evolutionary relationships of marine and nonma-
rine viruses (5–7). Addressing these issues is difficult because
viruses must be cultured on hosts, the majority of which cannot
be cultivated by using standard techniques (8). In addition,
viruses do not have ubiquitously conserved genetic elements
such as rDNA that can be used as diversity and evolutionary
distance markers (9). To circumvent these limitations, we de-
veloped a method to shotgun clone and sequence uncultured
aquatic viral communities.

Materials and Methods
Isolation of Viral Community DNA. Marine viruses were isolated
from 200 liters of surface seawater from Scripps Pier (SP, La
Jolla, CA; May 2001) and the channel side of Fiesta Island in
Mission Bay (MB, San Diego; June 2001) by using a combination
of differential filtration and density-dependent gradient centri-
fugation. The water at the MB site is exchanged with each tidal
cycle. Both the SP and MB sites experience increased levels of
pollution during the rainy season, because of runoff from the
surrounding city. The MB site routinely has more eukaryotic
algae than does the SP site. Once collected, the water samples
were initially filtered through a 0.16-mm Centramate tangential
f low filter (TFF; Pall) to remove bacteria, eukaryotes, and large
particles. Approximately 90% of the viruses, as determined by
epifluorescent microscopy (10), and most of the water, passed
through the filter and were collected in a separate tank. Subse-
quently, the viruses in the filtrate were concentrated by using a
100-kDa TFF filter until the final sample volume was ,100 ml
('5,0003 concentration). Recovery of viruses during this step
was essentially 100%. After the TFF, the phage concentrate was
loaded onto a cesium chloride (CsCl) step gradient, ultracen-
trifuged, and the 1.35–1.5 gyml fraction was collected. This
fraction contains the majority of the viral DNA as determined

by pulse field gel electrophoresis (11); however, this method will
not recover all viruses (e.g., large eukaryotic viruses and ssRNA
phages). After CsCl purification, the viruses were lysed by using
a formamide extraction, and the DNA was recovered by an
isopropanol precipitation and a cetyltrimethylammonium bro-
mide (CTAB) extraction (12).

Construction of the Shotgun Library. The amount of viral DNA in
an environmental sample is very low ('10 mgy100 liters). Viral
genomes often contain modified nucleotides that cannot be
directly cloned into Escherichia coli. Additionally, because viral
genomes contain genes (e.g., holins, lysozyme) that must be
disrupted before cloning, we have not been able to create a
representative cosmid library from these communities. We have
circumvented these problems by randomly shearing the total
marine viral community DNA (HydroShear, GenMachine, San
Carlos, CA), end-repairing, ligating dsDNA linkers to the ends,
and amplifying the fragments by using the high-fidelity Vent
DNA polymerase. The resulting fragments were ligated into the
pSMART vector and electroporated into MC12 cells (Lucigen,
Middleton, WI). We call these libraries LASLs for linker-
amplified shotgun libraries. This method has been checked to
ensure randomness as described (ref. 13, and our web site at
www.sci.sdsu.eduyPHAGEyLASLyindex.htm). A test library
was constructed of coliphage l DNA, and 100 fragments were
sequenced without observing any chimeras. Additionally, we
have recently sequenced two phage genomes, Vibriophage 16T
and 16C, from a mixed lysate by using the LASL approach. No
chimeric molecules were observed in this mixed library. To-
gether, these three libraries represent .1,000 sequences. There-
fore, it is highly unlikely that we are observing a significant
number of chimeric sequences in our library (F.R. and A.M.S.,
unpublished results).

Analysis of Sequences: Composition Analyses. Clones from the SP
library were sequenced with both forward and reverse primers,
yielding a total of 1,061 sequences. Eight hundred and seventy-
three clones from the MB library were sequenced only with the
forward primer. These sequences were compared against Gen-
Bank by using TBLASTX (14, 15). A hit was consider significant
if it had an E value of ,0.001. Significant hits to GenBank entries
were classified into the groups described in the text, based on
sequence annotation. In cases where multiple significant hits
were observed for a single query sequence, the sequence was
preferentially classified as a phage or virus if these occurred
within the top five hits. Mobile elements consisted of trans-
posons, plasmids, insertion sequences, retrotransposons, unsta-
ble genetic elements, and pathogenicity islands. Bacterial hits
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were examined manually according to a list provided by Sher-
wood Casjens (University of Utah, Salt Lake City) to look for
potential hits to prophage sequences. Significant hits to phages
were further classified into phage families according to The
International Committee on Taxonomy of Viruses (ICTV) clas-
sification (16), with the one exception being that we considered
P22 a Siphovirus.

Analysis of Sequences: Contig Analyses. All sequences were initially
analyzed by SEQUENCHER 3.0.6 (Gene Codes, Ann Arbor, MI) to
identify contigs based on a minimum overlap of 20 bp with a 98%
minimal mismatch percentage (MM%). Contigs were examined
individually to ensure that any overlaps between fragments from
the same clone were not considered contigs. Only contigs
containing an overlapping sequence from two different clones
were considered in the population analyses. To empirically
determine the overlap size and MM% needed to differentiate
between phage genotypes and groups during assembly, an in
silico shotgun library was constructed and tested. The genomes
used in this analysis were three Siphoviruses (coliphage l,
coliphage HK620, and coliphage N15), three Myoviruses (co-
liphage T4, coliphage P2, and coliphage Mu), four Podoviruses
(coliphage T7, Yersinia phage YeO3–12, Roseophage SIO1, and
Cyanophage P60), and one Corticovirus (Pseudoalteromonas
phage PM2). This selection includes all of the marine phage in
GenBank (P60, SIO1, and PM2), multiple phage that are very
closely related (i.e., the l-like Siphoviruses, or the T7-like
Podoviruses), representatives from each of the major dsDNA
phage groups, as well as many genomes that infect the same host
E. coli (l, HK620, N15, T4, P2, Mu, and T7). To construct the
library for assembly, the 11 genome sequences were divided into
500-bp fragments and then reassembled by using different
overlap sizes and MM%. Contigs that formed between frag-
ments of different genomes were recorded.

At very low stringency (MM% 5 80 with a 20-bp overlap), 25
contigs among phages from within the same group (Sipho-,
Myo-, and Podovirus) were observed, as well as one contig
between the Siphovirus coliphage l, and the Myoviruses Mu and
P2. Modestly raising the stringency to values typically used to
assemble genomes (MM% 5 85 with a 20-bp overlap) eliminated
the formation of contigs between groups of phages, but not
within the major phage groups (e.g., l with HK620). A higher
stringency of MM% 5 97 with an overlap of 20 bp eliminated
overlaps between any of the phage genomes in our test library.
A very high stringency assembly of MM% 5 98 with an overlap
of 20 bp differentiates between the very closely related coliphage
T3 and T7. In contrast to the effects of increasing stringency,
increasing the overlap length to 100 bp still resulted in overlaps
between fragments from different phage genomes at lower
MM%. We concluded from these studies that at the high
stringency assembly conditions (MM% 5 97–100; overlap 20 bp)
the assembly of two sequences into a contig suggested that they
arose from the same phage or a very close relative. The
observation of contigs at lower stringencies indicates that the two
sequences belong to phages from the same major group, but are
not necessarily from the same phage.

To determine how many errors were introduced during clon-
ing and sequencing, the DNA polymerase from coliphage T7 was
PCR amplified and cloned, and 19 clones were sequenced and
analyzed by using the same protocols as described for the
uncultured marine viral samples. The resulting sequences were
then globally aligned by using CLUSTAL X (17), and the number
of gaps and miscalled bases that occurred in the area where
all of the sequences overlapped were counted. For each oc-
currence of a miscalled base, an error was recorded. If one
position in the alignment had a miscalled base in two of the
sequences, then two errors were recorded. From a total of 12,502
positions investigated, 25 miscalled bases and 8 gaps were

observed. Therefore, the average error in this area was 0.26%.
The number of errors associated with the ends, where not all of
the sequences overlapped, was determined based on compari-
sons with the published T7 sequence. At the 59 end, there was
one miscalled base in 273 positions (0.366%). At the 39 end, there
were 7 miscalled bases and 5 gaps in 739 positions (1.62%).
Therefore, by using our cloning and bioinformatics protocols,
the sequence data has an error rate of 0.26–1.62%. Given this
limitation, two DNA sequences from the same phage would be
expected to be at least 98–99% identical.

Results and Discussion
Identity of Uncultured Marine Viruses. Shotgun libraries were made
from two near-shore marine viral communities (SP and MB). Of
the sequence fragments obtained from both samples (1,061 from
SP and 873 from MB), the majority showed no significant hits
(E , 0.001) to previously reported sequences in GenBank (Fig.
1A). This finding suggested that much of the diversity in the viral
communities was previously uncharacterized. Significant hits
to GenBank entries were classified as phages, viruses, mobile
elements, repeat elements, Bacteria, Archaea, or Eukarya as
described in Materials and Methods. In both marine communities,
viruses were the most common known hit, and the majority
(SP 5 90% and MB 5 75%) of the virus hits were most similar
to phages (Fig. 1B).

Significant hits to all of the major families of dsDNA tailed
phages were observed in both libraries (Fig. 1C). In both
communities, the phage genome with the most top hits was the
marine phage Roseophage SIO1 (7). In addition, three of the
four phages with the most top hits were Podoviruses (Roseoph-
age SIO1, coliphage T7, and Cyanophage P60). Overall, Podovi-
ruses dominated the known phage hits from the SP community,
whereas Podoviruses and Siphoviruses contributed equally to
the MB community. In addition, we observed sequences related
to groups that, to our knowledge, have never before been
reported in the marine environment, including coliphage l and
the Microviridae. The majority (.56%) of the significant phage
hits were similar to genes of known function (Table 1). The
known hits included DNA and RNA polymerases, helicases,
DNA maturation proteins, packaging genes, terminases, and a
variety of structural proteins.

Although the majority of the diversity in both marine com-
munities appears to be uncharacterized, the fraction that is
similar to known sequences suggests fundamental differences
between the two samples. The viral community from SP appears
more ‘‘bacterial’’ in origin, whereas the MB sample is more
‘‘eukaryotic.’’ There are more eukaryotic hits in the MB sample,
as well as a large number of repeat sequences (Fig. 1B). Although
it is possible that these repeat regions are indicative of mobility
(because mobile elements are frequently flanked by repeat
regions), it is more likely that these repeats are representative of
the repeats commonly found in eukaryotic genomes. Whether
these repeats are from eukaryotic-derived viruses or contami-
nating DNA is unclear (see below). The former possibility is
supported by the fact that more hits to viruses that infect
eukaryotes were seen in the MB sample. Another supporting fact
comes from the types of mobile hits that were observed (Fig.
1D). The majority (80%) of the mobile hits from the SP library
were to bacterial plasmids, whereas most (57%) of the mobile
hits from the MB library were to retrotransposons, which are
common in eukaryotic genomes. The retrotransposon hits in-
cluded both LTR and nonLTR retrotransposons. Together,
these data suggest that there is a eukaryotic quality to the viral
community from the MB library that is perhaps indicative of an
algal virus bloom.

The significant hits to Bacteria, Eukarya, and Archaea may
represent contamination in the libraries. However, we have
accumulated numerous lines of evidence suggesting that this is
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not the case. In several clones from the SP library, which were
sequenced from both ends, the hit from one end of the clone was
to a phage, whereas the other end of the same clone had a
significant hit to a bacterial or eukaryotic sequence. Second,

BLAST searches with the predicted ORFs from the genomes of
the marine phage Roseophage SIO1 (7) and Cyanophage P60
(18) resulted in 50% and 30% of the significant hits being
bacterial in origin, respectively. Some of the bacterial hits may

Fig. 1. Genomic overview of a near-shore viral community based on sequence similarities. (A) Number of sequences from the uncultured shotgun libraries with
a significant hit (E , 0.001) to GenBank. (B) Distribution of significant hits among major classes of biological entities. (C) Families of phages represented in the
libraries. (D) Types of mobile elements found in the two libraries.
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also represent uncharacterized prophages and their remnants in
the bacterial genomes, or these sequences may come from
transducing phages. Finally, the DNA isolation method included
a cesium chloride purification of the viral particles to remove
contaminating cells and free DNA (ref. 11 and www.sci.sdsu.
eduyPHAGEyLASLyindex.htm).

Population Modeling. The samples used to make the shotgun
libraries contained '2 3 1012 individual viral particles. The
higher the diversity of these viruses, the lower the chances of
sequencing overlapping fragments from the same viral genome
would be. The sequence fragments from the two marine viral
communities were assembled using MM% 5 98 and an overlap
of 20 bp. Based on the calculated error rate, these stringency
conditions would prevent sequences from all but the most closely
related phage genomes from assembling together (see Materials
and Methods). By using these assembly criteria, the 1,061 se-
quences from the SP sample contained 17 contiguous sequences
(contigs) made up of two fragments (2-contigs) and two 3-con-
tigs, as well as 1,021 sequences that did not overlap with any
other sequences (referred to as 1-contigs). Among the 873
sequences from the MB sample, 13 2-contigs and 2 3-contigs, as
well as 841 sequences that did not overlap with any other
sequences were observed. Approximately 3.5% of the total
sequence fragments from both samples fell into contigs.

The small number of contigs observed suggested that diversity
of the marine viral communities was high, and we therefore
sought to model the populations based on the distribution of
overlapping sequences. No existing mathematical models ade-
quately described the observed number of contigs; therefore,
one was derived from first principles. For this derivation, the
following assumptions were made: (i) all of the genomes were 50
kb in length [the average length of marine viral genomes (11)];
(ii) all of the fragments were 663 bp long (the average fragment
size in this study, see www.sci.sdsu.eduyPHAGEyLASLy
index.htm); (iii) a minimum overlap of 20 bp was needed to form
a contig (i.e., the parameters used in the assembly program

SEQUENCHER); and (iv) fragments in the shotgun library were
completely random and unbiased (ref. 19, and www.sci.sdsu.eduy
PHAGEyLASLyindex.htm).

For the derivation, we first considered a shotgun library from
a single viral genotype. When n fragments are sequenced from
a genome of length (L) bp, each fragment can be identified by
its starting position on a line. Because L .. 1, edge effects are
rather insignificant. In addition, edge effects also complicate the
modeling significantly, and are therefore ignored in the sense
that we assume there are L equally likely starting positions for
each fragment. It follows that the distances between these
randomly chosen points are exponentially distributed (19).
Therefore, the probability that two starting points will be within
a distance x of each other is 1 2 exp(2ax), where 1ya is the
average distance between starting points. Letting n represent the
number of fragments sampled from one genome gives 1ya 5
Lyn. The probability that two starting points on a genome of
length L 5 50,000 bp are not more than x 5 663 2 20 5 643 bp
apart (and thus form a contig) is

p 5 1 2 e2nxyL 5 1 2 e20.01286n. [1]

For each q-contig (where q equals the number of sequences
in the contig), exactly q 2 1 such overlaps are needed. This
requires a nonoverlap gap followed by q 2 1 overlaps followed
by another nonoverlap gap. This occurs with the probability
(1 2 p)pq21(1 2 p).

The probability that a randomly selected fragment is part of
a q-contig is given by

wq 5 qpq 2 1~1 2 p!2, [2]

which is a negative binomial distribution. With n samples se-
lected from this genome, the expected number of q-contig
members will be

cq 5 nwq. [3]

Now consider an environmental sample that is a mixture of M
different viral genotypes, where each viral genotype i is repre-
sented by its population ni in the sample. The values of ni
determine the corresponding probabilities of overlap to a neigh-
boring segment pi according to Eq. 1 and probabilities of
membership in a q-contig wqi according to Eq. 3. Each viral
genotype will make its contribution to the observed q-contigs,
with the expected number totaling

cq 5 O
i 5 1

M

niwqi. [4]

By matching the observed numbers of q-contig members in the
sample, Cq, to the cq predicted by Eq. 4, it is possible to estimate
the number ni of fragments from the ith species. The observed
number of contigs in the uncultured marine libraries could not
be adequately described by a small number of viral genomes
(M , 20), or by assuming that all viral genotypes were evenly
distributed. Thus, the observed values contain important infor-
mation regarding both the evenness and the richness of the viral
populations.

A variety of functions were tested to describe the observed
distribution of contigs. These functions use two basic parametric
forms, ni 5 f(i, a, b, n1, n2) for the number of segments sampled
from species i, (i 5 1, . . . , M). The parametric forms were either
power-law, given by

ni 5 ai2b ~M $ i $ 1!, [5]

or the exponential function

Table 1. Categories of phage proteins with significant hits in the
uncultured libraries

Protein category SP MB

Unknown 41 20
Structural 20 11
Terminase 8 16
Helicase 6 5
DNA maturation 4 0
RNA polymerase 3 1
DNA polymerase 3 1
Methyltransferase 1 1
Packaging 1 7
Recombinase 1 1
Host specificity 1 0
Polynucleotide kinase 1 0
Protease 1 1
DNA-dependent ATPase 1 0
Lytic enzyme 1 0
Morphogenesis 1 0
Endosialidase 1 0
Endonuclease 0 1
Endolysin 0 1
Exonuclease 0 2
Lysozyme 0 1
Phage resistance protein 0 1
PhoH-like 0 1

Total 95 71
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ni 5 ae2 ib ~M $ i $ 1!. [6]

These are two of the basic functional forms of relative abundance
distribution curves observed for biological populations (20). To
examine the robustness of the predicted value of n for the most
populous viral genotype, two additional models were explored
for which the value of n1 was not determined by the functional
form in Eqs. 5 or 6, but rather was allowed to take on whatever
value gave the best fit. In these models Eqs. 5 and 6 were used
only for i . 1.

As shown in Table 2, the exponential models consistently
showed poorer fits to our data than the power-law models. The
fits were obtained by minimizing the negative log likelihood
function

2 2 log L̃ 5 O
q 5 1

ni ~Cq 2 cq!
2

scq

2 , [7]

which is the sum of the variance-weighted, squared deviations
from the observed Cq values. It corresponds to a quasi-likelihood
function, L̃, which is a product of normal distributions with
expected values given by the Cq and variances given by the sum
of the binomial variances appropriate for each genotype

scq

2 5 O
i 5 1

M

niwqi~1 2 wqi!. [8]

Table 2 lists the maximum likelihood values of the parameters
obtained for the two data sets. The models are listed in order of
preference, which was determined from the minimum weighted
error found for the model and the number of parameters used.
The power-law model (pow) was preferred over the augmented
power-law model (n1pow), in accordance with Occam’s razor.
Note that only the power-law based models were able to
determine a maximum likelihood estimate for M. The standard
estimates of error were obtained from the variances estimated as
the diagonal elements of the inverse of the second derivative
matrix of 2log(L̃) with respect to the parameters. For the SP
sample, the parameter values (including standard estimates of
error) were a 5 21.72 6 3.39, b 5 0.64 6 0.07, and M 5 3,318 6
2,116. For the MB sample, the parameter values were a 5
23.22 6 3.46, b 5 0.73 6 0.08, and M 5 7,114 6 8,691.

Effect of Varying Average Genome Size on Model Predictions. To
study the effect of the genome size on the predictions of the
model, the power-law model was analyzed under the assump-
tions that the genomes of all of the viruses were either 25 or 120
kb, instead of the 50-kb average size used for the analysis
presented above. The a parameter in the power-law for both data
sets roughly halved for the 25-kb simulation, which translates
into half the number of the most abundant viral genotype.
Conversely, by using 120 kb for the phage size roughly doubled
the a parameter value, thus doubling the abundance of the most
common viral genotype compared with a 50-kb genome size

Fig. 2. The rank abundance curves for the viral communities as predicted by
the power-law model. The curve is shown in red and the standard estimates of
error are shown in black.

Table 2. The maximum likelihood values of the parameters obtained for the two data sets

Percent abundance of
the most common virus*

Weighted sum
squared error a b n1 M†

SP
pow 2.04 1.8 21.72 0.641 nya 3,318
n1pow 1.73 1.5 30.60 0.739 14.2 6,850
n1exp 2.56 3.0 2.12 0.002 27.2 nya
exp 0.36 10.6 3.82 0.004 nya nya

MB
pow 2.66 2.1 23.22 0.729 nya 7,114
n1pow 2.23 1.7 35.66 0.876 15.8 nya
n1exp 3.25 3.3 1.75 0.002 28.3 nya
exp 0.47 4.08 4.08 0.005 nya nya

The models are listed in order of preference, which was determined from the minimum weighted error found
for the model and the number of parameters used. nya, Not applicable.
*The percent in this category was obtained as the largest n 3 100 divided by the number of fragments sequenced.
Note that for the models with separately fit n1, the largest n is given by the maximum of the n1 value found and
n2 is given by Eq. 5 or 6.

†Because of variation in this parameter, our estimate of the population size should be taken as an indication of
the order of magnitude for the number of virus types.
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assumption. The best fit b parameter was very similar for all
genome sizes. Because of the error associated with the M
parameter, there was less predictability for this parameter as
the genome size varied, but most calculations found M similar
in size to the predicted value for the 50-kb genome size given
in Table 2.

Marine Viral Community Diversity. The rank abundance curves for
the power-law model of both samples are shown in Fig. 2. This
model predicted a total of 3,318 viral types in the SP community
and 7,114 viral types in the MB community. All of the models
shown in Table 2, except the exponential model (exp), which has
a poor fit, predicted that the most abundant viral genome
comprised 2–3% of the population in both communities. The
robustness of this result lends considerable credibility to its
accuracy. In both samples, only three viral genomes comprise
more than 1% of the population. Because the entire 200-liter
water samples contained '2 3 1012 viruses, the models predict
that there were '5 3 1010 individuals of the most abundant viral
genotype. Assuming the most abundant genotype was a phage
and an average burst size of 24 (2), '2 3 109 bacteria would have
been lysed to produce this phage population. Therefore, the
most abundant phage must have been capable of infecting '1%
of the total bacterial population ('2 3 1011 cells) at one point
in time.

An estimate of the viral genotype richness M of the population
was also obtained by using the nonparametric estimator Chao1
(21) by considering each q-contig as an operational taxonomic
unit (OTU), where q equals the number of times that a certain
OTU was observed. The Chao1 index is particularly useful for
data sets skewed toward the low-abundance classes (22). The
Chao1 estimator predicts that there are 31,700 fragments in the
SP sample and 28,059 fragments in the MB sample. Because it
takes '75 fragments of 663 bp to constitute an average sized
marine phage genome of 50 kb, Chao1 predicts 423 different
viral genomes in the SIO51 sample and 374 different viral
genomes in the MB61 sample. Because Chao1 underestimates
true richness when sample sizes are small (22), these values
should be considered lower boundaries for viral richness. Com-
bining the lower bound from Chao1 and the estimate from our
power-law model, we estimate that there are between 423 and

3,318 viral genotypes in the SP sample, and between 374 and
7,114 viral genotypes in the MB sample. The predicted diversity
for these communities was extremely high, with a Shannon Index
of 7.56 for the SP community, and Shannon Index of 7.99 for the
MB community (23).

Given the fact that the two samples came from different
environments, and the viral community composition appears to
be quite different, it is striking that the population diversity for
both samples is so similar. In these 200-liter seawater samples,
which each contained '1012 virus particles, both parametric and
nonparametric analyses predicted ,104 different viral types. A
contig between sequence fragments from the two samples was
also found (data not shown), which means that we will be able
to estimate intersample diversity with larger sequencing efforts.
This makes the task of estimating oceanic viral diversity a
tractable problem.

The most abundant virus in both marine communities com-
prised 2–3% of the total population. If this genome is '50 kb,
only 25,000 clones would have to be sequenced to get 103
coverage of this virus. Similarly, '500,000 clones would have to
be sequenced to get 103 coverage of the 100 most abundant
viruses. The Joint Genome Institute is currently sequencing
'206 96-well plates per day (May 1, 2002, at www.jgi.doe.govy).
This is a total of '19,776 clones per day. Therefore, the sequence
of the most abundant virus could be obtained with 1 day’s worth
of sequencing effort, and the 100 most abundant viruses could
be sequenced in 1 month. The current library contains '1
million clones, with enough viral DNA remaining to create 15
more libraries of this size. Assuming our diversity estimates are
correct, there is enough DNA in our sample to sequence the
genome of every virus in the marine communities, even though
this would require extraordinarily large sequencing efforts.
These results show that it is not only possible to sequence the
entire genome of an uncultured marine virus by using this
approach, but also to sequence the entire genome of an uncul-
tured marine viral community.
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