
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2013 

Genomic and epigenomic landscapes of adult de novo acute Genomic and epigenomic landscapes of adult de novo acute 

myeloid leukemia myeloid leukemia 

Timothy J. Ley 
Washington University School of Medicine in St. Louis 

Christopher Miller 
Washington University School of Medicine in St. Louis 

Li Ding 
Washington University School of Medicine in St. Louis 

Jack Baty 
Washington University School of Medicine in St. Louis 

Lucinda Fulton 
Washington University School of Medicine in St. Louis 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 

Ley, Timothy J.; Miller, Christopher; Ding, Li; Baty, Jack; Fulton, Lucinda; Fulton, Robert; Heath, Sharon; 

Kalicki-Veizer, Joelle; Kandoth, Cyriac; Klco, Jeffery M.; Koboldt, Daniel C.; Kanchi, Krishna-Latha; Kulkarni, 

Shashikant; Lamprecht, Tamara L.; Larson, David E.; and et al, ,"Genomic and epigenomic landscapes of 

adult de novo acute myeloid leukemia." The New England Journal of Medicine. 368,22. 2059-2074. (2013). 

https://digitalcommons.wustl.edu/open_access_pubs/2479 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu


Authors Authors 
Timothy J. Ley, Christopher Miller, Li Ding, Jack Baty, Lucinda Fulton, Robert Fulton, Sharon Heath, Joelle 
Kalicki-Veizer, Cyriac Kandoth, Jeffery M. Klco, Daniel C. Koboldt, Krishna-Latha Kanchi, Shashikant 
Kulkarni, Tamara L. Lamprecht, David E. Larson, and et al 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/
open_access_pubs/2479 

https://digitalcommons.wustl.edu/open_access_pubs/2479
https://digitalcommons.wustl.edu/open_access_pubs/2479


n engl j med 368;22 nejm.org may 30, 2013 2059

The new england 
journal of medicine
established in 1812 may 30, 2013 vol. 368 no. 22

Genomic and Epigenomic Landscapes of Adult De Novo  
Acute Myeloid Leukemia

The Cancer Genome Atlas Research Network

A bs tr ac t

The authors (members of the Cancer Ge-
nome Atlas Research Network) are listed 
in the Appendix. Address reprint requests 
to Dr. Timothy J. Ley at Washington Uni-
versity School of Medicine, Division of 
Oncology, Stem Cell Biology Section, 
Campus Box 8007, 660 S. Euclid Ave., St. 
Louis, MO 63110, or at timley@wustl.
edu.

This article was published on May 1, 2013, 
and updated on June 13, 2013, at NEJM.org.

N Engl J Med 2013;368:2059-74.

DOI: 10.1056/NEJMoa1301689

Copyright © 2013 Massachusetts Medical Society.

Background

Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) 

are undefined. The relationships between patterns of mutations and epigenetic 

phenotypes are not yet clear.

Methods

We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, 

using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 

cases), along with RNA and microRNA sequencing and DNA-methylation analysis.

Results

AML genomes have fewer mutations than most other adult cancers, with an average 

of only 13 mutations found in genes. Of these, an average of 5 are in genes that are 

recurrently mutated in AML. A total of 23 genes were significantly mutated, and 

another 237 were mutated in two or more samples. Nearly all samples had at least 

1 nonsynonymous mutation in one of nine categories of genes that are almost cer-

tainly relevant for pathogenesis, including transcription-factor fusions (18% of 

cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes 

(16%), DNA-methylation–related genes (44%), signaling genes (59%), chromatin-

modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex 

genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and 

mutual exclusivity suggested strong biologic relationships among several of the 

genes and categories.

Conclusions

We identified at least one potential driver mutation in nearly all AML samples and 

found that a complex interplay of genetic events contributes to AML pathogenesis 

in individual patients. The databases from this study are widely available to serve 

as a foundation for further investigations of AML pathogenesis, classification, and 

risk stratification. (Funded by the National Institutes of Health.)
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T
he molecular pathogenesis of acute 

myeloid leukemia (AML) has been studied 

with the use of cytogenetic analysis for 

more than three decades. Recurrent chromosom-

al structural variations are well established as 

diagnostic and prognostic markers, suggesting 

that acquired genetic abnormalities (i.e., somatic 

mutations) have an essential role in pathogene-

sis.1,2 However, nearly 50% of AML samples have 

a normal karyotype, and many of these genomes 

lack structural abnormalities, even when as-

sessed with high-density comparative genomic 

hybridization or single-nucleotide polymorphism 

(SNP) arrays3-5 (see Glossary). Targeted sequenc-

ing has iden tified recurrent mutations in FLT3, 

NPM1, KIT, CEBPA, and TET2.6-8 Massively parallel 

sequencing enabled the discovery of recurrent 

mutations in DNMT3A9,10 and IDH1.11 Recent 

studies have shown that many patients with AML 

carry no mutations in any of the currently recog-

nized driver genes associated with the pathogen-

esis of AML.8,12

Patients with a cytogenetic profile that is associ-

ated with a favorable risk (i.e., those with PML-

RARA, RUNX1-RUNX1T1, or MYH11-CBFB fusions) 

have relatively good outcomes with chemotherapy-

based consolidation regimens, whereas patients 

with an unfavorable-risk profile (monosomy karyo-

type or complex alterations) require allogeneic 

transplantation during the first remission to im-

prove their prognosis.13,14 However, the majority 

of patients with AML have an intermediate cyto-

genetic risk (most commonly, a normal karyo-

type); some of these patients do well with che-

motherapeutic consolidation, but others have a 

very poor outcome. For this reason, recent stud-

ies have focused on establishing new biomarkers 

for better classification of intermediate risk.8,15,16 

Newer classification algorithms incorporate FLT3, 

NPM1, CEBPA, and KIT into standard-of-care test-

ing. Even more recently, testing has revealed that 

mutations in newly discovered AML genes (e.g., 

DNMT3A, IDH1/2, and TET2) may also provide 

prognostic information for some patients with 

an intermediate-risk profile.8,12,16 None of the 

current classification schemes are entirely accu-

rate, which suggests that a more complete un-

derstanding of the genetic and epigenetic chang-

es that are relevant to the pathogenesis of AML 

will be required for better classification of risk 

and, ultimately, better approaches to therapy.

Me thods

Patients

We selected samples from 200 adults with de 

novo AML to represent the major morphologic 

and cytogenetic subtypes of AML.8,15,16 The char-

acteristics of these patients are fully described in 

Table 1, and in Tables S1 and S2, Figure S1, and 

Glossary

Comparative genomic hybridization: An array-based method that permits comparison of DNA abundance throughout 
the genome between two DNA samples to identify regions where DNA copies have been gained or lost.

DNA methylation: This generally refers to the addition of a methyl group to the 5-carbon of the pyrimidine ring of cyto-
sine, usually pertaining to cytosines that precede a guanine residue in DNA (a CpG dinucleotide motif). DNA meth-
ylation of CpG-rich regions (CpG islands) is often associated with repression of nearby genes.

MicroRNA: A short regulatory form of RNA that binds to a target RNA and suppresses its translation or alters its stability.

Single-nucleotide polymorphism (SNP) array: A microarray-based assay system that allows for simultaneous measure-
ment of nucleotide sequence of hundreds of thousands of SNPs throughout the genome in a DNA sample. Acquired 
copy-number variants can sometimes be detected with SNP arrays by comparing signals from the tumor and nor-
mal samples obtained from the same individual.

Single-nucleotide variant (SNV): A difference in a DNA sequence at a single position in the genome, as compared with 
the reference genome; each variant may represent either an inherited or an acquired (somatic) change. SNPs gener-
ally represent inherited changes only.

Variant-allele clusters: Groups of mutations with similar variant allele frequencies, defined by statistical approaches. 
A large group of mutations with variant-allele frequencies of approximately 50% generally represents the founding 
clone of that tumor.

Variant-allele frequency (VAF): The relative proportion of sequencing reads from a variant allele (i.e., somatic mutation) 
in a tumor sample. The VAF can be used to estimate the fraction of cells within a sample that contain that variant. 
For example, variant alleles with a VAF of 50% usually represent heterozygous somatic mutations that are present 
in all cells within the sample. Variant alleles with lower VAFs are generally present in only a fraction of the cells in a 
sample, which may represent subclones derived from the founding clone of a tumor.

Whole-exome sequencing: Sequencing of the coding regions, or exons, of an entire genome from a single individual.

Whole-genome sequencing: Determination of the primary nucleotide sequence of the entire genome from a single individual.
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the Materials section in the Supplementary Ap-

pendix, available with the full text of this article 

at NEJM.org. A video describing AML and this 

study is also available at NEJM.org.

Analytic Platforms

We performed whole-genome sequencing of the 

primary tumor and matched normal skin sam-

ples from 50 patients (with data from 24 of these 

patients reported previously17) and exome cap-

ture and sequencing for another 150 paired sam-

ples of AML tumor and skin (see Table S3 in the 

Supplementary Appendix for coverage data for the 

200 samples).

All 200 patients who were selected for this 

study were enrolled in a single-institution tissue-

banking protocol approved by the human stud-

ies committee at Washington University. Written 

informed consent for whole-genome sequencing 

was obtained from all study participants.

The samples, which were banked between No-

vember 2001 and March 2010, were selected from 

a set of more than 400 samples to reflect a real-

world distribution of subtypes. Sample inventory 

and quality issues also had to be considered in 

the selection process, since the samples were ana-

lyzed on several different platforms. We identi-

fied candidate somatic variants using several al-

gorithms (see the Methods section in the 

Supplementary Appendix), and all the variants for 

the 200 samples were verified with the use of 

hybridization capture–based methods and deep 

digital sequencing.18 We performed RNA-expres-

sion profiling on the Affymetrix U133 Plus 2 

platform for 197 samples, RNA sequencing for 

179 samples, microRNA (miRNA) sequencing for 

194 samples, Illumina Infinium HumanMethyl-

ation450 BeadChip profiling for 192 samples, 

and Affymetrix SNP Array 6.0 for both tumor and 

normal skin samples from all 200 patients. Data 

sets were not completed for all samples on all 

platforms because of assay failures and availabil-

ity and quality issues for some samples. The com-

plete list of data sets is provided in Table S4 in 

the Supplementary Appendix. All data sets are 

available through the Cancer Genome Atlas (TCGA) 

data portal (https://tcga-data.nci.nih.gov/tcga).

R esult s

Copy-Number Alterations

In most de novo AML samples with a cytogenetic 

profile indicating intermediate or favorable risk, 

we detected very few copy-number events on high-

resolution SNP arrays, as reported previously3 

(Fig. S2 and Table S5 in the Supplementary Ap-

pendix). Unfavorable-risk samples had chromo-

somal copy-number alterations that were verified 

on the SNP arrays, and many had additional, cyto-

genetically cryptic events. No samples contained 

evidence of chromothripsis (a single genomic event 

that results in focal losses and rearrangements in 

multiple genomic regions).19 Details of these anal-

yses are presented in the Materials section in the 

Supplementary Appendix.

Mutations in Coding Sequences

We discovered 2315 somatic single-nucleotide vari-

ants (SNVs) and 270 small insertions and deletions 

(indels) in coding (tier 1) regions of the genome, 

with an average of 13 tier 1 mutations per sample 

(range, 0 to 51) (see box, and Table S6 in the 

Supplementary Appendix). We observed no re-

curring coding mutations in three samples, but 

all contained well-recognized fusion events that 

are known to initiate AML (NUP98-NSD1 in Patient 

868231, MLL-MLLT3/AF9 in Patient 923966, and 

MLL-MLLT10/AF10 in Patient 558395). Three out-

lier samples contained 51, 36, and 35 tier 1 muta-

tions; none of these samples contained mutations 

in known DNA-repair genes. Of the 2315 SNVs, 

1539 (66%) were missense and 510 (22%) had no 

translational consequences. Small indels ac-

counted for 270 of the 2585 validated mutations 

(10%); of these, 191 (71%) caused frameshifts.

Samples were stratified into 10 groups on the 

Tiers of Variants

Somatic variants that are identified on whole-genome sequencing and other large-scale sequencing analyses are often cate-
gorized according to their likely effect on biologic function. In this study, the somatic variants were divided into four tiers.

Tier 1: Changes in the amino acid coding regions of annotated exons, consensus splice-site regions, and RNA genes 
(including microRNAs).

Tier 2: Changes in highly conserved regions of the genome or regions with regulatory potential.

Tier 3: Changes in the nonrepetitive part of the genome that do not meet the criteria for tier 2.

Tier 4: Changes in the remainder of the genome.

A video detailing 
the findings of 
this study is 
available at 
NEJM.org 
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basis of the presence or absence of known recur-

ring fusion events, cytogenetic-risk profile, or the 

presence or absence of TP53 mutations (which were 

strongly associated with an unfavorable cytoge-

netic risk) (Fig. 1A). We observed significant dif-

ferences in the numbers of recurrent tier 1 muta-

tions in some of these groups. Eleven samples 

had MLL fusions; this group had the fewest re-

current tier 1 mutations, with a mean of 2.09, as 

compared with a mean of 5.24 for all 200 sam-

ples (P = 0.002 after correction for multiple com-

parisons). This finding suggests that MLL fusions 

require fewer cooperating mutations than other 

AML-initiating events. Similarly, 20 samples con-

taining PML-RARA fusions had fewer recurrent 

tier 1 mutations (mean, 3.25; P = 0.001). We ob-

served a higher mean number of recurrent tier 1 

mutations in 7 samples containing either RUNX1-

RUNX1T1 fusions (mean value, 7.85; P = 0.04) and 

in 13 samples with a combination of a high-risk 

cytogenetic profile and a TP53 mutation (mean, 

7.00; P = 0.049). Larger sample sets will be re-

quired to confirm these observations.

A total of 260 genes had somatic mutations in 

at least 2 of the 200 samples; in 154 of these 

genes, more than one mutation was nonsynony-

Table 1. Characteristics of the 200 Patients.*

Characteristic Value

Age at study entry — yr 55.0±16.1

Race or ethnic group — no. (%)†

White 178 (89)

Black 15 (8)

Other 7 (4)

Male sex — no. (%) 108 (54)

Bone marrow blasts at diagnosis — % 69.3±19.1

Normal cytogenetic profile — no./total no. (%) 92/195 (47)

White-cell count at diagnosis — per mm3

Mean 36,300±48,500

Median 16,200

Cytogenetic risk group — no. (%)

Favorable 37 (18)

Intermediate 115 (58)

Unfavorable 43 (22)

Missing data 5 (2)

AML FAB subtype — no. (%)

AML with minimal maturation: M0 19 (10)

AML without maturation: M1 46 (23)

AML with maturation: M2 44 (22)

Acute promyelocytic leukemia: M3 20 (10)

Acute myelomonocytic leukemia: M4 41 (20)

Acute monoblastic or monocytic leukemia: M5 22 (11)

Acute erythroid leukemia: M6 3 (2)

Acute megakaryoblastic leukemia: M7 3 (2)

Other subtype 2 (1)

Immunophenotype — no./total no. (%)

CD13+ 140/185 (76)

CD33+ 160/198 (81)

CD34+ 123/199 (62)

CD117+ 174/185 (94)
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mous. An additional 1623 genes were found to 

have a validated tier 1 mutation in one sample. 

Using the significantly mutated gene (SMG) test 

in the Mutational Significance in Cancer (MuSiC) 

suite of tools,20 we identified 23 genes with a 

higher-than-expected mutation prevalence (false 

discovery rate, <0.05), including genes that are 

well established as being relevant to AML patho-

genesis (e.g., DNMT3A, FLT3, NPM1, IDH1, IDH2, 

and CEBPA), along with genes that have only re-

cently been implicated in AML pathogenesis, in-

cluding U2AF1, EZH2, SMC1A, and SMC3 (Fig. 1B, 

and Table S7 in the Supplementary Appendix).

We also identified and verified all variants in 

noncoding regions in the 50 sample pairs that we 

analyzed using whole-genome sequencing. After 

the exclusion of 1 tumor sample, from Patient 

817156, that had a high level of AML tumor cells 

(36%) in the skin sample (Table S1 in the Supple-

mentary Appendix), the median number of non-

coding mutations in tumor samples was 394, 

ranging from 68 to 1298. There was a strong 

correlation between the number of coding and 

noncoding mutations in each genome (Pearson’s 

correlation coefficient, 0.78), suggesting that most 

of the mutations were randomly distributed 

throughout each genome. Most mutations in AML 

genomes are probably background events that 

occurred in hematopoietic stem cells before the 

initiating event occurred; the clonal expansion 

of these cells captures their mutational history, 

as reportedly previously.17 This is also the reason 

why nearly all mutations in AML genomes are 

present in nearly all the cells in each sample.17 

The results of an analysis of recurrently mutated 

regions in tiers 2 and 3 (nongenic regions11) are 

presented in Table S8 in the Supplementary Ap-

pendix, as are data for mitochondrial variants 

(Table S9 in the Supplementary Appendix); the 

relevance of these events to pathogenesis is un-

clear.

Using deep digital sequencing, we verified all 

tier 2 and 3 variants that were discovered with the 

use of whole-genome sequencing. This provided a 

large number of sites for variant allele frequency 

(VAF)–based cluster analysis, which allowed us to 

Table 1. (Continued.)

Characteristic Value

Mutation — no./total no. (%)

NPM1 54/200 (27)

FLT3 56/200 (28)

DNMT3A 51/200 (26)

IDH1 or IDH2 39/200 (20)

NRAS or KRAS 23/200 (12)

RUNX1 19/200 (10)

TET2 17/200 (8)

TP53 16/200 (8)

CEBPA 13/200 (6)

WT1 12/200 (6)

PTPN11 9/200 (4)

KIT 8/200 (4)

Loss of 5 or del(5q) 16/195 (8)

Loss of 7 or del(7q) 20/195 (10)

11q23 7/195 (4)

t(15;17) 18/195 (9)

t(8;21) 7/195 (4)

inv(16) 12/195 (6)

* Plus–minus values are means ±SD. Percentages may not total 100 because of rounding. AML denotes acute myeloid 
leukemia, and FAB French–American–British classification.

† Race or ethnic group was self-reported.
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define the clonal composition of each tumor.17,18 

More than half the tumors contained both a 

founding clone (the clone with the highest VAF 

values) and at least one subclone; we were able to 

identify as many as three independent subclones 

in one tumor sample (Fig. 1C, and Table S1 in the 

Supplementary Appendix). The coverage provided 

by whole-genome sequencing in this study (mean, 

30.54×) limited the power to detect small sub-

clones with VAFs of less than 10% (Fig. S3A in 

the Supplementary Appendix). Exome sequencing 

produced a higher level of coverage for the tar-
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Figure 1. Characterization of Mutations.

Panel A shows the numbers of verified, recurrent tier 1 mutations in each of 200 samples obtained from patients with AML, organized 

according to important cytogenetic and mutational findings. For each set of data, the middle horizontal line indicates the mean, and the 

shaded area indicates ±1 SD. P values are shown for the groups that had significant differences from the mean number of recurrent tier 1 

mutations in all samples. NK denotes normal karyotype. Panel B shows significantly mutated genes, as identified by the MuSiC analysis 

suite,20 and the number of samples with each mutation. Panel C shows the number of discrete clusters of mutations with distinct variant 

allele frequencies (VAFs) for each of 50 samples that underwent whole-genome sequencing. Each discrete VAF cluster represents a found-

ing clone or a subclone derived from it.17,18 Samples with one clone have only a founding clone, those with two clones have a founding 

clone and one subclone, those with three clones have a founding clone and two subclones, and so forth. Exome sequencing defined too 

few mutations to accurately define subclones. Each sample contained evidence of a single founding clone, and most had one or more 

subclones derived from the founding clone. The French–American–British (FAB) subtypes of the samples are designated. (See Table 1 

for FAB subtypes of AML.)
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geted sequences (mean, 167.50×), slightly increas-

ing our ability to detect mutations with VAFs of 

less than 10%. However, the difference between 

the number of tier 1 mutations detected with 

whole-genome sequencing (14.5 per sample) and 

the number detected with exome sequencing 

(12.7 per sample) was not significant (P = 0.17) 

(Table S6 in the Supplementary Appendix). The 

mutational spectrum of all validated SNVs for all 

200 samples is shown in Figure S3B in the Supple-

mentary Appendix; transitions were the most com-

mon mutation type, as reported previously.17,18

Expression of Mutant Alleles

Analysis of RNA sequences revealed allelic bias for 

mutations in several genes. We observed increased 

or exclusive expression of the mutant DNMT3A, 

RUNX1, PHF6, and TP53 in several cases (Fig. S4A 

through S4F in the Supplementary Appendix). 

Loss of heterozygosity or partial uniparental di-

somy explained the enrichment of mutant allele 

expression in most samples; epigenetic modifi-

cations (e.g., altered patterns of DNA or histone 

meth yl a tion) may be responsible for the rest.

MiRNA Variants

We identified somatic SNVs in miRNA genes in 

7 of 200 samples (4%) (Table S10 in the Supple-

mentary Appendix). Of these 7 samples, 4 had 

mutations in miR-142 that were localized to the 

seed region of the mature strand (a sequence from 

the 3′ region called miR-142-3p) and were likely 

to affect messenger RNA (mRNA) target specific-

ity (Fig. S5A in the Supplementary Appendix). The 

expression of miR-142-3p and miR-142-5p (a se-

quence from the 5′ region) is thought to be re-

stricted primarily to the hematopoietic compart-

ment.21,22 Data from miRNA sequencing showed 

that miR-142 was highly expressed in AML sam-

ples (Fig. S5B in the Supplementary Appendix). 

The mutated miR-142 alleles were expressed at lev-

els similar to those of the nonmutated allele in 

all samples (Fig. S5C in the Supplementary Ap-

pendix). Although miR-142 mutations have not 

previously been identified, several reports have 

linked aberrant expression of miR-142-3p with 

hematologic cancers, including precursor B-cell23 

and T-cell24,25 acute lymphoblastic leukemia and 

AML.26 The remaining mutations in miRNA 

genes were localized to precursor miRNAs (in 

3 samples) or to a nonseed region of a mature 

miRNA (in 1 sample).

Germline Variants

We identified all the variants predicted to cause 

mRNA truncation that were found in both the 

skin and tumor samples (see the Results section, 

Table S11, and Fig. S6 in the Supplementary Ap-

pendix). However, very few of the genes with 

truncation variants were found to be expressed 

in most AML samples (including the samples car-

rying the variants themselves), suggesting that 

most of the inherited truncating variants were 

probably irrelevant for pathogenesis.

Functional Categorization of Mutated Genes

We used complementary approaches to identify 

combinations of mutations in the samples; for 

this analysis, we considered only nonsynony-

mous mutations (Fig. 2). Using the HotNet algo-

rithm,27 we identified six subnetworks of a ge-

nome-scale protein–protein interaction network 

that had significant mutations (P<0.001). These 

included portions of known pathways and pro-

tein complexes, including the cohesin complex17 

(Fig. S7 in the Supplementary Appendix).

We grouped mutations into larger sets or path-

ways and examined patterns of mutual exclusiv-

ity and co-occurrence between these groups. Of 

200 samples, 199 (>99%) contained at least one 

mutation in one of nine categories that were 

defined according to biologic function and that 

have a putative role in AML pathogenesis: tran-

scription-factor fusions (18% of cases), the gene 

encoding nucleophosmin (NPM1) (27%), tumor-

suppressor genes (16%), DNA-methylation–related 

genes (44%), activated signaling genes (59%), 

chromatin-modifying genes (30%), myeloid tran-

scription-factor genes (22%), cohesin-complex 

genes (13%), and spliceosome-complex genes (14%) 

(Fig. 2, and Fig. S8 in the Supplementary Appen-

dix). For all genes that had mutations in only a 

small number of samples, the pathophysiological 

relevance of the events will require further valida-

tion. FLT3 mutations were identified in 56 sam-

ples, and an additional 62 samples were found 

to have mutations in genes encoding other ki-

nases, phosphatases, or RAS family proteins 

(Fig. S9 in the Supplementary Appendix). How-

ever, most of these genes contained mutations 

in only 1 to 3 samples (with the exception of KIT, 

KRAS, NRAS, and PTPN11). In total, 59% of sam-

ples had a mutation in a gene encoding a signal-

ing protein.

To more fully assess patterns of mutual exclu-
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sivity and co-occurrence between sets of genes, 

we applied Dendrix++ (see the Materials section 

in the Supplementary Appendix) to the mutation 

matrix. Dendrix++ identified three sets of genes 

with the strongest patterns of mutual exclusivity 

(groups A, B, and C) (Fig. 2). The most statisti-

cally significant set included the transcription-

factor fusion genes, NPM1, RUNX1, TP53, and 

CEBPA (Fig. S10 in the Supplementary Appendix). 

The second most significant set showed exclusiv-

ity between mutations in FLT3 and in genes en-

coding other tyrosine kinases, serine–threonine 

kinases, protein tyrosine phosphatases, and RAS 

family proteins (Fig. S9 in the Supplementary 

Appendix). The third set included mutations in 

ASXL1 and in genes encoding components of the 

cohesin complex, other myeloid transcription fac-

tors, and other epigenetic modifiers (Fig. S10 in 

the Supplementary Appendix). Mutations within 

the spliceosome gene set, genes encoding other 

epigenetic modifiers, and genes encoding myeloid 

transcription factors also showed considerable 

mutual exclusivity within each set (Fig. S11 in the 

Supplementary Appendix).

Among the pairwise relationships between mu-

tations in the AML samples, the most prominent 

was the significant co-occurrence between muta-

tions in FLT3, DNMT3A, and NPM1 (Fig. S8 in the 

Supplementary Appendix). In particular, many 

samples had mutations both in NPM1 and 

 DNMT3A or in NPM1 and FLT3. The likelihood 

that these mutations occurred together by chance 

is extremely small (P<6.3×10−7 for NPM1 and 

 DNMT3A and P<1.9×10−6 for NPM1 and FLT3). 

This observation, combined with the strong as-

sociation between samples having concurrent 

mutations in NPM1, FLT3, and DNMT3A and dis-

tinct clusters in mRNA, miRNA, and DNA 

methylation, suggests that samples with muta-

tions in all three genes represent a novel subtype 

of AML. Furthermore, we observed relationships 

of strong mutual exclusivity. For example, PML-

RARA, MYH11-CBFB, and MLL-containing fusion 

genes were mutually exclusive of mutations in 

NPM1 and DNMT3A (P<0.007, P<0.04, and P<0.04, 

respectively), and RUNX1 and TP53 mutations were 

mutually exclusive of FLT3 and NPM1 mutations. 

Table S12 in the Supplementary Appendix contains 

a full list of genes or gene sets with significant 

co-occurrences or exclusivity among the samples.

Gene Fusions

De novo assembly of RNA-sequencing data28 for 

179 AML samples identified 118 gene fusions  

in 80 samples (mean, 1.5 per sample), of which 

71 were distinct events (Fig. 3A)29; 99 samples 

had no detected fusions (Table S13 in the Supple-

mentary Appendix). The range of fusions per sam-

ple was 0 to 8. The 74 in-frame fusions included 

many previously described, recurrent events, in-

cluding PML-RARA, MYH11-CBFB, RUNX1-RUNX1T1, 

BCR-ABL1, PICALM-MLLT10/AF10, NUP98-NSD1, and 

multiple fusions involving MLL (Fig. 3B). We iden-

tified 15 new fusion events that maintained an 

open reading frame. Although none of them were 

recurrent in this cohort, several of the genes in 

the fusions were mutated or translocated in other 

samples of AML that we analyzed (i.e., MLLT10/

AF10, NF1, GRID1, PPP2R1B, XIAP, ATP1B4, WSB1, 

KIAA0999, TBX15, and LRRC37B). An additional 

42 gene fusions were out-of-frame (Fig. 3C), cre-

ating a truncated upstream gene or potential 

haploinsufficiency for both partner genes, with 

many that were mutated or translocated in other 

AML samples (including RUNX1, DNMT3B, MLLT10/

AF10, NSD1, EDIL3, SCARB1, XIAP1, PPP2R1B, FOXP1, 

KSR2, MLL3, and CUL1). One out-of-frame fusion 

(GAS6-FAM70B) was detected in three AML sam-

ples, and one of its fusion partners (FAM70B 

P233L) was mutated in another sample. Most of 

the newly described fusion events in these sam-

ples were not detected by means of routine cyto-

genetic studies (Table S1 in the Supplementary 

Appendix).

Figure 2 (facing page). Organization of Mutations 

into Categories of Related Genes.

Shown are somatic, nonsynonymous mutations in in-

dividual genes and sets of genes, grouped into nine 

categories, including one single-gene category, as la-

beled on the left. Of the 200 samples evaluated, 199 

(>99%) had at least one mutation in one of the listed 

genes or sets. Blue boxes indicate mutations that are 

exclusive across all categories; green boxes, mutations 

that co-occur in the same sample across different cate-

gories; and orange boxes, mutations that co-occur in 

the same sample in the same category. Computational 

analysis with the use of the Dendrix++ algorithm iden-

tified three significant, mutually exclusive groups of 

genes, annotated on the right as groups A, B, and C. 

The cytogenetic risk for each patient is shown at the 

bottom of the chart. Additional information about data 

in this figure is provided in Tables S17 through S20 in 

the Supplementary Appendix. Ser–Thr denotes serine–

threonine, TF transcription factor, and Tyr tyrosine.
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Figure 3. AML Gene Fusions.

Panel A is a plot created with the use of Circos software29 showing in-frame (green) and out-of-frame (orange) gene fusions 

detected in the AML cohort in the Cancer Genome Atlas (TCGA) with the use of Trans-ABySS software.28 Ribbon widths 

are proportional to the frequency of a fusion event. Chromosomes are individually colored and are arranged clockwise 

from chromosome 1 to X, starting with chromosome 1 at 12 o’clock. No rearrangements involved the Y chromosome. The 

frequencies of in-frame and out-of-frame gene fusions are shown in Panels B and C, respectively. For gene names shown 

in red, one of the partner genes in that fusion was found to be mutated in at least one other AML sample from this data 

set. On the basis of chromosomal aberrations and genomic variants annotated in the Mitelman database from the Cancer 

Genome Anatomy Project (CGAP) (http://cgap.nci.nih.gov/Chromosomes/Mitelman), all previously identified gene fu-

sions are shown in blue, a single known polymorphic fusion is shown in green, and all novel events are shown in red.
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Gene-Expression Analysis

Unsupervised non-negative matrix factorization 

(NMF) consensus clustering (i.e., clustering data 

with inputs consisting only of gene or miRNA 

abundance information) suggested an optimum of 

seven RNA-sequencing groups and five miRNA-

sequencing groups (Fig. S12 in the Supplementary 

Appendix). Associations between these groups 
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Figure 4. Unsupervised RNA and miRNA Expression Patterns.

Shown are unsupervised consensus clusters for data obtained with the use of messenger RNA sequencing (Panel A) and microRNA 

(miRNA) sequencing (Panel B). Shown from top to bottom are RNA abundance heatmaps, with each messenger RNA or miRNA cen-

tered on its mean; atypical members of each group (shown in black), which have silhouette widths below 0.9 of the group’s maximum 

width; a silhouette-width profile (i.e., a dimensionless metric that reflects how well samples fit into compact and distinct clusters) that 

was calculated from the consensus membership matrix; and covariates (e.g., FAB subtypes), with P values for association corrected for 

multiple testing, at the far left and far right (see the Methods section in the Supplementary Appendix). B-H denotes Benjamini–Hochberg 

multiple-testing correction. The numbers refer to the silhouette-width profiles for which P values are provided. One asterisk denotes 

P<0.05, two asterisks P<0.01, and three asterisks P<0.001. The color scales for both heatmaps reflect mean-normalized log2 abundances, 

with RPKM (reads per kilobase of exon model per million mapped reads) for RNA-sequencing data and log
2
 RPM (reads per million) for 

miRNA-sequencing data. The scale-bar numbers (−2.5 for least abundant to 2.5 for most abundant) indicate the range of log2 mean-cen-

tered abundance values in the heatmaps. Cytogenetic-risk profiles are shown at the bottom of the chart.
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and overall survival are shown in Fig. S13 in the 

Supplementary Appendix; the groups enriched 

for samples containing PML-RARA had better 

outcomes than other groups, as expected. The 

RNA-sequencing groups were highly concordant 

with a microarray data set for the same 178 sam-

ples (Fig. S14 in the Supplementary Appendix).

We used one-sided Fisher’s exact tests (cor-

rected for multiple testing) to identify significant 

associations (P<0.05) between specific RNA- 

sequencing and miRNA-sequencing groups and 

covariates (Fig. 4). RNA-sequencing group 4 was 

associated with subtype M1 (AML with minimal 

maturation) in the French–American–British (FAB) 

classification of acute leukemias, group 3 with 

FAB subtype M3 (acute promyelocytic leukemia), 

group 5 with FAB subtype M4 (acute myelomono-

cytic leukemia), and group 7 with FAB subtype 

M5 (acute monoblastic or monocytic leukemia) 

(Fig. 4A). Concordance between gene-expression 

groups and FAB subtypes was similar to that 

previously reported for microarray data30,31 and 

showed that some expression signatures were 

strongly correlated with the stage of myeloid dif-

ferentiation of the AML sample.

For the miRNA-sequencing data, group 5 was 

associated with FAB subtype M3, and groups 2, 

3, and 5 were associated with unfavorable, inter-

mediate, and favorable cytogenetic risk categories, 

respectively. Group 3 was strongly associated with 

mutations in NPM1, DNMT3A, FLT3, and genes 

encoding the cohesin complex; miR-10a was ex-

pressed at high levels in this group, an observa-

tion that is consistent with reports correlating high 

miR-10a expression and NPM1 mutations32,33 

(Fig. 4B). Levels of miR-424 were relatively low 

in this group, making miR-424 the second-most 

discriminatory miRNA — an observation that is 

consistent with the findings in a previous study.34 

The data also confirmed that miR-196b, miR-130a, 

and let-7b were discriminatory in this group.35 

Additional comparisons with published sets of 

expression data are provided in the Materials 

section in the Supplementary Appendix.

DNA-Methylation Analysis

Unsupervised analysis of changes in DNA meth-

ylation revealed significant differences among sub-

sets of samples, particularly in CpG-sparse re-

gions of the genome (Fig. 5).36 Samples with 

IDH1 and IDH2 mutations showed extensive gains 

of methylation relative to CD34+CD38− cells ob-

tained from healthy donors (Table S14 in the 

Supplementary Appendix), whereas some samples 

with MLL fusions or co-occurring NPM1, DNMT3A, 

and FLT3 mutations were associated with exten-

sive loss of DNA methylation, as compared with 

normal CD34+CD38− cells. Specific patterns of 

methylation gain and loss distinguished samples 

with CEBPA mutations, as well as samples with 

PML-RARA, RUNX1-RUNX1T1, or MYH11-CBFB fu-

sions. Significant changes in DNA methylation 

were identified across AML samples at 160,519 

CpG loci (42% of sites tested), with 67% result-

ing in a gain of methylation and 33% resulting in 

a loss (see the Methods section and Table S15 in 

the Supplementary Appendix). Samples with 

triple mutations in NPM1, DNMT3A, and FLT3 

showed methylation losses at 328 of 382 differ-

entially methylated regions larger than 1 kb 

(86%), as compared with CD34+CD38− cells 

from healthy donors. Although both intergenic 

and genic regions were affected, approximately 

71% of these changes were in coding regions 

(Table S16 in the Supplementary Appendix).

We also assessed the relationships between 

gene expression and DNA methylation in pairs 

of data types by identifying groups in one data 

type that were enriched in samples from a group 

in the other data type (Fig. S15A through S15E in 

the Supplementary Appendix). Clusters contain-

ing samples of acute promyelocytic leukemia were 

strongly concordant for mRNA, miRNA, and 

CpG-sparse DNA methylation (Fig. 5, and Fig. 

Figure 5 (facing page). Unsupervised Analysis of DNA 

Methylation at Extremes of CpG Density.

DNA-methylation values for specific CpG residues are 

shown as a proportion, ranging from 0% (unmethylated, 

in blue) to 100% (fully methylated, in red), for unsuper-

vised clustering of CpG-dense regions of the genome 

(Panel A) and of CpG-sparse regions (Panel B). Covari-

ates are shown below the corresponding samples. Data 

for CD34+CD38− bone marrow cells, promyelocytes, 

neutrophils, and monocytes from three healthy volun-

teers are plotted to the left of the data for 192 AML 

samples in each panel. CpG islands and shores are an-

notated in dark green and light green, respectively, in 

the space between the normal and AML samples. CpG 

density was computed as the ratio of observed to expect-

ed CG dinucleotides in a 3-kb window, as described by 

Saxonov et al.36 The 1000 most variable loci among 

those falling into the top and bottom 5% according to 

CpG density are plotted in Panels A and B, respectively. 

Cytogenetic-risk profiles are shown at the bottom of 

the chart.
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S15 in the Supplementary Appendix). In mRNA 

groups 1, 2, 5, and 6, there was a preferential 

association with one miRNA-sequencing group 

each, suggesting that regulatory relationships must 

exist between these groups (Fig. S15A in the 

Supplementary Appendix). Associations in CpG-

sparse DNA methylation groups were more sig-

nificant for miRNA groups than for mRNA 

groups, suggesting the existence of previously 

unrecognized epigenetic regulatory pathways (Fig. 

S15B through S15E in the Supplementary Ap-

pendix). Genes defining the RNA- and miRNA-

sequencing groups are shown in Figure S16 in 

the Supplementary Appendix; a very striking set 

of small RNA genes within an imprinted locus on 

chromosome 14 were found to be consistently 

dysregulated in acute promyelocytic leukemia 

(Fig. S17 in the Supplementary Appendix).37

Discussion

Of the adult cancer types that have been exten-

sively sequenced to date, AML has had the fewest 

mutations discovered (Fig. S18 in the Supplemen-

tary Appendix). The average number of coding 

mutations (SNVs and indels) per patient in this 

study was 13, of which only 5 were recurrently 

mutated in each genome. There was little evi-

dence of genomic instability in most AML ge-

nomes. However, a small number of patients had 

an unfavorable-risk (complex) cytogenetic profile 

that was strongly associated with mutations in 

TP53, which confirmed a recently reported rela-

tionship.38 Adult AML genomes contain a medi-

an of only one somatic copy-number variant and an 

average of less than one gene-fusion event (gener-

ally caused by translocations).1,2

The organization of mutated genes into nine 

functionally related categories revealed many 

potentially important biologic relationships. The 

transcription-factor fusions were the first recog-

nized somatic mutations in AML genomes,1,2 and 

all such fusions have been shown to be relevant 

for disease initiation in mice.39-42 Our data show 

that some mutations that are common in AML 

(e.g., in DNMT3A, NPM1, CEPBA, IDH1/2, and RUNX1) 

are mutually exclusive of the transcription-factor 

fusions, suggesting that these mutations may have 

functions in the initiation of AML that are similar 

to the functions of fusion genes. We also identi-

fied a pattern of mutual exclusivity for mutations 

in genes within certain biologic classes, including 

those encoding the cohesins, proteins of the splice-

osome, signaling proteins, and histone-modifying 

proteins, suggesting that one mutation in these 

pathways is generally adequate for AML pathogen-

esis. Although a common model of AML patho-

genesis has suggested that an activating muta-

tion in a gene encoding a signaling protein might 

be a requirement for pathogenesis,43 only 59% of 

the patients in our study had a mutation in a 

gene annotated to suggest a role in signaling.

We integrated the expression data for both 

mRNA and miRNA with all the clinical and mu-

tational data for all genomes. That analysis re-

vealed that the differentiation state of the AML 

sample was highly correlated with the expres-

sion signature, as reported previously.44 Patients 

who had PML-RARA fusions had very distinct 

mRNA and miRNA signatures that were strongly 

correlated with each other and with a specific DNA 

methylation signature.45 All the transcription-

factor fusions were correlated with specific pat-

terns of mRNA expression, whereas PML-RARA 

and RUNX1-RUNX1T1 (and some MLL fusions) were 

also associated with miRNA expression signatures. 

In addition, occurrence of NPM1, DNMT3A, and 

FLT3 mutations together was strongly associated 

with specific expression signatures for both 

mRNA and miRNA. These data suggest that this 

combination of mutations in patients with inter-

mediate-risk AML may identify a subtype of AML 

with unique epigenetic features. Our analysis of 

methylation patterns corroborates previous re-

ports of methylation signatures in CpG islands for 

transcription-factor fusions and IDH1/2 muta-

tions46,47 but surprisingly revealed that the stron-

gest methylation signatures occur in CpG-sparse 

regions of the genome. Although the signifi-

cance of this finding is not yet clear, the wide-

spread and variable losses of methylation in 

these regions are consistent with observations 

from analyses of epithelial tumors48 and support 

the idea that methylation patterns in gene bod-

ies and intergenic regions are important for the 

regulation of gene expression.49

This data set will be available to provide a 

framework for future studies that pertain to the 

molecular classification of patients with AML. 

The identification of many potentially important 

relationships among recurrently mutated AML 

genes and pathways provides a comprehensive 

foundation for an understanding of the genetic 

rules of pathogenesis.

The New England Journal of Medicine 

Downloaded from nejm.org at WASHINGTON UNIV SCH MED MEDICAL LIB on March 24, 2014. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 



Genomic landscapes of Acute Myeloid Leukemia

n engl j med 368;22 nejm.org may 30, 2013 2073

The views expressed in this article are those of the authors and 

do not reflect the official policy of the National Institutes of Health.

Supported by grants from the National Institutes of Health 

(U24CA143845, U24CA143858, U24CA144025, U24CA143882, 

U24CA143866, U24CA143867, U24CA143848, U24CA143840, 

U24CA143835, U24CA143799, U24CA143883, U24CA143843, 

U54HG003067, U54HG003079, U54HG003273, and P01CA101937).

Disclosure forms provided by the authors are available with 

the full text of this article at NEJM.org.

We thank our patients for participating in this study; J. Peck, 

H. Black, G. Carnoske, and N. Reidelberger for providing ad-

ministrative support; and L. Lund for performing administrative 

coordination of TCGA activities.

Appendix

The authors (members of the Cancer Genome Atlas Research Network) and their affiliations are as follows: Timothy J. Ley, M.D., the 

Genome Institute at Washington University and Siteman Cancer Center, St. Louis; Christopher Miller, Ph.D., and Li Ding, Ph.D., the 

Genome Institute at Washington University, St. Louis; Benjamin J. Raphael, Ph.D., Brown University and Center for Computational 

Molecular Biology, Providence, RI; Andrew J. Mungall, Ph.D., and A. Gordon Robertson, Ph.D., British Columbia Cancer Agency’s 

Genome Sciences Centre, Vancouver, Canada; Katherine Hoadley, Ph.D., University of North Carolina, Lineberger Comprehensive 

Cancer Center, Chapel Hill; Timothy J. Triche, Jr., M.S., and Peter W. Laird, Ph.D., University of Southern California, Epigenome Cen-

ter, Los Angeles; Jack D. Baty, B.A., Washington University, St. Louis; Lucinda L. Fulton, M.S., and Robert Fulton, M.S., the Genome 

Institute at Washington University, St. Louis; Sharon E. Heath, Washington University, St. Louis; Joelle Kalicki-Veizer, B.S., and Cyriac 

Kandoth, Ph.D., the Genome Institute at Washington University, St. Louis; Jeffery M. Klco, M.D., Ph.D., Washington University, St. 

Louis; Daniel C. Koboldt, M.S., and Krishna-Latha Kanchi, M.S., the Genome Institute at Washington University, St. Louis; Shashikant 

Kulkarni, M.S., Ph.D., F.A.C.M.G., and Tamara L. Lamprecht, B.S., Washington University, St. Louis; David E. Larson, Ph.D., Ling Lin, 

M.S., Charles Lu, Ph.D., Michael D. McLellan, B.S., and Joshua F. McMichael, B.S., the Genome Institute at Washington University, St. 

Louis; Jacqueline Payton, M.D., Ph.D., Washington University, St. Louis; Heather Schmidt, B.S., the Genome Institute at Washington 

University, St. Louis; David H. Spencer, M.D., Ph.D., Washington University, St. Louis; Michael H. Tomasson, M.D., Washington Univer-

sity and Siteman Cancer Center, St. Louis; John W. Wallis, Ph.D., the Genome Institute at Washington University, St. Louis; Lukas D. 

Wartman, M.D., Mark A. Watson, M.D., Ph.D., and John Welch, M.D., Ph.D., Washington University, St. Louis; Michael C. Wendl, 

Ph.D., the Genome Institute at Washington University, St. Louis; Adrian Ally, B.Sc., Miruna Balasundaram, B.A.Sc., Inanc Birol, Ph.D., 

Yaron Butterfield, B.Sc., Readman Chiu, M.Sc., Andy Chu, B.Sc., Eric Chuah, B.Sc., Hye-Jung Chun, M.Sc., Richard Corbett, M.Sc., 

Noreen Dhalla, B.Sc., Ranabir Guin, B.A.Sc., An He, M.Sc., Carrie Hirst, B.Sc., Martin Hirst, Ph.D., Robert A. Holt, Ph.D., Steven Jones, 

Ph.D., Aly Karsan, M.D., Darlene Lee, Haiyan I. Li, M.Sc., Marco A. Marra, Ph.D., Michael Mayo, B.Sc., Richard A. Moore, Ph.D., 

Karen Mungall, B.Sc., Jeremy Parker, Ph.D., Erin Pleasance, Ph.D., Patrick Plettner, B.Sc., Jacquie Schein, M.Sc., Dominik Stoll, Ph.D., 

Lucas Swanson, M.Sc., Angela Tam, B.Sc., Nina Thiessen, M.S., Richard Varhol, M.Sc., Natasja Wye, B.Sc., and Yongjun Zhao, M.Sc., 

D.V.M., British Columbia Cancer Agency’s Genome Sciences Centre, Vancouver, Canada; Stacey Gabriel, Ph.D., Gad Getz, Ph.D., Car-

rie Sougnez, B.S., and Lihua Zou, Ph.D., Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA; Mark 

D.M. Leiserson, B.A., Fabio Vandin, Ph.D., and Hsin-Ta Wu, M.Sc., Brown University and Center for Computational Molecular Biology, 

Providence, RI; Frederick Applebaum, M.D., Fred Hutchinson Cancer Research Center, Division of Medical Oncology, Seattle Cancer 

Care Alliance, Seattle; Stephen B. Baylin, M.D., Johns Hopkins University, Baltimore; Rehan Akbani, Ph.D., Bradley M. Broom, Ph.D., 

Ken Chen, Ph.D., Thomas C. Motter, B.A., Khanh Nguyen, M.D., John N. Weinstein, M.D., Ph.D., and Nianziang Zhang, Ph.D., Uni-

versity of Texas M.D. Anderson Cancer Center, Houston; Martin L. Ferguson, Ph.D., MLF Consulting and Biotechnology Consultant, 

Boston; Christopher Adams, B.S., Aaron Black, B.A., Jay Bowen, M.S., Julie Gastier-Foster, Ph.D., Thomas Grossman, M.D., Ph.D., Tara 

Lichtenberg, B.A., and Lisa Wise, the Research Institute at Nationwide Children’s Hospital, Columbus, OH; Tanja Davidsen, Ph.D., John 

A. Demchok, M.S., Kenna R. Mills Shaw, Ph.D., and Margi Sheth, B.S., National Cancer Institute, Bethesda, MD; Heidi J. Sofia, Ph.D., 

M.P.H., National Human Genome Research Institute, Bethesda, MD; Liming Yang, Ph.D., National Cancer Institute, Bethesda, MD; 

James R. Downing, M.D., St. Jude Children’s Research Hospital, Memphis; Greg Eley, Ph.D., Sciementis LLC, Statham, GA; Shelley 

Alonso, Brenda Ayala, B.Sc., Julien Baboud, M.S., Mark Backus, Ph.D., Sean P. Barletta, B.S., Dominique L. Berton, M.S.C.S., Anna L. 

Chu, B.Sc., Stanley Girshik, M.S., Mark A. Jensen, Ph.D., Ari Kahn, Ph.D., Prachi Kothiyal, Ph.D., Matthew C. Nicholls, M.S., Todd D. 

Pihl, Ph.D., David A. Pot, Ph.D., Rohini Raman, B.E., Rashmi N. Sanbhadti, B.S., Eric E. Snyder, Ph.D., Deepak Srinivasan, M.S., Jes-

sica Walton, M.S., Yunhu Wan, Ph.D., and Zhining Wang, Ph.D., SRA International, Fairfax, VA; Jean-Pierre J. Issa, M.D., Temple 

University, Philadelphia; Michelle Le Beau, Ph.D., University of Chicago, Chicago; Martin Carroll, M.D., University of Pennsylvania, 

Philadelphia; Hagop Kantarjian, M.D., and Steven Kornblau, M.D., University of Texas M.D. Anderson Cancer Center, Houston; Moiz 

S. Bootwalla, B.Sc., M.S., M.Sc., Phillip H. Lai, B.Sc., Hui Shen, B.Sc., David J. Van Den Berg, Ph.D., and Daniel J. Weisenberger, Ph.D., 

University of Southern California, Epigenome Center, Los Angeles; Daniel C. Link, M.D., and Matthew J. Walter, M.D., Washington 

University and Siteman Cancer Center, St. Louis; Bradley A. Ozenberger, Ph.D., National Human Genome Research Institute, Bethesda, 

MD; Elaine R. Mardis, Ph.D., the Genome Institute at Washington University, St. Louis; Peter Westervelt, M.D., Ph.D., Timothy A. 

Graubert, M.D., and John F. DiPersio, M.D., Ph.D., Washington University and Siteman Cancer Center, St. Louis; and Richard K. Wilson, 

Ph.D., the Genome Institute at Washington University, St. Louis.

References

1. Rowley JD. Chromosomal transloca-

tions: revisited yet again. Blood 2008;112: 

2183-9.

2. Mrózek K, Heerema NA, Bloomfield 

CD. Cytogenetics in acute leukemia. 

Blood Rev 2004;18:115-36.

3. Walter MJ, Payton JE, Ries RE, et al. 

Acquired copy number alterations in adult 

acute myeloid leukemia genomes. Proc 

Natl Acad Sci U S A 2009;106:12950-5.

4. Bullinger L, Krönke J, Schön C, et al. 

Identification of acquired copy number 

alterations and uniparental disomies in 

cytogenetically normal acute myeloid leu-

kemia using high-resolution single-nucle-

otide polymorphism analysis. Leukemia 

2010;24:438-49.

5. Suela J, Alvarez S, Cigudosa JC. DNA 

profiling by arrayCGH in acute myeloid 

leukemia and myelodysplastic syndromes. 

Cytogenet Genome Res 2007;118:304- 

9.

6. Stirewalt DL, Radich JP. The role of 

FLT3 in haematopoietic malignancies. Nat 

Rev Cancer 2003;3:650-65.

7. Bacher U, Schnittger S, Haferlach T. 

Molecular genetics in acute myeloid leu-

kemia. Curr Opin Oncol 2010;22:646-55.

8. Patel JP, Gönen M, Figueroa ME, et al. 

Prognostic relevance of integrated genetic 

The New England Journal of Medicine 

Downloaded from nejm.org at WASHINGTON UNIV SCH MED MEDICAL LIB on March 24, 2014. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 



n engl j med 368;22 nejm.org may 30, 20132074

Genomic landscapes of Acute Myeloid Leukemia

profiling in acute myeloid leukemia.  

N Engl J Med 2012;366:1079-89.

9. Yamashita Y, Yuan J, Suetake I, et al. 

Array-based genomic resequencing of hu-

man leukemia. Oncogene 2010;29:3723-31.

10. Ley TJ, Ding L, Walter MJ, et al.  

DNMT3A mutations in acute myeloid leu-

kemia. N Engl J Med 2010;363:2424-33.

11. Mardis ER, Ding L, Dooling DJ, et al. 

Recurring mutations found by sequencing 

an acute myeloid leukemia genome. N Engl 

J Med 2009;361:1058-66.

12. Shen Y, Zhu YM, Fan X, et al. Gene 

mutation patterns and their prognostic 

impact in a cohort of 1185 patients with 

acute myeloid leukemia. Blood 2011;118: 

5593-603.

13. Breems DA, Van Putten WL, De Greef 

GE, et al. Monosomal karyotype in acute 

myeloid leukemia: a better indicator of 

poor prognosis than a complex karyo-

type. J Clin Oncol 2008;26:4791-7.

14. Byrd JC, Mrózek K, Dodge RK, et al. 

Pretreatment cytogenetic abnormalities 

are predictive of induction success, cumu-

lative incidence of relapse, and overall 

survival in adult patients with de novo 

acute myeloid leukemia: results from 

Cancer and Leukemia Group B (CALGB 

8461). Blood 2002;100:4325-36.

15. Dohner H, Estey EH, Amadori S, et al. 

Diagnosis and management of acute my-

eloid leukemia in adults: recommenda-

tions from an international expert panel, 

on behalf of the European LeukemiaNet. 

Blood 2010;115:453-74.

16. Mrózek K, Marcucci G, Nicolet D, et 

al. Prognostic significance of the Euro-

pean LeukemiaNet standardized system 

for reporting cytogenetic and molecular 

alterations in adults with acute myeloid 

leukemia. J Clin Oncol 2012;30:4515-23.

17. Welch JS, Ley TJ, Link DC, et al. The 

origin and evolution of mutations in acute 

myeloid leukemia. Cell 2012;150:264-78.

18. Ding L, Ley TJ, Larson DE, et al. Clon-

al evolution in relapsed acute myeloid leu-

kaemia revealed by whole-genome se-

quencing. Nature 2012;481:506-10.

19. Stephens PJ, Greenman CD, Fu B, et al. 

Massive genomic rearrangement acquired 

in a single catastrophic event during can-

cer development. Cell 2011;144:27-40.

20. Dees ND, Zhang Q, Kandoth C, et al. 

MuSiC: identifying mutational signifi-

cance in cancer genomes. Genome Res 

2012;22:1589-98.

21. Chen CZ, Li L, Lodish HF, Bartel DP. 

MicroRNAs modulate hematopoietic lin-

eage differentiation. Science 2004;303: 

83-6.

22. Ramkissoon SH, Mainwaring LA, 

Ogasawara Y, et al. Hematopoietic-specific 

microRNA expression in human cells. 

Leuk Res 2006;30:643-7.

23. Ju X, Li D, Shi Q, Hou H, Sun N, Shen 

B. Differential microRNA expression in 

childhood B-cell precursor acute lympho-

blastic leukemia. Pediatr Hematol Oncol 

2009;26:1-10.

24. Bellon M, Lepelletier Y, Hermine O, 

Nicot C. Deregulation of microRNA in-

volved in hematopoiesis and the immune 

response in HTLV-I adult T-cell leukemia. 

Blood 2009;113:4914-7.

25. Lv M, Zhang X, Jia H, et al. An onco-

genic role of miR-142-3p in human T-cell 

acute lymphoblastic leukemia (T-ALL) by 

targeting glucocorticoid receptor-α and 

cAMP/PKA pathways. Leukemia 2012;26: 

769-77.

26. Wang XS, Gong JN, Yu J, et al. Mi-

croRNA-29a and microRNA-142-3p are 

regulators of myeloid differentiation and 

acute myeloid leukemia. Blood 2012;119: 

4992-5004.

27. Vandin F, Upfal E, Raphael BJ. Algo-

rithms for detecting significantly mutat-

ed pathways in cancer. J Comput Biol 

2011;18:507-22.

28. Robertson G, Schein J, Chiu R, et al. 

De novo assembly and analysis of RNA-

seq data. Nat Methods 2010;7:909-12.

29. Krzywinski M, Schein J, Birol I, et al. 

Circos: an information aesthetic for com-

parative genomics. Genome Res 2009;19: 

1639-45.

30. Verhaak RG, Wouters BJ, Erpelinck 

CA, et al. Prediction of molecular sub-

types in acute myeloid leukemia based on 

gene expression profiling. Haematologica 

2009;94:131-4.

31. Valk PJM, Verhaak RGW, Beijen MA, 

et al. Prognostically useful gene-expres-

sion profiles in acute myeloid leukemia.  

N Engl J Med 2004;350:1617-28.

32. Bryant A, Palma CA, Jayaswal V, Yang 

YW, Lutherborrow M, Ma DD. miR-10a is 

aberrantly overexpressed in nucleophos-

min1 mutated acute myeloid leukaemia 

and its suppression induces cell death. 

Mol Cancer 2012;11:8.

33. Ovcharenko D, Stölzel F, Poitz D, et 

al. miR-10a overexpression is associated 

with NPM1 mutations and MDM4 down-

regulation in intermediate-risk acute my-

eloid leukemia. Exp Hematol 2011;39(10): 

1030.e7-1042.e7.

34. Faraoni I, Laterza S, Ardiri D, Ciardi 

C, Fazi F, Lo-Coco F. MiR-424 and miR-

155 deregulated expression in cytogeneti-

cally normal acute myeloid leukaemia: 

correlation with NPM1 and FLT3 muta-

tion status. J Hematol Oncol 2012;5:26.

35. Marcucci G, Mrózek K, Radmacher 

MD, Garzon R, Bloomfield CD. The prog-

nostic and functional role of microRNAs 

in acute myeloid leukemia. Blood 2011; 

117:1121-9.

36. Saxonov S, Berg P, Brutlag DL. A ge-

nome-wide analysis of CpG dinucleotides 

in the human genome distinguishes two 

distinct classes of promoters. Proc Natl 

Acad Sci U S A 2006;103:1412-7.

37. Valleron W, Laprevotte E, Gautier EF, 

et al. Specific small nucleolar RNA ex-

pression profiles in acute leukemia. Leu-

kemia 2012;26:2052-60.

38. Rucker FG, Schlenk RF, Bullinger L, 

et al. TP53 alterations in acute myeloid 

leukemia with complex karyotype corre-

late with specific copy number altera-

tions, monosomal karyotype, and dismal 

outcome. Blood 2012;119:2114-21.

39. Higuchi M, O’Brien D, Kumaravelu P, 

Lenny N, Yeoh EJ, Downing JR. Expres-

sion of a conditional AML1-ETO onco-

gene bypasses embryonic lethality and 

establishes a murine model of human 

t(8;21) acute myeloid leukemia. Cancer 

Cell 2002;1:63-74.

40. Kuo YH, Landrette SF, Heilman SA, et 

al. Cbf beta-SMMHC induces distinct ab-

normal myeloid progenitors able to de-

velop acute myeloid leukemia. Cancer Cell 

2006;9:57-68.

41. Westervelt P, Lane AA, Pollock JL, et 

al. High-penetrance mouse model of 

acute promyelocytic leukemia with very 

low levels of PML-RARalpha expression. 

Blood 2003;102:1857-65.

42. Corral J, Lavenir I, Impey H, et al. An 

Mll-AF9 fusion gene made by homolo-

gous recombination causes acute leuke-

mia in chimeric mice: a method to create 

fusion oncogenes. Cell 1996;85:853-61.

43. Kelly LM, Gilliland DG. Genetics of 

myeloid leukemias. Annu Rev Genomics 

Hum Genet 2002;3:179-98.

44. Payton JE, Grieselhuber NR, Chang 

LW, et al. High throughput digital quanti-

fication of mRNA abundance in primary 

human acute myeloid leukemia samples.  

J Clin Invest 2009;119:1714-26.

45. Di Croce L, Raker VA, Corsaro M, et 

al. Methyltransferase recruitment and 

DNA hypermethylation of target promot-

ers by an oncogenic transcription factor. 

Science 2002;295:1079-82.

46. Figueroa ME, Abdel-Wahab O, Lu C, et 

al. Leukemic IDH1 and IDH2 mutations 

result in a hypermethylation phenotype, 

disrupt TET2 function, and impair hema-

topoietic differentiation. Cancer Cell 2010; 

18:553-67.

47. Figueroa ME, Skrabanek L, Li Y, et al. 

MDS and secondary AML display unique 

patterns and abundance of aberrant DNA 

methylation. Blood 2009;114:3448-58.

48. Hansen KD, Timp W, Bravo HC, et al. 

Increased methylation variation in epi-

genetic domains across cancer types. Nat 

Genet 2011;43:768-75.

49. Wu H, Coskun V, Tao J, et al. Dnmt3a-

dependent nonpromoter DNA methylation 

facilitates transcription of neurogenic 

genes. Science 2010;329:444-8.

Copyright © 2013 Massachusetts Medical Society.

The New England Journal of Medicine 

Downloaded from nejm.org at WASHINGTON UNIV SCH MED MEDICAL LIB on March 24, 2014. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 


	Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
	Recommended Citation
	Authors

	Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia

