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Genomic and functional adaptation in
surface ocean planktonic prokaryotes
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Andrew E. Allen1, Lisa A. Zeigler1, Granger Sutton1, Eric Eisenstadt1, Yu-Hui Rogers1, Robert Friedman1, Marvin Frazier1

& J. Craig Venter1

The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced
reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the
world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of
marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1–3.0 mm
size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few
taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa
that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow
growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the
abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller
genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to
energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by
viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.

Molecular taxonomy and phylogeny1 revitalized the field of marine
microbiology, allowing for the first time the realization that the
‘unseen’ and ‘unknown’ majority of uncultivatedmicrobial taxa could
be identified by their 16S ribosomal RNA genes, and identifying
widespread clades of marine bacteria and archaea that had no culti-
vated representatives2. More recently, metagenomics has revealed the
extent of diversity not fully explained using the available genomes of
cultivated marine microbes. When the Sorcerer II Global Ocean
Sampling (GOS) expedition metagenomic data were published3,4, it
was remarkable in its duality of diversity. On the one hand, there
seemed to be only a few taxonomic groups that appeared routinely
in marine surface water samples. Of these groups, only three
(Pelagibacter, Prochlorococcus and Synechococcus) were represented
by cultivated marine microbes. On the other hand, despite their
apparent ubiquity and abundance in the surface ocean, there was
virtually no complete or near-complete genomic assembly of any of
the cosmopolitan taxa, implying that these groups, as judged by 16S
rRNA sequence, are internally extremely diverse. The GOS data set
was also remarkable because of its apparent lack of relatedness to the
entire collection of sequenced genomes: using a process called frag-
ment recruitment, which is akin to in silicoDNAhybridization, only a
few genomes from the entire repertoire of sequenced genomes were
found to have a significant number of GOS reads assigned to them.
Here we use a large collection of sequenced marine genomes and

metagenomic data to show the presence of two major groups in the
marine surface picoplankton with striking differences in their meta-
bolic and physiological capabilities. One group, representing the
abundant and cosmopolitan prokaryotic picoplankton, is characterized
by small genome sizes and a gene content which suggests that these
microbes are capable of only slow growth with little metabolic plas-
ticity. The other group contains a variety of microbial taxa that are

found in the surface ocean in low abundance, waiting for nutritionally
improved conditions. This group has a gene content that allows for the
microbes to adapt to a feast-or-famine lifestyle, and thus occasionally
reach high numbers and become a dominant biomass (that is, bloom).
We posit that microbes in this group, when considered in an ecological
context, are strongly influenced by the presence and/or activities of
marine eukaryotes.Our findings also led to a testable hypothesis, which
we call ‘cryptic escape’: a major strategy in the true marine picoplank-
ton involves the maintenance of abundant (,105 cellsml21) popula-
tions of very small cells (small genomes and low biomass), thus
decreasing predation due to bacterivores (ciliates and flagellates) and
perhaps bacteriophages.

Results
Overview of the data set and bioinformatics analyses
Ourdata set (SupplementaryMaterial 1) consists of 197marine genomes,
10.97 million GOS metagenomic reads and more than 45,000 16S
rRNA sequences from GOS 16S PCR libraries and the Ribosomal
Database Project5 (RDP). Of the marine genomes used in this study,
137 were sequenced, assembled and annotated by the J. Craig Venter
Institute (JCVI) as part of the Marine Microbial Genome Sequencing
Project (MMGSP; http://www.moore.org/microgenome/), which is
funded by the Gordon and Betty Moore Foundation. The MMGSP is
an international collaborative project that has a primary goal of obtain-
ing genome sequences of ecologically relevant microbes from a variety
of diverse marine environments around the world. The MMGSP gen-
omes are a resource for metagenome interpretation and provide
insights into the metabolic repertoire and diversity of the marine
microbial ecosystem. Many of these microbes were isolated from sur-
face or near-surface waters. The MMGSP genomes thus theoretically
complement the metagenomic data gathered by the GOS expedition.
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In the GOS data collection, aquatic microbes were size-fractionated by
serial filtration through 20.0-mm, 3.0-mm, 0.8-mm and 0.1-mm filters.
The microbes in the 0.1–3.0-mm size range are collectively referred to
here as the marine surface picoplankton. The GOS data used in the
present analysis are primarily from the 0.1-mm group (92% of the
reads); the remainder consists of representation from the 0.8-mm
(5% of the reads) and 3.0-mm (3% of the reads) groups. These were
collected from the northwest Atlantic/tropical Pacific transect3 and the
later Indian Ocean transect of the Sorcerer II GOS expedition.
We assessed the abundance of the sequenced genomes in the pico-

plankton from their representation in both metagenomic and 16S
rRNA PCR libraries that are part of the GOS data set. We used
GOS 16S rRNA sequences to assess the relative abundance and geo-
graphical distribution of marine taxa that are as yet uncultivated but
whose sequencing could explain a larger portion of the GOS data. The
197 sequenced marine genomes were grouped into high- and low-
abundance classes on the basis of their occurrence in the GOS meta-
genomic data. We identified differences in gene content and protein
functional groups (pathways andmodules) between these classes, and
used this to characterize properties associated with the abundant and
widespread marine surface picoplankton.

Overlap with GOS data at protein family level
The 137MMGSP genomes together constitute 552megabases of DNA
sequence and 526,366 proteins (Supplementary Table 1). Various
phyla are represented by these genomes, with the most highly repre-
sented being Proteobacteria (63.5%), Cyanobacteria (12.4%) and
Bacteroidetes (11.6%). These microbes embody a range of physio-
logical diversity and include carbon fixers, photoautotrophs, photohe-
terotrophs, nitrifiers and methanotrophs. To assess the diversity and
representation of proteins in the GOS data, we clustered the 526,366
proteins together with a comprehensive set of proteins from publicly
available genomic and metagenomic data sets6,7. We found that the
MMGSP genomes have high overlap with the GOS data at the protein
family level: 78% of theMMGSP proteins fall into clusters that contain
GOS sequences and these clusters account for 82.3% of the protein
predictions based on GOS reads. On the basis of the clustering, on
average 15.4% of the proteins in an MMGSP genome are orfans8, that
is, they do not show sequence similarity to any known proteins. These
genomes provide valuable context to inferences made using metage-
nomic data: 12.4% of previously GOS-only protein families7 contain
MMGSP proteins. We had previously predicted7 that certain protein
domains that were thought to be kingdom specific had examples in
other kingdoms; these predictions were verified using the MMGSP
genomes. The domains include some previously thought to be specific
to eukaryotes (for example the indoleamine 2,3-dioxygenase domain
(Pfam ID, PF01231) and the MAM domain (Pfam ID, PF00629)), and
a domain previously thought to be specific to archaea (an HTHDNA-
binding domain (Pfam ID, PF04967)).

Recruitment of metagenomic reads to sequenced genomes
We used a fragment recruitment tool3 to assign GOS reads to
sequenced genomes, where a recruited read was assigned to a single
best-matching genome. Although it is not a phylogeny-basedmethod,
fragment recruitment nevertheless helps to assess the representation
of a given reference genome or its taxonomic neighbours in a given
sample of reads. Of the 10.97 million GOS reads used in this study,
24.5% recruited to the 197 sequenced marine genomes with nucleo-
tide identity matches of$50%. The distribution of the recruitment of
reads to the genomes is skewed: although the ten most highly recruit-
ing genomes account for 84% of the recruited reads, most of the
genomes account for only very small proportions of the recruited
reads (Fig. 1). A separate collection of 740 non-marine genomes
recruited only 1.5% of the GOS reads.
Recruitment quality was assessed using two measures: depth of

coverage, which is defined as the average number of reads covering

a base pair in the reference genome, and fraction of the genome
covered by the reads.At the 50% identity threshold, 17%of the genomes
have a depth of coverage of$1 and in 46% of the genomes at least 10%
of the genome is covered by the GOS reads (Supplementary Table 2).
Only a feworganisms in the cultivated set qualify asmajor constituents
in the surface ocean picoplanktonic communities (Supplementary
Fig. 1). Most of these are, not surprisingly, in the groups Pelagibacter,
Prochlorococcus and Synechococcus, and of these some have very high
depths of coverage. A few others are alpha-, beta- or gammaproteo-
bacteria or flavobacteria. A crenarchaeota genome (Nitrosopumilus
maritimus SCM1) also has a high depth of genome coverage.
Overall, however, most cultivated microbes, including those from
groups such as Shewanella and Vibrio, for which there are several
sequenced members, are rarely abundant in the surface ocean (Sup-
plementary Material 2).
Genomes from isolates within the same taxonomic clade recruit

metagenomic reads in a pattern consistent with the geography of the
sampling locations. The ‘Candidatus Pelagibacter’ sp. HTCC7211
strain, which was isolated from the Sargasso Sea, recruits the largest
number of GOS reads, in comparison with the cold-water strains
HTCC1062 and HTCC1002, which were isolated from the Oregon
coast of the Pacific Ocean. The relative recruitment-based ranking of
the sequenced isolates changes as we go from the 0.1-mm-filter data to
the 3.0-mm-filter data.Whereas the Pelagibacter group is dominant in
the 0.1-mm-filter data, the Prochlorococcus and Synechococcus groups
become the dominant recruiting groups in the data from the larger
filters (Supplementary Material 2). The recruitment patterns for the
sequenced isolates across the different GOS sampling sites (Fig. 2) are
in agreement with recruitment data3 from when only a few genomes
of each group were available. Of the taxonomic groups that recruit the
most, the Pelagibacter group is generally present in all GOS samples
whereas the Prochlorococcus group is notably absent9 in cold-water
GOS samples.

16S rRNA analysis reveals the remaining uncultured majority
Fewer than 25% of the GOS metagenomic reads were recruited to the
197 marine genomes, posing the question of how well the sequenced
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Figure 1 | Fragment recruitment of GOS reads to the 197 sequenced
genomes at different nucleotide identity match thresholds. The x axis shows
genome rank (from highest to lowest) based on the number of GOS reads
recruited. The y axis shows the cumulative percentage (relative to the total
number of GOS reads) of those reads that are recruited. Most of the sequenced
genomes are part of the long tail of the distribution. Of the recruited reads, the
majority are recruited to a few genomes, with the ten most highly recruiting
genomes accounting for 84%, 85%, 91%, 95% and 96% of recruited reads for
identitymatch thresholds of 50%, 60%, 70%, 80% and 90%, respectively. The ten
most highly recruiting genomes at the 50% identity match threshold are listed.
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marine genomes represent the 16S-rRNA-based taxonomic space of
surface marine bacterioplankton. To determine this, we compared
their 16S rRNA genes with 37,860 GOS 16S PCR library sequences
plus 8,471 marine bacterial 16S sequences obtained from the RDP5.
We used a 97% identity match as the cut-off for identification of a
bacterial species or operational taxonomic unit (OTU)10,11. By this
criterion, 15,642 sequences (33.7%) are recruited to 16S sequences
of sequencedmarine genomes; 16S rRNA genes from 740 non-marine
genomes recruit an additional 709 sequences (1.5%). As was observed
with fragment recruitment, the recruitment of 16S rRNA sequences
from surface marine samples is highly skewed, with most of the 16S
sequences recruiting to only a few genomes (Fig. 3).
We determined the phylogenetic distribution of the uncultured

OTUs in 16S PCR samples (Methods and Supplementary Material 3).
The abundantOTUsbelong tobacterial classes that include alpha-, beta-,
gamma- anddeltaproteobacteria, actinobacteria, flavobacteria, sphingo-
bacteria and cyanobacteria (Supplementary Fig. 2). There are many

abundant, but as yet unsequenced, OTUs that are phylogenetically
proximal to their sequenced counterparts in the groups Pelagibacter,
ProchlorococcusandSynechococcus. Thephylogeny also reveals thepres-
ence of abundant gammaproteobacteria SAR8612 (and SAR86-related)
and actinobacteriaOTUs forwhich there are no cultured and sequenced
representatives as yet. To determine the geographic distribution of the
abundant OTUs, we scored the presence or absence of their constituent
sequences across 35 GOS sampling sites. Althoughmany of the abund-
ant OTUs are geographically widely distributed in the oceans, several
OTUs are cold- or warm-water specific (Fig. 4). The abundant OTUs
from this analysis are candidates for isolation and/or sequencing (for
instance by single-cell genomics techniques), the better to understand
themarine picoplankton andprovidemore recruitment to theGOSdata
than we have seen so far. An analysis of 16S sequences from the GOS
metagenomic data supports the findings, based on 16S PCR data, on the
representation of the sequenced genomes and the abundant uncultured
OTUs (Supplementary Material 1 and Supplementary Material 3).
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Figure 2 | Abundance and distribution of sequenced marine genomes in
different GOS samples, based on fragment recruitment. The raw number of
reads fromaGOS site recruiting to a genomewasnormalized assuming 100,000
total reads for each GOS site. Logarithms of these numbers were subsequently
taken and each value was assigned a colour relative to themaximum value seen

(MAX5 17,623 reads): from light to dark, the colours represent 0 (MIN) to
MAX in increments of MAX/10. Normalized values of,100 reads (or 0.01%)
are set to 0. The depth of coverage of each genome is shown at the end of its
corresponding row. Cold-water GOS samples are highlighted using blue text.
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Genomic and functional characterization
To characterize the metabolic and physiological capabilities of the sur-
face picoplankton, we examined the distribution of various genomic
features (guanine–cytosine content (%GC) and genome size) and
protein families/pathways in the sequencedmarine genomes in relation
to the depth of coverage of these genomes (Methods, Supplementary
Material 4 and Supplementary Fig. 3). We grouped the 197 marine
genomes into two sets: the high-recruiting genomes (HRGs), consisting
of 34 genomes with coverage $1, and the low-recruiting genomes
(LRGs), consisting of 163 genomes with coverage ,1. The genomes
in the HRG set tend to have smaller size and lower %GC.
We identified protein groups that are differentially distributed

between the HRG and LRG sets, even when genome size is taken into
account. The slope of the trend line in each category was noted, with a
positive slope indicating an overabundance in HRGs for that category
and anegative slope indicating an underabundance.All thedifferentially
distributed protein categories (Supplementary Table 3) were organized
into higher-order functional groups, which included transcriptional
regulation, transport, metabolism, biosynthesis, motility, chemotaxis,
secretion, degradation, photosynthesis, and repair and replication.
Our analysis reveals distinct physiological differentiation and offers

insights into the functional capabilities of the HRG and LRG sets. One
of themost noticeable differences between the two sets is that genomes
in the HRG set are characterized by the lack of many functional and
regulatory genes. Transcriptional regulation is under-represented, and
genes for energy-linked uptake (sugars and amino acids) and efflux
(cations, drugs and so on) are nearly absent. Protein secretion to the
exterior (for example extracellular proteases, DNases and chitinases) is
curtailed, although transport across the cellular membrane to the peri-
plasm seems to be an abundant character. In addition, motility and
chemotaxis are absent, and genes known to be involved in quorum
sensing (luxI, luxR and luxS), which usually dealwith large populations
of microbes and/or biofilm populations, are notably absent from the
HRG set. Genes coding for functions involved in anaerobic metabol-
ism are greatly decreased in number, whereas genes for aerobic meta-
bolism, intermediary metabolism (glycolysis and gluconeogenesis, the
tricarboxylic acid cycle and the pentose phosphate pathway), biosyn-
thesis (amino acids, fatty acids, haem and vitamins), RNA synthesis,
and repair and replication seem to be intact.
Transcriptional regulation of nearly every type is greatly decreased in

theHRGset, and sensory domains ofmany types (for example histidine

kinases, the GGDEF domain and the methyl-accepting chemotaxis
protein domain) are absent or greatly diminished. Also, energy-linked
transport systems (for example proton-linked antiporters, PTS-sugar
uptake and ATPase-linked efflux systems) are nearly absent from the
HRG set, as is transport of amino acids and inorganic ions using
ATPase-linked transporters. Similarly, efflux systems for toxic metals
and drugs are notably absent.
Another curiosity with regard to transport is the apparent absence

from the HRG set of systems for the uptake or synthesis of sidero-
phore-like iron chelates. Because of the small genome size, the gen-
omes in the HRG set have very few iron-requiring proteins and
minimal iron requirements13. Despite this, iron will still be required
for a few fundamental pathways, such as respiration in the hetero-
trophs, photosynthesis in the autotrophs and the GS–GOGAT cycle
in both. On the basis of the genomic characteristics of the HRG set, it
seems likely that they take up unchelated Fe(III) or Fe(II). Calculations
suggest that this pool should support partial growth of cyanobacteria in
even themost iron-depleted oceanic regions14. Furthermore, one of the
organisms in the HRG set, Synechococcus WH8102, may be able to
reduce Fe(III)-siderophore complexes, thereby increasing the pool of
unchelated iron for uptake15, although the molecular identity of the
reductase is unknown.
The secretion of proteins to the cell exterior is another function that

is not well represented in the HRG set. This includes proteins such as
serine proteases, metalloproteases, chitinases and DNases (involved in
the metabolism of insoluble substrates), as well as pilin and flagellin
(self-assembling proteins involved in cell attachment and/or motility).
Secretion of proteins to the exterior through the general secretory
pathways is virtually absent, suggesting that these microbes are not
readily adaptable to the use of insoluble substrates or to a surface-
associated lifestyle. However, protein excretion to the periplasm has
beennot only preserved in theHRGset, but is enriched, suggesting that
periplasmic proteins may have an important role in the lives of the
marine picoplankters. For example, the twin arginine transport genes
(tat) and the secretion genes secA, secB and secC, all of which are
involved in movement of proteins from the cytoplasm to the peri-
plasm, are well represented in the HRG set.
Perhaps not surprisingly, the genes involved in motility and chemo-

taxis are strongly under-represented in the HRG set. This includes the
structural genes mentioned above (pilin and flagellin synthesis), as well
as a large array of sensory genes involved in sensing specific compounds
and responding to these compounds through motility and chemotaxis.
A number of genes involved in anaerobic metabolism are also notably
under-represented in the HRG set. These include genes for low-level
oxygen respiration (cytochrome-bd complex), genes for nitrate reduc-
tion, the anaerobic sigma factor (54s), regulatory genes involved in
aerobic/anaerobic adaptation (such as arcBA) and genes for molybdate
uptake and processing.
Clustered regularly interspaced short palindromic repeat (CRISPR)

arrays and Cas genes, which form a system involved in bacterial
defence against phages, are under-represented in the HRG set, as
demonstrated by the counts of CRISPR arrays and genes plotted versus
depth of coverage (Supplementary Fig. 3).
Most of the differentially distributed protein categories can be

labelled as (2/2), that is, they shownegative trends inboth the original
and the genome-size-normalized data (Supplementary Table 3).
Essentially, many protein functions have been lost from the HRG
set. However, some protein categories are preferentially retained, as
shown by the trends of (2/1) or (1/1); none were (1/2). The
positive trends in the normalized data for some categories were the
result of a process that is seen in a subset of the genomes in theHRG set
(and that is absent from the rest). Examples include protein categories
such as carboxysomes and photosystems, which are part of the pho-
tosynthesis machinery present in the photoautotrophs in the HRG set.
The positive trends seen in other categories, such as the various bio-
synthesis pathways, reflect core processes that are essential for all of
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these genomes. Other positive trends provide insight to the interaction
of these organismswith the environment. For instance, photolyases are
over-represented in theHRGset, highlighting photodamage as amajor
environmental pressure in the surface ocean.
There are, as might be expected, a number of categories with

strongly positive and/or negative trends that will, as they are iden-
tified, be of help in identifying the nature of these HRGs, but many of
them are of ‘conserved unknown function’. Their identificationwill be
essential in characterizing the microbes and the niches they inhabit.

Discussion
In this Article, we have referred to the ‘abundant’ and ‘cosmopolitan’
plankton as the ‘true’ picoplankton of the surface ocean. Here we
distinguish between abundance in a sample and absolute numbers
of cells. In many samples in the ocean, organisms with densities of

105 cellsml21 or higher are abundant members of the community.
Such levels are clearly not high in comparison withmicrobial densities
seen in blooms, which may reach 107 cellsml21 or higher: we observe
105–106 total microbes throughout the oceanic sites, and the ‘abund-
ant’ microbes represent those taxa that are dominant in this otherwise
organism-poor environment. This becomes an important part of the
definition of the true picoplankton, as well-known microbial marine
genera (for exampleVibrio,Alteromonas and Photobacterium), which
are surely present in low numbers, were rarely seen in our metage-
nomic studies. ‘Cosmopolitan’ implies that a given microbe was very
often encountered at the surface sites studied, irrespective of the time
of sampling. Because many of the microbes are not seen because of
their low abundance, ‘abundant and cosmopolitan’ as judged bymeta-
genomic data analysis is the descriptive term for what we call the ‘true’
picoplankton.
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Figure 4 | Distribution of the 50
largest uncultured OTUs in GOS
16S PCR samples. Red and white
squares respectively indicate the
presence in and absence from a GOS
sampling site of the corresponding
OTU sequence. The number at the
end of each row denotes the number
of GOS sequences in that OTU.
Cold-water GOS samples are
highlighted using blue text.
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The rare and opportunistic biosphere
The work presented here reveals that most of the marine prokaryotic
genomes that have been sequenced add little to our appreciation of the
biology of the abundant and cosmopolitan picoplanktonic prokar-
yotes in the surface ocean, other than as a genomic contrast. We
regard these low-recruiting microbes as members of a group that is
adapted to niches other than the open ocean, including symbiotic,
saprophytic, parasitic and other plant and animal associations.
Members of this group are predicted to be strongly affected by eukar-
yotes and/or their products. They have the capacity to survive in the
low-nutrient open ocean at low abundance levels (that is, residing in
the ‘long tail’ of diverse organisms seen in the GOS data set), but are
able to bloom if presented with the proper energy-rich conditions16,17.
Such organisms are known to use cell–cell communication mechan-
isms such as quorum sensing to regulate density-dependent processes
such as biofilm formation and other ‘group’ activities. This notion
predicts that the rapidly growing microbes, when found in their nat-
ural niches, may be clonal, growing from an original inoculation of
one or a few cells. Such a prediction could be routinely tested by
examining a number of energy-rich environments in the ocean.
In a recent paper18, it was proposed that themarinemicrobialworld be

divided into oligotrophs and copiotrophs, and that the former ‘‘dominate
the ocean’s free-living microbial populations’’. Our data support such a
view, with the addition that the ability to regulate and adapt to changing
conditions should allow the copiotrophs to survive long enough to find
another nutrient-rich environment, be it a floating carcass,marine snow,
a faecal pellet or the gut tract of a marine eukaryote. Indeed, if every
eukaryotic species could harbour a number of species-specific bacterial
associates, it would result in an immensely long tail of diversity:microbes
awaiting their chance to bloom when conditions improved.
These thoughts are consistent with recent work19 in which an ana-

lysis of the deep-sea bacterial microbial metagenome (at 4,000-m
depth near Hawaii) revealed a population more characteristic of the
low-recruiting microbes reported here: that is, one rich in genes for
motility, secondary metabolism, signal transduction, transport and
other high-nutrient-type functions. A simple hypothesis, consistent
with these data, is that the deep sea is simply too harsh for the mono-
lithic surface picoplankton, and that the microbes here are again a
reflection of a dynamic equilibrium between various high-nutrient
environments. Given the sensory mechanisms and motility of the
endogenous eukaryotes in the deep sea, theymay have amajor impact
on the aquatic populations of bacteria and archaea observed there. Of
particular note would be the issue of whether any of these bacteria and
archaea might be of sufficiently low diversity that assembly of their
genomes would be possible.

Genome modifications and streamlining
Our data suggest that genome streamlining of the cosmopolitan pico-
plankton is an important part of their success in the limiting environ-
ment of the surface ocean—an observation previously made20 of
members of the SAR11 clade. The few marine microbes that have
been characterized suggest that the small genomes have retained vir-
tually all of their biosynthetic abilities and a few key transport systems,
but have dispensed with sensory/response systems (chemotaxis,
quorum sensing and two-component regulators), motility, anaerobic
metabolismandgenes involved in organismal interaction. It seems that
the marine picoplankton have a very low ‘bacterial IQ’21. That is, there
may be little need for rapid adaptation to changing conditions, with the
result that expensive regulatory systems can be dispensed with. It is
possible that these microbes, if they regulate their metabolism at all,
may engage in regulation using specialized sigma factors, using non-
coding RNAs or at the translational (or other post-transcriptional)
level in preference to the more expensive transcriptional regulation
characteristic of more rapidly growing and adaptive microbes.
This regulatory streamlining, combined with a metabolic single-

mindedness, is consistent with the ability to survive as a free-living

organism in most of the surface ocean. It seems likely that the un-
cultured dominant and cosmopolitan picoplanktonic prokaryotes,
such as SAR86, have similar overall genomic characteristics but with
a different metabolic focus.
It is notable that the approach to genome streamlining seen here is

fundamentally different from that seen in other very smallmicrobes, as
exemplified by recent work on the genome reduction in Mycoplasma
pneumonia22–24. Although that genome has been streamlined to a very
small size, it has occurred without the loss of regulatory mechanisms
needed for the bacterium’s interactions with ‘high-energy’ and high-
nutrient environments. Many closely related organisms in this group
are obligate symbionts or pathogens, which are incapable of host-free
growth.Anothermethodof genome streamlining is seen in the recently
reported widespread, nitrogen-fixing cyanobacterium UCYN-A25.
Like theMycoplasma genomes, this small (,1.44-megabase) genome
maintains many regulatory and metabolic abilities but discards many
of its biosynthetic pathways, suggesting that it may be a symbiont with
some as-yet-unidentified metabolic partner26.

Cryptic escape
We put forward here a hypothesis that we call cryptic escape: success
is achieved in the limiting oceanic environment by limiting the effec-
tive biomass in such away as to discourage the success (and evolution)
of specific predators, that is, by becoming ‘invisible’ to them as a food
source. This can be done in two ways: by reducing population size and
by reducing the amount of biomass per individual. With genome size
well correlated with cell size (Supplementary Table 4), a population of
SAR11 maintained at a density of 105 cellsml21 has a biomass equi-
valent to less than 103 cellsml21 Vibrio or Shewanella.Whether such
a biomass could support the growth of a specific predator is not well
documented, and would be an important test of the hypothesis.
Cryptic escape thus views one of the driving forces of genome stream-
lining to be the avoidance of trophic predation, and would be con-
sistent with many different functional (metabolic) end points, a
prediction that will be directly tested as the genomes from other
(currently uncultivated) cosmopolitan picoplankton groups become
available.
It is equally important to knowwhether themaintenance of low cell

numbers and slow growth rates would make viral predation inef-
ficient enough that the CRISPR–Cas system is an unnecessary luxury
for the abundant and cosmopolitan picoplankton. At a density of 105

cellsml21, each cell will be thousands of body lengths from others of
its species and hundreds of body lengths from the nearest virus (not
necessarily a virus specific to that cell), perhaps making efficient viral
infection and growth a difficult prospect. With regard to viral preda-
tion, many other modes of defence might also be used, such as simply
having many fewer metabolic receptors on their surfaces that viruses
could use for recognition and entry, and/or extensive microdiversity
within the dominant groups, such that annihilation by a single phage
becomes nearly impossible. Each of these hypotheses is also testable
with the right model systems.
Such an approach does not preclude the existence and success of

general predators that can succeed by grazing non-specifically on pico-
plankters at densities as low as 105–106 cellsml21, which are often seen
in oceanic waters. Thus, although the carbon fixed and cycled by the
picoplankers is of great importancewith regard to global carbon cycling,
the low levels of biomassmay have important consequences with regard
to predation (both protistan and viral) of the very small plankters.
However, becoming small and/or rare is not within the purview of

the picoplankters. When Vibrio (or other heterotrophs) are nutrient
limited, they can become very small, often adopting a physiological
state referred to as ‘viable but not culturable’27. Similar states can be
seen for many normally fast-growing bacteria when they are nutrient
limited at slow growth rates in a chemostat28. Thus, it is well within the
abilities of the larger heterotrophic bacteria to adopt the crypticmode,
and ‘hide’ within the long tail of diversity in the ocean.
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Conclusion
In essence, the true single-celled picoplankton may be distinguished
frommost other prokaryotes more appropriately by what they cannot
do than by what they can do. That is, the survival strategy seems to be
one of dispensing with functions and/or with the control of functions.
Thus, a picture emerges of microbes that survive by becoming small,
single minded and uncommunicative. Furthermore, the streamlining
of genomes is apparently a strategy that is available to many different
taxonomic groups of microbes that make up the abundant and cos-
mopolitan picoplankton. Therefore, it is expected that the other
uncultivated cosmopolitan picoplankton groups will show a similar
form of genome streamlining, but with metabolic strategies distinct
from the other HRGs.

METHODS SUMMARY
MMGSP genome sequencing, assembly and annotation. Two genomic libraries
with respective insert sizes of 4 and 40 kilobases were made29. The prepared plas-
mid and fosmid clones were sequenced from both ends on ABI 3730XL DNA
sequencers (Applied Biosystems) at the JCVI Joint Technology Center to provide
paired-end reads. Successful reads were assembled using the Celera Assembler30

and the assembly was annotated using the JCVI prokaryotic annotation pipeline
(http://www.jcvi.org/cms/research/projects/annotation-service/overview/).
Analysis of functional groups.Thedepth of coverage at$50%nucleotide identity
threshold (Supplementary Table 2) was used here. For each observed depth of
coverage value, c, we binned the genomes into two groups (one containing genomes
with coverage ,c and the other containing genomes with coverage $c), and
assessed them using the Wilcoxon rank-sum test31 with the null hypothesis that
the givenproteincategory has the samedistributionof values in the twogroups. This
assessment showed that, very frequently, the optimal (smallest) P value corre-
sponded to a coverage of c5 1. On this basis, we grouped the 197 marine genomes
into two sets: the HRG set, consisting of genomes with c$ 1, and the LRG set,
consisting of genomeswith c, 1.Wenoted theP values for all protein categories (at
c5 1), and computed a rejection threshold value (of 4.73 1024) after correction for
multiple testing32 with the false-discovery rate set to 0.005.We repeated the P-value
calculations for all protein categories after normalizing their original values (that is,
rawcounts) by dividing by the respective genome sizes (as givenby the total number
of proteins in the genome); here the rejection threshold valuewas 8.23 1024 for the
same false-discovery rate. Subsequently, of the 12,403 protein categories considered,
568 (4.6%) were identified as being differentially distributed in the HRG and LRG
sets for both original and normalized data (Supplementary Table 3 and
Supplementary Fig. 3), and were analysed further.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
MMGSP genome sequencing, assembly and annotation. Two genomic libraries
with respective insert sizes of 4 and 40 kilobases were made29. The prepared plasmid
and fosmid clones were sequenced from both ends onABI 3730XLDNA sequencers
(Applied Biosystems) at the JCVI Joint Technology Center to provide paired-end
reads. Successful readswere assembledusing theCeleraAssembler30 and theassembly
was annotated using the JCVI prokaryotic annotation pipeline (http://www.jcvi.org/
cms/research/projects/annotation-service/overview/).
Fragment recruitment. BLAST33 was used to recruit GOS reads to sequenced
genomes3. For the purposes of computing the two recruitment statistics reported
here, a recruited read was assigned to a single (best-matching) reference genome.
Alignment and tree building. Separate alignments of bacterial and archaeal
sequences were produced using INFERNAL34; bacterial and archaeal alignment
models from the RDP5 were used for this purpose. Columns with gaps of.90%
were removed from these alignments, and the two alignments were subsequently
merged using MUSCLE35. This alignment was used to construct a maximum-
likelihood phylogeny using RAXML36.
16S rRNA sequences from the RDP.We identifiedmarine bacterioplankton 16S
rRNA sequences from the RDP using a keyword search37. Bacterial 16S rRNA
sequences$1,200 base pairs in length were downloaded and the text information
in the GenBank records file was parsed. Only those records that contained word
tokens from a positive control set and did not contain words from a negative
control set were kept. The positive control set consisted of the following words:
marine, coastal, ocean, sea, bacterioplankton, sar11, sar86, sar83, sar116, sar324,
sar202. The negative control set consisted of the following words: deepsea, soil,
sediment, sand, biofilm, freshwater, pond, lake, hydrothermal, groundwater,
borehole,mud, petroleum,marinesnow, aquifer, halophil, oil, diesel, crust, anaerobe,
symbiont, hygiene, rhizosphere, associated, viable, biofilter, reactor, sludge, gland,
spleen, anoxic, spring, vent, volcanic, basalt, sponge, rock, bog, aquarium, benthic,
bone, mat, marsh, mangrove, saltern, urchin.
16S rRNA sequences from GOS PCR libraries. Sequence data were generated
using the protocol described in ref. 38. The list of GOS libraries is given in
Supplementary Information. Chimaeric sequences were identified and removed.
We used two programs to identify chimaeras: a modified version of the RDP
chimaera checker5 and CHIMERASLAYER (http://microbiomeutil.sourceforge.
net). Of the sequences that passed chimaera checking, only those $1,100 base
pairs in length were considered. These sequences were clustered using CD-HIT39

at high identity and over nearly full length (that is, at$99% identity over$95%of
the length of the shorter sequence). Only sequences in those clusters with five or
more members were considered for further analysis; these comprised 37,860
sequences.
OTU identification. The RDP and GOS 16S PCR sequences were searched
against 16S sequences from sequenced genomes using BLAST33. Those sequences
with an identity match of ,97% were subsequently clustered using CD-HIT39.
The clustering was done successively at identities of 99%, 98% and 97%. Each
97%-identity cluster was considered to be an OTU, with size equal to the number
of sequences in the flattened cluster. Each CD-HIT representative at 97% identity
was considered to be the corresponding OTU’s representative.
Determination of the phylogenetic distribution of the uncultured OTUs in
16S PCR samples. We clustered the unrecruited sequences using CD-HIT39 at
97% identity to produce 1,493 OTUs, with the largest OTU containing 2,748
sequences and 93 OTUs containing $50 sequences. Sequences in these OTUs
were classified to the class level using the RDP classifier5. Those OTUs that
contained both RDP and GOS sequences, and those that contained GOS
sequences from multiple libraries, were examined further. Representative
sequences from these 320 OTUs were aligned, together with 16S sequences of
the 197 marine genomes, using INFERNAL34, and the alignment was used to
construct a maximum-likelihood phylogeny using RAXML36.
Searches against protein databases. The 739,579 proteins from the 197 marine
genomes were searched for against several protein databases: COGs40, Pfams41,
TIGRFAMs42, KEGG pathways and modules43, and MEROPS44. For searches
against COG profiles, a sequence was assigned to its best-matching COG; an
E value cut-off of 1028 was used. For Pfam and TIGRFAM assignments, only
matches with scores above the model trusted cut-off score were considered. For
KEGG assignments, sequences were assigned toKEGGpathways andmodules on

the basis of best BLASTmatches to genes in the KEGGorthologues collection. For
MEROPS searches, sequences were assigned to the different families and clans
using best BLAST matches to the peptidase units and inhibitor units included in
MEROPS. For both sets of BLAST searches, only matches with bit scores of$50
were considered.
Analysis of functional groups.Thedepthof coverage at$50%nucleotide identity
threshold (Supplementary Table 2) was used here. For each observed depth of
coverage value, c, we binned the genomes into two groups (one containing genomes
with coverage ,c and the other containing genomes with coverage $c), and
assessed using theWilcoxon rank-sum test31 with the null hypothesis that the given
protein category has the same distribution of values in the two groups. This assess-
ment showed that, very frequently, the optimal (smallest)P value corresponded to a
coverage of c5 1. On this basis, we grouped the 197marine genomes into two sets:
the HRG set, consisting of genomes with c$ 1, and the LRG set, consisting of
genomes with c, 1. We noted the P values for all protein categories (at c5 1),
and computed a rejection threshold value (of 4.73 1024) after correction for mul-
tiple testing32 with the false-discovery rate set to 0.005. We repeated the P-value
calculations for all protein categories after their original values (that is, raw counts)
were normalized by dividing by the respective genome sizes (as given by the total
number of proteins in the genome); here the rejection threshold value was
8.23 1024 for the same false-discovery rate. Subsequently, of the 12,403 protein
categories considered, 568 (4.6%) were identified as being differentially distributed
in the HRG and LRG sets for both original and normalized data (Supplementary
Table 3 and Supplementary Fig. 3), and were analysed further.
CRISPR–Cas systems.We searched for CRISPR arrays using a modified version
of PILERCR (http://www.drive5.com/pilercr/) and our own post-processing
scripts for the removal of false-positives using MGTAXA (http://andreyto.
github.com/mgtaxa). For the purposes of the current study, we computed several
per-genome integral characteristics of the CRISPR system, such as the total
number of Cas genes, the total number of CRISPR arrays and the minimal
distance between any array and any Cas gene. The source code for the CRISPR
analysis pipeline is available as part of our MGTAXA package. Independently of
themetagenomic recruitment analysis, we compiled the known lifestyle information
for two groups of microbial genomes. The first group consisted of all genomes
possessing a significant CRISPR–Cas system (defined as at least three genes and
three arrays per genome; n5 20), and the second consisted of 13 genomes randomly
selected from the total set of genomes lacking CRISPR–Cas features (n5 130)
(Supplementary Table 5). Within the first group, seven genomes were of deep-sea
hydrothermal vent origin, two were from hypersaline environments and eight were
associated with particles, surfaces or host organisms, or formed dense colonies in
mats or blooms. By contrast, 12 out of 13 genomes lacking CRISPR–Cas were
described as free-floating surface picoplankton.
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