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estimate the breeding values (BVs) for quantitative traits. 

Our objective was to compare three genomic prediction 

models including genomic best linear unbiased prediction 

(GBLUP), GBLUP A that was GBLUP with selected loci 

as fixed effects and reproducing kernel Hilbert spaces-

markers (RKHS-M) with least-squares (LS) approach, 

RKHS-pedigree (RKHS-P), and RKHS markers and pedi-

gree (RKHS-MP) to determine the BVs for seedling and/

or adult plant resistance (APR) to leaf rust (LR), stem 

rust (SR), and stripe rust (YR). The 333 lines in the 45th 

IBWSN and the 313 lines in the 46th IBWSN were geno-

typed using genotyping-by-sequencing and phenotyped in 

replicated trials. The mean prediction accuracies ranged 

from 0.31–0.74 for LR seedling, 0.12–0.56 for LR APR, 

0.31–0.65 for SR APR, 0.70–0.78 for YR seedling, and 

0.34–0.71 for YR APR. For most datasets, the RKHS-MP 

model gave the highest accuracies, while LS gave the low-

est. GBLUP, GBLUP A, RKHS-M, and RKHS-P models 

gave similar accuracies. Using genome-wide marker-based 

models resulted in an average of 42% increase in accuracy 

over LS. We conclude that GS is a promising approach 

for improvement of quantitative rust resistance and can be 

implemented in the breeding pipeline.

Abbreviations

APR  Adult plant resistance

BLUP  Best linear unbiased prediction

BVs  Breeding values

CIMMYT  Centro Internacional de Mejoramiento de 

Maíz y Trigo

GBLUP  Genomic best linear unbiased prediction

GBLUP A  Genomic best linear unbiased prediction 

with selected loci as fixed effects

GBS  Genotyping-by-sequencing

Abstract 

Key message Genomic prediction for seedling and 

adult plantresistance to wheat rusts was compared 

to  prediction using few markers as fixed effects in a 

least-squares approach and pedigree-based prediction.

Abstract The unceasing plant-pathogen arms race and 

ephemeral nature of some rust resistance genes have been 

challenging for wheat (Triticum aestivum L.) breeding pro-

grams and farmers. Hence, it is important to devise strate-

gies for effective evaluation and exploitation of quantitative 

rust resistance. One promising approach that could accel-

erate gain from selection for rust resistance is ‘genomic 

selection’ which utilizes dense genome-wide markers to 
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HWWAMP  Hard winter wheat association mapping 

panel

IBWSN  International bread wheat screening nursery

IT  Infection type

KALRO  Kenya Agricultural and Livestock Research 

Organization

LD  Linkage disequilibrium

LR  Leaf rust

LS  Least squares

Pt  Puccinia triticina

Pgt  Puccinia graminis

Pst  Puccinia striiformis

QTL  Quantitative trait loci

RKHS-M  Reproducing kernel Hilbert spaces-markers

RKHS-MP  Reproducing kernel Hilbert spaces-markers 

and pedigree

RKHS-P  Reproducing kernel Hilbert spaces pedigree

RR-BLUP  Ridge regression-best linear unbiased 

prediction

SR  Stem rust

YR  Stripe rust

Introduction

Wheat (Triticum aestivum L.) is one of the major food 

crops in the world that is constantly threatened by several 

biotic stresses. Among the most significant fungal biotic 

stresses are the rusts that include leaf or brown rust (LR), 

stem or black rust (SR), and stripe or yellow rust (YR) 

caused by Puccinia triticina Eriks. (Pt), Puccinia graminis 

Pers. (Pgt), and Puccinia striiformis West. (Pst), respec-

tively. Among these, LR is the most common rust that is 

globally distributed and can cause losses from 7 to 30% 

depending on the developmental stage (Roelfs et al. 1992; 

Marasas et  al. 2004; Bolton et  al. 2008; Huerta-Espino 

et  al. 2011). Stem rust occurs mainly in warm weather 

regions and can cause losses of up to 100% (Leonard and 

Szabo 2005). Stripe rust occurs in cool, temperate regions, 

and can cause yield losses ranging from 10 to 70% but up 

to 100% in highly susceptible cultivars (Chen 2005). The 

most preferred management strategy for rusts is genetic 

resistance which is of two types, namely vertical and hori-

zontal (Vanderplank 1963). In a typical vertical resist-

ance, the gene-for-gene interactions between the resistance 

genes of the host and the avirulence genes of the pathogen 

form the basis of resistance (Flor 1956). As a result of this 

incompatible interaction, hypersensitive cell death response 

is elicited. However, the major problem with this type of 

qualitative resistance is that it is ephemeral and can be eas-

ily overcome by the evolution of new virulent races of the 

pathogen. For example, the virulent stem rust race group 

Ug99 carries combined virulence to many genes deployed 

in the current wheat varieties and poses an enormous threat 

to global wheat production (Pretorius et  al. 2000; Singh 

et  al. 2015). Hence, many breeding efforts focus on hori-

zontal, non-race-specific, quantitative, slow rusting resist-

ance which is the widely preferred mechanism to achieve 

durability, defined as the ability of a widely deployed 

resistance gene to provide an economic level of protection 

over an extended period of time (Johnson 1984). In this 

type of resistance, although the infection is not completely 

stopped, the spread of the disease is delayed and it is typi-

cally expressed in the adult plant stage (McIntosh et  al. 

1995). To date, about 76 LR resistance (Lr) genes, 59 SR 

resistance (Sr) genes, 76 YR resistance (Yr) genes, and sev-

eral quantitative trait loci (QTL) have been identified (McI-

ntosh et al. 2016). Among these, the known race non-spe-

cific resistance genes are Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, 

Lr67/Yr46/Sr55, Lr68, Sr2/Lr27/Yr30, and Yr36.

Breeding for quantitative disease resistance is a chal-

lenge because of its complex inheritance, and it is impor-

tant to devise strategies for more effective evaluation and 

exploitation of this resistance. With this focus of accel-

erating breeding for quantitative resistance, one promis-

ing approach that can potentially provide accurate pre-

dictions of the resistance phenotypes, enabling reduced 

time to parental selection and leading to increased genetic 

gain from selection, is genomic selection (GS). Genomic 

selection uses dense genome-wide markers to obtain the 

genomic estimated breeding values (BVs) of individuals 

(Meuwissen et al. 2001). It has been shown to be especially 

effective for improving quantitative traits, both in simula-

tions (Bernardo and Yu 2007; Toosiet et  al. 2010; Wong 

and Bernardo 2008) and in empirical studies (Crossa et al. 

2010, 2014; Heslot et al. 2012; Lorenz et al. 2012; Ornella 

et  al. 2012; Rutkoski et  al. 2011, 2012, 2014). It uses a 

‘training population’ comprising individuals that have been 

genotyped and phenotyped for traits of interest to gener-

ate BVs that can be used in selecting individuals for inter-

mating in the next cycle of selection prior to phenotypic 

evaluation.

While some studies comparing prediction models have 

been reported (Lorenzana and Bernardo 2009; Crossa 

et al. 2010; Heslot et al. 2012), our objective was to com-

pare three genomic prediction models including genomic 

best linear unbiased prediction (GBLUP), GBLUP A that 

was GBLUP with selected loci as fixed effects and repro-

ducing kernel Hilbert spaces-markers (RKHS-M) with 

least-squares (LS) approach that uses selected loci as fixed 

effects and models incorporating the pedigree relationship 

including, RKHS-pedigree (RKHS-P), and RKHS markers 

and pedigree (RKHS-MP), to determine the BVs for seed-

ling and/or adult plant resistance (APR) to LR, SR and YR. 

The GBLUP is a whole-genome regression approach that 

uses the genomic relationship matrix (G-matrix) calculated 
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from markers instead of the pedigree relationship matrix. 

It has successfully been applied in the prediction of com-

plex traits in humans, plants, and animals (de Los Campos 

et al. 2013; Habier et al. 2013; VanRaden 2008; Yang et al. 

2010). The RKHS semi-parametric approach for genomic 

prediction was proposed by Gianola (2006) and then by 

Gianola and van Kaam (2008) who argued that genomic 

interactions are much more complex than what could be 

handled by the standard parametric models. Several stud-

ies have shown its effectiveness in genomic predictions 

(Crossa et al. 2010; de los Campos et al. 2010; Perez-Rod-

riguez et  al. 2013). RKHS does not assume linearity and 

it is expected to capture some non-additive effects well. 

Since, the genetic architecture of seedling and APR to LR, 

SR, and YR were different, we evaluated different models 

to determine which of them are appropriate for a given trait.

Materials and methods

Plant materials

For this study, we used the 45th and 46th international 

bread wheat screening nurseries (IBWSN) comprising 333 

and 313 lines, respectively. The IBWSNs are large screen-

ing nurseries that were initiated in 1967 and consist of 

200–400 advanced lines from CIMMYT’s (Centro Inter-

nacional de Mejoramiento de Maíz y Trigo) bread wheat 

breeding program (van Ginkel and Rajaram 1993). These 

candidates were previously selected for biotic and abiotic 

stress resistance, grain yield, and end-use industrial qual-

ity characteristics. They are evaluated in multiple trials 

in Mexico and cooperating locations globally. As such 

they are ideal for building prediction models as they are 

expected to have useful and novel genes for disease resist-

ance with considerable variation in their BVs.

Disease evaluation and phenotypic data

Seedling evaluation for leaf rust and stripe rust

Seedling evaluations for LR (45th IBWSN–2010 and 2012; 

46th IBWSN–2012) and YR (46th IBWSN–2013) were 

conducted in CIMMYT’s greenhouses at El Batan, Mex-

ico. Rust inoculum was prepared by suspending freshly 

collected urediniospores (race MBJ/SP for Pt and race 

Mex96.11 for Pst) in light mineral oil, Soltrol (Phillips 

66 Co., Bartlesville, OK, USA). The plants were inocu-

lated at the two-leaf stage, placed in a dew chamber over-

night, and then transferred to the greenhouse where the 

minimum, maximum, and average temperatures were 16.1, 

30.0, and 20.3  °C. The LR seedling infection types (ITs) 

were recorded 10  days after inoculation using the 0 to 4 

scale described in Roelfs et al. (1992). The responses were 

linearized to a 0–9 scale (; =0, 0 = 0, 1− = 1, 1 = 2, 1+= 3, 

2− = 4, 2 = 5, 2+ = 6, 3− = 7, 3 = 8, 3+ = 9 and 4 = 9). For 

YR, the seedlings were incubated in a dew chamber at 7 °C 

in the dark for 48 h and then transferred to the greenhouse. 

The minimum, maximum, and average greenhouse temper-

atures were 6.3, 30.9, and 17.3 °C, respectively. YR infec-

tion types were recorded 14 days post-inoculation using a 

0–9 scale as described by McNeal et al. (1971).

Adult plant response evaluation for leaf rust, stem rust, 

and stripe rust

The 45th IBWSN entries were evaluated for APR to: LR at 

CIMMYT’s headquarters, El Batan, Mexico during the 2010, 

2012, and 2013 crop seasons; SR at Kenya Agricultural and 

Livestock Research Organization (KALRO), Njoro, Kenya 

during the 2010 and 2011 main seasons; and YR at Quito, 

Ecuador during the 2011 crop season and at CIMMYT’s 

research station, Toluca, Mexico during the 2011 and 2013 

crop seasons. Similarly, the 46th IBWSN entries were evalu-

ated for APR to LR at El Batan during the 2011 and 2013 

crop seasons; SR at KALRO, Njoro during the 2011 main 

and off seasons; and YR at Toluca during the 2011 and 2013 

crop seasons; Quito, Ecuador during the 2012 crop season 

and KALRO, Njoro during the 2011 main season. The modi-

fied Cobb Scale (Peterson et al. 1948) was used to score rust 

severity at the adult plant stage to determine the percentage 

of infected tissue (0–100%). Evaluations were conducted at 

three time points between early and late dough stages. The 

first evaluation was done when the severity of susceptible 

check (Avocet) reached 80% followed by two more evalua-

tions at weekly intervals. For all the rust evaluations, the lines 

were sown in 0.7-m-long-paired rows on top of 30-cm-wide 

raised beds. For LR, a mixture of the susceptible genotypes 

‘Avocet + Yr24’ and ‘Avocet + Yr26’ was planted as spreader 

rows around the experimental field. The spreader rows and 

hills were artificially inoculated with urediniospores of the 

two prevalent Mexican Pt races, MBJ/SP and MCJ/SP sus-

pended in Soltrol oil to initiate an epidemic. These two races 

differ by their virulence to the Lr26 gene (MBJ/SP has partial 

virulence for Lr26, while MCJ/SP has complete virulence). 

The inoculations were carried out twice when the plants were 

at the 6-leaf stage. For SR evaluation, a border row of spread-

ers was planted surrounding the field and sprayed twice with 

fresh urediniospores of Pgt race TTKST suspended in Sol-

trol to create an artificial rust epidemic. The plants within 

the border rows were inoculated by injecting a suspension 

of freshly collected urediniospores in water using a hypoder-

mic syringe, twice prior to booting (growth stage Z35-Z37) 

(Zadoks et al. 1974). For YR evaluation, spreaders consisted 

of a mixture of six susceptible wheat lines derived from an 

Avocet/Attila cross. The 4-week-old spreaders and hills were 
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inoculated three times, at 3–4 day intervals with mixed Pst 

isolates, Mex96.11, and Mex08.13. While Mex96.11 is 

virulent to Yr27 and avirulent to Yr31, it is the reverse for 

Mex08.13. There were replicated controls/local checks every 

20 lines for all the evaluations.

The phenotypic data for all the diseases were transformed 

to normal distributions by identifying appropriate exponent 

(lambda) values using the boxcox (Box and Cox 1964) func-

tion in the ‘R’ statistical program.

Genotyping

The nurseries were genotyped using the genotyping-by-

sequencing (GBS) method to obtain dense genome-wide 

coverage (Elshire et  al. 2011). GBS markers were obtained 

using the method described by Poland et al. (2012). After fil-

tering for markers with missing data greater than 50%, minor 

allele frequency less than 10%, and pairwise marker corre-

lation (r2) greater than 0.95 (for redundancy), 5102 markers 

for the 45th IBWSN and 8066 markers for the 46th IBWSN 

were obtained. Missing data were imputed using the expecta-

tion–maximization algorithm implemented in the ‘R’ pack-

age rrBLUP (Endelman 2011). The lines were also filtered 

for missing data greater than 50% which resulted in 267 and 

305 lines in the 45th and 46th IBWSN, respectively.

Relationship matrix and heritability estimation

The G-matrix was calculated according to VanRaden (2008) 

and implemented in the ‘R’ package rrBLUP (Endelman 

2011). The relationship matrix was centered and standardized 

for all the analyses. Heritability was calculated on a line-mean 

basis and estimates of the genetic and residual variances were 

obtained using the average information-restricted maximum 

likelihood algorithm (Gilmour et  al. 1995) implemented in 

the ‘heritability’ package in ‘R’ (Kruijer et al. 2015).

Prediction models

Least squares (LS)

A stepwise least-squares (LS) approach was used which 

involves an initial marker ranking and selection step. First, 

genome-wide association analysis was conducted in the train-

ing set to calculate marker p values. Then, the markers were 

ranked according to their p values for variable selection. For 

each iteration i through j, a marker was added to the model, 

starting from the marker with the lowest p value,

 where y is the phenotype, µ is the mean, βi denotes the 

effect of the ith marker, and Xi denotes the ith marker’s 

genotype matrix. The fivefold cross-validation accuracy 

y = 1n� + Xi�i ……Xj�j + �

was calculated within the training set after each iteration 

and the model with j − 1 markers was selected when the 

 Accuracyj−1>Accuracyj. The second step involved marker 

effects estimation from the selected model that was then 

used to predict the BVs of the individuals. To obtain the 

chromosomal locations of the significant markers, the basic 

local alignment search tool (BLAST) (https://triticeae-

toolbox.org/wheat/viroblast/viroblast.php) in the Triticeae 

Toolbox website was used. A nucleotide BLAST (BLAST-

n) was performed against the wheat markers in Triticeae 

Toolbox (T3) database (updated on April 2015), wheat 

contigs (1A to 7D) from the wheat CSS genome reference 

v2, September 2014, wheat chromosomes (1A to 7D) and 

unsorted scaffolds from IWGSC1.0 + popseq (November 

2014) (Chapman et al. 2015). This approach would help to 

identify markers that are similar in other populations geno-

typed by GBS and also enable us to compare across studies 

using marker synonyms.

Genomic best linear unbiased prediction (GBLUP) 

and GBLUP with selected loci as fixed effects (GBLUP 

A)

For GBLUP, the BVs of individuals were predicted using 

the mixed model:

 where y is the vector of the response phenotypic trait, 

µ is the overall mean vector, u is the vector of genotype 

effects that are assumed to be multivariate normal random 

effects [u~N(0, Gσ2
u), Z is the design matrix for the ran-

dom effects, and ε is the vector of independent residuals 

assumed to have a multivariate normal distribution (ε~N(0, 

Iσ2
e)]. The ‘R’ package, rrBLUP (Endelman 2011) was 

used to implement GBLUP. We also evaluated GBLUP A 

model, that, in addition to the GBLUP model, also included 

some loci modeled as fixed effects, selected by the same 

method described for the LS model:

Reproducing kernel Hilbert spaces (RKHS)

The RKHS model using a Gaussian kernel is of the form:

 where xi and xj are the observed marker genotypes of indi-

viduals, wi and Zi are the incidence vectors, β is the vector 

of location effects, u is the vector of additive genetic 

effects, �j is the regression coefficient, and εi is the error 

term [εi–N(0, Iσ2
e)] (Gianola 2006). The additive genetic 

effects u~N(0, Kσ2
g), where K is the reproducing Gaussian 

� = 1
n
� + Zu + �

y = 1n� + Xi�i ……Xj�j + Zu + �.

yi = wi
�� + zi

�
u +

n
∑

j=1

exp

[

−(xi − xj)
� (xi − xj)

h

]

�j + �i

https://triticeaetoolbox.org/wheat/viroblast/viroblast.php
https://triticeaetoolbox.org/wheat/viroblast/viroblast.php
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kernel, K(xi, xj) = exp

[

(xi−xj)
�(xi−xj)

h

]

 and h is the bandwidth 

parameter. We implemented three RKHS models in the 

BGLR package (Perez and de los Campos 2014), namely 

(1) RKHS markers (RKHS-M) using the G-matrix calcu-

lated from markers, (2) RKHS-pedigree (RKHS-P) using 

the pedigree relationship matrix which was obtained from 

the pedigree and was twice the coefficient of ancestry, and 

(3) RKHS markers and pedigree (RKHS-MP) with the 

marker and pedigree relationship matrices as two kernels, 

where the additive effect was captured by regression on the 

markers and also with the (co)variance relationship derived 

from the pedigree. We fitted these models with three arbi-

trarily chosen bandwidth parameters and then averaged the 

three accuracies.

Prediction accuracies

The predictive ability of the models was assessed using the 

Pearson’s correlation between the observed and the cross-

validated estimated BVs, which is the prediction accuracy. 

We used the tenfold cross-validation where the whole data-

set was divided into tenfolds and nine of them (240 lines 

and 275 lines in the 45th and 46th IBWSN, respectively) 

were used as a training set to estimate the marker effects, 

which were then used to predict the BVs in the 10th fold, 

referred to as the validation set (27 lines and 30 lines in the 

45th and 46th IBWSN, respectively).

Results

Phenotypic data analysis

The phenotypic distributions of the rusts in the 45th and 

46th IBWSN are shown in Fig.  1. In both nurseries, the 

average correlation between LR seedling resistance and 

APR was very low (0.1 and 0.3 for the 45th and 46th 

IBWSN, respectively) indicating that the genetic bases of 

seedling resistance and APR were different.

Relationship and heritability analysis

Heatmap of the genomic and the pedigree-based relation-

ship matrices for the 45th and 46th IBWSN (Fig. 2) indi-

cated that the lines in the 46th IBWSN had a slightly higher 

relationship among them than those in the 45th IBWSN. 

The 267 lines in the 45th IBWSN comprised one family 

with eight full-sibs, one with six full-sibs, one with five 

full-sibs, seven with four full-sibs, 15 with three full-sibs, 

37 with two full-sibs, and 101 crosses represented by one 

individual per cross. The 305 lines in the 46th IBWSN 

comprised one family with seven full-sibs, two with six 

full-sibs, seven with four full-sibs, 12 with three full-

sibs, 34 with two full-sibs, and 154 with one individual 

per cross. We also observed that the pedigree relationship 

matrices for both nurseries indicated a higher relationship 

among the lines than the marker-based matrices, because 

it does not account for Mendelian sampling. In the 45th 

IBWSN, the broad-sense line-mean heritability was the 

highest for LR seedling (0.72) followed by SR APR (0.59), 

LR APR (0.58), and YR APR (0.26). In the 46th IBWSN, 

the highest heritability was obtained for LR APR (0.6), fol-

lowed by SR APR (0.5) and YR APR (0.48). The broad-

sense heritability was very high for LR seedling (0.87) and 

YR seedling (0.86).

Markers significantly associated with leaf, stem, 

and stripe rust resistance

The markers that were significantly associated with LR, 

SR, and YR resistance in the 45th and 46th IBWSN and 

used as fixed effects in the LS model are shown in Tables 1 

and 2, respectively. Only the markers that perfectly 

matched with a marker in the T3 database and were signifi-

cant in at least fivefolds are reported. The BLAST results 

for all the markers and other synonyms are reported in Sup-

plementary Table 1. For LR seedling resistance in the 45th 

IBWSN, marker GBS_24751 (0 cM) on chromosome 2BS 

explained the highest variation (18%) in the 2010 dataset. 

Marker GBS_37247 on chromosome 1DS was significant 

in both the replications and explained 15 and 24% of the 

average variation. In the 46th IBWSN, marker GBS_19971 

on chromosome 1DS was significant in all the folds and 

explained an average of 33% of the variation for LR seed-

ling resistance. In addition, a marker on chromosome 3B 

and another marker on chromosome 1DS were also sig-

nificant. For LR APR in the 45th IBWSN, the marker 

GBS_30281 on chromosome 4AL was significant in all the 

three datasets and explained 8–12% of the average varia-

tion. The only other significant marker with known position 

was GBS_8842 on chromosome 3AS in the 2010 dataset. 

In the 46th IBWSN, GBS_40747 on chromosome 2D was 

significantly associated with LR APR in the El Batan 2011 

dataset and explained 10% of the average variation. In addi-

tion, markers GBS_18425 and GBS_2400 both on chromo-

some 3AS and GBS_1491 on chromosome 3AL were sig-

nificant in the El Batan 2013 dataset.

For SR APR, in the 45th IBWSN, the marker 

GBS_22856 on chromosome 3B was significantly asso-

ciated and explained an average variation of 16 and 18% 

in the Njoro 2010 and 2011 datasets, respectively. In 

addition, markers GBS_36529 on chromosome 3B and 

GBS_2454 on chromosome 5B were significant in the 

Njoro 2010 dataset and marker GBS_13047 on chro-

mosome 3B was significant in the Njoro 2011 dataset. 
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In the 46th IBWSN, GBS_23856 on chromosome 1AL 

and GBS_1505 on chromosome 3B were significant in 

the Njoro 2011 main season. Markers, GBS_28025 on 

chromosome 6BS, GBS_1505 on chromosome 3B, and 

GBS_20060 on chromosome 6DS, were significant in 

the 2011 off season. For YR seedling (2013) in the 46th 

IBWSN, the marker GBS_702 on chromosome 2AS 

was significant in all the folds and explained an aver-

age 58.5% of the variation. For YR APR, the marker 

GBS_6432 on chromosome 2AS was significant in all 

the datasets and explained an average of 16 to 32% of the 

variation. GBS_702 on chromosome 2AS was significant 

Fig. 1  Phenotypic distributions for leaf rust (LR), stem rust (SR), and stripe rust (YR) in the 45th (top two panels) and 46th (lower two panels) 

international bread wheat screening nurseries (IBWSN)



1421Theor Appl Genet (2017) 130:1415–1430 

1 3

in all the folds in the Toluca 2013 dataset and explained 

29% of the average variation. In the 46th IBWSN, the 

marker, GBS_702 on chromosome 2AS, was significant 

in all the folds in all the YR APR datasets and explained 

an average variation of 26 to 41%.

Prediction accuracies

Prediction accuracies for LR, SR, and YR resistance in 

the 45th and 46th IBWSNs are shown in Table 3.

Prediction accuracies for leaf rust seedling and adult 

plant resistance

For LR seedling in the 45th IBWSN, the highest prediction 

accuracy was obtained using the RKHS-MP and RKHS-

P, respectively in the 2010 and 2012 datasets. The lowest 

accuracy was obtained using the LS approach and GBLUP 

resulted in 125.8 and 38.1% increase in accuracy over LS 

in the two datasets. While RKHS-P model performed simi-

lar to the other genome-wide models in the 2010 dataset, 

it gave a 23.7% increase in accuracy over the RKHS-M 

in the 2012 dataset. There were no significant differences 

in the accuracies obtained from GBLUP, GBLUP A, and 

RKHS-M. In the 46th IBWSN, the highest accuracy for LR 

Fig. 2  Heat map of the marker and pedigree-based relationship matrices for the 45th and 46th international bread wheat screening nurseries 

(IBWSN) illustrating the familial relatedness (kinship) between the individuals
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seedling resistance was obtained using GBLUP A followed 

by RKHS-MP, LS, RKHS-M, and GBLUP which gave sim-

ilar accuracies. The RKHS-P model yielded the lowest pre-

diction accuracy, but it was only 6.55% lower than RKHS-

M. For LR APR, it was observed that RKHS-MP gave the 

highest accuracies and LS, the lowest in all five datasets. 

The increase in accuracy obtained from using GBLUP over 

LS varied across the different datasets and ranged from 

26.5 to 241.7%. GBLUP A performed similar to GBLUP 

in all the datasets except in the El Batan 2012 dataset (45th 

IBWSN), where the fixed effect markers explained very lit-

tle variation. The accuracies obtained using pedigree and 

genome-wide marker-based models were not significantly 

different in all the datasets, but there was a slight increase in 

accuracy using genome-wide markers in the El Batan 2012 

(45th IBWSN) and El Batan 2013 (46th IBWSN) datasets 

(20.6 and 10.4% respectively). GBLUP and RKHS-M gave 

similar accuracies in all the datasets.

Prediction accuracies for stem rust adult plant 

resistance

For SR APR, the lowest prediction accuracy in all four 

datasets was obtained using LS and GBLUP resulted in 

43.9–74.2% increase in accuracy over LS. The highest 

accuracy was obtained with RKHS-MP in two datasets, 

GBLUP A in one dataset and with both GBLUP and 

RKHS-M in the other dataset. The RKHS-P model per-

formed similar to GBLUP in one dataset and slightly better 

than GBLUP (6.8% increase in accuracy) in another data-

set. However, we observed a decrease in accuracy of 10.2 

and 27.7% using the RKHS-P vs RKHS-M in two datasets. 

As observed for LR, GBLUP and RKHS-M gave similar 

accuracies in all the datasets.

Prediction accuracies for stripe rust seedling and adult 

plant resistance

For YR seedling resistance in the 46th IBWSN, the high-

est accuracies were obtained using GBLUP A followed by 

LS, RKHS-MP, GBLUP, RKHS-M, and RKHS-P models. 

Although RKHS-P gave the lowest accuracy, the increase 

in accuracy using RKHS-M over the pedigree was only 

4.3%. Least squares performed slightly better than GBLUP 

and resulted in 5.5% increase in accuracy. For YR APR, in 

the 45th IBWSN, the highest accuracy was obtained with 

GBLUP A in the Quito 2011 dataset, with LS and GBLUP 

A in the Toluca 2012 dataset and with GBLUP A and 

RKHS-MP in the Toluca 2013 dataset. Least squares per-

formed similar to the GBLUP in the Quito 2011 dataset, 

Table 3  Prediction accuracies for leaf rust (LR), stem rust (SR), and stripe rust (YR) resistance in the 45th and 46th international bread wheat 

screening nurseries (IBWSN)

IBWSN International bread wheat screening nursery, LS least squares, GBLUP genomic best linear unbiased prediction, GBLUP A genomic-

BLUP with selected loci as fixed effects, RKHS-M reproducing kernel Hilbert spaces-markers, RKHS-P reproducing kernel Hilbert spaces pedi-

gree, RKHS-MP reproducing kernel Hilbert spaces-markers and pedigree

Trait Dataset IBWSN LS GBLUP GBLUP A RKHS-M RKHS-P RKHS-MP

Leaf rust Seedling 2010 45th 0.31 ± 0.09 0.7 ± 0.03 0.69 ± 0.03 0.71 ± 0.03 0.7 ± 0.03 0.74 ± 0.03

Seedling 2012 45th 0.42 ± 0.1 0.58 ± 0.05 0.6 ± 0.05 0.59 ± 0.05 0.73 ± 0.05 0.72 ± 0.05

Seedling 2012 46th 0.66 ± 0.04 0.64 ± 0.05 0.7 ± 0.03 0.65 ± 0.05 0.61 ± 0.07 0.67 ± 0.05

El Batan 2010 45th 0.34 ± 0.05 0.43 ± 0.05 0.43 ± 0.04 0.43 ± 0.05 0.42 ± 0.07 0.46 ± 0.05

El Batan 2012 45th 0.12 ± 0.07 0.41 ± 0.05 0.26 ± 0.07 0.41 ± 0.05 0.34 ± 0.06 0.41 ± 0.05

El Batan 2013 45th 0.29 ± 0.06 0.47 ± 0.06 0.44 ± 0.06 0.48 ± 0.06 0.5 ± 0.06 0.52 ± 0.06

El Batan 2011 46th 0.28 ± 0.05 0.51 ± 0.04 0.49 ± 0.05 0.51 ± 0.04 0.5 ± 0.03 0.53 ± 0.04

El Batan 2013 46th 0.38 ± 0.03 0.52 ± 0.04 0.51 ± 0.03 0.53 ± 0.03 0.48 ± 0.03 0.56 ± 0.03

Stem rust Njoro 2010 main 45th 0.41 ± 0.05 0.59 ± 0.04 0.64 ± 0.03 0.59 ± 0.04 0.63 ± 0.03 0.65 ± 0.03

Njoro 2011 main 45th 0.41 ± 0.08 0.59 ± 0.05 0.62 ± 0.04 0.59 ± 0.05 0.53 ± 0.07 0.58 ± 0.06

Njoro 2011 main 46th 0.31 ± 0.04 0.54 ± 0.05 0.54 ± 0.05 0.54 ± 0.05 0.55 ± 0.06 0.62 ± 0.05

Njoro 2011 off 46th 0.31 ± 0.03 0.47 ± 0.06 0.43 ± 0.05 0.47 ± 0.06 0.34 ± 0.04 0.45 ± 0.06

Stripe rust Seedling 2013 46th 0.77 ± 0.03 0.73 ± 0.03 0.78 ± 0.02 0.73 ± 0.03 0.7 ± 0.03 0.74 ± 0.03

Quito 2011 45th 0.37 ± 0.05 0.39 ± 0.06 0.41 ± 0.06 0.38 ± 0.07 0.34 ± 0.08 0.39 ± 0.07

Toluca 2012 45th 0.45 ± 0.04 0.39 ± 0.04 0.45 ± 0.04 0.39 ± 0.05 0.37 ± 0.04 0.39 ± 0.04

Toluca 2013 45th 0.55 ± 0.03 0.69 ± 0.02 0.7 ± 0.02 0.68 ± 0.02 0.66 ± 0.03 0.7 ± 0.03

Quito 2012 46th 0.51 ± 0.03 0.55 ± 0.03 0.6 ± 0.03 0.54 ± 0.03 0.58 ± 0.03 0.61 ± 0.03

Njoro 2011 46th 0.51 ± 0.03 0.52 ± 0.03 0.56 ± 0.03 0.52 ± 0.04 0.55 ± 0.04 0.56 ± 0.04

Toluca 2011 46th 0.63 ± 0.03 0.6 ± 0.03 0.65 ± 0.03 0.59 ± 0.02 0.64 ± 0.02 0.63 ± 0.02

Toluca 2013 46th 0.63 ± 0.04 0.68 ± 0.03 0.71 ± 0.04 0.68 ± 0.03 0.55 ± 0.06 0.66 ± 0.04
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slightly better than GBLUP in the Toluca 2012 dataset 

(15.4% increase in accuracy) and poorer than GBLUP 

(20.3% decrease in accuracy) in the Toluca 2013 dataset. 

Although the RKHS-P model gave the lowest accuracies in 

two datasets, the increase in accuracy using markers was 

not significant (ranged from 3 to 11.8%). The GBLUP, 

RKHS-M, and RKHS-MP models gave similar accuracies 

in all the datasets. In the 46th IBWSN, RKHS-MP gave the 

highest accuracy in the Quito 2012 dataset; RKHS-MP and 

GBLUP A in the Njoro 2011 dataset; and GBLUP A in the 

Toluca 2011 and 2013 datasets. The RKHS-P model per-

formed similar to RKHS-M in all the datasets, except the 

Toluca 2013 dataset where RKHS-M resulted in 23.6% 

increase in accuracy over RKHS-P. We also observed that 

LS performed similar to GBLUP in the Njoro 2011 data-

set, slightly better than GBLUP in the Toluca 2011 dataset 

(5% increase in accuracy) and slightly poorer than GBLUP 

in the Quito 2012 and Toluca 2013 datasets (7.3 and 7.4% 

decrease in accuracy). GBLUP and RKHS-M models 

yielded similar accuracies in all the datasets.

Discussion

Genomic prediction for LR seedling resistance resulted 

in 82% average increase in accuracy over LS in the 45th 

IBWSN. However, LS performed similar to genome-wide 

marker models in the 46th IBWSN. This can be attributed 

to the two significant markers on chromosome 1DS (5.4 

and 11 cM) that were used as fixed effects and explained a 

large percent of the variability in the folds (33% and 39%). 

In this case, genome-wide markers would not be required 

for high accuracy, suggesting that the genetic architecture 

of resistance in a given population is an important factor 

that determines the appropriate model. We believe these 

markers to be linked to the Lr42 seedling resistance gene 

based on their distal location in the chromosome and also 

the presence of this gene in Quaiu (Basnet et  al. 2013), 

which was used as a parent for several crosses. Simple 

sequence repeat markers, cfd15 and wmc432, also con-

firmed the presence of the Lr42 gene in some lines from 

these nurseries. A marker at about the same position on 

chromosome 1DS (2.7 cM) was also significant in both the 

datasets in the 45th IBWSN. While it could also be linked 

to the Lr42 gene, it explained only 15 to 24% of the varia-

bility in this nursery and resulted in lower accuracies using 

the LS. There was also another marker at the distal end of 

chromosome 2BS (0 cM) used as a fixed effect in the 2010 

dataset, which is likely to be linked to Lr16, a seedling 

effective race-specific resistance gene. Lr16 is present at a 

high frequency in CIMMYT germplasm, especially in lines 

derived from Waxwing and Francolin parentage (Lan et al. 

2014), which were used as parents in several crosses.

Genomic prediction for APR to LR and SR yielded an 

average increase in accuracy of 89.8% and 53.4% respec-

tively, over LS in both the nurseries. Because LR and SR 

APR had moderate heritabilities and are quantitative traits 

conditioned by many genes with small effects, the poor 

performance of LS was expected. For LR APR in the 45th 

IBWSN, the marker on chromosome 4AL that was sig-

nificant in all the datasets did not coincide with any of the 

known genes which are effective to this Pt race and may be 

identifying a novel QTL. A marker on chromosome 3AS 

(9.4 cM) was significant in all the folds in the 2010 dataset. 

Although Lr63 is the only known gene mapped to the distal 

end of chromosome 3AS (Kolmer et al. 2010), it is unlikely 

that it is present in these lines considering its origin. In the 

46th IBWSN, a marker on chromosome 2D (17.3 cM) was 

significant in the 2011 dataset and three markers on chro-

mosome 3A (53.4–63.1  cM) were significant in the 2013 

dataset. Since their positions could not be compared to any 

of the known genes in these chromosomes and the cata-

logued genes are not effective to this Pt race, they might be 

identifying novel QTL. Stem rust APR in the 45th IBWSN 

was associated with markers at two locations on chromo-

some 3B (0 and 76.4 cM). The marker at the distal end of 

chromosome 3B might be linked to the durable stem rust 

resistance gene, Sr2 which is present in a high frequency 

in CIMMYT lines. The other marker on chromosome 3B 

might be linked to the Sr12 resistance gene, which despite 

being ineffective against Ug99 alone, was suggested to con-

fer APR in combination with other resistance loci by com-

plementary epistasis (Rouse et  al. 2014). XwPt6047, the 

marker closely linked to the Sr12 gene (Rouse et al. 2014) 

is located at 52.7  cM in the CIMMYT integrated DArT 

map (Crossa et al. 2007), but it was not possible to obtain 

its relative position in the popseq map. In addition to the 

markers on chromosome 3B, a marker at the distal end of 

chromosome 5BS (4.2  cM) was also significant. While it 

is was not possible to determine what gene it was linked 

to, a minor QTL for Ug99 resistance has been reported on 

the distal end of chromosome 5BS by Yu et al. (2011). In 

the 46th IBWSN, SR APR was associated with a marker on 

an unknown location on chromosome 3B in both seasons 

and one marker each on chromosome 1AL (86.5 cM), chro-

mosome 6BS (65.1 cM), and chromosome 6DS (2.5 cM). 

The position of the markers on chromosomes 1AL and 

6BS could not be compared to previously reported Ug99 

resistance QTL as relative markers were not available. We 

believe that the marker on chromosome 6DS is linked to 

the SrTmp gene, but it is no longer effective against Ug99 

(Newcomb et al. 2016).

For seedling resistance to YR, we observed that GBLUP 

A and LS performed slightly better than GBLUP. This can 

be attributed to the very high heritability of the trait and 

the marker, GBS_702 on chromosome 2AS that explained 
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a large variation in the folds. This is another case where 

genomic prediction is not necessary for high accuracy. For 

YR APR in the 45th IBWSN, GBLUP A performed the 

best in all the datasets and LS also performed well except 

in one dataset. This is due to markers GBS_6432 and 

GBS_702 on chromosome 2AS that explained a large vari-

ation. Similarly, in the 46th IBWSN, the GBLUP A model 

had the highest accuracy in most datasets and the high 

accuracies obtained from both LS and GBLUP A were due 

to the marker, GBS_702 on chromosome 2AS that had a 

large effect. Unlike LR and SR, APR to YR in these nurser-

ies behaved as a simple trait and could be predicted well 

using LS. The significant association of the same marker 

to both seedling resistance and APR indicates that it is 

an all-stage resistance gene that we believe to be Yr17 or 

a closely linked gene. The Yr17 gene is located at the dis-

tal end of chromosome 2AS which is also the location of 

GBS_702 (0  cM) and GBS_6432 (8.8  cM). Many lines 

with Kachu, Milan, and Mutus in the pedigree are expected 

to have the Yr17 gene. Yr17 was introgressed into the 

French wheat cultivar, VPM-1 as a translocation segment 

from the D-genome of Aegilops ventricosa. The sequence-

tagged site marker, Ventriup + Ln2 and the single nucleo-

tide polymorphism marker, CIMwMAS0004 that amplify a 

region in this translocation confirmed its presence in about 

45% of the lines in the 45th and 46th IBWSN, respectively. 

Although Yr17 is closely linked to Lr37 and Sr38, it is to be 

noted that races MBJ/SP and MCJ/SP are virulent to Lr37 

and the Ug99 group of races in Kenya are virulent to Sr38.

Overall, our prediction results indicate that genome-

wide marker-based prediction models were more accurate 

than LS in most datasets, which is consistent with several 

previous studies (Meuwissen et  al. 2001; Bernardo and 

Yu 2007; Habier et  al. 2007; Muir 2007; Piyasatian et  al. 

2007; Lorenzana and Bernardo 2009; Moser et  al. 2009; 

Heffner et al. 2011a, b; Rutkoski et al. 2012, 2014). Only 

a few markers were included in the LS model for some 

traits, because the other markers explained a very small 

portion of the variance and did not improve the predictions. 

We obtained an average of 42% increase in accuracy using 

the GBLUP compared to LS. This is comparable to the 

previous reports: Meuwissen et al. (2001) obtained a 41% 

greater accuracy using RR-BLUP than stepwise regression 

in simulations; Bernardo and Yu (2007) obtained an 18 and 

43% improvement in the responses using GS compared 

to marker-assisted recurrent selection in their simulation 

study for a trait that has high and low heritability; Piya-

satian et  al. (2007) obtained a 32% increase in accuracy 

using RR over stepwise regression in earlier generations; 

Heffner et  al. (2011a) reported 28% higher average accu-

racies using GS than marker-assisted selection in a popu-

lation of advanced cycle winter wheat breeding lines. The 

poor predictive ability of LS for some traits results from 

the fact that complex traits are controlled by many QTL, 

thereby supporting the infinitesimal model of Fisher (1918) 

and the use of single-QTL models is naïve (Dekkers and 

Hospital 2002; Gianola 2006; Meuwissen et al. 2001). We 

also observed that when the trait was controlled by large 

effect loci, the benefits of LS over genomic prediction mod-

els was low. This was the case for seedling resistance to LR 

and YR in the 46th IBWSN and also APR to YR in several 

datasets in both nurseries. There were also some datasets in 

our study where LS performed slightly better than GBLUP. 

This can be attributed to the fact that LS may better capture 

large effect QTL and eliminate the noise due to the markers 

with near zero effect that are included in GBLUP. Hence, 

we would recommend using LS for oligogenic resist-

ance and GBLUP for quantitative resistance. The GBLUP 

A model performed well for traits where the fixed effect 

markers explained a large amount of variation. A previous 

study by Rutkoski et al. (2014) for quantitative APR to SR 

in wheat also reported that GBLUP A gave higher accuracy 

than GBLUP alone. Although the average increase in accu-

racy using GBLUP A over GBLUP was only 1.3% in our 

study, it ranged between 15.4 and −36.6%.

Our results also indicate that the RKHS-M model per-

formed similar to GBLUP, although several studies have 

reported that non-parametric models performed better than 

the parametric ones. Gianola (2006) used simulations and 

concluded that non-parametric RKHS model outperformed 

the parametric standard additive genetic model for addi-

tive by additive gene action. Crossa et al. (2010) reported 

that the RKHS models outperformed BLUP. Crossa et  al. 

(2013) compared GBLUP with the RKHS and concluded 

that there was no clear superiority of either of the models, 

although the RKHS-M performed slightly better than the 

GBLUP. Howard et  al. (2014) also reported that the non-

parametric models performed well when the underlying 

genetic architecture was entirely based on epistasis. How-

ever, for the traits that we analysed in this study, either a 

negligible effect of epistasis or the equivalence of the 

RKHS-M to the GBLUP when the kernel used in RKHS 

is a Gaussian kernel (K = G) (Jiang and Reif 2015), led to 

similar accuracies.

We observed that RKHS-P performed well and the 

increase in accuracies using genome-wide marker-based 

models was only 4.44% (ranged between −20.94 and 

38.2%). The pedigree-BLUP model was also evaluated and 

it gave similar accuracies as the RKHS-P model (results not 

shown). However, the general expectation is that the ped-

igree-based relationship would predict a 50% relationship 

between full-sibs and 25% relationship between half-sibs, 

while the genomic-based relationship would predict the 

allele sharing (within family variation) with better accuracy 

(Hayes and Goddard 2010). This is because it exploits the 

Mendelian sampling term that occurs during the formation 
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of gametes and captures the realized relationship matrix 

instead of the average relationship matrix obtained from the 

pedigree (Daetwyler et al. 2007; Goddard and; Hayes 2007; 

Hayes et  al. 2009; Villanueva et  al. 2005). Crossa et  al. 

(2010) reported that the gain in using markers compared 

to the pedigree was 7.7–35.7%. Wolc et al. (2011a) showed 

that marker estimated BVs were more persistent over gen-

erations compared to the pedigree estimated BVs in layer 

chickens. In another study, Wolc et al. (2011b) also reported 

that marker-based methods had higher accuracies than the 

pedigree based method. Spindel et al. (2015) reported that 

GS models were superior to the pedigree-based prediction 

in rice for yield, height, and flowering time. The benefits of 

using the G-matrix are manifold: (1) the G-matrix can dif-

ferentiate sibs and can help avoid selecting closely related 

sibs together (Daetwyler et al. 2007); (2) the G-matrix can 

provide some prediction accuracies compared to the pedi-

gree (almost zero) when distant/unrelated individuals are 

involved (van der Werf 2009); (3) the G-matrix can per-

form better when the pedigree is shallow (goes back to only 

a few generations); (4) the G-matrix can correct for pedi-

gree errors (Munoz et al. 2014). Nevertheless, the fact that 

genotypes can also contain errors cannot be overlooked. 

We attribute the high accuracies obtained with the pedigree 

in our study to several reasons: (1) CIMMYT maintains an 

excellent pedigree recording system that goes back several 

generations. (2) The family sizes were small and except for 

large family sizes (with considerable Mendelian segrega-

tion), the advantage of using markers over the pedigree is 

expected to be small. (3) Dense marker coverage is essen-

tial to maximize the number of QTL that will be in LD with 

at least one marker that, in turn, is governed by the rate of 

decay of LD in the genome (Heffner et  al. 2009). In this 

study, the large number of markers seem to provide excel-

lent genome coverage. However, it is possible that these 

markers inadequately cover some major regions associated 

with the trait resulting in lower genomic prediction accu-

racies. (4) Another possibility is that, in the highly inbred 

lines we used, inbreeding resulted in the loss of alleles 

reducing the Mendelian sampling variance as suggested 

by Daetwyler et al. (2007). (5) Full-sibs in both the train-

ing and validation sets could have lead to higher accuracies 

with the pedigree, but this might not work as well for lines 

in early generations.

The RKHS-MP model performed better than just the 

pedigree and markers alone and gave the highest accura-

cies for most datasets which is consistent with several stud-

ies (Burgueño et al. 2012; Crossa et al. 2010, 2013; de los 

Campos et al. 2009; Perez et al. 2010). The average increase 

in accuracy using the RKHS-MP model over RKHS-P was 

9.3% (ranged between −1.56 and 32.35%) and over the 

RKHS-M was 5.23% (ranged between −4.26 and 22.03%). 

Hence, despite, the pedigree being remarkably robust, it 

was clear that molecular markers can complement the pedi-

gree to enhance breeding progress. Certain folds were pre-

dicted with a higher accuracy using the pedigree and vice 

versa, although the average accuracies were similar (data 

not shown). While it would be ideal to use both pedigree 

and markers to obtain the relationship matrix as suggested 

by Meuwissen (2007), consideration should be given to 

how informative the pedigrees are versus the cost of mark-

ers to make breeding decisions. However, there is a level 

of redundancy between the regression on the markers and 

that on the pedigree, and as a result, there might be only a 

small advantage of considering them together (Habier et al. 

2009).

Although the IBWSNs were composed of a set of diverse 

lines involving several crosses between different parents, 

the ability to detect significant associations and predict 

resistance was not high in some datasets, especially where 

the resistance was quantitative. This was probably due to 

the lack of variability in these highly selected elite lines 

that resulted in low power. Hence, the issue is how to effec-

tively implement genomic selection in later generations for 

traits with limited genetic variability. One strategy that can 

be applied to a large-scale breeding program is to develop 

a training population of a few hundred carefully chosen 

diverse fixed lines/varieties that vary widely for resistance 

to diseases of interest, are closely related to the breeding 

germplasm, and are grown in a managed nursery. These 

can be genotyped once and phenotyped for the desired dis-

eases each season at a reasonable cost. In addition, new 

lines from the most recent germplasm can be added to the 

training population, so that prediction models for the highly 

selected late generation lines will provide more accurate 

results.

We observed that the loci significantly associated with 

seedling and APR were different for LR. But for YR, an 

all-stage resistance gene conferred resistance at both 

stages. This indicates a clear difference in the genetic basis 

for seedling resistance and APR to the two rusts in these 

populations. We also observed large differences between 

the different years/locations/replications for the traits. 

Several studies have focused on the incorporation of the 

genotype x environment (G × E) component in predictions 

(Burgueño et al. 2012; Heslot et al. 2013a, b; Jarquín et al. 

2014; Lopez-Cruz et al. 2015) and it is important to con-

sider the number of environments (years/locations/repli-

cations) that should be used for training the model, such 

that it is reasonably stable within and across environments. 

With whole-genome marker genotypes, the unit of replica-

tion is the allele and not the genotype per se. Therefore, 

using phenotyping strategies that can maximize the repli-

cation of alleles over the replication of individuals (Heslot 

et  al. 2015) is important. In conclusion, our study clearly 

indicates that for quantitative traits, using genome-wide 
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marker-based models maximizes genetic gain from molec-

ular markers compared to marker-assisted selection. GS 

extends marker-assisted selection to a genome-wide scale 

and helps to make more accurate and informed breed-

ing decisions for quantitative traits, thus advancing the 

revolution that molecular markers have brought to crop 

improvement.
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