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ABSTRACT
Aim We performed genome-wide and transcriptome-
wide profiling to identify genes and single nucleotide
polymorphisms (SNPs) associated with the response of
triglycerides (TG) to exercise training.
Methods Plasma TG levels were measured before and
after a 20-week endurance training programme in 478
white participants from the HERITAGE Family Study.
Illumina HumanCNV370-Quad v3.0 BeadChips were
genotyped using the Illumina BeadStation 500GX
platform. Affymetrix HG-U133+2 arrays were used to
quantitate gene expression levels from baseline muscle
biopsies of a subset of participants (N=52). Genome-
wide association study (GWAS) analysis was performed
using MERLIN, while transcriptomic predictor models
were developed using the R-package GALGO.
Results The GWAS results showed that eight SNPs
were associated with TG training-response (ΔTG) at
p<9.9×10−6, while another 31 SNPs showed p values
<1×10−4. In multivariate regression models, the top 10
SNPs explained 32.0% of the variance in ΔTG, while
conditional heritability analysis showed that four SNPs
statistically accounted for all of the heritability of ΔTG. A
molecular signature based on the baseline expression of
11 genes predicted 27% of ΔTG in HERITAGE, which
was validated in an independent study. A composite
SNP score based on the top four SNPs, each from the
genomic and transcriptomic analyses, was the strongest
predictor of ΔTG (R2=0.14, p=3.0×10−68).
Conclusions Our results indicate that skeletal muscle
transcript abundance at 11 genes and SNPs at a number
of loci contribute to TG response to exercise training.
Combining data from genomics and transcriptomics
analyses identified a SNP-based gene signature that
should be further tested in independent samples.

INTRODUCTION
Elevated triglycerides (TG) are strongly associated
with increased risk of cardiovascular disease (CVD)
in epidemiological studies.1–4 Furthermore,
Mendelian randomisation studies of genetic var-
iants affecting TG levels have suggested a causal
role of TG on CVD and all-cause mortality.5 6

Physical activity is considered a major target for
therapeutic lifestyle changes in the prevention and
treatment of elevated TG.7 8 On average, exercise
training induces reductions in TG levels ranging
from 4 to 38 mg/dL.9 However, there is large inter-
individual variation in the magnitude of changes in
plasma TG levels derived from standardised exer-
cise training. In fact, we recently reported that
across six exercise intervention studies (N=1687),
10.3% of participants experienced a response of

TG (increase of 0.42 mmol/L or greater) to exercise
training that was qualified as being adverse.10

Innovative research strategies are needed to iden-
tify the molecular factors contributing to individual
differences in response to regular exercise and to
translate them into clinically useful applications,
such as personalised exercise programmes.11

Genetic factors need to be taken into account in
comprehensive personalised exercise medicine
approaches, as their contributions are typically
strong across populations studied to date and they
are powerful determinants of the ability to benefit
from regular exercise.11 In the HERITAGE Family
Study (HERITAGE), the maximal heritability esti-
mates for exercise-induced changes in TG were
32% in black participants and 29% in white parti-
cipants.12 However, the genetic variants responsible
for variation in TG response to regular exercise
remain poorly understood. A limited number of
candidate gene studies have provided evidence of
the association of DNA sequence variants with TG
response to lifestyle and exercise interventions,
with nominal associations found for variants in the
APOE, LIPC and PGS1 genes.13 14 However, these
candidate genes explain only a small percentage of
the variance in plasma TG response to exercise
training. Thus, there is a need for innovative,
unbiased approaches, such as integrated omics pro-
filing, in the search for the genes and DNA
sequence variants contributing to plasma TG
response to regular exercise.
Integrated omics profiling (eg, combining data

from genomics, epigenomics, transcriptomics, meta-
bolomics and/or proteomics) allows for the profiling
of the molecular factors that may impact the toler-
ance, effects and performance expected from
regular exercise.11 We have previously shown that
global RNA profiling of skeletal muscle combined
with targeted genotyping increased the explanatory
power of a gene signature for VO2max response to
exercise training.15 A better understanding of the
genetic or molecular factors associated with TG
response to exercise could inform about the poten-
tial clinical utility of including this information in
personalised exercise prescriptions. Therefore, the
purpose of the present study was to perform both
genome-wide and transcriptome-wide profiling in
order to identify a single nucleotide polymorphism
(SNP)-based gene signature that predicts the respon-
siveness of TG levels to exercise training.

METHODS
A detailed description of the study design, method-
ology and analyses can be found in the online only
supplementary material.
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HERITAGE Family Study
The participants, study design and exercise training protocol of
the HERITAGE Family Study have been described elsewhere.16

This study sample includes data from 478 white participants
from 99 nuclear families who completed the 20 week exercise
programme and have baseline and post-training plasma lipid
measurements. Participants were sedentary at baseline, normo-
tensive or mildly hypertensive (<160/100 mm Hg) without
medications for hypertension, diabetes or dyslipidemia.16 The
study protocol had been approved by the Institutional Review
Boards at each of the five participating centres of the
HERITAGE Family Study consortium. Written informed
consent was obtained from each participant.

Exercise training programme
Each participant in HERITAGE exercised three times per week
for 20 weeks on cycle ergometers controlled by direct heart rate
(HR) monitoring. Details of the exercise programme can be
found elsewhere.16 Briefly, participants exercised at the HR
associated with 55% of baseline maximal oxygen uptake
(VO2max) for 30 min per session for the first 2 weeks. The dur-
ation and intensity were gradually increased every 2 weeks, until
reaching 50 min and 75% of the HR associated with baseline
VO2max. This level was maintained for the final 6 weeks of
training. The protocol was standardised across all clinical
centres and supervised to ensure that the equipment was
working properly and that the participants were compliant with
the protocol.

Determination of plasma lipids
Blood samples for plasma lipid assays were obtained from an
antecubital vein into Vacutainer tubes containing EDTA in the
morning after a 12-h fast with participants in a semirecumbent
position. The blood samples were collected twice at baseline (on
separate days), and again at 24 h and 72 h after the last exercise
session. TG levels were determined in plasma by enzymatic
methods using a Technicon RA-500 Analyzer (Bayer
Corporation Inc, Tarrytown, New York, USA). The reproducibil-
ity of TG measurements in HERITAGE has been previously
examined, with a coefficient of variation of 21.8, intraclass cor-
relation of 0.79 and technical error of 0.21 (mmol/L).17 The
response to exercise training (Δ) was computed as the difference
between the average post-exercise training TG measures and the
average baseline TG measures.

GWAS SNP genotyping
Genomic DNA was prepared from immortalised lymphoblastoid
cell lines by commercial DNA extraction kits (Gentra Systems,
Inc, Minneapolis, Minnesota, USA). Genome-wide association
study (GWAS) SNPs were genotyped using Illumina
HumanCNV370-Quad v3.0 BeadChips on the Illumina
BeadStation 500GX platform. The choice of the CNV370
BeadChips was dictated by cost at the time (2008), as the chips
met our need of genotyping at the genome-wide level in a cost-
effective way. Overall, 277 133 SNPs with minor allele fre-
quency (MAF) ≥0.10 passed all quality control (QC) measures
and were tested in the GWAS analysis. More details of the geno-
typing procedures and QC measures can be found in the online
only supplementary material.

GWAS statistical analyses
For the individual SNP GWAS analyses, normalised trait resi-
duals were used as phenotypes.18 The dependent variable (ΔTG)

was adjusted for age (up to a cubic polynomial), baseline body
mass index (BMI) and baseline TG using a stepwise regression
procedure. Associations between genotyped GWAS SNPs and
ΔTG were analysed using the total association model of
MERLIN.19 The Bonferroni adjusted p value threshold of
1.8×10−7 represents genome-wide statistical significance
(N=277 133 SNPs tested).

Regression models
Multivariable regression procedures were used to evaluate the
overall contribution of the most significant GWAS SNPs on
ΔTG. All GWAS SNPs with p≤1.0×10−4 were included. First, a
regression model with backward elimination was used to filter
out redundant SNPs (mainly due to strong pairwise linkage dis-
equilibrium). The threshold for keeping SNPs in the model was
p=0.05. The SNPs retained in the backward elimination model
were then analysed in a forward stepwise regression model.

Conditional heritability analyses
Whether the most significant SNPs from the regression model
contribute to the heritability of ΔTG was tested using condi-
tional heritability analysis in MERLIN. If an SNP contributes to
the genetic variance (heritability) of a trait, the heritability esti-
mate should decrease when the marker is included as a covariate
in the model. Starting with the SNP showing the greatest partial
R2 in the final regression model, the SNPs were added one at a
time in the heritability model until the estimate reached zero
(heritability fully accounted for by the covariates (SNPs)) or no
more SNPs remained.

Pathway analysis of GWAS associations
We performed pathway analysis of the GWAS SNP associations
via gene set enrichment analysis (GSEA) using Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways as gene
sets.20 21

We employed two different approaches to calculate gene-level
statistics for GSEA: (1) the second most significantly associated
SNP was used to summarise all SNPs for each gene22 and (2)
Stouffer’s method23 that combines p values from multiple indi-
vidual statistical tests and calculates the gene set statistic using
the inverse normal cumulative distribution function.

Affymetrix microarray analysis
Muscle biopsies of the vastus lateralis muscle were performed at
baseline using the percutaneous needle biopsy technique in 52
HERITAGE white participants from the Québec Clinical Center.
Total RNA was isolated from frozen muscle biopsies preserved
in Tissue-Tek using Trizol and messenger RNA (mRNA) ampli-
fied with Ambion MessageAmp Premier following the manufac-
turer’s instructions.

Affymetrix HG-U133+2 arrays were used to quantitate
global gene expression levels. Raw microarray data have been
deposited with Gene Expression Omnibus under accession
number: GSE47874.23a After QC and removal of outliers (N=2
with Cook’s distance >0.5),24 baseline microarray data were
available for 49 participants.

Baseline RNA gene signature
We used GALGO,25 an R package for multivariate variable selec-
tion based on a genetic algorithm (GA) methodology, to derive a
multivariate regression model of ΔTG in HERITAGE using base-
line mRNA expression levels. In brief, this computational search
procedure tries to find the best subset of genes for maximising
the fitness of the regression model (defined by R2). During the
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GA search procedure, ¾ of the samples (N=37) were used for
training, whereas the remaining 12 samples were completely
omitted and used for validation. In order to better estimate the
model accuracy (owing to the number of samples), the training
data set was split in 100 different training and test sets and 4000
simulations were run. Owing to variability in the model perform-
ance across the splits (likely caused by interindividual differ-
ences), we chose to focus on the subset of models (N=512) that
performed well in most splits (ie, low overall deviation and high
accuracy; see online supplementary figure S1).

Replication in an independent cohort
We tested our predictive model in an independent training
study, for which Affymetrix Gene 1.1 ST microarray data are
publicly available (GSE53598), consisting of 18 overweight to
obese normoglycaemic middle-aged men who underwent
12 weeks of mixed exercise training (2 days/week aerobic, 1 day/
week resistance training).26 27

Association of top SNPs from RNA signature genes
The association of SNPs, in or near (±20 kb) the top RNA pre-
dictor genes, with ΔTG was tested in all HERITAGE white par-
ticipants using imputed SNPs. Approximately 2.54 million
HapMap SNPs (release 22, build 36, CEU population) were
imputed using the HERITAGE QC’ed genotyped GWAS data
and MACH software,28 as previously described.29 After remov-
ing monomorphic SNPs (N=32 904) and zeroing out
Mendelian errors, an additional 114 394 SNPs were removed
that had R2 <0.3 (indicating poor quality), missing rate over
5%, MAF <1%, and/or a Hardy-Weinberg equilibrium p value
<10−6. More details of the imputation methods and QC can be
found in the online only supplementary material. The associ-
ation between imputed SNPs from the selected genes and ΔTG

was tested using the same total association models described
above for the GWAS analyses.

SNP summary score
An SNP summary score for ΔTG was constructed by combining
the GWAS SNPs that accounted for all of the heritability in the
conditional heritability analyses (N=4) with the top SNPs from
the RNA-based classifier genes (N=4). Each SNP was recoded
to reflect the number of favourable responses to regular exercise
alleles (eg, favourable defined as a decrease in TG) in the follow-
ing manner: 0 for no copy of the favourable response allele,
1 for one copy and 2 for two copies of the favourable response
allele. The sum of the recoded SNPs was used as the SNP
summary score. The association between the SNP summary
score and TG response to exercise training in HERITAGE white
participants (N=476) was analysed using a general linear model
(Proc GLM in SAS V.9.4) adjusting for age, sex, baseline BMI
and baseline TG.

RESULTS
The basic characteristics, including mean lipid values at baseline
and in response to exercise training, of HERITAGE white parti-
cipants with valid GWAS or gene expression data are shown in
table 1. On average, high-density lipoprotein cholesterol and
lipoprotein lipase (LPL) activity increased with regular exercise,
while TG and hepatic lipase activity decreased. More detailed
descriptions of the lipid trait responses to regular exercise in
HERITAGE have been previously published.30–32

GWAS associations for TG response to exercise training
Online supplementary figure S2 displays a Manhattan plot of
the GWAS results for the response of TG to exercise training
across 22 autosomes. In the individual SNP analyses, 39 SNPs

Table 1 Descriptive data, including baseline and response to exercise training values for lipid, lipoprotein and lipase phenotypes, for HERITAGE
white participants with valid GWAS (left) and gene expression (right) data

Participants with GWAS data (N=478)
Subsample with gene
expression data (N=49)

Variable Mean (SD) 95% CI Range Mean (SD) 95% CI

Age, years 35.9 (14.5) 17.0 to 65.2 32.9 (14.3)
BMI, kg/m2

Baseline 25.9 (5.0) 17.0 to 47.5 25.9 (4.1)
Response to exercise training −0.09 (0.7) −0.15 to −0.02 −3.5 to 2.9 −0.004 (0.8) −0.22 to 0.21

Triglycerides, mmol/L
Baseline 1.4 (0.8) 0.4 to 6.3 1.4 (0.8)
Response to exercise training −0.02 (0.4) −0.06 to 0.02 −1.8 to 2.3 −0.2 (0.5) −0.28 to −0.03

HDL-C, mmol/L
Baseline 1.0 (0.3) 0.5 to 2.0 1.1 (0.2)
Response to exercise training 0.04 (0.1) 0.03 to 0.05 −0.3 to 0.6 0.07 (0.1) 0.04 to 0.11

LDL-C, mmol/L
Baseline 3.0 (0.8) 0.9 to 6.0 2.8 (0.8)
Response to exercise training −0.004 (0.4) −0.04 to 0.03 −1.2 to 1.5 0.01 (0.4) −0.09 to 0.12

PH-LPL, nmol/min/mL
Baseline 56.7 (30.1) 2.8 to 205.5 57.2 (26.7)
Response to exercise training 7.6 (28.1) 5.0 to 10.2 −98.3 to 96.2 9.4 (26.0) 2.1 to 16.7

PH-HL, nmol/min/mL
Baseline 209.2 (70.7) 53.9 to 379.7 216.6 (77.8)
Response to exercise training −11.5 (48.4) −16.1 to −7.0 −203.2 to 143.6 −9.0 (51.9) −23.5 to 5.5

BMI, body mass index, GWAS, genome-wide association study; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; PH-LPL, post-heparin lipoprotein
lipase; PH-HL, post-heparin hepatic lipase.
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showed associations of p<1×10−4 (table 2). None of the previ-
ously identified TG GWAS loci33 that we tested showed evi-
dence of an association with TG response to exercise training
(see online supplementary table S1).

The strongest evidence of association with ΔTG was detected
at rs2396190 (p=3.3×10−7) located 90 kb from DOCK10
(2q36.2), followed by rs222158 (p=1.8×10−6) located in
CYYR1 (21q21.2) (see online supplementary figure S3). In the
final forward regression model, the top 10 SNPs explained
32.0% of the variance in ΔTG (table 3). CYYR1 rs222158 was
the strongest predictor of ΔTG in the model, explaining 5.5%
of the total variance, followed by GLT8D2 rs2722171, which

explained 4.1% of the variance. As shown in the last column of
table 3, the top four SNPs were shown to be sufficient to
account for the genetic component of TG response to exercise
training in white participants HERITAGE families. These four
SNPs were retained for the ΔTG SNP summary score.

Pathway analysis of GWAS associations
The results of the pathway analysis using the second best
p value and Stouffer’s methods can be found in online supple-
mentary tables S2–S4. Briefly, the glycosphingolipid biosynthesis
gene set was enriched using both approaches. Glycosphingolipid
biosynthesis-related gene sets were the second, fifth and sixth

Table 2 List of GWAS SNPs associated with TG response to exercise training at p<1.5×10−4 in HERITAGE white participants

SNP Chromosome Position* Allele Freq β† H2 p Value Gene‡

rs2396190 2 225 718 082 A 0.77 −0.45 5.67 3.30×10−7 DOCK10 (90 kb)
rs222158 21 26 794 032 A 0.67 −0.38 4.95 1.76×10−6 CYYR1
rs3906453 18 49 512 336 A 0.76 0.39 4.43 2.80×10−6 DCC (200 kb)
rs3862435 15 88 883 536 G 0.91 −0.60 4.77 6.67×10−6 CRTC3
rs3862436 15 88 883 873 G 0.91 −0.60 4.76 6.67×10−6 CRTC3
rs3861882 9 131 505 125 A 0.72 −0.38 4.75 6.85×10−6 PRRX2
rs2646822 1 215 602 483 G 0.77 0.42 4.92 9.84×10−6 GPATCH2 (69 kb)
rs2646817 1 215 591 874 C 0.77 0.42 4.91 9.84×10−6 GPATCH2 (80 kb)
rs12153753 5 134 692 476 G 0.85 −0.46 4.12 1.83×10−5 C5orf66
rs7712997 5 134 690 996 C 0.89 −0.51 4.05 1.95×10−5 C5orf66
rs9357234 6 37 138 195 C 0.69 0.35 4.09 1.97×10−5 FGD2 (33 kb)
rs726553 2 225 724 738 A 0.63 −0.33 4.14 2.29×10−5 DOCK10 (100 kb)
rs1452404 4 109 599 177 A 0.90 0.52 3.96 2.59×10−5 LEF1 (290 kb)
rs13093483 3 68 376 923 A 0.88 −0.48 4.00 2.97×10−5 FAM19A1
rs738958 22 33 001 012 G 0.74 0.36 4.09 3.12×10−5 LARGE (350 kb)
rs2722171 12 102 973 617 C 0.80 −0.41 4.32 3.33×10−5 GLT8D2
rs7850237 9 89 643 439 A 0.86 −0.46 4.13 4.18×10−5 SPATA31C1 (75 kb)
rs713765 22 33 005 903 A 0.78 0.38 3.96 4.59×10−5 LARGE (350 kb)
rs4742057 9 4 943 916 G 0.58 0.30 3.57 5.09×10−5 JAK2 (32 kb)
rs795602 4 140 801 382 A 0.52 0.31 3.82 5.29×10−5 MGST2 (5 kb)
rs11666431 19 2 904 087 G 0.58 0.32 3.92 5.29×10−5 ZNF77 (9 kb)
rs4045101 19 24 238 309 A 0.63 −0.31 3.70 5.64×10−5 ZNF254 (140 kb)
rs7645395 3 64 326 912 A 0.79 −0.36 3.45 5.71×10−5 PRICKLE2 & ADAMTS9 (15 kb)
rs1906058 16 6 084 649 C 0.53 0.30 3.69 5.74×10−5 RBFOX1
rs7253132 19 24 170 037 A 0.60 −0.31 3.73 5.91×10−5 ZNF254 (65 kb)

rs9469986 6 11 857 166 G 0.80 0.39 3.94 5.95×10−5 ADTRP
rs7185541 16 47 222 182 A 0.64 −0.32 3.82 6.20×10−5 LOC105371240 & N4BP1 (21 kb)
rs1914037 2 189 553 760 A 0.75 0.35 3.71 6.57×10−5 COL3A1
rs28862711 19 32 470 668 A 0.61 −0.31 3.58 6.78×10−5 Only a pseudogene within 1 Mb
rs10420243 19 32 640 702 A 0.68 −0.31 3.32 6.79×10−5 Only a pseudogene within 1 Mb
rs2190798 19 33 141 651 G 0.75 −0.36 3.93 7.37×10−5 LOC102724694
rs12659606 5 123 591 568 A 0.89 −0.48 3.61 7.55×10−5 ZNF608 (400 kb)
rs748731 3 133 175 696 A 0.82 −0.38 3.52 7.68×10−5 CPNE4
rs3736487 2 189 564 188 G 0.76 0.35 3.56 7.71×10−5 COL3A1
rs1901163 5 165 909 270 G 0.82 −0.40 3.62 7.81×10−5 TENM2 (409 kb)
rs6584162 10 99 631 761 A 0.67 0.31 3.36 8.98×10−5 CRTAC1
rs10520872 5 21 709 737 A 0.86 −0.44 3.66 9.13×10−5 LOC105374685 & CDH12 (77 kb)
rs2158244 7 111 610 670 G 0.69 0.32 3.49 9.26×10−5 DOCK4
rs894417 9 131 497 934 A 0.90 −0.49 3.31 9.40×10−5 PRRX2
rs7197966 16 6 086 332 G 0.59 −0.30 3.58 9.51×10−5 RBFOX1
rs2593324 3 22 094 225 G 0.62 −0.30 3.42 9.8×10−5 ZNF385D
rs1889879 6 69 720 601 A 0.61 −0.29 3.18 9.91×10−5 BAI3

H2 is the proportion of total phenotypic variance explained by the SNP.
*Positions are relative to Human Genome National Center for Biotechnology Information (NCBI) Build 36.3.
†A positive β means that the modelled allele is associated with an increase in TG in response to exercise training, while a negative β reflects the converse.
‡The gene located nearest to the SNP. Distance to the gene in kilo bases (1000 bp) is shown in parentheses. If no distance is shown, the SNP is located within the gene locus.
Freq, allele frequency; GWAS, genome-wide association study; SNP, single nucleotide polymorphisms; TG, triglycerides.

4 of 8 Sarzynski MA, et al. Br J Sports Med 2015;49:1524–1531. doi:10.1136/bjsports-2015-095179

Original article
P

rotected by copyright.
 on S

eptem
ber 29, 2021 at U

niversity of M
aastricht C

onsortia.
http://bjsm

.bm
j.com

/
B

r J S
ports M

ed: first published as 10.1136/bjsports-2015-095179 on 21 O
ctober 2015. D

ow
nloaded from

 

http://bjsm.bmj.com/


most enriched positive gene sets using the second best p value
method (false discovery rate (FDR): 0.07–0.32), while it was
the third ranked gene set using Stouffer’s method (FDR=0.30).
The most enriched positive gene set using the second best
p value method was the heparan sulfate glycosaminoglycan bio-
synthesis gene set (FDR=0.097), while cell adhesion molecules
were the most enriched negative gene set (FDR=0.12).

RNA expression-based gene signature of TG response to
exercise training
By means of forward stepwise regression, ranking Affymetrix
probesets by their selection frequency (high to low) in the

different GA-derived predictor models, an 11-gene linear
regression model was developed (table 4). This model was able
to explain 80% of the variance in the training set (F
value=13.2, p<0.0001). We then evaluated the model perform-
ance on the remaining 12 HERITAGE samples that were
omitted from the GA search procedure. As shown in figure 1,
the predictor model was able to explain 27% of the variance.

Table 3 Results of the GWAS-based multivariate regression model with forward selection for TG response to exercise training in HERITAGE
white participants (N=478)

SNP Chromosome Position* Gene† MAF

Regression model Remaining
Partial R2 Model R2 p Value Heritability‡

rs222158 21 26 794 032 CYYR1 0.33 0.055 0.055 2.32×10−7 9.48%
rs2722171 12 102 973 617 GLT8D2 0.20 0.041 0.097 4.70×10−6 6.4%
rs1906058 16 6 084 649 RBFOX1 0.47 0.039 0.135 6.19×10−6 2.6%
rs2593324 3 22 094 225 ZNF385D 0.38 0.037 0.172 6.98×10−6 0%

rs12659606 5 123 591 568 ZNF608 (400 kb) 0.11 0.032 0.204 1.82×10−5 NA
rs2190798 19 33 141 651 LOC102724694 0.25 0.028 0.231 5.30×10−5 NA
rs726553 2 225 724 738 DOCK10 (100 kb) 0.37 0.025 0.256 8.40×10−5 NA
rs7850237 9 89 643 439 SPATA31C1 (75 kb) 0.14 0.027 0.283 3.66×10−5 NA
rs9357234 6 37 138 195 FGD2 (33 kb) 0.31 0.020 0.303 0.0003 NA
rs2646822 1 215 602 483 GPATCH2 (69 kb) 0.23 0.017 0.320 0.0007 NA
rs3736487 2 189 564 188 COL3A1 0.24 0.012 0.332 0.0038 NA
rs13093483 3 68 376 923 FAM19A1 0.12 0.012 0.344 0.0038 NA
rs1889879 6 69 720 601 BAI3 0.39 0.011 0.356 0.0046 NA
rs10520872 5 21 709 737 LOC105374685 0.14 0.010 0.366 0.0066 NA
rs1452404 4 109 599 17 7 LEF1 (290 kb) 0.10 0.011 0.377 0.0053 NA
rs11666431 19 2 904 087 ZNF77 (9 kb) 0.42 0.009 0.386 0.0103 NA
rs3861882 9 131 505 125 PRRX2 0.28 0.008 0.394 0.0143 NA
rs9469986 6 11 857 166 ADTRP 0.20 0.008 0.401 0.0165 NA
rs2158244 7 111 610 670 DOCK4 0.31 0.007 0.408 0.0218 NA
rs4742057 9 4 943 916 JAK2 (32 kb) 0.42 0.006 0.414 0.0333 NA

*Positions are relative to Human Genome National Center for Biotechnology Information (NCBI) Build 36.3.
†The gene located nearest to the SNP. Distance to the gene in kilo bases (1000 bp) is shown in parentheses. If no distance is shown, the SNP is located within the gene locus.
‡Remaining heritability estimate when a given SNP (plus preceding SNPs) is included as covariate(s) in the MERLIN heritability model.
GWAS, genome-wide association study; MAF, minor allele frequency; NA, not applicable; SNP, single nucleotide polymorphisms; TG, triglycerides.

Table 4 Results of the RNA-based multivariate regression model
with forward selection for TG response to exercise training in
HERITAGE white participants (N=37)

Variable β SE t Value p Value

Sex 0.21 0.17 1.1 0.27
DYX1C1 0.59 0.11 5.6 9.9×10−6

ZNF30 −0.01 0.12 −0.09 0.93
BTG2 0.21 0.12 1.7 0.10
MACROD1 0.10 0.20 0.5 0.62
UBE2L3 0.16 0.15 1.1 0.29
C21orf88 −0.14 0.13 −1.1 0.28
EEF2K 0.21 0.10 2.1 0.05
NCBP2 0.22 0.16 1.5 0.15
FASTK 0.39 0.15 2.5 0.02
C2orf69 −0.03 0.12 −0.3 0.80
NSA2 −0.28 0.10 −2.8 0.009

Model R2=0.80, p=8.6×10−8.

Figure 1 Performance of the RNA-based regression model derived
from the training set (N=37, grey dots) in the test set (N=12, red dots)
for the prediction of exercise training-induced changes in triglycerides
in HERITAGE.
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Importantly, the test set spanned a broad range (−40 to +20%)
in terms of the training-induced changes in TG.

In order to examine the general applicability of the molecular
signature, we took advantage of a previously published
Affymetrix gene expression data set from an independent
exercise-training cohort.27 Since the gene-chip technology sig-
nificantly differed between cohorts (ie, 30-based vs the newer
whole transcript-based methodologies), we performed all pos-
sible subsets regression. We found that the model containing six
genes (BTG2, C2orf69, C21orf88, DYX1C1, NSA2, UBE2L3)
performed the best, as this model (F value=3.7, p=0.03)
explained 48% of the variance in TG changes, while also having
the lowest Bayesian Information Criterion (BIC) score (see
online supplementary figure S4). Further, a resampling proced-
ure in which 10 000 random multivariate models were devel-
oped confirmed the significance of the six gene model in terms
of R2 performance (data not shown).

The association of SNPs (N=498), in or near (±20 kb) the
11 predictor genes, with ΔTG was tested in all HERITAGE
white participants (N=481) using imputed SNPs (data not
shown). Only SNPs from four genes (NSA2, FASTK, MACROD1
and EEF2 K) showed nominal (p<0.05) associations with ΔTG
(see online supplementary tables S5–S8). The top associated
SNP (p≤0.01) from each of the four genes (rs1043968,
rs3793336, rs594461, rs11646610) was used in the SNP
summary score.

Pathway analysis of mRNA predictor models
We evaluated the enrichment of pathways among genes in the
subset of 512 predictive models using Ingenuity Pathways
Analysis. We found that pathways related to mitochondrial dys-
function and oxidative phosphorylation were enriched
(p<0.0003) (see online supplementary figure S5).

Association of SNP score and ΔTG
The SNP score was created by combining the four top SNPs
from the GWAS analysis (rs222158, rs2722171, rs1906058,
rs2593324) and the four top SNPs from the targeted SNP ana-
lysis of the RNA predictor genes (rs1043968, rs3793336,
rs594461, rs11646610). The SNP score values ranged from 2

to 12 in HERITAGE white participants. The adjusted mean
decrease in TG in participants with 11 or 12 favourable alleles
(N=18) was −18.2 mg/dL (−0.21 mmol/L), while those with 4
or less favourable alleles (N=284) experienced an adjusted
mean increase of 38.1 mg/dL (0.43 mmol/L) after exercise train-
ing (figure 2).

After backwards elimination of over 50 baseline variables
related to blood pressure, body composition, fitness, lipids and
lipoproteins, and insulin and glucose metabolism, a forward
regression model for ΔTG showed that the SNP score was the
strongest predictor variable (p=3.0×10−68), explaining 14.4%
of the variance in ΔTG (approximately 8% from 4 GWAS SNPs,
approximately 6% from 4 RNA predictor SNPs), while baseline
TG explained 7.4% of the variance in responsiveness (table 5).

DISCUSSION
Our results indicate that multiple genes and sequence variants
contribute to the genetic and transcriptomic variation in the
response of TG to exercise training. A novel finding of this
study is that a small number of SNPs (N=4) accounted for all of
the genetic variance of TG response to exercise training, as
quantified in white participants from HERITAGE. Furthermore,
we found that a molecular signature based on the baseline
expression levels of 11 genes predicted 27% of TG exercise
response in HERITAGE, which was validated in an independent
study. Lastly, our SNP summary score results provide an
example of how parsimonious panels of associated SNPs from
multiple omics platforms could potentially be used as a priori
predictors of a trait response to regular exercise, so that more
effective means of treatment and prevention can be identified. If
validated in independent studies, this information could poten-
tially be used to individually tailor exercise training programmes
targeted at managing TG levels.

The pathway analysis of our GWAS results revealed that the
genetic effect of TG response to regular exercise may be exerted
through pathways related to heparan sulfate glycosaminoglycan
and glycosphingolipid biosynthesis and cell-adhesion molecules.
Heparan sulfate has several biological functions, including cell
adhesion and notably cell surface binding of LPL. Several
studies have shown that heparan sulfate glycosaminoglycan
modified proteoglycans act in the hydrolysis of TG-rich lipopro-
teins.34 In HERITAGE, LPL activity significantly increased with
exercise training, concomitant with decreases in TG levels
(r=−0.21, p<0.001). Glycosphingolipids mediate and modulate
intercellular coordination in multicellular organisms.35 They
cluster in lipid rafts, which are enriched in cholesterol and

Figure 2 Adjusted mean response to exercise training triglycerides
(ΔTG) across eight single nucleotide polymorphisms (SNP) summary
score categories in HERITAGE white participants. Values were adjusted
for age, sex, baseline body mass index and baseline triglyceride level.
Number of participants within each SNP score category is indicated
inside each histogram bar.

Table 5 Final forward regression model, after backwards
elimination of over 50 baseline variables, for predictors of
exercise-induced changes in TG in HERITAGE white participants

ΔTG predictors Partial R2 Model R2 p Value

SNP summary score 0.1435 0.1435 3.0×10−68

Baseline TG (mmol/L) 0.0742 0.2177 5.1×10−10

Baseline large LDL-P (nmol/L) 0.0167 0.2344 0.002
Baseline fasting insulin (pmol/L) 0.0078 0.2422 0.037
Baseline AIRg (pmol/l×40 min) 0.009 0.2512 0.025

AIRg, acute insulin response to glucose, defined as the integrated area under the
insulin curve between 0 and 40 min of the intravenous glucose tolerance test. In
addition to age and sex, backwards elimination models included baseline variables
related to blood pressure, body composition, fitness, lipids and lipoproteins, and
insulin and glucose metabolism; LDL-P, low-density lipoprotein particle; SNP, single
nucleotide polymorphisms; ΔTG, response to exercise training triglycerides.
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sphingolipids such as sphingomyelin. Lipid rafts are involved in
many cellular processes, including membrane sorting and
trafficking, cell polarisation and signal transduction processes.36

As such, the specialised structure of lipid rafts may play a critical
role in the trafficking of lipids between lipoproteins and cells.
However, it is unknown how exercise affects lipid rafts and
glycosphingolipids.

The pathway analysis of the transcriptomic predictor models
revealed that mitochondrial dysfunction and oxidative phos-
phorylation pathways were enriched in relation to TG response
to exercise training. Defects in mitochondrial oxidation and
phosphorylation are associated with insulin resistance, type 2
diabetes and ectopic TG accumulation (eg, intramyocellular and
intrahepatic lipids), among others.37–39 Exercise is known to
improve insulin sensitivity and risk of diabetes40 41 and has also
been shown to increase intramyocellular lipid (IMCL) content,
which leads to a higher proportion of IMCL in direct contact
with mitochondria and improved lipid flux.42 43

In summary, our bioinformatics analysis suggests that different
subsets of pathways are enriched when variants from genomic
and transcriptomic data are interrogated for their association
with TG response to exercise. Interestingly, we did not find any
associations between the existing TG GWAS loci33 and the
response of TG to regular exercise. Thus, our results suggest
that the genes most important in modifying changes in TG in
response to regular exercise are most likely different from the
loci contributing to variation in population TG levels. It is not
clear how many of the markers and genes identified here are
functionally related to the response to regular exercise of TG,
but, if confirmed in independent studies, they could inform on
the potential mechanisms involved in TG changes with regular
exercise. Irrespective of the biological plausibility of the identi-
fied variants, identifying predictors of favourable or unfavour-
able TG response to regular exercise could help optimise
therapeutic strategies.

This study is based on a relatively small sample size compared
to commonly accepted standards of GWAS. Thus, it is not sur-
prising that we did not find SNPs reaching genome-wide signifi-
cance. However, it is important to appreciate that human
experimental studies are by definition characterised by much
smaller sample sizes than epidemiological and observational
studies, but are also less likely to be negatively impacted by any
number of uncontrolled confounders. HERITAGE remains the
largest fully controlled exercise intervention study thus far. The
family structure and well defined and twice measured pheno-
types help to minimise the influence of confounding factors.
Moreover, since one component of the environment (ie, exer-
cise) has been rigorously controlled in HERITAGE, we had pre-
dicted larger effect sizes than is commonly seen in observational
studies. Thus, we concluded that it would be useful to under-
take hypothesis free and unbiased GWAS explorations for the
response of TG to regular exercise, as it could generate hypoth-
eses and candidate genes deserving further research.
Furthermore, our global microarray data from a subset of
HERITAGE participants complements our GWAS results and
provides a separate unbiased exploration of the genes potentially
involved in TG exercise response.

We acknowledge that there is still a possibility of false discov-
ery and that the parsimonious SNP score associated with ΔTG
in HERITAGE is likely to overfit our data, as the score was
tested on the same data set used to create it, possibly resulting
in biased conclusions about the strength of the findings. To
somewhat address this limitation, in a proof-of-concept analysis
we reran the GWAS in half the sample (49 randomly selected

families) and tested the top resulting SNPs in the other half of
the sample (remaining 49 families). Of the top SNPs
(p<1×10−4, N=30), only the association with CYYR1
rs222158 (p=2.9×10−5) was replicated, as it explained 3.2%
of the variance in ΔTG (p=0.005) in the second half of the
sample. Interestingly, CYYR1 rs222158 was also the top pre-
dictor SNP in the regression models in the whole cohort. Thus,
although the splitting of the sample in half decreases the sample
size, the separate discovery and replication data sets provide
additional support for the results found in the larger cohort.
There is an obvious need to replicate our results in other
samples and studies.

This study suggests that regular exercise may not influence
TG levels at the same rate for all individuals and that the effi-
cacy of regular exercise could be related in part to multiple
genetic variants. Identifying the genes underlying the variability
in lipid traits due to regular exercise would significantly contrib-
ute to the biology of adaptation to exercise and the develop-
ment of an exercise component of personalised preventive and
therapeutic medicine. The ability to identify individuals whose
TG levels are likely to positively respond to lifestyle interven-
tions could help optimise prevention and treatment strategies
designed to decrease the risk of hypertriglyceridaemia.

What are the findings?

▸ A genome-wide association study identified four SNPs that
accounted for the genetic variance of triglyceride (TG)
response to exercise training in HERITAGE white
participants.

▸ Analysis of baseline RNA expression levels identified a
subset of 11 genes that significantly predicted TG exercise
response in HERITAGE white participants, which was
validated in an independent cohort.

▸ Integrating data from genomic and transcriptomic analyses
produced a strong predictor of TG response to regular
exercise.

How might it impact on clinical practice in the future?

▸ Provides potential genetic markers related to the ability to
improve plasma triglyceride levels with endurance exercise
training.

▸ Further research is needed to replicate and further test these
findings in independent studies and other populations and
exercise programmes.

▸ If validated in independent studies, this information could
potentially be used to individually tailor exercise training
programmes targeted at managing triglyceride levels.

Correction notice This paper has been amended since it was published Online
First. A sentence to the methods section has been added. After the sentence
“Affymetrix HG-U133+2 arrays were used to quantitate global gene expression
levels” the following sentence and reference 23a have been added: “Raw microarray
data have been deposited with Gene Expression Omnibus under accession number:
GSE47874.”
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