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Abstract 

Background: Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete 

narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the 

infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomi-

cally important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths 

(referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain 

yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1–8, 2017) and wheat (Montesinos-

López et al. in Plant Methods 13(4):1–23, 2017) breeding trials indicated that using all bands produced better pre-

diction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the 

effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or 

pedigree information.

Results: In this study, we propose Bayesian functional regression models that take into account all available bands, 

genomic or pedigree information, the main effects of lines and environments, as well as G × E and B × E interaction 

effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, 

Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 

to 851 nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: 

B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for 

predicting grain yield, were compared with results from conventional models with and without bands.

Conclusions: We observed that the models with B × E interaction terms were the most accurate models, whereas 

the functional regression models (with B-splines and Fourier basis) and the conventional models performed similarly 

in terms of prediction accuracy. However, the functional regression models are more parsimonious and computa-

tionally more efficient because the number of beta coefficients to be estimated is 21 (number of basis), rather than 

estimating the 250 regression coefficients for all bands. In this study adding pedigree or genomic information did not 

increase prediction accuracy.

Keywords: Hyper-spectral data, Genomic information, Genotype × environment interaction, Band × environment 

interaction, Vegetation indices, Prediction accuracy, Bayesian functional regression, Spline regression, Fourier 

regression
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Background
In plant breeding, a branch of agriculture, plant pheno-

typing has become financially expensive when evaluat-

ing complex traits like grain yield in large numbers of 

selection candidates [8, 11]. However, since the cost of 

sensors, aeronautics, high performance computing and 

high-resolution cameras has decreased significantly, 

plant breeders now have greater capacity to measure 

electromagnetic energy at varying wavelengths that inter-

act with different parts of the growing plant. For this 

reason, the use of low-cost, efficient, high-throughput 

plant phenotyping platforms (HTPP) [2] has dramati-

cally increased. By means of HTPP, it is possible to collect 

many low-cost phenotypes on large numbers of breed-

ing individuals at different stages of plant growth under 

different environmental conditions. �ere is a consensus 

that collecting many phenotypes of primary and second-

ary traits at an early stage of plant growth could be of 

great value for reducing evaluation time and cost, while 

dramatically increasing selection intensity and prediction 

accuracy and, consequently, the response to selection 

[16].

One important characteristic of current HTPP is their 

capability to non-destructively capture plant traits. �is 

allows time-series measurements that are necessary to 

follow the progression of growth and stress on individ-

ual plants. Eliminating destructive measurements also 

increases the experimental capacity of genotypes, treat-

ments, and biological replicates by reducing the required 

replicated sampling sets. High-throughput image-based 

phenotyping is defined as a technology that can generate 

images of hundreds of plants per day. With a population 

in the hundreds, it is possible to analyze mutant popula-

tions, detect QTLs, discover gene ×  environment asso-

ciations [6], and increase the prediction accuracy of the 

primary trait (grain yield) by using pedigree or genomic 

information [16].

�e main goal of plant imaging is to measure the physi-

ological growth, developmental, and other phenotypic 

properties of plants through automated processes using 

digital camera technology to collect reflectance data of 

electromagnetic energy at different wavelengths. �e 

collected reflectance data are then used to predict plant 

physiological or agronomic traits such as grain yield. 

�ere are two main approaches for using reflectance 

data: (1) use partial reflectance data, summarize them 

in scores called spectral vegetative indices (VI) and then 

use the VI as predictor variables for primary traits; and 

(2) use all reflectance data simultaneously to predict 

the primary trait of interest. Despite some successful 

applications of the first approach, it has been criticized 

because it does not consider all the spectral bands from 

the hyperspectral sensors and because most VI tend to 

be species-specific. �is means they are not robust when 

applied across different species that have different canopy 

architectures and leaf structures because they use only 

a fraction of the available information on the measured 

wavelengths. Using all bands is more robust and gives 

better prediction accuracy of primary traits (e.g., grain 

yield) than VI, as already reported [1, 13].

Recently secondary traits have been incorporated into 

vegetative indices (e.g., canopy temperature and normal-

ized difference vegetation index) using multivariate pedi-

gree and genomic prediction models by means of random 

regression models [18]. �e authors showed that within 

each environment, the best linear unbiased predictions 

(BLUP) of secondary traits used in the multivariate pre-

diction model substantially improved (by 70%, on aver-

age) the prediction of primary trait grain yield.

However, to the best of our knowledge, until now 

no studies have been conducted on HTPP data analy-

ses that take into account not only all the reflectance 

bands measured in different environments, but also the 

genomic (and pedigree) information and the interactions 

between genotype and environment (genotype  ×  envi-

ronment, G  ×  E) and between the band and environ-

ment (band ×  environment, B ×  E). In plant breeding, 

there is enough evidence that when the genomic (or pedi-

gree) information and the G × E are taken into account, 

the models do better in terms of prediction accuracy. 

Also, it is well documented that if the same genotype is 

exposed to different environments, significant differences 

in the phenotype of plants, animals or any living organ-

ism can be expected even if the original individuals had 

similar genetic composition. One of the first scientists to 

note that the effect of genes (G) on phenotype could be 

modified by the environment (E) was Garrod [9]. For this 

reason, Turesson [19] pointed out that the environment 

often influences plant development and that the presence 

of a particular variety in a specific location is not just a 

chance occurrence; rather, the variety’s peculiar charac-

teristics are attributable to the effect of the environment 

on the expression and function of the genes influencing 

the trait.

To better illustrate the importance of considering 

the G  ×  E interaction term and its effects on predic-

tion accuracy, we provide some examples. Most of the 

time in genomic-enabled prediction, multi-environment 

models with G × E have better prediction accuracy than 

single-environment models. For example, using wheat 

data, Jarquin et  al. [10] found that the prediction accu-

racy of models including interaction terms was sub-

stantially higher (17–34%) than that of models based on 

main effects only. For a maize ordinal data set, Montes-

inos-López et  al. [12] found that compared to models 

based only on main effects, models that included G × E 
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achieved gains of 9–14% in prediction accuracy. Using 

wheat data, Cuevas et  al. [3] found that models with 

the G × E term were up to 60–68% better than the cor-

responding single-environment models. However, in 

the HTPP context, no models have been developed that 

include G × E as well as genomic or pedigree informa-

tion; furthermore, no research has been conducted and 

published on assessing the possible effect of B  ×  E on 

predicting the primary trait.

However, taking into account both interaction terms 

also increases the computational cost of implement-

ing this model since the dimensionality of the predictor 

grows in proportion to the number of environments and 

bands. For this reason, Montesinos-López et al. [13] pro-

posed using functional data analysis to help reduce the 

computational cost by reducing the dimensionality of 

the bands. Functional data analysis is a branch of statis-

tics that studies and analyzes information contained in 

curves, surfaces, or any element that varies over a con-

tinuum, usually time. In its most general form, within a 

functional data framework, each sample element is con-

sidered to be a function. In general, any observation that 

varies on a continuum can be taken for functional data, 

from an electrocardiogram to urban temperatures. In 

practice, these events are measured by machines that 

take samples of a certain random variable at different 

moments in time within a certain range (tmin, tmax). �e 

physical continuum space over which these functions 

are defined (in addition to time) are wavelength, spatial 

location, age, etc. �is mean that the data used for func-

tional data analysis are repeated measures since for each 

individual are measured a sample of points in the range 

of time (tmin, tmax) or wavelength and for each individ-

ual we obtain a curve which is approximated with some 

functions (B-slines, Fourier, etc.) that reduce the dimen-

sionality of the original data point measured for each 

individual.

�erefore, based on the previous results, the main 

objectives of this research are: (1) to propose genomic 

Bayesian functional regression models that take into 

account the main effects of environment and genotype, 

all the available reflectance wavelength data, genomic or 

pedigree information, and the interaction terms (G × E 

and B ×  E) for predicting the primary trait grain yield; 

(2) to compare the prediction accuracy of models that 

include genomic (or pedigree) information versus those 

that do not; (3) to compare the prediction accuracy of 

models that include interaction terms versus those that 

do not; (4) to compare the prediction accuracy and 

implementation time of Bayesian functional regression 

models versus conventional Bayesian models that are not 

in the functional regression category; and (5) to identify 

models that have the best prediction performance and 

identify time-points of plant growth before harvesting 

from which accurate predictions of wheat grain yield can 

be obtained.

To illustrate the use of the proposed genomic Bayesian 

functional regression models and achieve the five objec-

tives of this study, we used part of the data set employed 

by Montesinos-López et  al. [13], which is comprised of 

976 wheat lines from the CIMMYT Global Wheat Pro-

gram that were evaluated for grain yield in three con-

trasting environments in Cd. Obregon, Mexico (Drought, 

Irrigated and Reduced Irrigation). A total of 250 wave-

lengths were measured at nine different time-points of 

crop growth (1–9). �e original data set has 5 environ-

ments but the phenotypic information of three environ-

ments were almost identical with a correlation greater 

than 0.97. For this reason we only work with the infor-

mation of three environments, also the original data set 

has 1170 wheat lines, but pedigree (relationship matrix 

A) and genomic relationship matrix (G) information was 

only available for only 976 wheat lines.

Methods
Phenotypic �eld trial data and high-throughput 

phenotypic data

A detailed description of the data used in this study can 

be found in Montesinos-López et  al. [13], where the 

authors present several functional regression models for 

predicting grain yield using hyperspectral image data in 

each environment. In this study, we only used data from 

three environments—Drought, Irrigated, and Reduced 

Irrigation—and 976 lines of the original 1170 wheat 

lines from the CIMMYT Global Wheat Program [13]. 

�e experimental design used was an alpha-lattice with 

three replicates and six incomplete blocks of size five for 

each replicate; two checks were included in each of the 

trails; these checks were part of the first stage analyses 

but not included in the genomic prediction model. �is 

design was used in each of the 39 trials implemented in 

each environment, with 30 lines included in each trial. 

Traits grain yield (GY) and days to heading (DH) were 

measured in each line, but only GY was analyzed in this 

study. Planting dates in the three environments were 

December 1–5, 2014. �e bands were measured on nine 

different dates (January 10, 2015, January 17, 2015, Janu-

ary 30, 2015, February 7, 2015, February 14, 2015, Feb-

ruary 19, 2015, February 27, 2015, March 11, 2015 and 

March 17, 2015), which we call time-points (1, 2, 3,…, 

9, respectively) using 250 discrete narrow wavelengths. 

In each plot for each line and at each time-point, 250 

wavelengths �1, . . . �250 from 392 to 851 nm were meas-

ured. �e k th discretized spectrometric curve is given 

by x1(�1), . . . , x250(�250). We used the notation x(780) 

without subscripts to denote the response of the band 
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measured at 780 wavelength, x(670) to denote the 

response of the band measured at 670 wavelength, and so 

on.

Genotypic and pedigree data

Genotyping-by-sequencing (GBS) was used for genome-

wide genotyping and single nucleotide polymorphisms 

were called across the lines using the TASSEL GBS 

pipeline anchored to the genome assembly of Chinese 

Spring. Single nucleotide polymorphisms were extracted 

and 34,900 GBS markers were filtered so that markers 

with more that 30% missing were deleted. Next, missing 

markers were imputed with the marker mean. �en each 

marker frequency is computed and markers with less 

than 0.05 minor allele frequency were removed. After this 

a total of only 1448 GBS markers remained after marker 

filtering and editing. A pedigree was used to devive the 

additive relationship matrix (A) among the wheat lines 

[16]; the entries of matrix A equal twice the coefficient of 

parentage between pairs of lines.

Statistical models

Since the experiments were performed in three environ-

ments under an alpha-lattice experimental design with 

three replicates, 39 trials and six blocks in each replicate, 

the model proposed is

where yijkl is the response variable (GY or wavelength 

measurements) in the ith environment, jth genotype, 

kth replicate within ith environment, lth trial, and mth 

incomplete block within the lth trial, kth replicate at the 

ith environment, Ei is the fixed effect of the ith environ-

ment, Lj is the fixed main effect of the jth genotype, LEij 

is the random interaction effect between the ith environ-

ment and the jth line assumed to be iid N
(

0, σ 2
gE

)

, rk(l,i) 

is the random effect of the kth replicate within lth trial 

and ith environment assumed to be iid N
(

0, σ 2
r(i)

)

, tl(i) 

is the random effect of the lth trial within ith environ-

ment assumed to be iid N
(

0, σ 2
t(i)

)

, bm(l,k ,i) is the random 

effect of the mth incomplete block within the lth trial, kth 

replicate at the ith environment assumed iid N
(

0, σ 2
b(i)

)

 

and ǫijklm assumed N
(

0, σ 2
e(i)

)

 represents the random 

residual plot error associated with the observation yijklm.  

�e variances of replicates, blocks, and error are envi-

ronment-specific, which is often a realistic assumption 

(Piepho et al. [14]) and allows a two-stage analysis to be 

fully equivalent to a single stage analysis (Piepho et  al. 

[14]). Since our data set is very large and we will perform 

(1)

yijklm = Ei + Lj + LEij + rk(l,i) + tl(i) + bm(l,k ,i) + ǫijklm,

cross-validation, we performed a two-stage analysis 

which, according to Piepho et al. [14] and Damesa et al. 

[4], is appropriate if done properly with little difference 

from the corresponding single-stage analysis. �erefore, 

in the first stage of the analysis of individual environ-

ments, we rewrote the model 1 as

where µij = Ei + Lj + LEij is the conditional expected 

value of the jth genotype in the ith environment. 

Here µij was assumed as a fixed effect and defining 

µi =

(

µi1, . . . ,µiJ

)T
, we estimated the best linear unbi-

ased estimates (BLUEs) as µ̂i =

(

XT
i
�

−1

i
X i

)−1

XT
i
�

−1

i
yi , 

where X i is a full rank treatment design matrix for µi at 

the ith environment, yi is the plot observations in the ith 

environment and �i = var(yi) is the non-singular vari-

ance–covariance matrix of the plot data in the ith envi-

ronment, which depends on the experimental design 

and the variances σ 2

r(i), σ 2
t(i), σ 2

b(i)
, σ 2

e(i). We estimated 

var(µ̂i) = � i =

(

X
T
i
�

−1

i
X i

)−1

 and then with all the 

information from the first stage, we fitted the second 

stage model as

where γij is the residual of the jth genotype in the ith 

environment and var(γ i) = � i with γ i =

(

γi1 . . . , γiJ
)T

 . 

Following Smith et al. [17], we decided to fit the second 

stage model assuming that var
(

γij
)

= (ωij)−1 where ωij is 

the jth diagonal element of �−1

i
, that is, we used weights 

based on the inverse of the variances of the associated 

data points (Smith et al. [17]; Welham et al. [22]; Piepho  

et al. [14]). �is approach of using only the diagonal ele-

ments of �−1

i
 is documented by various authors (Smith 

et al. [17]; Welham et al. [22]; Piepho et al. [14]) and pro-

duces almost identical results as when using all the infor-

mation of �−1

i
. It is important to point out that in this 

second stage the term Lj that corresponds to the jth gen-

otype is assumed now as a random effect identical and  

independently distributed (iid) Lj ∼ N
(

0, σ 2
L

)

, LEij is 

exactly as described above, with iid LEij ∼ N
(

0, σ 2
LE

)

.

Markers can be introduced in the baseline model 

(3) such that the effect of line (Lj) can be replaced by 

gj , which is expressed as a linear regression on marker 

covariates that approximates the genetic value of  

the jth line such that the vector of genetic random  

effects g =

[

g1, . . . , gJ
]T

 is assumed g ∼ N
(

0,Gσ
2
g

)

,  

where σ 2
g  is the genetic variance, and G is a genomic  

relationship matrix that is computed using marker data 

W   as G =
WW

′

m
 [20, 21]. Furthermore, the effect of line 

(Lj) can also be replaced by pedigree information aj with 

the random vector of additive effects a =

[

a1, . . . , aJ
]T

 

(2)yijklm = µij + rk(l,i) + tl(i) + bm(l,k ,i) + ǫijklm,

(3)µ̂ij = Ei + Lj + LEij + γij
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assumed as a ∼ N
(

0,Aσ
2
a

)

, where A is the numerical 

additive relationship matrix derived from pedigree, and 

σ
2
a  is the additive variance.

Similarly for the interaction terms, when genomic 

information is used, the line ×  environment interaction 

LEij is replaced by gEij the random effect of the interac-

tion term of the ith environment and the jth genotype 

and gE =
[

gE11, . . . , gEIJ
]T

∼ N
(

0, (G ⊗ I I )σ
2
gE

)

,  where 

σ
2

gE is the variance component associated with the 

genetic  ×  environment interaction. When pedigree is 

used, aE =
[

aE11, . . . , aEIJ
]T

∼ N
(

0, (A ⊗ I I )σ
2
aE

)

, 

where σ
2

aE
 is the variance component of the addi-

tive ×  environment interaction. I I is an identity matrix 

for environments, and ⊗ denotes the Kronecker product.

�erefore, using genomic information, the baseline 

model becomes

or when using pedigree, the baseline model is defined as

Also, it is important to point out that we obtained the 

BLUEs with Eq. (2) not only for GY but also for each of 

the 250 wavelengths (referred to as the spectrometric 

data xi(�i), i = 1, . . . , 250 mentioned above) with the 

intention of removing the design effect of each wave-

length and using these wavelengths as covariates in the 

second stage of the analysis in the appropriate way. �is 

process of removing the design effect of each wavelength 

with Eq. (2) was done on each of the nine different dates 

on which the wavelengths were measured. �is means 

that BLUEs of each genotype were obtained for GY and 

for each wavelength in each of the nine time-points under 

study. We then created a database of 976 × 3 = 2928 

rows and 2253 columns where the first column contains 

environments, the second the names of genotypes, the 

third the BLUEs of GY and the remaining 2250 columns 

contain the 250 × 9 covariates (wavelengths that are the 

spectrometric data) resulting from the combinations of 

the 250 wavelengths and the nine time-points.

Proposed statistical models including genomic, pedigree, 

functional regression

Table 1 describes 14 proposed statistical models that will 

be used on the previously adjusted data for each time-

point. Models M1, M2, M3, M4, M9 and M10 are called 

conventional models, whereas the others (M5, M6, M7, 

M8, and M11–M14) are newly proposed models that dis-

play wavelengths as functional covariates and are called 

functional regression models. Each of the 14 proposed 

models was implemented directly using the genotypes, 

µ̂ij = Ei + gj + gEij + γij

µ̂ij = Ei + aj + aEij + γij

or replacing the genotypes with the pedigree relationship 

matrix (A) or replacing the genotypes with the genomic 

relationship matrix (G). When the 14 models were imple-

mented using the genomic relationship matrix (G), we 

denoted these models as WG; when these models were 

implemented using the pedigree relationship matrix, we 

denoted these models as WA; and when these models 

were implemented using the lines without genomic or 

pedigree information, the models were denoted as WO.

In the 14 proposed models given in Table 1, when pedi-

gree is used instead of markers, the random genetic gj 

term is replaced by the random additive effect aj. While 

the interaction term gEij is replaced by the random inter-

action term aEij. In models M3, M4, M9 and M10 xijk 

represent the kth discretized spectrometric data meas-

ured on the jth genotype in the ith environment with 

k = 1, 2, . . . , 250 and we need to remember that xijk are 

predicted means obtained in the first stage analysis. βk 

is the beta regression coefficient for the kth band that 

will be estimated. �e functional regression models M5 

and M6 add the 250 wavelengths to M1 as a functional 

covariate constructed over the interval between 392 and 

851 nm, which are the minimum and maximum values at 

which the 250 wavelength bands of the reflectance data 

were measured. �erefore, xij(k) is the functional predic-

tor and represents the value of a continuous underlying 

process evaluated at wavelength k, β1(k) is the functional 

regression beta coefficient for the functional part of mod-

els M5, M6, M7, M8, M11, M12, M3 and M14, which is a 

function of the wavelength k. In this context, the integral 

of the product replaces the sum of products (
∑p

k=1
xijkβk) 

in the conventional linear regression model given in M3. 

Models M5, M7, M11, M13 should be called Bayesian 

B-splines since they will be implemented under a Bayes-

ian approach using the B-splines as basis expansion and 

models M6, M8, M12, M14 will be called the Bayesian 

Fourier models since they use the Fourier basis. Model 

M9 adds to M3 the band by environment (B × E) inter-

action between the ith environment and the kth band 

and βki represents the beta regression coefficient corre-

sponding to the kth band measured in the ith environ-

ment. Model M11 adds to M5 and Model M12 adds to 

M6 the interaction between environment and the func-

tional regression predictor that represents the reflectance 

data and β2i(k) is the coefficient function correspond-

ing to the functional part that represents the interaction 

between the ith environment and the kth band. Model 

M13 adds to M7 and model M14 adds to M8 the interac-

tion between environment and the functional regression 

predictor.

�e proposed functional regression models M5, M6, 

M7, M8, M11, M12, M13, and M14 are among the 

most popular functional regression models, where the 
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responses are scalars and some of the covariates are 

functions. For this reason, the response variable (µ̂ij) is 

scalar in all the proposed models and represents grain 

yield (GY). Apart from the general subdivision of the 14 

models in conventional versus functional regression, it is 

useful to point out that the 14 models also differ in vari-

ous other aspects based on their conventional and func-

tional regression components, for example, models that 

do not include the gEij interaction term (M1, M3, M5, 

M6, M9, M11, and M12) versus models that do include 

the gEij interaction term (M2, M4, M7, M8, M10, M13, 

and M14). Regarding the functional regression models, 

models M5, M7, M11, and M13 had the B-spline basis, 

whereas models M6, M8, M12, and M4 had the Fourier 

basis. Models M9–M14 include the B  ×  E interaction 

between the ith environment and the kth band, but mod-

els M9 and M10 assessed this interaction using the con-

ventional approach, whereas models M11–M14 fitted the 

B × E interaction by means of the functional regression 

model. Additional details about functional regression 

models can be found in Ramsay and Silverman [15].

Preprocessing the functional regression models (M5–M8 

and M11–M14)

For the estimation of the parameters of the functional 

regression models M5, M6, M7, M8, M11, M12, M13, 

and M14, first we need to know the exact form of the 

functional covariate [x(k)], but this only was observed in 

discrete points. A traditional approach is to assume that 

the functional covariate (x(k)) and the functional regres-

sion beta coefficients (β1(k)) can be represented by the 

linear combination of a truncated basis. With this the 

high dimensional problem is reduced to standard linear 

model, as we will describe next. First, we represent covar-

iable curves as

(4)xij(k) =

L∑

l=1

cijlφl(k)

Table 1 Proposed models

Method Model Type

M1 µ̂ij = Ei + gj + γij Conventional

M2 µ̂ij = Ei + gj + gEij + γij Conventional

M3
µ̂ij = Ei + gj +

p∑

k=1

xijkβk + γij
Conventional

M4
µ̂ij = Ei + gj + gEij +

p∑

k=1

xijkβk + γij
Conventional

M5
µ̂ij = Ei + gj +

851∫

392

xij(k)β1(k)dk + γij
Functional Bayesian B-splines

M6
µ̂ij = Ei + gj +

851∫

392

xij(k)β1(k)dk + γij
Functional Bayesian Fourier

M7
µ̂ij = Ei + gj + gEij +

851∫

392

xij(k)β1(k)dk + γij
Functional Bayesian B-splines basis

M8
µ̂ij = Ei + gj + gEij +

851∫

392

xij(k)β1(k)dk + γij
Functional Bayesian Fourier basis

M9
µ̂ij = Ei + gj +

p∑

k=1

xijkβk +
p∑

k=1

xijkβki + γij
Conventional

M10
µ̂ij = Ei + gj + gEij +

p∑

k=1

xijkβk +
p∑

k=1

xijkβki + γij
Conventional

M11
µ̂ij = Ei + gj +

851∫

392

xij(k)β1(k)dk +
851∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian B-splines basis

M12
µ̂ij = Ei + gj +

851∫

392

xij(k)β1(k)dk +
851∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian Fourier basis

M13
µ̂ij = Ei + gj + gEij +

851∫

392

xij(k)β1(k)dk +
851∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian B-splines basis

M14
µ̂ij = Ei + gj + gEij +

851∫

392

xij(k)β1(k)dk +
851∫

392

xij(k)β2i(k)dk + γij
Functional Bayesian Fourier basis
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where φ1(k), . . . ,φL(k) is a truncate basis (B-splines, Fou-

rier basis) and cijl is the coefficient corresponding to the 

ijth individual (environment-line combination) of the 

function φl(k). Assuming that each curve was observed 

in k = [k1, . . . , km]T, then in vector form

where c
T
ij =

[

cij1, . . . , cijL
]

. �erefore, the values of 

cij that best represent xij(k) in terms of minimizing 
[

xij(k) − �cij

]T [

xij(k) − �cij

]

 are given by

If β1(k) =

∑
S

s=1
dsψs(k) is the representation of β1(k) 

in terms of another truncated basis, ψ1(k), . . . ,ψS(k), the 

model M5 can be rewritten as

where xijs =

∫
xij(k)ψs(k)dk, x

T
ij =

[

xij1, . . . , xijS
]

, and 

d
T

= [d1, . . . , dS] is an unknown vector of coefficients 

related to the effect of the functional covariate. �e ele-

ments of xTij  can be obtained from the covariate represen-

tation given previously

where ĉijl, l = 1, . . . , L, are the elements of ĉij obtained in 

Eq. (5). Substituting (7) in xijs =

∫
xij(k)ψs(k)dk, the ele-

ments of xTij  explicitly can be computed as

where the coefficients ĉijl are given in Eq.  (5). �en by 

making Jls =

∫
φl(k)ψs(k)dk, we have that the required 

xij can be approximated as

xij(k) =

















L
�

l=1

cijlφl(k1)

.

.

.

L
�

l=1

cijlφl(km)

















=









φ1(k1) · · · φL(k1)

.

.

.
.
.
.

.

.

.

φ1(km) · · · φL(km)









cij = �cij

(5)ĉij =

[

�
T
�

]−1

�
Txij(k)

(6)

µ̂ij = Ei + gj +

S∑
s=1

ds

∫
xij(k)ψs(k)dk + γij

= Ei + gj +

S∑
s=1

dsxijs + γij

= Ei + gj + x
T
ij d + γij ,

(7)xij(k) =

L∑

l=1

ĉijlφl(k)

xijs =

∫
xij(k)ψs(k)dk =

L∑
l=1

ĉijl

∫
φl(k)ψs(k)dk ,

(8)

xij =

















L
�

l=1

ĉijl Jl1

.

.

.

L
�

l=1

ĉijl JlS

















=









ĉij1J11 · · · ĉijLJL1
.
.
.

.
.
.

.

.

.

ĉij1J1S · · · ĉijLJLS









=









JT
1

.

.

.

JTS









ĉij = J ĉij

where JTs = [J1s, . . . , JLs] and ĉTij =
[

ĉij1, . . . , ĉijL
]

. �ere-

fore, since we obtained xij, we can implement M5 given 

in Eq. (6) using conventional Bayesian or classical mode-

ling. See Ramsay and Silverman [15] for more details and 

considerations.

It is important to point out that the same logic was used 

for the rest of the models that have a functional compo-

nent (M6, M7, M8, M11, M12, M13, M14) in order to 

obtain their corresponding xij components. However, 

calculating xTij  using Eq. (8) can seem somewhat complex 

to those not familiar with functional regression or with 

matrices; for this reason, “Appendix 1” gives the imple-

mentation of each of the 14 proposed models. Also, for 

models that include a functional component (M5, M6, 

M7, M8, M11, M12, M13, M14), the corresponding code 

for building the xTij  component using S = L = 21 basis 

expansion is provided. Implementation of the proposed 

models was carried out under the Bayesian paradigm; for 

this reason, in the next section we provide information 

about the prior distributions we used.

Assumptions on priors

For the beta coefficient of the ith environment, we 

assumed a N (0, 10000), for σ
2
g , a scaled inverse Chi 

square distribution χ−2(σ 2
g |Sg , dfg) with scale factor Sg 

and degrees of freedom dfg > 0; and for σ 2
e , also a scaled 

inverse Chi square distribution χ−2(σ 2
e |Se, dfe) with scale 

factor Se = 2E10 and degrees of freedom dfe = 2E10. 

�is scale and degrees of freedom of the variance com-

ponent of the error were choosen in this way to be able to 

implement the proposed two stage analysis in the BGLR 

package because these values warranty a prior distribu-

tion highly concentrated about 1, with very small vari-

ability. For σ 2

gE, we assumed a scaled inverse Chi square 

distribution χ−2(σ 2
gE |SgE , dfgE) with scale factor SgE and 

degrees of freedom dfgE > 0.

For the beta coefficients of each of the bands 

(βk , k = 1, . . . , p), we used N

(

0, σ 2
β1

)

 for 

σ 2
β1

∼ χ−2(σ 2
β1

|Sβ1 , dfβ1). For the beta coefficients of 

each component of the interaction terms between envi-

ronments and bands (βik , i = 1, . . . , 3; k = 1, . . . , p) , we 

used N
(

0, σ 2
β2

)

 for σ 2
β2

∼ χ−2(σ 2
β2

|Sβ2 , dfβ2). To con-

trol the smoothness of the parameter functions, we 

use a multivariate normal distribution as prior distri-

bution for d with mean the vector 0 and covariance 

matrix σ
2
d
P

−1, where P =

{

Pij
}

 is a penalty matrix, 

Pij =

∫ b
a ψ ′′

i (t)ψ ′′

j (t)dt, i, j = 1, . . . , S, ψ ′′

i (t) is the sec-

ond derivate of the ψi(t), and 1/σ 2

d
 is a smoothing 

parameter, and the prior for σ 2

d
 was χ−2(σ 2

d |Sd , dfd). In 

a similar way, for the beta coefficients of the basis (d2) 

corresponding to the interaction terms between environ-

ments and the functional covariates (β2i(·)), we assume 
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d2 ∼ N

(

0, σ 2
dI
P

−1

d

)

, where Pd =

{

P∗

ij

}

 is a penalty 

matrix, P∗

ij =

∫ b
a ψ ′′

i (t)ψ ′′

j (t)dt, i, j = 1, . . . , SdI , ψ ′′

i (t) is 

the second derivate of the ψi(t), and 1/σ 2

dI
 is a smooth-

ing parameter and for σ 2
dI ∼ χ−2(σ 2

dI |SdI , dfdI). Here we 

are representing β2i(t) as 
∑SdI

i=1
dIiψi(t). When used the 

Fourier basis we set P∗

11
= P11 = 1, to avoid a degener-

ate prior distribution concentrated in 0 for the the first 

elements of d and d∗
. For using the BGLR package, the 

corresponding desing matrix is post-multiplicaed by the 

square root matrix of P−1 (P−1

d
), P−1/2 (P

−1/2

d
). All the 

priors used were weakly informative with the exception 

of the variance component of error (σ 2
e ) which was totally 

informative and concentrated at 1 in order to be able to 

correctly implement the two stage analysis. Note that 

when the number of basis (L) used is small (less than 30), 

P
−1

d
 can be assumed an identity matrix.

�e 14 proposed models were implemented in the 

BGLR R-package (de los Campos and Pérez-Rodríguez 

[5]) using the hyper-parameters as set, using the rules of 

this package with 30,000 iterations and a burn-in period 

of 20,000. First, models were fitted to the entire data 

set to evaluate goodness-of-fit to the training data; they 

were then implemented through the cross-validation 

described in the next section.

Assessing the models’ prediction accuracy

We used two schemes for assessing the prediction accu-

racy of the 14 models; one consists of ten training (trn)–

testing (tst) random partitions with 50% of the lines 

assigned to the training data set and the remaining 50% 

to the testing data set. �e other scheme is also a ten 

trn–tst random partition, but with 10% of the lines in 

one environment assigned to training and 90% to testing; 

under this scenario, the two environments maintained 

the complete number of lines.

�e first cross-validation scheme was used to exam-

ine the prediction accuracies of the 14 proposed models 

given in the previous section; for each random partition 

in each environment, we used 488 (50%) lines for training 

and 488 (50%) for testing (50CV). �is means that from 

the whole data set comprising the three environments, 

the training data set that we used consisted of 1464 

observations (50%) and the validation data set we used, 

the remaining 1464 observations (50%). �is type of 

cross-validation mimics a situation where the researcher 

wants to predict 50% of the lines in some environments; 

however, the lines whose phenotypes we wanted to pre-

dict were measured in at least one of the environments 

(that is, they were not missing in all the environments).

�e second cross-validation scheme was only used 

for evaluating models M13 and M14 and consisted of 

removing 90% of the lines in one environment and pre-

dicting them using all the lines in the other two environ-

ments (90CV). �is cross-validation (leaving 90% of the 

lines unobserved in one environment) mimics the situa-

tion where all the information of the lines is available in 

all environments except one, where only 10% of the lines 

have phenotypic data.

For both random cross-validation schemes, we used 

the Pearson correlation between the predicted values 

of the model and the observed BLUP value for GY as a 

measure of prediction accuracy calculated for each envi-

ronment. We reported the average and the standard error 

(SE) of the 10 Pearson correlations resulting from the ten 

trn–tst random partitions implemented. It is also impor-

tant to point out that we used the same split (of the ten 

trn–tst random partitions) in the 14 models to ensure 

fair comparisons.

Results
In this section, we present the main results of the imple-

mentation of the proposed models. �e results are given 

in seven sections. �e first section provides a descrip-

tive summary of how similar the environments, time 

points and bands are. �e second section compares the 

proposed models with genomic data (WG), with pedi-

gree information (WA) and without marker or pedigree 

data (WO). �e third section compares the models in 

each environment for the 9 time-points. �e fourth sec-

tion compares the prediction accuracies of the proposed 

models between environments at each of the 9 time-

points. �e fifth section compares the 9 time-points in 

each environment for models M5, M7, M11, and M13. 

�e sixth section compares the computing time needed 

to implement each of the proposed models; the ran-

dom cross-validation shown in these four sections is the 

50CV. Finally, the seventh section presents the prediction 

accuracy of models M11 and M13 for the 9 time-points 

and for each environment when in one environment, 90% 

of the lines were missing and are predicted using all the 

data in the other two environments; the random cross-

validation in this section is the 90CV.

Descriptive summary of how similar the environments, 

time points and bands are

We found that the genetic correlation in yield between 

the Drought and Irrigated environments was nega-

tive and low (−0.1418), while the correlation between 

the Drought and Reduced Irrigated environments was 

positive and moderately high (0.508) and the correlation 

between the Irrigated and the Reduced Irrigated environ-

ments was also negative and low (−0.034). On the other 

hand, Table  2 provides the correlations between the 9 

time-points (for each time-point we used as response, 
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the average of the 250 bands); in the Drought environ-

ment, only 7 correlations out of 36 were larger than 0.4, 

in the Irrigated environment, we found 10 out of 36 cor-

relations were larger than 0.4, while in the Reduced Irri-

gated environment, we found 11 out of 36 correlations 

were larger than 0.4. Note that the the highest correlation 

is not with the nearest neighbor time point.

In Figs. 8, 9 and 10, we can see that most of the bands 

are highly correlated with the correlation between bands 

being stronger in the Irrigated and Reduced Irrigated 

environment and a weaker in the Drought environment. 

Also, it is very important to point out that the patterns of 

similarity in the correlations are very similar between the 

Irrigated and Reduced Irrigated environments. On the 

other hand, since the bands are very highly correlated, 

one can opt to omit some bands from the analysis with-

out significant loss of information. �is option was taken 

into account by Montesinos-López et  al. [13] (reducing 

the dimension of the bands using principal component 

analysis and working only some bands that showed high 

heritability) but although the results were a little faster 

in terms of computational implementation, no gain was 

observed in terms of predicción accuracy. For this rea-

son, in this paper we used all the available bands and we 

reduced the dimension of the bands by functional data 

analysis.

Comparing the models with genomic (WG), pedigree (WA) 

information and without genomic and without pedigree 

(WO) information

Results show that there were no differences in the predic-

tion accuracy of the proposed models when the genomic 

relationship matrix was taken into account (WG) com-

pared to when the genomic relationship matrix was 

Table 2 Pearson correlations of the time-points for each environment

Italic values indicate the Pearson correlation larger than 0.4 for each time point

Time 1 2 3 4 5 6 7 8 9

Drought

 1 1.000 0.754 0.257 0.319 −0.066 −0.069 0.213 −0.020 −0.065

 2 0.754 1.000 0.201 0.504 0.096 0.248 −0.010 0.364 0.031

 3 0.257 0.201 1.000 0.341 0.256 0.185 0.216 −0.118 0.138

 4 0.319 0.504 0.341 1.000 0.505 0.349 0.205 0.420 0.160

 5 −0.066 0.096 0.256 0.505 1.000 0.323 −0.009 0.596 0.063

 6 −0.069 0.248 0.185 0.349 0.323 1.000 −0.277 0.631 0.221

 7 0.213 −0.010 0.216 0.205 −0.009 −0.277 1.000 −0.401 0.489

 8 −0.020 0.364 −0.118 0.420 0.596 0.631 −0.401 1.000 0.090

 9 −0.065 0.031 0.138 0.160 0.063 0.221 0.489 0.090 1.000

Irrigated

 1 1.000 0.309 0.659 0.474 0.401 −0.097 −0.099 0.065 −0.031

 2 0.309 1.000 0.168 0.406 −0.416 0.832 0.062 0.876 0.008

 3 0.659 0.168 1.000 0.743 0.460 −0.115 0.123 0.062 0.179

 4 0.474 0.406 0.743 1.000 0.298 0.208 0.140 0.428 0.097

 5 0.401 −0.416 0.460 0.298 1.000 −0.491 −0.072 −0.329 −0.003

 6 −0.097 0.832 −0.115 0.208 −0.491 1.000 0.137 0.908 0.039

 7 −0.099 0.062 0.123 0.140 −0.072 0.137 1.000 0.084 0.882

 8 0.065 0.876 0.062 0.428 −0.329 0.908 0.084 1.000 0.002

 9 −0.031 0.008 0.179 0.097 −0.003 0.039 0.882 0.002 1.000

Reduced Irrigated

 1 1.000 0.623 0.741 0.531 0.465 −0.007 −0.190 0.012 −0.053

 2 0.623 1.000 0.485 0.538 0.252 0.248 −0.136 0.183 −0.049

 3 0.741 0.485 1.000 0.640 0.434 0.090 −0.102 0.149 0.025

 4 0.531 0.538 0.640 1.000 0.600 0.044 0.023 0.081 0.117

 5 0.465 0.252 0.434 0.600 1.000 −0.263 −0.109 −0.426 0.037

 6 −0.007 0.248 0.090 0.044 −0.263 1.000 0.038 0.804 0.128

 7 −0.190 −0.136 −0.102 0.023 −0.109 0.038 1.000 0.080 0.841

 8 0.012 0.183 0.149 0.081 −0.426 0.804 0.080 1.000 0.050

 9 −0.053 −0.049 0.025 0.117 0.037 0.128 0.841 0.050 1.000
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ignored (WO) (Fig.  1). Some models without genomic 

information produced predictions that were a little bet-

ter, for example, at time-point 2: in the Drought environ-

ment, the predictions are a little better for models M4, 

M7, M8, M10, M13 and M14, in the Irrigated environ-

ment they are a little better for models M4, M7, M8, 

M13, and M14, and in the Reduced Irrigated environ-

ment, the predictions are better for models M2, M8 and 

M14. At time-point 4, the predictions in the Irrigated 

environment are a little better for models M4, M7, M8, 

M10, M13 and M14, while in the Reduced Irrigated 

environment, the predictions are a little better for mod-

els M4, M7, M8, M10 and M13. At time-point 6, in the 

Drought environment, the predictions in favor of the 

models without genomic information are given in model 

M8; in the Irrigated environment, the models with a little 

better predictions are M8, M10, M13 and M14, while in 

the Reduced Irrigation environment, the models without 

genomic information were slightly better in all models 

except in models M1, M3, M5, M6, M7, M8, M9, M10, 

M11 and M12. Also in Fig. 2 we can see that there are no 

relevant differences in terms of prediction accuracy using 

genomic information, pedigree information and without 

pedigree and genomic information. However, in gen-

eral, using pedigree information produced predictions 

that were a little better than when using the genomic 

information, or ignoring both the genomic and pedigree 

information. Also in Fig. 2, we can see that in general, the 

later the time-point, the better the predictions; however, 

this trend is clearer in the Drought environment. In the 

Drought and Irrigated environments, the best predic-

tions were observed at time-point 7, but in general, at 

time-point 6, the predictions are comparable to those of 

the latter points. It is important to point out that all the 

standard errors (SE) of each APC resulting of all the pro-

posed models are given in “Appendix 3”.  

Comparing models in each environment for each 

time-point

All results given in Figs.  3, 4, 5, and 6 were obtained 

taking into account the genomic relationship matrix 

(WG), but similar results were observed with the pedi-

gree relationship matrix (WA) and without pedigree and 

genomic data (WO). Figure  3 shows that there are dif-

ferences in prediction accuracy among the 14 proposed 

models. It is clear that the worst models in terms of 

prediction accuracy were models M1 and M2 (without 

information of bands) and the best models were M9–

M14. However, there are no strong differences in terms 

of prediction accuracies between environments, but it is 

(See figure on previous page.) 

Fig. 1 Prediction accuracy of the proposed models for the time-environment combination, with the genomic relationship matrix (WG) and with-

out the genomic relationship matrix (WO). The reported prediction accuracy resulted from the average of the ten trn–tst random partitions of the 

Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)

Fig. 2 Prediction accuracy for each time-point in the three environments and models M7, M11 and M13 with the genomic relationship matrix 

(WG), with the pedigree relationship matrix (WA) and without the genomic (and pedigree) relationship matrix (WO). The reported prediction accu-

racy resulted from the average of the ten trn–tst random partitions of the Pearson correlation between observed and predicted values (APC) (50CV 

random cross-validation)
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interesting to point out that in the three environments, 

the worst predictions were observed at time-points 1 

and 2 and the second worst were observed at time-point 

4. �e best predictions were observed at time-point 9 for 

models M13 to M14 in the Drought environment, and 

for models M9, M11 and M12 in the Irrigated environ-

ment. However, in the Reduced Irrigation environment, 

the best predictions for models M13 to M14 were 

observed at time-point 6. In the Reduced Irrigated 

(Fig.  3) environment, we observed few differences in 

prediction accuracy between the 9 time-points, while in 

the Drought and Irrigated environments, we observed 

larger differences between time-points in terms of pre-

diction accuracy.

Fig. 3 Prediction accuracy of the proposed models in the three environments for the 9 time-points versus the average of the ten trn–tst random 

partitions of the Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)

Fig. 4 Comparison of prediction accuracy between environments of the proposed models for time-points 2–5 versus the average of the ten trn–tst 

random partitions of the Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)
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Comparison between environments for each of the 9 

time-points

Figures  4 and 5 show that there are differences in pre-

diction accuracies between environments at time-points 

1–9. At time-point 2, 3, 4 and 5, the best predictions 

are in the Reduced Irrigation environment, and at time-

points 7 and 9, the best predictions are in the Drought 

environment, while at the remaining time-points (6 and 

8), the predictions in the three environments are more 

similar. However, it is important to point out that the 

prediction accuracies for time-points 2, 3, 4 and 5 are 

around 0.2–0.5 for the Drought and Reduced Irrigated 

environments. On the other hand, most of the predic-

tions for time-points 6, 7, 8 and 9 are higher than 0.35. 

Fig. 5 Comparison of the prediction accuracy between environments of the proposed models for time-points 6–9 versus the average of the ten 

trn–tst random partitions of the Pearson correlation between observed and predicted values (APC) (50CV random cross-validation)

Fig. 6 Comparison of time-points (1–9) versus the average of the ten trn–tst random partitions of the Pearson correlation between observed and 

predicted values (APC) (50CV random cross-validation) in the Drought, Irrigated and Reduced Irrigation environments for models M5, M7, M11, M13
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Furthermore, at time-points 7 and 9, the worst predic-

tions were observed in the Reduced Irrigation environ-

ment and the second worst in the Irrigated environment.

Comparing time-points in each environment for models 

M5, M7, M11, and M13

Figure  6 shows that the prediction accuracies of mod-

els M5, M7, M11 and M13 are different; in general, the 

earlier the time point, the worse the predictions. �is 

is expected because in two environments (Drought and 

Irrigated), the worst predictions were observed at time-

points 1 and 2. At each time-point, the prediction accu-

racies of models M5 and M7 are similar and consistently 

lower than the prediction accuracies of models M11 and 

M13 (which gave similar predictions).

It is important to note that the main difference between 

M5 and M7 is the interaction term (gEij), which is 

ignored in M5 but present in M7. Since these two models 

have similar prediction accuracies, this result indicates 

that the interaction term did not help increase prediction 

accuracy. �e same argument applies for M11 and M13. 

Model M5 has the main effects of environments and lines 

as a predictor plus the information on the bands as func-

tional covariates, whereas model M11 takes into account 

the interaction between environments and bands (func-

tional covariate) in addition to these terms. �erefore, 

the differences between M5 and M11 can be attributed 

to the interaction between environments and bands as a 

functional covariate. Also, since the difference between 

M7 and M11 is the interaction between environments 

and bands, the differences in prediction accuracy can also 

be attributed to this interaction.

�e differences between models M5, M7, M11 and 

M13 were larger in the Reduced Irrigation environment 

(Fig. 6) at time-point 7. Also, it is important to point out 

that in the Drought environment, the best predictions 

belong to time-points 7 and 9 for the four models (M5, 

M7, M11 and M13), while in the Irrigated environment, 

the best predictions were observed at time-points 7 only 

for models M11 and M13. In the Reduced Irrigation envi-

ronment, the best predictions for the two models (M11 

and M13) were observed at time-point 6. Similar behav-

ior was observed at all time-points for the other models 

(see Figs. 11 and 12 in “Appendix 2”).

Comparing the models’ computational speed 

for implementation

For this comparison, we ran each of the proposed models 

using the whole available data set, once for each model 

in the BGLR package, and for each model we computed 

the time needed to complete 30,000 iterations. �e time 

(in minutes) needed to run each of the models is given 

in Fig. 7. �e times for running the proposed models are 

different because the implemented models have differ-

ent levels of complexity. For this reason, when comparing 

the models in terms of computational speed measured in 

minutes, we compared only models with similar levels of 

complexity.

For example, models M1, M3, M5, M6, M9, M11, and 

M12 without the GEij interaction term were, on aver-

age, 3.81 times faster than models M2, M4, M7, M8, 

M10, M13, and M14, which do include this interaction 

term. Next we compared models M3, M5 and M6 that 

have the same level of complexity and we observed that 

functional regression models M5 (254.87  min) and M6 

(247.12  min) were faster than model M3 (282.14  min), 

which is a conventional model. Comparing model M4 

versus M7 and M8, we observed that functional models 

Fig. 7 Computational speed (in minutes) required for implementing each proposed model
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M7 (778.94 min) and M8 (705.63 min) were also faster 

than conventional model M4 (980.49  min). �e same 

behavior was observed when comparing conventional 

model M9 (365.69  min) versus functional regression 

models M11 (274.79  min) and M12 (278.83  min), and 

conventional model M10 (980.09  min) versus func-

tional regression models M13 (759.70  min) and M14 

(712.85 min) (Fig. 7).

Prediction accuracy of 90% of the lines in one environment 

using models M13 and M14

Table  3 shows the prediction accuracy of models M11 

and M13 for the three environments and all 9 time-

points for the 90% of lines that are missing in one envi-

ronment and predicted using the data in the other two 

environments (90CV). For time-points 1–5 and 8, the 

best predictions were for the Irrigated environment, the 

second best for the Drought environment and the worst 

for the Reduced Irrigation environment. For time-points 

6, 7 and 9, the best predictions were observed in the 

Drought environment and the worst in the Reduced Irri-

gation environment.

It is interesting to point out that for time-point 3, 

the models had relatively high prediction accuracy of 

the unobserved 90% of the phenotypes of lines in one 

environment (90CV). When the predictions of M11 and 

M13 are compared, the predictions are very similar under 

both models (M11 and M13). �e results of Table 3 for 

models M11 and M13 take into account the genomic 

information (WG), but similar results were obtained 

with pedigree information (WA) and without pedigree or 

genomic information (WO).

Discussion
In this paper, we propose models with main and interaction 

terms for analyzing HTPP in wheat trial data that take into 

account genomic and pedigree information. Some of the 

proposed models take into account G × E or B × E, or both. 

We found that the models that take into account genomic 

or pedigree information are similar to the models that 

ignore this information. For this reason, in this particular 

study adding pedigree or genomic information did not help 

to increase prediction accuracy. However, we are aware 

that in other sets of data the gain by including this infor-

mation can be very helpful. But the most important issue 

here is that our proposed method is able to jointly model 

pedigree or genomic information with hyper-spectral 

information and we provide R code that is very easy for the 

implementation. Also, we found that including G × E inter-

action did not increase prediction accuracy, since not all 

Table 3 Prediction accuracy (average of  the ten trn–tst random partitions of  the Pearson correlation, APC) of  models 

M11 and M13 for time-points 1–9 for each environment for 90CV when 90% of lines are missing in only one environment 

(standard error, SE)

Time-point Drought Irrigated Reduced irrigation

APC SE APC SE APC SE

M11

 1 0.142 0.017 0.244 0.019 0.175 0.013

 2 0.197 0.016 0.231 0.027 0.145 0.019

 3 0.307 0.018 0.422 0.013 0.315 0.022

 4 0.248 0.014 0.347 0.020 0.238 0.019

 5 0.298 0.016 0.394 0.016 0.259 0.015

 6 0.415 0.006 0.459 0.011 0.310 0.022

 7 0.589 0.008 0.528 0.010 0.257 0.020

 8 0.422 0.009 0.411 0.014 0.198 0.024

 9 0.604 0.009 0.422 0.007 0.313 0.020

M13

 1 0.166 0.015 0.262 0.016 0.216 0.014

 2 0.202 0.016 0.234 0.027 0.163 0.017

 3 0.307 0.015 0.416 0.017 0.328 0.020

 4 0.245 0.015 0.339 0.021 0.238 0.013

 5 0.314 0.015 0.409 0.011 0.277 0.016

 6 0.427 0.008 0.456 0.013 0.347 0.013

 7 0.598 0.011 0.531 0.011 0.280 0.025

 8 0.416 0.010 0.402 0.018 0.171 0.021

 9 0.613 0.015 0.416 0.006 0.354 0.018
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the models that take this term into account were better in 

terms of prediction accuracy than those that do not include 

it. �is result might be because the variability among the 

three environments, Drought, Irrigated and Reduced Irri-

gation, was only due to the level of irrigation. However, all 

the models that include B × E interaction had better pre-

diction accuracy than models that do not. �erefore, our 

results support our initial hypothesis that when HTPP data 

are collected in multiple environments, it is important to 

take into account the interaction terms because they can 

help increase prediction accuracy. However, the magnitude 

of the increase in prediction accuracy depends on the mag-

nitude of the interaction terms, that is, on the strength of 

the variation in the phenotype of the same lines between 

environments. We also found that in the three environ-

ments, the lower the time-point, the worse the predictions. 

However, in the Reduced Irrigation environment, the best 

predictions were observed at time-point 6, while in the 

Drought and Irrigated environment, the best predictions 

were observed at time-point 7. On the other hand, when we 

wanted to predict 90% of the lines that were unobserved in 

only one environment, the best predictions were observed 

at time-points 7 and 9 in two environments (Drought and 

Irrigated), but even at time-point 6, reasonable predictions 

were observed for these two environments. In general, 

there is an optimum time-point that has the best prediction 

ability. In this study the three environments were consid-

ered as specific ecological conditions (represeting target 

populations of environments) with one environment per 

ecological condition, therefore further studies including 

sample of more environments per ecological conditions 

will be necessary for further investigation.

It is important to point out that models M3, M5 and 

M6 are equivalent to the single-environment models with 

bands proposed by Montesinos-López et al. [13], and com-

paring these models with the rest of the models we see that 

models M3, M5 and M6 are only superior to models M1, 

M2 which ignore the information of the bands. But in gen-

eral these models (M3, M5 and M6) produce lower predic-

tion accuracies than the rest of the models proposed here 

(M7–M14). �is provides empirical evidence that taking 

into account mainly the band x environment interaction 

term helps to improve prediction accuracy.

Bayesian functional regression models

Another important result of this study is that in addition 

to conventional models (M1, M2, M3, M4, M9, and M10), 

we proposed functional regression models (M5, M6, M7, 

M8, M11, M12, M13, and M14). �e Bayesian functional 

regression is an emerging statistical approach that is use-

ful when hundreds of variables are repeatedly measured 

in each experimental unit, yielding a large number of 

observations. �e primary observation unit is viewed as 

a curve or, usually, a function (such as in the context of 

HTPP data, where hundreds of data points are measured 

at different wavelengths for each unit). �is characteristic 

of the data complicates the use of standard longitudinal 

modeling strategies, such as random effect models and 

marginal models, where rigorous assumptions of intra-

subject correlation structure are required. Functional 

regression analysis is increasing in popularity because 

few assumptions are required for the mean structures 

and no assumptions are needed for the intra-unit corre-

lation structure of the data. Under this approach, obser-

vations of the same unit are viewed as a sample from a 

functional space, that is, the discrete samples measured 

are assumed to come from an underlying curve with con-

tinuous function forms.

�e proposed functional regression models (with 

B-spline and Fourier basis) turned out to be as competi-

tive as conventional regression models, but the functional 

regression models, as compared to conventional models, 

have the advantage of being parsimonious because fewer 

beta coefficients are needed. For example, in our study, 

instead of 250 beta coefficients needed for modeling the 

250 bands, only 21 of them (that correspond to 21 basis) 

were used to represent each curve. In terms of imple-

mentation speed, the functional regression models only 

reduced the required time around 22%, on average, when 

compared to the conventional models. However, as the 

number of bands increases (>1000), the speed of the func-

tional regression models should be considerably faster 

than that of the conventional models, since we should be 

able to model hundreds of bands with only a few bases. 

It can be hypothetized that the 250 functional predictors 

could be treated in the same way as usually SNP mark-

ers are treated in GBLUP method, that is, to build a band 

relationship matrix with the 250 wavelengths. In this case 

the model will include another kernel (the band kernel) 

and it will be essentially equivalent in terms of complexity 

to that used in GBLUP even if the number of bands is very 

large. Further research should be performed to compare 

the prediction accuracy of a band relationship model ver-

sus that achieved using the functional regression models.

Implementation of the Bayesian functional regression 

models

Our study’s third significant contribution is that the pro-

posed functional regression models can be implemented 

with the existing software. We implemented these models 

using the Bayesian Generalized Linear Regression (BGLR) 

R-package [5]. Details of the implementation of the pro-

posed models (conventional and functional regression) are 

given in “Appendix 1”. Implementing the functional regres-

sion models in the standard software is possible because 

a two-step process is needed to model a functional 
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regression model. In the first stage, the corresponding 

design matrix for the functional covariate is computed; in 

the second stage, this design matrix is assumed known, so 

the required parameters that include the parameters for 

the functional covariate are estimated. �e steps required 

to implement and use the design matrix in all functional 

regressions models are given in “Appendix 1”. First, the 

design matrix for the functional covariate(s) is created; 

then this design matrix is used to estimate the parameters 

of the functional beta coefficients.

Advantages of the Bayesian functional regression models

�e proposed approach for implementing functional 

regression models is flexible, as it can be implemented 

with complex models and large data sets. �is is not 

possible with the ‘fda.usc’ library of Febrero Bande and 

Oviedo de la Fuente [7], which was created for imple-

menting functional data analysis (exploratory, descrip-

tive, regression analysis of functional data) and recently 

used by Montesinos-López et al. [13] for single-environ-

ment models. Another advantage of implementing our 

proposed functional regression models in BGLR is that 

we can change the priors for the random or fixed effects 

of the functional covariates, which makes it possible 

to implement variable selection ideas and the Bayesian 

alphabet (Bayesian ridge regression, Bayes A, Bayes B, 

Bayes C, Bayes Lasso and GBLUP) in a straightforward 

manner. As already mentioned, Bayesian Functional 

regression models are parsimonious, so that as the num-

ber of bands increases, the computing time of these mod-

els provides an important advantage over conventional 

models.

Conclusions
In this paper, we propose conventional Bayesian regres-

sion models and Bayesian functional regression mod-

els for jointly modelling HTPP data with pedigree or 

genomic information that take into account interaction 

terms (G × E and B × E). We found that, in this case, tak-

ing into account genomic (or pedigree) information did 

not improve prediction accuracy in comparison to those 

models that ignore this information, but the proposed 

method are easy to implement in R under a Bayesian 

framework. We also found that G ×  E did not improve 

the models’ prediction accuracy, but B  ×  E interaction 

did. We also found that in general, in the three environ-

ments, the lower the time-point, the worse the predic-

tions, while in the Reduced Irrigation environment, the 

best predictions were observed at time-point 6. In the 

90CV, when 90% of the lines in one environment are pre-

dicted using information from the other environments, 

the best predictions were for time-points 7 and 9 in the 

three environments. �e proposed Bayesian functional 

regression models (with B-splines and Fourier basis) were 

implemented in R-software BGLR, which is very popular 

in genomic selection for whole-genome prediction.

We also provide details for implementing the proposed 

models and those familiar with the BGLR package will 

realize that implementing the two Bayesian functional 

regressions models with B-spline and Fourier basis is 

straightforward. In terms of prediction accuracy, the pro-

posed functional regression models (with B-splines and 

Fourier basis) were not better than the conventional regres-

sion models; however, the functional regression models 

were slightly better than the conventional models in terms 

of computational speed since the functional regression 

models were slightly faster than the conventional models. 

�is was due to the reduced number of beta coefficients 

that need to be estimated for the functional regression 

models compared to those needed in the conventional 

models. We found that the best models in terms of pre-

diction accuracy were those that take into account B × E 

interaction.
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###Preliminaries for implementing the 14 proposed models######################### 

rm(list=ls())  # remove everything from memory in the working environment 

setwd("C:\\Osval") 

library(fda) 

library("fda.usc") 

library(BGLR) 

load("HTP_Data_976_Blues.RData") 

ls() 

####################Getting the name of Wavelengths######################### 

Wavelengths=c(Wavelengths) 

Wavelengths 

LG=t(chol(G976)) 

########################Selecting the phenotype response-Yield######################### 

y1=c(Y976[,2]) 

X=X976[,-c(1,2,3)] 

All.Bands1=X 

All.Bands=All.Bands1 

X=X 

############Specifying the number of iterations and burning number############# 

NIter=20000 

Nburn=10000 

#####Creating the design matrix of environment ################################# 

Z.E=model.matrix(~0+as.factor(X976$Env)) 

#####Creating the desing matriz of Lines ########################## 
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Z.G=model.matrix(~0+as.factor(X976$Gids)) 

Z.G=Z.G%*%LG 

#####Creating the desing matrix of GenotypexEnviornment interaction############# 

Z.GE=model.matrix(~0+Z.G:as.factor(X976$Env)) 

######################### Model 1-for time point 2################################# 

ETA1=list(Env=list(X=Z.E,model="FIXED"), Line=list(X=Z.G,model="BRR")) 

FM1=BGLR(y=y1,ETA=ETA1,nIter=NIter,burnIn=Nburn , weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 2-for time point 2################################## 

ETA2=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR")) 

FM2=BGLR(y=y1,ETA=ETA2,nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

################################Model 3-for time point 2########################### 

#########Selecting the bands corresponding to point time 2###################### 

Data.T=All.Bands[,251:500] 

X11= as.data.frame(Data.T) 

ETA3=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

Bands=list(X=X11,model="BRR")) 

FM3=BGLR(y=y1,ETA=ETA3, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 4-for time point 2################################### 

ETA4=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR"), Bands=list(X=X11,model="BRR")) 

FM4=BGLR(y=y1,ETA=ETA4, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 5-for time point 2################################### 

##Creating the design matrix for the functional regression part using bspline basis ############## 

n.basis=21 

bspl = create.bspline.basis(range(c(Wavelengths)),nbasis=n.basis,breaks = NULL ,norder=4) 
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n.ind=dim(All.Bands)[1] 

X.FDA=matrix(NA, nrow=n.ind,ncol=n.basis) 

for (h in 1:n.ind){ 

smf=smooth.basisPar(argvals=c(Wavelengths),y=as.numeric(Data.T[h,]),lambda=0.1,fdobj=bspl,Lfd

obj=2) 

cv_sp_pn = smf$fd$coefs 

I_KL = inprod(bspl, bspl) 

xt_h=t(I_KL%*%cv_sp_pn) 

X.FDA[h,]=xt_h 

} 

Pbspl = eval.penalty (bspl, Lfdobj=0) 

EV_bs = eigen(Pbspl) 

Pbspl_sq_inv = EV_bs$vectors%*%sqrt(diag(1/abs(EV_bs$values)))%*%t(EV_bs$vectors) 

X.FDA = X.FDA%*% Pbspl_sq_inv 

ETA5=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), Bands=list(X= 

X.FDA, model="BRR")) 

FM5=BGLR(y=y1,ETA=ETA5, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 6-for time point 2################################### 

#######Creating the design matrix for the functional regression part using Fourier basis######### 

bspF=create.fourier.basis(range(c(Wavelengths)),nbasis=n.basis,period=diff(range(c(Wavelengths)))

) 

X.Fu=matrix(NA, nrow=n.ind,ncol=n.basis) 

for (h in 1:n.ind){ 

smf=smooth.basisPar(argvals=c(Wavelengths),y=as.numeric(Data.T[h,]),lambda=0.1,fdobj=bspF,Lf

dobj=2) 

cv_sp_pn = smf$fd$coefs 

I_KL = inprod(bspl, bspl) 

xt_h=t(I_KL%*%cv_sp_pn) 

X.Fu[h,]=xt_h 

} 
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PF = eval.penalty (bspF, Lfdobj=0) 

PF[1,1]=1 

EV_F = eigen(PF) 

PF_sq_inv = EV_F$vectors%*%sqrt(diag( 1/(EV_F$values)))%*%t(EV_F$vectors) 

X.Fu = X.Fu%*% PF_sq_inv 

ETA6=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), Bands=list(X= 

X.Fu, model="BRR")) 

FM6=BGLR(y=y1,ETA=ETA6, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 7-for time point 2################################## 

ETA7=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X= X.FDA, model="BRR")) 

FM7=BGLR(y=y1,ETA=ETA7, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 8-for time point 2################################## 

ETA8=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X= X.Fu, model="BRR")) 

FM8=BGLR(y=y1,ETA=ETA8, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

##########################Model 9-for time point 2################################## 

#######Creating the design matrix for the interaction between Environments and Bands######## 

Z.IT=model.matrix(~0+Z.E:as.matrix(X11)) 

ETA9=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), Bands=list(X=X11, 

model="BRR"), EnvxBands= list(X= Z.IT,model="BRR")) 

FM9=BGLR(y=y1,ETA=ETA9, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 10-for time point 2################################# 

ETA10=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X=X11, model="BRR"), EnvxBands= list(X= 

Z.IT,model="BRR")) 

FM10=BGLR(y=y1,ETA=ETA10, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 
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#########################Model 11-for time point 2################################# 

Z.IF=model.matrix(~0+Z.E:X.FDA) 

ETA11=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"),Bands=list(X=X.F

DA, model="BRR"), EnvxBands= list(X= Z.IF,model="BRR")) 

FM11=BGLR(y=y1,ETA=ETA11, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 12-for time point 2################################# 

Z.IFu=model.matrix(~0+Z.E:X.Fu) 

ETA12=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

Bands=list(X=X.Fu, model="BRR"), EnvxBands= list(X= Z.IFu,model="BRR")) 

FM12=BGLR(y=y1,ETA=ETA12, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 13-for time point 2################################# 

ETA13=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X=X.FDA, model="BRR"), EnvxBands= 

list(X= Z.IF,model="BRR")) 

FM13=BGLR(y=y1,ETA=ETA13, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 

#########################Model 14-for time point 2################################# 

ETA14=list(Env=list(X=Z.E,model="FIXED"),Line=list(X=Z.G,model="BRR"), 

LinexEnv=list(X=Z.GE,model="BRR"),Bands=list(X=X.Fu, model="BRR"), EnvxBands= list(X= 

Z.IFu,model="BRR")) 

FM14=BGLR(y=y1,ETA=ETA14, nIter=NIter,burnIn=Nburn, weights=yw1,df0=4+2E10,S0=2E10+2) 
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Fig. 8 Heatmap for the 250 bands in environment Drought. In the 

x-axis the bands are presented from the lowest to largest wavelength 

measured (392–851 nm), while in the y-axis the wavelengths are 

clustered
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Fig. 9 Heatmap for the 250 bands in environment Irrigated. In the 

x-axis the bands are presented from the lowest to largest wavelength 

measured (392–851 nm), while in the y-axis the wavelengths are 

clustered

Appendix 2: Additional plots
See Figs. 8, 9, 10, 11, and 12.
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Fig. 10 Heatmap for the 250 bands in environment Reduced 

Irrigated. In the x-axis the bands are presented from the lowest to 

largest wavelength measured (392–851 nm), while in the y-axis the 

wavelengths are clustered
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Fig. 11 Comparison of time-points in the Drought, Irrigated and Reduced Irrigation environments for models M1, M2, M3, and M4

Fig. 12 Comparison of time-points in the Drought, Irrigated and Reduced Irrigation environments for models M6, M8, M9, M10, M12, and M14
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Model Time WO WA WG

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

SE SE SE SE SE SE SE SE SE

M1 1 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 2 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 3 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 4 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 5 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 6 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 7 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 8 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M1 9 0.014 0.012 0.02 0.013 0.013 0.02 0.014 0.012 0.018

M2 1 0.011 0.011 0.02 0.023 0.027 0.019 0.013 0.015 0.019

M2 2 0.011 0.011 0.021 0.012 0.023 0.017 0.012 0.013 0.017

M2 3 0.011 0.011 0.021 0.021 0.018 0.017 0.008 0.01 0.015

M2 4 0.012 0.011 0.021 0.022 0.026 0.018 0.008 0.009 0.016

M2 5 0.011 0.011 0.022 0.008 0.014 0.016 0.006 0.013 0.015

M2 6 0.012 0.011 0.021 0.012 0.015 0.018 0.009 0.01 0.013

M2 7 0.012 0.012 0.02 0.016 0.02 0.017 0.008 0.011 0.009

M2 8 0.011 0.011 0.02 0.011 0.016 0.017 0.011 0.012 0.012

M2 9 0.011 0.011 0.02 0.012 0.019 0.015 0.009 0.011 0.011

M3 1 0.014 0.016 0.019 0.011 0.016 0.019 0.013 0.014 0.018

M3 2 0.014 0.013 0.017 0.014 0.012 0.018 0.014 0.012 0.016

M3 3 0.012 0.011 0.016 0.01 0.012 0.016 0.011 0.008 0.014

M3 4 0.013 0.014 0.013 0.011 0.013 0.013 0.012 0.011 0.012

M3 5 0.013 0.011 0.016 0.011 0.01 0.017 0.012 0.009 0.015

M3 6 0.015 0.015 0.019 0.014 0.016 0.017 0.013 0.014 0.018

M3 7 0.011 0.015 0.013 0.009 0.016 0.014 0.009 0.013 0.011

M3 8 0.008 0.012 0.017 0.007 0.01 0.018 0.009 0.009 0.015

M3 9 0.011 0.009 0.014 0.009 0.009 0.015 0.009 0.008 0.013

M4 1 0.013 0.018 0.02 0.008 0.018 0.017 0.01 0.017 0.013

M4 2 0.013 0.015 0.016 0.017 0.015 0.013 0.01 0.01 0.01

M4 3 0.01 0.014 0.013 0.009 0.019 0.017 0.011 0.012 0.017

M4 4 0.013 0.015 0.015 0.005 0.019 0.013 0.01 0.004 0.015

M4 5 0.011 0.013 0.013 0.007 0.014 0.015 0.015 0.008 0.017

M4 6 0.017 0.015 0.018 0.011 0.014 0.016 0.013 0.008 0.015

M4 7 0.007 0.013 0.009 0.013 0.014 0.009 0.007 0.016 0.01

M4 8 0.008 0.011 0.013 0.01 0.012 0.016 0.007 0.01 0.01

M4 9 0.011 0.009 0.01 0.007 0.009 0.012 0.008 0.01 0.013

M5 1 0.014 0.012 0.018 0.012 0.013 0.019 0.014 0.012 0.017

M5 2 0.013 0.011 0.021 0.012 0.012 0.021 0.012 0.011 0.019

M5 3 0.012 0.011 0.018 0.01 0.012 0.019 0.01 0.01 0.016

Appendix 3
Standard errors (SE) fof the average Pearson correla-

tions (APC) for each proposed model, time point, envi-

ronment, without genomic and pedigree information 

(WO), only with pedigree information (A), and only with 

genomic information (WG).
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Model Time WO WA WG

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

SE SE SE SE SE SE SE SE SE

M5 4 0.013 0.014 0.016 0.011 0.014 0.016 0.012 0.012 0.014

M5 5 0.014 0.013 0.016 0.011 0.014 0.018 0.012 0.013 0.015

M5 6 0.014 0.015 0.02 0.01 0.018 0.02 0.012 0.016 0.018

M5 7 0.012 0.017 0.012 0.009 0.016 0.012 0.01 0.016 0.011

M5 8 0.011 0.014 0.017 0.009 0.013 0.017 0.011 0.01 0.015

M5 9 0.012 0.008 0.015 0.008 0.01 0.016 0.008 0.011 0.014

M6 1 0.014 0.013 0.018 0.012 0.015 0.018 0.013 0.013 0.016

M6 2 0.014 0.011 0.021 0.012 0.012 0.021 0.013 0.01 0.018

M6 3 0.012 0.012 0.018 0.009 0.013 0.018 0.011 0.012 0.016

M6 4 0.013 0.013 0.016 0.011 0.014 0.015 0.012 0.01 0.013

M6 5 0.013 0.013 0.015 0.01 0.014 0.017 0.012 0.013 0.015

M6 6 0.012 0.012 0.019 0.01 0.011 0.019 0.012 0.01 0.017

M6 7 0.01 0.015 0.011 0.008 0.016 0.013 0.009 0.015 0.01

M6 8 0.011 0.011 0.016 0.009 0.011 0.017 0.009 0.009 0.015

M6 9 0.011 0.008 0.015 0.008 0.009 0.016 0.01 0.008 0.013

M7 1 0.014 0.018 0.02 0.018 0.026 0.02 0.012 0.016 0.018

M7 2 0.01 0.013 0.019 0.008 0.019 0.018 0.008 0.016 0.015

M7 3 0.011 0.016 0.014 0.009 0.02 0.014 0.011 0.012 0.015

M7 4 0.013 0.022 0.015 0.013 0.02 0.015 0.009 0.008 0.012

M7 5 0.013 0.014 0.015 0.01 0.014 0.016 0.009 0.009 0.014

M7 6 0.017 0.015 0.019 0.013 0.017 0.016 0.009 0.011 0.012

M7 7 0.008 0.013 0.012 0.017 0.011 0.016 0.009 0.011 0.023

M7 8 0.01 0.009 0.014 0.008 0.012 0.015 0.011 0.008 0.015

M7 9 0.01 0.007 0.011 0.01 0.008 0.012 0.01 0.011 0.013

M8 1 0.015 0.017 0.02 0.014 0.026 0.017 0.009 0.016 0.016

M8 2 0.012 0.013 0.019 0.016 0.015 0.021 0.008 0.011 0.013

M8 3 0.012 0.015 0.014 0.007 0.018 0.015 0.01 0.014 0.016

M8 4 0.011 0.014 0.013 0.008 0.014 0.014 0.011 0.011 0.01

M8 5 0.011 0.01 0.012 0.005 0.01 0.016 0.012 0.009 0.014

M8 6 0.013 0.007 0.014 0.018 0.012 0.016 0.012 0.008 0.013

M8 7 0.007 0.011 0.009 0.011 0.011 0.015 0.009 0.014 0.02

M8 8 0.008 0.009 0.013 0.007 0.011 0.017 0.01 0.01 0.014

M8 9 0.01 0.008 0.011 0.01 0.01 0.012 0.009 0.011 0.012

M9 1 0.011 0.011 0.02 0.009 0.011 0.021 0.01 0.01 0.019

M9 2 0.01 0.01 0.014 0.01 0.011 0.015 0.01 0.01 0.012

M9 3 0.008 0.01 0.013 0.005 0.011 0.013 0.008 0.01 0.011

M9 4 0.01 0.009 0.012 0.008 0.007 0.013 0.01 0.006 0.009

M9 5 0.008 0.007 0.013 0.006 0.005 0.013 0.008 0.004 0.011

M9 6 0.007 0.007 0.015 0.006 0.007 0.015 0.007 0.008 0.011

M9 7 0.007 0.008 0.011 0.006 0.008 0.013 0.006 0.008 0.007

M9 8 0.006 0.008 0.014 0.005 0.008 0.012 0.004 0.007 0.01

M9 9 0.008 0.011 0.012 0.005 0.011 0.013 0.006 0.012 0.01

M10 1 0.011 0.007 0.012 0.011 0.008 0.017 0.013 0.01 0.015

M10 2 0.009 0.006 0.012 0.013 0.013 0.014 0.01 0.007 0.012

M10 3 0.008 0.009 0.01 0.008 0.009 0.013 0.007 0.009 0.012

M10 4 0.009 0.008 0.011 0.006 0.006 0.014 0.008 0.008 0.009

M10 5 0.008 0.008 0.014 0.006 0.007 0.013 0.011 0.005 0.008
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Model Time WO WA WG

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

Drought Irrigated Reduced 
irrigation

SE SE SE SE SE SE SE SE SE

M10 6 0.006 0.009 0.01 0.004 0.006 0.015 0.008 0.007 0.011

M10 7 0.007 0.01 0.008 0.006 0.01 0.013 0.007 0.009 0.009

M10 8 0.007 0.008 0.017 0.006 0.006 0.013 0.004 0.006 0.007

M10 9 0.008 0.013 0.007 0.009 0.009 0.013 0.007 0.015 0.009

M11 1 0.01 0.012 0.018 0.008 0.014 0.019 0.01 0.012 0.016

M11 2 0.01 0.01 0.018 0.009 0.011 0.017 0.01 0.008 0.015

M11 3 0.009 0.009 0.015 0.007 0.009 0.015 0.009 0.008 0.014

M11 4 0.011 0.008 0.015 0.008 0.008 0.016 0.011 0.008 0.013

M11 5 0.009 0.01 0.015 0.007 0.008 0.014 0.007 0.008 0.012

M11 6 0.007 0.009 0.017 0.006 0.009 0.017 0.006 0.009 0.014

M11 7 0.006 0.008 0.009 0.006 0.009 0.013 0.005 0.009 0.009

M11 8 0.006 0.007 0.013 0.005 0.007 0.014 0.004 0.006 0.011

M11 9 0.007 0.013 0.013 0.006 0.012 0.013 0.007 0.014 0.01

M12 1 0.01 0.012 0.019 0.008 0.014 0.02 0.009 0.012 0.017

M12 2 0.012 0.01 0.018 0.009 0.011 0.017 0.01 0.01 0.015

M12 3 0.011 0.012 0.015 0.01 0.011 0.016 0.011 0.01 0.015

M12 4 0.011 0.011 0.014 0.009 0.01 0.015 0.012 0.011 0.013

M12 5 0.011 0.011 0.017 0.009 0.009 0.018 0.007 0.008 0.013

M12 6 0.008 0.008 0.016 0.005 0.009 0.016 0.006 0.009 0.015

M12 7 0.006 0.008 0.009 0.005 0.009 0.011 0.007 0.009 0.008

M12 8 0.007 0.008 0.014 0.005 0.008 0.013 0.006 0.008 0.012

M12 9 0.007 0.013 0.012 0.006 0.013 0.014 0.007 0.014 0.01

M13 1 0.012 0.009 0.013 0.012 0.018 0.017 0.008 0.01 0.014

M13 2 0.008 0.008 0.014 0.007 0.018 0.015 0.007 0.007 0.015

M13 3 0.009 0.008 0.01 0.006 0.01 0.013 0.007 0.007 0.008

M13 4 0.009 0.008 0.012 0.006 0.007 0.013 0.007 0.006 0.01

M13 5 0.008 0.007 0.014 0.006 0.01 0.013 0.008 0.006 0.008

M13 6 0.006 0.009 0.01 0.006 0.008 0.012 0.012 0.008 0.007

M13 7 0.006 0.01 0.007 0.006 0.008 0.013 0.009 0.012 0.009

M13 8 0.006 0.007 0.015 0.007 0.006 0.014 0.007 0.005 0.013

M13 9 0.006 0.015 0.008 0.01 0.013 0.014 0.006 0.013 0.01

M14 1 0.009 0.008 0.013 0.012 0.015 0.016 0.01 0.007 0.014

M14 2 0.009 0.008 0.014 0.008 0.015 0.016 0.008 0.009 0.011

M14 3 0.011 0.009 0.011 0.009 0.008 0.015 0.01 0.009 0.012

M14 4 0.011 0.01 0.014 0.009 0.013 0.012 0.011 0.009 0.009

M14 5 0.008 0.009 0.014 0.01 0.008 0.016 0.009 0.007 0.011

M14 6 0.006 0.009 0.011 0.004 0.005 0.014 0.01 0.009 0.009

M14 7 0.008 0.008 0.006 0.006 0.009 0.01 0.009 0.013 0.012

M14 8 0.006 0.007 0.012 0.005 0.01 0.014 0.005 0.01 0.009

M14 9 0.008 0.014 0.008 0.009 0.012 0.012 0.007 0.012 0.006
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