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Abstract 

Background: Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. 
With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred popula-
tions. We propose methods to construct genomic covariances with additive and non-additive (dominance) inherit-
ance in the case of pure lines and crossbred populations.

Results: We describe substitution effects and dominant deviations across two pure parental populations and the 
crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can 
differ between parental populations. Based on these assumptions, the theoretical variance components (additive and 
dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the 
crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Domi-
nance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both 
parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate 
this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For 
the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the 
total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population.

Conclusions: We present a coherent marker-based model that includes purebred and crossbred data and additive 
and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and vari-
ance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be 
exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals 
in terms of performance.

© 2016 Vitezica et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Crossbreeding schemes are widely used in animal and 

plant breeding for the purpose of exploiting the het-

erosis and breed complementarity that often occur in 

crosses [1]. �e main goal of crossbreeding is to improve 

the performance of crossbred populations. Pure breed/

line performance is an imperfect predictor of crossbred 

performance; there are two reasons that explain this 

incomplete correlation between purebred and crossbred 

populations. First, phenotypic measurements on pure-

bred/line individuals are often recorded in only one 

environment (e.g., management) that differs from the 

environment in which the crossbred individuals are 

raised (genotype-by-environment interaction). Second, 

non-additive genetic effects, such as dominance and/or 

epistasis, which likely determine heterosis, may result 

in different breeding values between purebreds and 

crossbreds.

In the case of dominant inheritance, the theory of 

pedigree-based genetic evaluation and estimation of 

genetic parameters for crossbred populations was pro-

posed by Lo et al. [2, 3]. In this model, each individual 

has two genetic values, one on the purebred scale and 
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one on the crossbred scale. In the absence of inbreed-

ing, it is necessary to estimate nine genetic variance 

components for an F1 cross between breeds/lines (A 

and B): additive variance for breed A, dominance vari-

ance for breed A, additive variance for breed B, domi-

nance variance for breed B, additive variance for the 

F1 population due to the effects of the alleles inherited 

from breed A, additive variance for the F1 population 

due to the effects of the alleles inherited from breed B, 

the dominance variance for the F1 population, additive 

covariance between a parent from breed A and an F1 

offspring, and the additive covariance between a par-

ent from breed B and an F1 offspring. Although the rel-

evance of the crossbred model has been shown [4, 5], 

its use in applied breeding programs is limited, because 

pedigree relationships between purebred and crossbred 

individuals are often not known, and large datasets on 

crosses are needed [6].

Genomic approaches offer tools that allow to per-

form much deeper analyses, and thus, to understand 

the effects and the mechanisms of the genes and their 

interactions that underlie complex traits and to explore 

new directions for their improvement [7]. In addition, 

genomic evaluation renews the interest in crossbred indi-

viduals because they can be used as training animals [8]. 

In the case of additive inheritance, a joint genomic evalu-

ation of purebred and crossbred individuals was pro-

posed [9]. Toosi et al. [10] and Zeng et al. [11] extended 

this approach in order to include dominance. All these 

studies focused on the selection of purebred individuals 

for crossbred performance. However, the formal defini-

tion of substitution effects and dominant deviations and 

the estimation of genetic variance components in two 

breeds/lines and the F1 population have not been revis-

ited so far within the genomic framework. �is is needed 

for correct genetic evaluation and for planning selection 

schemes. �e additive variances due to the gametes from 

the pure lines that compose the F1 population are an 

indicator of how much can be gained by selection. Esti-

mation of dominance variance for the F1 individuals can 

be considered as a predictor of the variability of specific 

combining ability, i.e. how relevant is assortative mat-

ing between purebred lines to maximize the phenotype 

at a trait of interest in the F1 population. As an example, 

a common procedure in maize breeding is to use “test-

ers” to evaluate the performance of a pure line as a parent 

in a cross. If the level of dominance variance is high, the 

use of testers might severely bias selection towards those 

lines that combine adequately with a particular tester. 

In practice, the estimated variance components serve as 

a guide for choosing breeds/lines with good combining 

abilities (e.g., pigs, corn, etc.) in animal and plant breed-

ing schemes.

�e objective of this work was twofold. First, we decom-

posed variance components for an F1 population using a 

genomic model with additive and non-additive (dominance) 

inheritance. Second, we applied the approach to estimate 

variance components using pig data. To our knowledge, 

there is no published description of the theoretical variance 

components (additive and dominant) in terms of substitu-

tion effect across two pure populations and the crossbred 

population. �e next section describes the theory on which 

the estimation of genotypic values is based using GBLUP.

Theory
An F1 population involves gametes from the parental 

populations 1 and 2. If dominance is present, and because 

allelic frequencies differ in each breed, the within-breed 

(additive) substitution effects are not equal to the substi-

tution effects across the F1 population. �us, purebred 

individuals have different breeding values depending on 

whether they are mated to individuals from the same or 

another breed/line. �is situation is well known [3, 12, 

13], and holds even if the genotype effects are constant 

across breeds or crossbred individuals.

Consider one locus/gene and two non-inbred popula-

tions, P1 and P2 that are each in Hardy–Weinberg equi-

librium. An individual from P1 is crossed with a random 

individual from P2. Individuals in the F1 population have 

genotypes B1B2, B1b2, b1B2 or b1b2 where subscripts 1 

and 2 indicate the origin of the allele, i.e. populations 1 or 

2, respectively. �e genotypic value G of an individual in 

the crossbred population F1 is equal to:

where a and d are deviations from the midpoint of the 

two homozygotes, and correspond to the (biological) 

additive and dominant effects of the gene, respectively. 

Let us assume that the genotypic values (a, d and −a) are 

the same in the two parental populations and the cross-

bred population F1 (this assumption will be relaxed later) 

[1], the genetic mean of the F1 population is therefore:

where p and q = 1 − p are the allelic frequencies of B1 

and b1 in population 1, and p′ and q′ are the allelic fre-

quencies of B2 and b2 in population 2. If the difference 

in allele frequencies between the two populations is 

denoted by y = p − p′
= q′

− q, the genetic mean is, as 

in Falconer [1], equal to:

Following the classical parameterization, the geno-

typic values of individuals in the F1 population are the 

sum of the additive (or breeding) effects of the gametes 

that originate from populations P1 and P2 (u1 or u2) and 

GB1B2
= a, GB1b2

andGB2b1
= d andGb1b2

= −a,

E(G) =
(

pp′
− qq′

)

a +
(

pq′
+ qp′

)

d,

E(G) =
(

p − q − y
)

a + [2pq + (p − q)y]d.
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a dominant deviation (v) which depends on the combina-

tion of alleles received [14]:

where u1 is the additive effect of a gamete from popula-

tion 1 combined with a gamete from population 2, which 

differs from the effect of the gamete within the same pop-

ulation. �us, u1 and u2 represent the general combining 

ability (GCA) of alleles B1 or b1, and B2 or b2, whereas v 

is the specific combining ability (SCA) between alleles B1 

or b1, and B2 or b2. An equivalent expression that is often 

used in plant breeding is:

where the performance of an individual i is evaluated in 

terms of its average performance when it is crossed with 

another individual j [13].

Additive values u1 and u2 of the gametes include a sub-

stitution effect for each gene. �us, α1 is the additive 

(or breeding) effect of the gametes from population 1 

crossed with population 2, and α2 the additive (or breed-

ing) effect of the gametes from population 2 crossed with 

population 1, which are equal to:

From the expression, σ 2

G
= E

(

G
2
)

− (E(G))2, the total 

genetic variance for the F1 population is equal to:

We can partition the genetic variance σ 2

G
 into compo-

nents due to individual additive value (breeding values, 

u ), and dominance deviations (v). �e additive genetic 

variance for the F1 population is:

where σ 2

A1
= 2pq(α1)

2 and σ 2

A2
= 2p′q′(α2)

2.

�e part of variance for each population is:

(1)G = E(G) + u1 + u2 + v,

G = E(G) + GCAi + GCAj + SCAij ,

α1 = a + d
(

q′
− p′

)

and α2 = a + d(q − p).

σ
2

G =
(

pq + p′q′
)

a2 − 2
(

1 − q − q′
)(

pq′
+ p′q

)

ad

+
(

pq + p′q′
− 4pqp′q′

)

d2.

σ
2
A

=
1

2
σ
2
A1

+
1

2
σ
2
A2
,

σ 2
A1

= 2pq(α1)
2

= 2

[

pqa2 + 2pq
(

q′
− p′

)

ad + pq
(

q′
− p′

)2
d2

]

,

(2)σ
2
A1

= 2pq
[

a +
(

q′
− p′

)

d
]2
,

σ 2
A2

= 2p′q′(α2)
2

= 2

[

p′q′a2 + 2p′q′(q − p)ad + p′q′(q − p)2d2
]

,

(3)σ 2
A2

= 2p′q′
[a + (q − p)d]2.

σ
2

A1
 (σ 2

A2
) is the variance of the GCA of the alleles of 

individuals from population 1 crossed to individuals 

from population 2 (alleles of individuals from population 

2 crossed with individuals from population 1) or it can 

also be considered as the additive variance of gametes 

inherited from population 1 (from population 2) in the F1 

population as in Lo et al. [3].

�e variance of the GCA (σ 2

A
) is an important param-

eter to understand if selection of purebred individuals 

can increase crossbred performance [1]. If variance of 

the GCA explains a large part of the total genetic vari-

ance for the F1 population, it means that within-pop-

ulation selection will result in a large increase of the 

crossbred performance, without resorting to specific 

matings to create crossbreds with large dominance 

deviations.

�e term ad appears in σ 2

G
 but is completely embedded 

in σ 2

A1
 and σ 2

A2
. �is term differs from 0 if there is covari-

ance between a and d, i.e. if a and d are of the same mag-

nitude and direction or if there is overdominance. �is 

covariance between additive and dominant effects of 

genes implies the presence of inbreeding depression or 

heterosis. Different models have been proposed to take 

the dependency between additive and dominant effects 

into account [15].

�us, based on Eq. (2) and (3), we can write the addi-

tive variance for the F1 population as:

Using this last expression of σ 2

A
 and the expression of 

the total genetic variance, i.e. σ 2

G
= σ

2

A
+ σ

2

D
, the variance 

for the dominance deviation (v) can be obtained as:

where the first and second terms correspond to the total 

genetic variance and the breeding value (or GCA) vari-

ance, respectively. �us, the dominance genetic variance 

or the variance of the SCA is equal to:

which leads to the result obtained for a single population 

if p = p′ (e.g., [1]).

If a and d effects are considered as random variables 

with a covariance of 0 between a and d, variance com-

ponents for the F1 population can be obtained from 

these expressions using markers in a GBLUP context as 

detailed in the next section.

σ 2
A = pq

[

a +
(

q′
− p′

)

d
]2

+ p′q′
[a + (q − p)d]2.

σ
2
D = σ

2
G − σ

2
A,

σ 2
D =

[

pq
(

1 − 2p′q′
)

+ (p′q′(1 − 2pq)
]

d2

−
[

pq
(

1 − 2p′
)

+ (p′q′(1 − 2p)
]

d2,

(4)σ
2
D = 4pqp′q′d2,
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Equivalent genomic model based on SNPs

A model including (biological) additive and dominant 

effects of the SNPs can be written in matrix form for a set 

of individuals as [16]:

where y is the phenotypic value of individuals, µ is the 

population mean and e is the residual. Additive effect a 

and dominant effect d vectors are included for each of 

the SNP markers. �e matrix Z = (z1 . . . zm) is equal to 

1, 0, −1, for SNP genotypes BB, Bb and bb, respectively. 

For the dominant component, W = (w1 . . .wm) is equal 

to 0, 1, 0 for SNP genotypes BB, Bb and bb, respectively. 

�is model is general and applies to any population 

structure (purebred or crossed), as far as effects a and d 

are assumed constant across populations.

From this genotypic model, we can define u∗ and v∗ as 

the genotypic additive and dominant effects, i.e. the parts 

that are attributed to the additive and dominance “biologi-

cal” effects [17, 18] of the markers for the whole population 

(individuals from populations 1 and 2 and the crossbred 

population F1). Note that ‘biological’ is used here to refer 

to genotypic additive and dominant values of the SNP, to 

distinguish it from the traditional treatment of quantita-

tive genetics in terms of “statistical” effects (breeding val-

ues and dominance deviations). So for a set of individuals 

u
∗

= Za and v∗
= Wd. Under standard assumptions, the 

covariances across genotypic additive values are:

where σ 2
a  is the SNP variance for additive component. 

�en, the normalized matrix is:

�e division by 
{

tr
[

ZZ
′
]}

/n where n is the number of 

individuals scales the matrix to an average of the diagonal 

elements equal to 1. �is covariance matrix is similar to 

the classical G matrix of genomic BLUP [19], but with a 

different variance component i.e. σ 2

A∗, the variance com-

ponent that is associated to the genotypic additive values 

(this is not a genetic variance per se since it cannot be 

interpreted as the variance of the population). Based on 

σ
2

A∗, the SNP variance for the additive component can be 

obtained as σ 2
a =

σ 2
A∗

{tr[ZZ′]}/n
.

�en, the covariance of genotypic values due to domi-

nance is:

where σ 2

D∗ is the variance component associated to geno-

typic dominant values. �e SNP variance for the domi-

nance component can be obtained as:

y = 1µ + Za + Wd + e,

Cov
(

u
∗
)

= ZZ
′
σ
2
a ,

Cov
(

u
∗
)

=

ZZ
′

{

tr
[

ZZ
′
]}

/n
σ 2

A∗ .

Cov
(

v
∗
)

=

WW
′

{

tr
[

WW
′
]}

/n
σ 2
D∗ ,

�erefore, the genotypic model is an equivalent model, 

which is useful to go from variance components (σ 2

A∗, 

σ
2

D∗ ), with no particular interpretations, to marker vari-

ances (σ 2
a , σ

2
d

).

To estimate SNP variance, additive and dominance 

genetic variances in the F1 population are obtained from 

Eqs. (2), (3) and (4) extended to multiple loci. �e exten-

sion to multiple loci assumes linkage equilibrium and 

uncorrelated marker effects which are standard assump-

tions [19]. To estimate additive variances, we also assume 

a covariance of 0 between a and d. �us, the additive 

genetic variance due to alleles from population 1 in the F1 

population can be written as:

and the additive genetic variance due to alleles from pop-

ulation 2 in the F1 population as:

�is equation is the variance of GCA among individu-

als from population 2 crossed with individuals from pop-

ulation 1. It should be recalled that the additive genetic 

variance for the F1 population is equal to:

We can also write the dominance genetic variance for 

the F1 population as:

For the additive and dominance genetic variances in 

the parental breeds/lines, expressions are in Vitezica 

et al. [18]. For instance, for population 1 (P1) with allele 

frequencies p and q, variances are equal to:

 and

�erefore, this approach allows to estimate variance 

components for the F1 population under a genomic model 

with additive and non-additive (dominance) inheritance. 

�e three variance components in Eqs. (5), (6) and (7) do 

have an interpretation in terms of variances of breeding 

values (or GCA) and of dominant deviations (or SCA).

σ 2

d
=

σ 2

D∗

{

tr
[

WW
′
]}

/n
.

(5)σ 2
A1

=

∑

(2piqi)σ
2
a +

∑

(2piqi
(

q′

i − p′

i

)2
)σ 2

d ,

(6)σ 2

A2
=

∑

(

2p′

iq
′

i

)

σ 2

a +

∑

(

2p′

iq
′

i(qi − pi)
2

)

σ 2

d .

σ
2

A
=

1

2
σ
2

A1
+

1

2
σ
2

A2
.

(7)σ 2

D =

∑
(4piqip

′

iq
′

i)σ
2

d .

σ 2
AP1

=

∑
(2piqi)σ

2
a +

∑
(2piqi(qi − pi)

2)σ 2
d ,

σ 2

DP1
=

∑
(2piqi)

2σ 2

d .
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�e biological additive and dominant effects of SNPs 

may not be the same across the different populations, due 

to genotype by environment or genotype by genotype 

(i.e. epistasis) interactions.

A simple alternative is to model marker effects as cor-

related across populations [20], which implies correlated 

u
∗ and v∗ [21, 22]. �is generalizes the methods above.

Methods
In this section, we illustrate the partition of variance 

components (additive and dominant) across two pig 

lines 1 and 2 and the crossbred population. Data for this 

study were provided by Genus plc (Hendersonville, TN, 

USA). Animal Care and Use Committee approval was not 

obtained for this study because the data were obtained 

from an existing database.

Lines 1 and 2 were two unrelated lines, and popula-

tion 12 consisted of both reciprocal crosses of animals 

from lines 1 and 2. Data on litter size (total number of 

piglets born per litter) were analyzed. �e average lit-

ter size was equal to 12.68  ±  3.07, 13.15  ±  3.20 and 

13.64 ± 3.16 for lines 1 and 2 and population 12, respec-

tively. A total of 34,753 records were available for 8265 

sows. Genotypes for all sows were generated using the 

Illumina PorcineSNP60 BeadChip (Illumina, San Diego, 

CA). After quality control, i.e. after excluding genotypes 

with a minor allele frequency lower than 0.05 and a SNP 

call rate less than 0.90 in the overall population, 40,634 

SNPs remained and were used to build genomic relation-

ship matrices. Animals with a call rate less than 0.90 were 

removed. �us, the number of sows with genotypes was 

equal to 3509, 2706 and 2050 in lines 1 and 2 and popula-

tion 12, respectively.

Phenotypes were collected for the genetic nucleus 

(pure lines) and commercial herds (crosses). Records 

were analyzed using a GBLUP (mixed) model. Fixed 

effects included parity order, farm, year and month of 

farrowing, and mating type (artificial insemination or 

natural service).

To estimate the variance components, lines 1 and 2 and 

population 12 were considered as three different traits 

with correlations between pure and cross lines [3]. �is 

model is equivalent to a model where marker effects are 

correlated across populations [20–22] and assumes that 

additive and dominant effects of a gene (a1, a2, a12 and 

d1, d2, d12) are not necessarily the same in the three pop-

ulations. Quantitative trait loci (QTL) that segregate in 

different breeds are not necessarily identical. In addition, 

linkage disequilibrium between SNPs and QTL can differ 

between populations. Even with causal genes, the effects 

may differ, which was confirmed by experimental results. 

One example is the bovine myostatin gene (GDF8), i.e. 

both the Belgian Blue and South Devon breeds carry the 

same GDF8 mutation, but they have different conforma-

tion and double-muscling phenotypes [23]. Functional 

mutations in the GDF8 gene appear to be breed-specific 

[24]. Effects can be population-specific and the variation 

can be interpreted as a dependency of the gene effect on 

the environmental (GxE) and genetic (i.e. epistasis) back-

grounds. Parental pure lines and the F1 population have 

only half of their genetic background in common.

In order to estimate the genetic parameters (additive 

and dominant variances) for the F1 population based on 

SNPs, the multivariate model that includes purebred and 

crossbred performances was as follows:

where µ is the population mean, u∗ and v∗ are the geno-

typic additive and dominant effects, p is the permanent 

environmental effect and e is the residual. �e covariance 

matrix for additive effects is expressed as:

where G is a normalized genomic additive relationship 

matrix constructed as G = ZZ
′

{tr[ZZ′]}/n
; Z contains values 

of {1, 0,−1} for each genotype; and Go is a 3 × 3 covari-

ance matrix as follows:

with the variances for the pure lines and the F1 popula-

tion on the diagonal, and the covariances between pure-

bred and crossbred additive effects on the off-diagonals. 

It should be noted that these variances are not the genetic 

variances of the populations (lines 1 and 2 and popula-

tion 12). Based on these variances, it is possible to obtain 

the SNP additive variance of each pure line (σ 2
a1
, σ 2

a2
) and 

the F1 population (σ 2
a12

) e.g., as:

�e covariance matrix for dominant effects is as 

follows:

where D is a normalized genomic dominant rela-

tionship matrix constructed as indicated above with 

D = WW
′

{tr[WW
′]}/n

, W contains values of {0, 1, 0} for each 

genotype, and Do is:

y = Xµ + u∗
+ v∗

+ p + e,

Var





u
∗

1

u
∗

2

u
∗

12



 = Go ⊗ G,

Go =







σ
2
A

∗

1

σA
∗

1
A

∗

2
σA

∗

1
A

∗

12

σA
∗

1
A

∗

2
σ
2
A

∗

2

σA
∗

2
A

∗

12

σA
∗

1
A

∗

12
σA

∗

2
A

∗

12
σ
2
A

∗

12






,

σ 2

a1
= σ̂ 2

A
∗
1

/
({

tr
[

ZZ
′
]}

/n
)

.

Var





v
∗

1

v
∗

2

v
∗

12



 = Do ⊗ D,



Page 6 of 8Vitezica et al. Genet Sel Evol  (2016) 48:6 

SNP dominance variances (σ 2
d1
, σ 2

d2
, σ 2

d12
) are 

obtained similarly, e.g., as σ 2

d1
= σ̂ 2

D
∗
1

/
({

tr
[

WW
′
]}

/n
)

.  

�e covariance matrices for permanent envi-

ronmental and residual effects are as fol-

lows: Var





p1
p2
p12



 =





σ
2
p1

0 0

0 σ
2
p2

0

0 0 σ
2
p12



 ⊗ I3 , and 

Var





e1

e2

e12



 =





σ
2
e1

0 0

0 σ
2
e2

0

0 0 σ
2
e12



 ⊗ I3, respectively.

Inbreeding was included in the model as a covari-

ate. A molecular metrics of inbreeding, defined as the 

proportion of genotyped SNPs at which an individual 

is homozygous [25], was used. It was calculated as the 

within-individual average homozygosity (FHo) across all 

SNPs using the following formula:

where NAA, NAa and Naa refer to the numbers of SNPs 

that are classified as AA, Aa, and aa, respectively.

Variance components for the genomic model (GBLUP 

model) and for a pedigree-based model (PED model, 

not including dominance) were estimated by EM-REML 

(expectation maximization restricted maximum likeli-

hood) using the software remlf90 ([26]; available at http://

nce.ads.uga.edu/wiki/doku.php), plus an additional 

iteration of AIREML to obtain the average information 

matrix. It should be noted that estimated values of σ 2

A∗ 

and σ 2

D∗ have per se no meaningful genetic interpretation.

Additive and dominance variance components at the 

SNP level (σ 2
a1
, σ 2

a2
, σ 2

a12
 and σ

2
d1
, σ 2

d2
, σ 2

d12
) were back-

solved (dividing by 
{

tr

[

ZZ
′

]}

/n) and 
{

tr
[

WW
′
]}

/n)  

from variance component estimates (σ 2
A

∗

1

, σ 2
A

∗

2

, σ 2
A

∗

12
 and 

σ
2
D

∗

1

, σ 2
D

∗

2

, σ 2
D

∗

12
 , respectively) for the three populations. 

Genetic variance components for the F1 population were 

obtained from Eqs.  (5), (6) and (7). Asymptotic standard 

errors of variance component estimates were obtained as in 

[27].

Results and discussion
Heritability

To verify whether the correct genetic parameters could 

be estimated using our approach, the heritability esti-

mates obtained with the traditional pedigree-based 

Do =
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2

D
∗

1

σD
∗

1
D

∗

2
σD

∗

1
D

∗

12
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∗

1
D

∗
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∗
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∗

2
D

∗

12
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∗

1
D

∗

12
σD

∗

2
D

∗

12
σ
2

D
∗

12






.

FHo =
NAA + Naa

NAA + NAa + Naa

,

model, PED, were compared to those obtained using the 

genomic GBLUP model. Narrow-sense (additive) herit-

ability coefficients estimated within-line for litter size are 

in Table 1.

Estimated heritability coefficients across models (PED 

vs. GBLUP) were similar. �ey were close to 0.10 and 

consistent with those reported by Nielsen et al. [28] and 

Guo et al. [29]. Our estimated heritability coefficients for 

total number of piglets born per litter were also consist-

ent with the average heritability (0.11) reported in the 

review by Rothschild and Bidanel [30].

Genetic variances

Additive and dominance variance components that were 

estimated for pure lines and the F1 population are in 

Table 2. Results show how important it is to estimate the 

variances for the F1 population and point out that within-

line variances cannot be directly related to variances for 

the F1 population. Estimates of dominance variance for 

litter size based on pedigree data have been reported in 

the literature [6, 31, 32] and were equal to 25  % of the 

estimated additive genetic variance for litter size. With 

our genomic model, dominance variance for litter size, 

was equal to about 15 % of the additive genetic variance 

and was reasonably consistent with the pedigree-based 

estimates reported in the literature. Dominance variance 

for the F1 population represents only a small fraction of 

the total genetic variance i.e. 13 %, which agrees with the 

results obtained by Misztal et  al. [32]. Dominance vari-

ance for litter size was found to be slightly greater for the 

F1 population than for the parental lines. Hence, the 

common belief that low heritability in the narrow sense 

of the term can hide clearly higher heritability in the 

broad sense of the term is not supported by the estimated 

dominance variances.

�e theory presented in this paper and illustrated with 

these results makes it possible to estimate breeding val-

ues and dominance deviations, and to estimate domi-

nance variance for a crossbred population for different 

traits. It can also be used for more accurate predictions 

and to assess the relevance of assortative mating in spe-

cies such as pigs or maize, in order to increase the perfor-

mance of offspring.

Table 1 Narrow-sense heritabilities for  litter size in  pure 

pig lines under pedigree-based (PED) and genomic multi-

ple-trait (GBLUP) models

Model Line 1 Line 2

PED 0.101 ± 0.019 0.102 ± 0.021

GBLUP 0.094 ± 0.014 0.103 ± 0.015

http://nce.ads.uga.edu/wiki/doku.php
http://nce.ads.uga.edu/wiki/doku.php
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Genomic correlations

In the GBLUP model, litter size in pure lines and the F1 

population was analyzed as three traits using a multi-

ple-trait approach (Table  3). �e additive correlation of 

breeding values between pure lines and the F1 population 

refers to the linear association between breeding values 

of individuals. Selection within the parental lines without 

including crossbred performance (e.g., in pigs) implic-

itly assumes that the additive correlation between pure 

lines and the F1 population is equal to 1. As expected, 

additive correlations of both lines with the F1 population 

are favorable, although less than 1. �ese values explain 

the effectiveness of selection on pure lines in breed-

ing programs. Our results show that selection within 

line 2 is more effective than within line 1 for crossbred 

performance.

Table 3 presents the additive and dominance genotypic 

correlations for markers (a and d) between pure lines and 

the F1 population. �e estimated additive genotypic cor-

relation between lines 1 and 2 was equal to 0.78 (Table 3). 

�is indicates that the biological additive effects of SNPs 

are similar between these lines. Estimating correlations 

between nominally unrelated lines may seem strange, but 

genomic relationships allow this estimation. Similar cor-

relations for milk yield were obtained by Karoui et al. [21] 

between dairy breeds.

For dominance genotypic correlations (Table  3), the 

values were low regardless of the population, which indi-

cates that dominant effects differ in each population, and 

that, in practice, assortative mating between two geno-

types that would be profitable within, say, line 1 may not 

be so profitable in the F1 population.

Estimates of inbreeding depression, for which the 

inbreeding coefficient was calculated as the average 

homozygosity for litter size, were equal to −12.90 ± 2.29 

and −10.74  ±  3.03 for lines 1 and 2, respectively. Esti-

mates of inbreeding depression for pure lines expressed 

as the change in phenotypic mean per 10  % increase in 

inbreeding were equal to −1.29 and −1.07 piglets born.

Conclusions
Assuming that SNP effects are independent of the ori-

gin of alleles and that allelic frequencies differ between 

parental populations, we show that the genetic variance 

for the F1 population includes the biological additive 

and dominant effects of the gene and a covariance term. 

Genetic variance can be partitioned into additive vari-

ance (due to substitution effects of the parental gametes) 

and dominance deviations. Breeding values of cross-

bred individuals are generated by substitution effects, 

where the effects for each parental line depend on the 

allele frequencies from the other line. In addition, domi-

nance variance is proportional to the product of the het-

erozygosities of both lines. If the biological additive and 

dominant effects of markers are considered random with 

the covariance between them equal to 0, genetic vari-

ance components for the F1 population can be obtained 

using an equivalent GBLUP model based on SNPs. �e 

method presented here allows selection for specific com-

bining ability, i.e. selection of a specific pair of parents to 

produce superior F1 individuals, in a GBLUP evaluation 

framework. �e identification of superior F1 individu-

als between inbred/pure lines is an important focus of 

research in animals and plants [33].
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