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Abstract

Background: Copy number variation (CNV) represents another important source of genetic variation

complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to

detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In

the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV

discovery to understand and accelerate genetic improvement for complex traits.

Results: We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539

animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the

pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the

genome. Selected CNVs were further experimentally validated and we found that copy number “gain” CNVs were

predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%)

overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and

rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our

discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other

studies. These results highlight the differences and commonalities between technical platforms.

Conclusions: We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a

valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help

identify genes undergoing artificial selection in domesticated animals.

Background
With two cattle genome assemblies available (Btau_4

and UMD3) [1,2], the cattle research community has

been focusing on single nucleotide polymorphisms

(SNPs) as the main source of genetic variation in cattle.

This effort led to the development of the cattle SNP

map [3] and the Illumina Bovine SNP50 (> 50,000 SNP

probes) genotyping array [4,5]. Evaluations of genetic

merit based on SNPs became a reality in early 2009

leading to an acceleration of improvements to dairy and

beef breed stocks [6-8]. Widespread use of the Bovi-

neSNP50 array has resulted in the availability of tens of

thousands of SNP genotyping results. Based on SNP

genotyping assays, QTL distributions and artificial selec-

tion signatures in dairy cattle have been reported [9,10].

Copy Number Variation (CNV) represents another

important source of genetic variation that provides

genomic structural information complementary to SNP

data. Genomic structural variations ranging from 1 kb

to 5 Mb comprise mainly of CNVs in the form of large-

scale insertions and deletions, as well as inversions and

translocations [11]. In humans, ~29,000 CNVs that cor-

respond to over 8,400 CNV regions have been identified,

and over 9,000 genes have been mapped within or near

regions of human structural variation [12,13]. Some of

these CNVs have been shown to be important in both

normal phenotypic variability and disease susceptibility.

Several recent publications have reviewed the effects of

CNVs on gene expression and human diseases [14-17].

Due to their low cost and high-density, SNP arrays have
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been routinely used for human CNV detection and ana-

lysis [13]. Compared to CGH arrays which only report

relative signal intensities, SNP arrays collect normalized

total intensities (Log R ratio - LRR) and allelic intensity

ratios (B allele frequency - BAF) which represent overall

copy numbers and allelic contrasts [18]. Multiple algo-

rithms have been developed to exploit SNP data to iden-

tify CNVs, including QuantiSNP [19], PennCNV [20],

Birdseye [21] and Cokgen [22]. Comparisons of the

strengths and weaknesses of these algorithms have been

published [23,24]. As one of the leading methods,

PennCNV incorporates multiple sources of information,

including total signal intensity and allelic intensity ratio

at each SNP marker, the distance between neighboring

SNPs, and the allele frequency of SNPs. PennCNV also

integrates a computational approach by fitting regres-

sion models with GC content to overcome “genomic

waves” [25,26]. Furthermore, PennCNV is capable of

considering pedigree information (a parents-offspring

trio) to improve call rates and accuracy of breakpoint

prediction as well as to infer chromosome-specific SNP

genotypes in CNVs [27].

Previous cattle studies have produced a number of CNV

datasets. For example, our earlier array CGH survey using

3 Holstein bulls identified 25 germline CNVs [28].

Recently, we reported a broader, systematic CNV survey

in 90 cattle using array CGH [29]. We identified over 200

candidate CNV regions (CNVRs); some of which are likely

to underlie cattle domestication and breed formation.

Fadista et al. recently reported 304 CNV regions in 20 ani-

mals of 4 cattle breeds using high-density array CGH [30].

Besides array CGH experiments, other evidences for cattle

CNV came from SNP genotyping results, where a screen

of Bovine HapMap Consortium samples (over 500 animals

from multiple cattle breeds) identified 79 candidate dele-

tions using an earlier version of cnvPartition [5]. However,

these results only included homozygous deletions which

were validated by multiple observations. A recent paper

reported 368 unique CNV regions from 265 Korean Han-

woo cattle based on BovineSNP50 genotyping data; how-

ever, during the PennCNV calling, the “genomic waves”

pattern was not discussed and pedigree information was

not considered [31]. In this study, we reprocessed the pub-

lished Bovine HapMap Consortium SNP genotyping

results using optimal settings for PennCNV by adjusting

for “genomic waves” and utilizing trio/pedigree informa-

tion whenever possible. We identified 682 candidate CNV

regions in a diverse panel of 521 animals from 21 different

breeds. We also included 18 animals from 6 outgroups to

derive the ancestral states of CNVs. We then compared

this CNV call set with the existing cattle CNV call sets,

validated several novel CNVR calls and discussed the evo-

lutionary impact of cattle CNVs.

Results and Discussion
Optimization of cattle CNV detection

A total of 58,336 markers were selected for the Bovi-

neSNP50 assay [4,5]. Except for 1,389 markers which

failed to pass manufacturer assay production pipeline, we

intentionally kept all remaining 56,947 markers without

any other filtering. These included 1,465 markers (2.57%)

which had a call rate of 0. The markers with a call rate of

0 are resistant to the default biallelic SNP clustering and

often fall in CNV regions. Compared to the standard

BovineSNP50 Genotyping Beadchip v1 featuring 54,001

SNP probes, 2,946 more SNPs were included in our ana-

lysis, of which, ~17% located in cattle segmental duplica-

tion (SD) regions [32], ~9% overlapped with the CNVRs

detected by array CGH method [29], and ~27% contribu-

ted to the CNVRs reported here.

We tested the cattle CNV calls made with or without

the -gcmodel option on Batu_4.0 to identify the impact

of genomic waves on CNV calling. Agreeing with pre-

vious results [26], we found the total CNVR counts

were higher without -gcmodel (719) than those with

-gcmodel enabled (682). However, only 86.80% (592/

682) of the gcmodel calls directly overlapped with

79.28% (570/719) calls made without gcmodel, revealing

a ~20% CNV discordancy rate. These discordant calls

were likely due to false positives called from the differ-

entiating signal intensities caused by “genomic waves”

rather than by real CNV events. This further demon-

strated that genomic waves have a significant effect on

this type of analysis.

We also compared results of PennCNV using -test,

-trio and -joint options sequentially. In other words, we

compared data resultant from not considering trio infor-

mation (-test), considering trio information only after

calling (-trio) and finally by considering trio information

in a simultaneous fashion during CNV calling (-joint)

(Additional file 1: Table S5). Consistent with the earlier

comparisons using simulated and real SNP data [27,33],

trio information significantly increased our CNV call

rates. The result of the -joint option (1276 calls) was sig-

nificantly higher than those of the other options: -test

(684 calls) and -trio (1019 calls). After merging overlap-

ping CNVs, ~87% of the 682 CNVRs deduced from the

-joint option overlapped with those deduced from the

-test and -trio options (both with a total of 621 CNVRs).

Due to its improved call sensitivity and breakpoint infer-

ence, the -joint option reported about 13% more CNVRs

which were not detected by the -test or -trio options.

Cattle CNV discovery and distribution

Due to issues regarding CNVR calls, we excluded chrX

and chrUn from our analysis. In our initial analysis of

chrX, it was found that almost half of the potential
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CNVRs were unreasonably large (> 1 Mb) and several

events were present in high frequencies (> 25%). This is

likely due to the fact that PennCNV assumes two copies

of each SNP as the normal copy number state, which

was likely not the case within the pseudoautosomal

region [34] and segmental duplications [32] on chrX.

Additionally, since chrX sequence and annotation also

differ dramatically between Btau_4.0 and UMD3 builds,

we considered the CNV calls on chrX as unreliable and

excluded them from further analysis. Since chrUn only

contains unassigned sequence contigs, it was not

included due to the lack of sequence and SNPs as well

as the SNP mapping uncertainty.

Within the placed autosomes, a total of 3,666 CNVs in

521 samples were detected and an average of 7.09 gain

or loss events were evident in each sample (Table 1).

CNVRs were determined by aggregating overlapping

CNVs identified across all samples, following previously

published protocols [13]. A total of 682 high-confidence

autosomal CNVRs were identified, covering 139.8 Mb of

polymorphic sequence and corresponding to 5.49% of

the autosomal genome sequence (139.8/2,545.9 Mb) and

4.60% of the whole cattle genome (139.8/3,036.6 Mb,

Figure 1 and Additional file 1: Table S2).

To test the stability of CNV calls with respect to dif-

ferent genome builds and SNP mapping, we also

migrated 56,408 out of 56,947 SNP markers from

Btau_4.0 to UMD3 using the UCSC liftOver tool [35],

and repeated the entire calling analyses to ensure con-

sistency in calls (Additional file 1: Tables S3 and S4).

Only 61 more CNVRs were identified on the UMD3

assembly (making a total of 743 CNVRs). A simple com-

parison indicated that the total coverage of variable

regions were 13.05% larger on UMD3 (158.0 Mb,

Additional file 1: Table S3) than on Btau_4.0. For all

three CNVR types (gain, loss and both), counts

increased slightly. This was expected as both assemblies

were based on the same raw WGS reads. The most

obvious difference between the two assemblies is that

Btau_4.0 unplaced contigs are placed on UMD3. This

resulted in more markers that were on Btau_4.0 ChrUn

contigs to be placed on UMD3 autosomes, which could

partially explain the increase in the CNVR counts. Since

the majority of cattle genome annotations were per-

formed on the Btau_4.0 assembly, we focused on further

characterization of the 682 high-confidence CNV

regions from Btau_4.0 autosomes.

These 682 CNVRs include 370 loss, 216 gain and 96

both (loss and gain within the same region) events, ran-

ging from 32,566 to 5,569,091 bp with a mean or med-

ian of 204,965 or 131,179 bp, respectively (Additional

file 1: Table S2). Loss events are approximately 1.7-fold

more common than gain events, but have slightly smal-

ler sizes than gain regions on average. Furthermore, 278

CNVRs were found in only one sample (Unique), 404

CNVRs were present in two or more animals or breeds

and 18 of 404 multiple events had a frequency >5%

(Table 1 and Additional file 1: Table S2). These datasets

confirm that segregating CNVs exist among these 21

cattle breeds and/or groups, which is consistent with

our earlier results based on array CGH [29]. In general,

the number of CNVs identified in each sample is con-

sistent with SNP estimates of breed-specific founding

and effective population sizes and levels of polymorph-

ism based on ≥50,000 SNPs [5]. As shown in Table 1,

more CNV events were detected in indicine (11.41 per

sample) than in African groups (7.21 per sample) and

composite (7.17 per sample). The taurine breeds (6.23

per sample) had the fewest detected CNVs. While some

of these differences could be related to the fact that the

SNP markers were designed based on the Btau_4.0

reference genome (which was derived from the

sequence of a Hereford cow of European origin; Domin-

ette 01449), this observation is consistent with the

Table 1 CNV events by species and breeds

Btau_4.0 Sample Count Unique Gain Loss Gene Total Length

Taurinea 366 2,256(6.23) 239(0.66) 1,454(4.02) 802(2.22) 4,744(13.10) 373,001,599(165,337)

Composite 46 330(7.17) 23(0.50) 224(4.87) 106(2.30) 651(14.15) 113,483,966(142,032)

Indicine 70 799(11.41) 62(0.89) 401(5.73) 398(5.69) 1,464(20.91) 57,402,891(173,948)

African Breeds 39 281(7.21) 38(0.97) 213(5.46) 68(1.74) 775(19.87) 54,728,022(194,761)

CNVa 521 3,666(7.09) 362(0.70) 2,292(4.43) 1,374(2.66) 7,634(14.77) 598,616,478(163,288)

CNVRb 521 682 278c 216d 370d 1,263 139,786,166(204,965)

Outgroupe

CNV 18 1,003(55.72) 284(15.78) 48(2.67) 955(53.06) 2,603(144.61) 442,235,607(440,912)

CNVR 18 483 187 21 458 1,593 276,846,573(573,181)

The numbers in parentheses are normalized by sample counts except that the lengths in parentheses are average lengths normalized by CNV counts. aAt sample

level, each sample has 7.09 (3666/517) CNVRs averagely and 6.23 (2256/362) for Taurine, since there are 4 taurine individuals without identified CNVs; bThese

numbers are nonredundent CNVR counts. c278 CNVRs are unique to one sample while 404 CNVRs are shared by at least 2 individuals or breeds and 18 of 404

multiple events have frequency >5%; dBesides 370 loss and 216 gain CNVRs, there are 96 CNVRs containing both loss and gain events; e Outgroup animals are

not included in the total counts for CNV and CNVR.
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concept of subspecies divergence and supports the

hypothesis of multiple independent domestications of

cattle in the Fertile Crescent, Southwest Asia and likely

Africa [36,37].

Cattle CNVs are distributed in a nonrandom fashion

at two different levels. First, CNV content varies signifi-

cantly among different chromosomes. The proportion of

any given known chromosome susceptible to CNV

regions varies from 1.32-8.80% (Additional file 1: Table

S2). Chromosomes 1 and 6 show the greatest enrich-

ment for CNV (Figure 1 and Additional file 1: Table S2)

with almost two-fold of the variable content of the auto-

somal average. It is interesting to note that these chro-

mosomes do not have the highest SD content [29,32].

Furthermore, similar to the human, mouse, rat and dog

genomes, there are a greater proportion of CNVs near

pericentromeric and subtelomeric regions. Excluding

chrX and chrUn, pericentromeric and subtelomeric

regions each represent 3.42% of genomic sequence but

show an enrichment of 1.5-2.4-fold more CNVRs (both

P values <0.001) and contain 7.78-12.54% of all poly-

morphic sequence.

Quality assessment of selected CNV Regions

The quality of our 682 CNV calls was assessed in mul-

tiple ways, though our first assessment was a compari-

son against existing cattle CNV datasets (Table 2 and

Figure 2). One of the earlier datasets included 79 fil-

tered deletion variants (representing 42 unique geno-

mic loci and 9 single SNPs) reported earlier using the

Illumina genotyping software module cnvPartition

v1.0.2 [5]. Nineteen of our CNVRs overlapped with 11

of the deletion variants (21.57%) in that dataset (Table

2). We also identified 129 CNVRs (18.91%) in our

Figure 1 Genomic landscape of cattle copy number variations and segmental duplications. CNV regions (682 events, 139 Mb, ~4.60% of

the bovine genome) reported by 521 SNP genotyped individuals are shown above the chromosomes in green (gain), red (loss) and dark blue

(both), while below are the CNV regions (177 events, 28 Mb, ~1% of the bovine genome) reported by 90 array CGH experiments by Liu et al.

The bar height represents their frequencies: short (appeared in 1 sample), median (≥2 samples) and tall (≥5 samples). Segmental duplications

(94.4 Mb, 3.1% of the bovine genome) predicted by two independent computational approaches are illustrated on the chromosomes in red

(WSSD), blue (WGAC) or purple (both). The patterns are depicted for all duplications for ≥5 kb in length and ≥90% sequence identity. The gaps

in the assembly are represented on the chromosomes as white ticks.
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dataset that overlapped with 128 CNVRs from a SNP-

based CNV study on 265 Korean Hanwoo cattle [31]

(Figure 2B). The Hanwoo CNV study identified 368

CNVRs in total, so our dataset overlapped with 34.83%

of their calls [31]. We then compared our calls against

an array CGH-based study of 20 cattle from four

breeds [30]. Since our dataset excluded CNV calls in

the chrX, chrUn and mitochondrial sequences, we

compared our autosomal CNVR calls (682 CNVRs) to

the autosomal CNV calls of that study (254 CNVRs)

Table 2 Summary of genome-wide studies of cattle copy number variations

Study Assay Count CNVR Size

Marker Sample Breed Type Count Range (kb) Median
(kb)

Mean
(kb)

Total
(Mb)

Matukumalli
et al. 2009

BovineSNP50 54,001 556 21 Deletion only 51a 22.92-
11,050.69

394.87 960.67 49.0

Liu et al. 2010 Array CGH ~385,000 90 17 Deletion,
insertion

163b 18.00-1,261.90 86.19 153.75 25.1

Bae et al. 2010 BovineSNP50 54,001 265 1 Deletion,
insertion

368 25.35-967.18 128.33 171.49 63.1

Fadista et al. 2010 Array CGH ~6,300,000 20 4 Deletion,
insertion

254c 1.72-2,031.34 15.51 62.26 15.8

This study BovineSNP50 56,947 521 21 Deletion,
insertion

682 32.57-5,569.09 131.18 204.97 139.8

aThis includes 9 independent SNPs and 42 CNVRs. The statistics are calculated for 42 CNVR excluding the 9 SNPs; bThis is the number excluding chrX and chrUn;
cThis is the number excluding chrX, chrUn and mitochondrial sequence.

This study Merged

dataset

~200 ~518~482

A

29.8 Mb 66.5 Mb100 Mb

This study Bae et al (2010)

128 240554

B

16.5 Mb 46.6 Mb123.3 Mb

Liu et al (2010) Fadista et al (2010)

28

~30

~600

~24

~19

~86 ~183

This study

C

4.3 Mb

7.1 Mb

126 Mb

2.4 Mb

2 Mb

11.7 Mb 7.1 Mb

This study

Bae et al (2010)

Fadista et al (2010)

Liu et al (2010)

Merged dataset

Count Length

682 139.8 Mb

718  99.3 Mb

368  63.1 Mb

254  15.8 Mb

163  25.1 Mb

D

Figure 2 Comparisons between identified 682 CNVRs in this study and the other existing cattle CNVR datasets in terms of count and

length. A, compared to the total nonredundant CNVR merged from existing published datasets; B, compared to CNVR derived from SNP array

(Bae et al, 2010); C, compared to two CNVR datasets derived from array CGH studies (Liu et al,2010; Fadista et al, 2010); D, the summaries and

legends of existing cattle CNVR datasets.
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[30]. Only 51 of our CNVRs (7.48%) directly over-

lapped with 55 of their calls (21.65%, Figure 2C). Our

final comparison was against our previous array CGH-

based study of 90 animals from 14 breeds which

resulted in 163 autosomal CNVR calls [29]. In this

comparison, 57 of our SNP-based CNVR calls (8.36%)

overlapped with 59 CNVRs derived from array CGH

(36.20%, Figure 2C). If we only focused on the 16 Hap-

Map samples which were assessed by both platforms

(60 CNVRs derived from array CGH and 106 CNVRs

reported by SNP array), there were 21 overlapping

CNVRs: 19 for array CGH (31.67%, 19/60), and 20

for SNP array (18.87%, 20/106). When we merged

existing CNV datasets, a total of ~ 200 out of 682

(about 30%) newly identified CNVRs overlapped with

them (Figure 2A).

It is expected that the variants identified in these stu-

dies do not overlap, suggesting a vast amount of CNVs

exist in cattle population and saturation for this type of

variation has not yet been approached. It is likely that

many thousands of more common structural variants

may still remain undiscovered in the cattle genome.

A similar situation was encountered in human CNV stu-

dies using the early version of SNP, CGH arrays and

detection methods [38,39]. For example, although

cnvPartition detects CNVs by processing the similar raw

data as PennCNV (i.e. LRR and BAF), it is based on a

different proprietary sliding window algorithm. Only

those homozygous deletion events segregating in differ-

ent animals were reported due to concerns with the

quality of calls [5]. In the future, high-density SNP

arrays combined with improved CNV calling algorithms

could remedy these differences.

Besides the technology and detection method differ-

ences, the following could also contribute to the

observed differences: (1) sampling differences: 521 indi-

viduals from 21 diverse breeds and/or groups were

included in our study; (2) genome coverage biases:

56,947 markers were included in our study rather than a

subset of “well-behaved” SNPs (54,001 markers) which

exclude those SNPs in CNV-rich regions; (3) correction

of genomic waves in order to minimize false positive

calls; and (4) trio/pedigree information was fully

explored in our study to improve the accuracy and call

rate of CNVs. When filtering criteria varying the CNVR

length and frequency were applied, we observed signifi-

cant overlap within our 2 datasets derived from SNP

arrays and array CGH (Additional file 1: Table S8). For

example, when the large CNVRs (SNP count = 10, a

median ~574kb) were considered, the overlap reached

21.74%. When the CNVR frequency was increased to 1,

2, or 5% (animal count = 5, 10, or 25, respectively), the

overlap increased to 89.47%. When we filtered the

CNVR frequency to greater than 10% of our population

(50 animals), the overlap included 100% of our filtered

dataset. This further demonstrated that large, common

CNVRs can be reliably detected through using different

detection technologies even when the majority of sam-

ples were different. For example, our current SNP array

study identified most of the large, common CNVRs

which were confirmed in our published results [29].

After comparison with other existing datasets, we

found that ~70% of our CNVR calls were not reported

in the literature. In order to confirm these novel

CNVRs, we performed 24 quantitative PCR (qPCR)

assays for 15 low frequency, novel CNVR calls spread

among seven individuals (Additional file 1: Table S9).

Nine of the CNV regions had two target amplicons

placed near two different SNP loci. Out of 24 total loca-

tions, 11 loci (~48%) were in agreement with CNV esti-

mates by PennCNV (Additional file 1: Table S9 and

Figure S1). When counting the CNV regions, 9 out of

15 (60%) CNV regions had positive qPCR confirmations

in at least one location. If CNVRs previously validated

in the literature [29] were also included, approximately

two third (30% + 70% × 48%) of our detected CNVRs

had positive confirmations.

As expected, the Bovine SNP50 platform has a large

resolution limit under the current PennCNV calling cri-

teria. The size of the CNVRs detected ranged from 32.6

kb to 5.6 Mb, with a median size of 131.2 kb (Additional

file 1: Table S2). This is partially due to the fact that the

Bovine SNP50 assay was originally developed for high-

throughput SNP genotyping in association studies.

Although CNV detection is feasible with SNP arrays, it

is impaired by low density and non-uniform distribution

of SNPs, especially in CNV and SD regions. Compared

to a CGH array, a SNP array lacks non-polymorphic

probes designed specifically for CNV identification.

Thus, only the large CNVRs are expected to be identi-

fied with the Bovine SNP50 assay. This explains the dif-

ference in CNV length between our study and the

earlier results.

The discrepancies between the qPCR and PennCNV

results may represent small CNV events that were

missed in the PennCNV calls, or instances where SNPs

caused the qPCR reaction to fail or be suboptimal but

did not affect the SNP assay. Despite the fact that a

two-copy state was assumed for test PCR loci in Domin-

ette, smaller CNV events in Dominette may have evaded

detection by PennCNV. If our test primers amplified a

small CNV event in Dominette, that would skew the

relative copy number estimates of our qPCR reactions.

Although qPCR primers were designed within 250 bp

around the target SNP positions, additional SNPs and

small indels may have influenced the hybridization of

the qPCR primers in some animals, thereby reducing

primer efficiency. Other causes may also contribute to
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the discrepancy in CNVR validation by qPCR. The draft

status of the cattle genome assembly and the low SNP

density of the Bovine SNP assay make it difficult to

determine the real breakpoints of CNVRs. For example,

multiple, neighboring, discrete CNV events could result

in a larger call by PennCNV; therefore, giving an

over estimation of the CNV size. Therefore, it cannot

be ruled out that the qPCR primers used to confirm

the CNVRs may have been designed outside the

breakpoints.

CNVs overlap with segmental duplications and other

genomic features

Following previous studies of other genomes, we

detected the association between CNVRs and SDs.

Agreeing with previous predictions regarding cattle SDs

[32], a local tandem distribution pattern is predominant

in our cattle CNVR dataset (Figure 1). It should be

noted that about 25.66% (175/682) of CNV regions

directly overlap with cattle SDs with an overlapping

span of 16,283,071 bp (11.65% of the total 139,786,166

bp). Approximately 12.06% (356/2952) of the SDs

(excluding chrX and chrUn) identified by WGAC and

WSSD [32] exhibit CNVs. In comparison, 58.90% of the

CNVRs (96/163) detected by using array CGH [29]

excluding X chromosome overlap with cattle SDs, corre-

sponding to 15,176,612 bp (60.56% of the total

25,061,646 bp). The proportion of our new CNVR calls

(identified in this study) that overlap with SDs reaches

approximately 40% compared to 61% in our previous

study. This lower overlap fraction probably reflects the

fact that the BovineSNP50 array used in this study is

biased against cattle SD regions. SNP density on the

array drops by one-third (from 21 probes/Mb in unique

regions down to 14 probes/Mb) in SD regions. We also

failed to detect any correlation between 682 CNV

regions and evolutionary breakpoint regions (EBRs).

Compared to the genomic averages, cattle-specific EBRs

and artiodactyl-specific EBRs do not show enrichments

of CNV sequences [40]. This negative result is consent

with the fact that EBRs have fewer overlaps with SD

regions.

Gene Content of Cattle CNV regions

Within autosomes, the 682 CNV regions overlap with

1,679 Ensembl peptides, corresponding to 1,263 unique

Ensembl genes (Table 1 and Additional file 2: S6).

About 55.57% (379/682) of high-confidence CNVRs

completely or partially span cattle Ensembl genes. We

assigned PANTHER accessions to a total of 1,263 over-

lapping genes. Statistically significant over or under

representations were observed for multiple categories

(Additional file 1: Table S10). This set of copy number

variable genes possess a wide spectrum of molecular

functions, and provides a rich resource for testing

hypotheses on the genetic basis of phenotypic variation

within and among breeds.

Consistent with similar CNV analyses in other mam-

mals (human, mouse and dog), several of these CNVs,

which are important in drug detoxification, defense/

innate and adaptive immunity and receptor and signal

recognition, are also present in cattle. These gene

families include olfactory receptors, ATP-binding cas-

sette (ABC) transporters, Cytochrome P450, b-defensins,

interleukins, the bovine MHC (BoLA) and multiple

solute carrier family proteins which support the shared

GO terms among mammals as shown in Additional file

1: Table S10. For gene families that went through cattle-

specific gene duplication [32], such as interferon tau,

pregnancy-associated glycoproteins, SCP2 and ULBP

and WC1.1 subfamilies, we also detected marked varia-

tion in copy number between individuals and across

diverse cattle breeds and/or groups (Additional file 2:

Table S6). It is intriguing to note that we also detected

variations of TLR3 (toll-like receptor 3) and PPARA

(peroxisome proliferator-activated receptor alpha). This

current CNV survey further supports a hypothesis that

the generation of new CNV insertions and deletions

may be a constant phenomenon in multiple cattle

breeds/individuals [41].

We also overlapped our CNVRs with two sets of

genomic regions under positive or balance selection

detected by iHS and FST using SNP data [3,10] (Addi-

tional file 3: Table S11). By doing so, we have identified

CNV regions that may span potential cattle QTLs and

human orthologous OMIM genes influencing disease

susceptibility (Additional file 3: Table S11). For instance,

multiple CNV regions directly overlap with QTLs for

significant and typical economic traits and 87 out of 682

CNVRs correspond to loci known to cause disease in

humans. However, since the cattle genome and cattle

QTLs are less well defined, future study is warranted.

Cattle CNV frequency differences among breeds

To highlight the potential evolutionary contributions of

these CNVs to cattle breed formation and adaptation,

we queried 91 CNVRs that have breed-specific CNV fre-

quency differences (Additional file 1: Table S12). We

only considered breeds that had at least 12 samples and

any detectable variations must be identified in at least 3

individuals or 10% of samples (for Holstein, Angus and

Limousin where n > 30). Fifty-eight of these CNVRs

correspond to annotated genes or gene families; many

of which were identified in other mammals as influen-

cing adaptation to the environment. Some of the anno-

tated genes are known to be important in cattle

adaptation including CNVR266(IFNT) in Brown Swiss,

CNVR122 (SCP2) in Hereford [32] and CNVR178
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(Olfactory Receptors) in most of breeds [See also [42]].

The differences of CNV frequency among cattle breeds

supported our earlier hypothesis that some cattle CNVs

are likely to arise independently in breeds, are likely to

contribute to breed differences and are therefore related

to the breed formation and adaptation. However, the

observed differences between breed variations could be

caused by both selection and genetic drift due to genetic

bottlenecks for some breeds. Our findings, therefore,

must be confirmed with an even larger sample size.

CNVs in outgroup animals

For the 18 individuals in outgroups, which were ana-

lyzed similarly together with 521 modern breeds indivi-

duals, 1003 CNVs and 483 CNVRs were detected,

covering 276.8 Mb base pairs, with 21 gain and signifi-

cantly more (458) loss events (Table 1 and Additional

file 1: S7). About 34.60% of our current CNVRs (236/

682) directly overlapped with 37.47% of these ancient

CNVRs (181/483) derived from ancient outgroups,

which indicates over one third of CNVRs were likely

ancestral. We suspected this observation of more loss

events than gain events was at least partially related to

the high genetic divergences between these outgroup

animals and the cattle reference genome. With addi-

tional cattle, sheep, goat and pig CNV papers published

recently [43-46], it will be interesting to look into the

evolutionary mechanism of CNVs within livestock

animals.

Conclusions
We have performed a comprehensive genomic analysis

of cattle CNVs based on whole genome SNP genotyping

data, therefore providing a valuable genomic variation

resource. A total of 682 CNVRs were identified, cover-

ing 139.8 megabases (~4.60%) of the genome. A subset

of these CNVRs showed Mendelian inheritance and

were also confirmed in other cattle CNV studies and

other mammalian species. As high density cattle SNP

genotyping data are becoming available, CNVs com-

bined with SNPs, may help identify genes undergoing

artificial selection in domesticated animals.

Methods
Selection of cattle breeds and animals

It has been demonstrated that the BovineSNP50 geno-

typing array provides a robust resource for genome-

wide, high-density SNP genotyping of cattle and for

population genetic analyses of closely related artiodactyl

species [4,47]. In which, less than 3% of markers had

call rates below 99.94%, the average call rate for indivi-

dual samples was greater than 97.5% and 85% of sam-

ples had call rates above 98.8% [5]. Cattle CNVs in this

study were detected by using the same SNP genotyping

results, including those collected for the Bovine Hap-

Map project [3] (Additional file 1: Table S1). PennCNV

quality filters were applied after the CNV detection,

resulting in 521 distinct high quality genotyping results

from the original 556 animals. This panel included 366

animals from 14 taurine dairy and beef breeds, 70 ani-

mals from three breeds of predominantly indicine back-

ground, 46 animals from two breeds that are Taurine ×

Indicine composites, and 39 animals from two African

groups, one of which (Sheko) is an ancient hybrid. It is

worth to note that for many of the breeds, individuals

were sampled from more than one continent to repre-

sent the global cattle population. This panel contained

39 trios where both parents and an offspring were geno-

typed. Additionally, we included 18 animals from 6 out-

groups (Bos gaurus - Gaur, Bos bison - North American

Bison, Bubalus depressicornis- Lowland Anoa, Bos java-

nicus - Banteng, Bos grunniens - Yak, and Syncerus caf-

fer -Cape Buffalo) with 1 trio information to derive the

ancestral states of CNVs. Among these outgroups, the

average sample call rate was 89.91%, reflecting their

divergent relationship from Bos Taurus.

Identification of cattle CNVs

PennCNV algorithm [20] was only applied to autosomes

(-lastchr 29) to detect cattle CNV in this study. In our

initial analysis, chrX (-chrx) was also considered sepa-

rately from automosomes. PennCNV incorporates multi-

ple sources of information together, including LRR and

BAF at each SNP marker, more realistic models for

state transition between different copy number states

based on the distance between neighboring SNPs, popu-

lation frequency of B allele (PFB), the allele frequency of

SNPs, and the pedigree information where available,

into a hidden Markov model (HMM). Both LRR and

BAF were exported from Illumina GenomeStudio Geno-

typing Module v1.0 software given the default clustering

file for each SNP. The PFB file was calculated based on

the BAF of each marker in this population. Because

there were 153 out of 556 animals (~27.5%) with abso-

lute values of waviness factor larger than 0.04 in our ori-

ginal analysis, the genomic waves were adjusted using

the -gcmodel option. The cattle gcmodel file was gener-

ated by calculating the GC content of the 1Mb genomic

region surrounding each marker (500kb each side). For

comparison, the analysis without considering gcmodel

was also conducted. Three different PennCNV options

were performed wherever possible: 1) -test: the indivi-

dual-calling algorithm that treats family members as if

they were unrelated; 2) -trio: the posterior-calling algo-

rithm which accommodates family information to

improve the accuracy of individual-based CNV calling

and boundary prediction; 3) -joint: the joint-calling

algorithm that identifies CNVs using family data
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simultaneously. After CNV detection, filtering of low-

quality samples was carried out with the default cutoffs:

standard deviation (STD) of LRR as 0.30, BAF drift as

0.01 and waviness factor as 0.05. The filtered results

from the three algorithms were compared in terms of

CNV numbers, lengths and number of SNP in CNVs

(Additional file 1: Table S5). The final CNVs set was the

nonredundant combination of CNVs from the -joint

results for family trio members and the -test results for

unrelated individuals. For the outgroup animals, quality

filtering was not performed due to their divergent rela-

tionship from Bos Taurus. CNVRs are determined by

aggregating overlapping CNVs identified across all sam-

ples [13].

CNV validation

array CGH experiments were performed as previously

described [11]. Primers were designed for qPCR valida-

tion using the Primer3 webtool http://frodo.wi.mit.edu/

primer3/ by limiting amplicon length to 150 bp to 250 bp

and by incorporating a GC clamp of 2. All other settings

were left at the default. Primer information is shown in

Additional file 1: Table S9. Quantitative PCR experiments

were conducted using SYBR green chemistry in triplicate

reactions, each with a reaction volume of 25 μl. All reac-

tions were amplified on a BioRad MyIQ thermocycler.

An intron-exon junction of the BTF3 gene was chosen as

a reference location for all qPCR experiments. Analysis

of resultant crossing thresholds (Ct) was performed using

the ∆∆Ct method [48,49]. Calibration ∆Ct values were

derived from amplification of reference and test primers

on a genomic DNA template derived from the European

Hereford, Dominette 01449. Since all reference and test

primers did not overlap with any of Dominette’s CNV

regions, two-copy states were assumed for both ampli-

cons in Dominette.

Cattle CNV distribution and association with Segmental

Duplications and other features

We investigated the genomic distribution of 682 CNVRs

by testing the hypothesis that pericentromeric and sub-

telomeric regions were enriched for CNVs as described

previously [32]. Briefly, all predicted variable bases that

overlapped with these regions were totaled and chi-

square tests were used to test the null hypothesis of no

enrichment. CNVRs were also overlapped with SD and

the other genomic features such as evolutionary break-

point regions (ERBs), which were obtained from litera-

ture and public databases listed in web site references.

Gene content

Gene content of cattle CNV regions was assessed using

Ensembl genes ftp://ftp.ensembl.org/pub/current_fasta/

bos_taurus/pep/, the Glean consensus gene set, cattle

RefSeq and in silico mapped human RefSeq (the UCSC

Genome Browser website at http://genome.ucsc.edu/).

We obtained a catalog of all bovine peptides from

Ensembl. This yielded 26,271 peptides, 1,679 of which

overlap with predicted 682 high-confidence CNV

regions, and correspond to 1,263 unique Ensembl genes.

Using the PANTHER classification system, we tested the

hypothesis that the PANTHER molecular function, bio-

logical process and pathway terms were under- or over-

represented in CNV regions after Bonferroni corrections

[32]. It is worth noting that a portion of the genes in

the bovine genome has not been annotated or has been

annotated with unknown function, which may influence

the outcome of this analysis.

Web Site References
The Database of Genomic Variants: http://projects.tcag.

ca/variation/

Ensembl genes ftp://ftp.ensembl.org/pub/current_fasta/

bos_taurus/pep/

PANTHER http://www.pantherdb.org/

OMIM http://www.ncbi.nlm.nih.gov/omim/

OMIA http://omia.angis.org.au/

QTL http://www.animalgenome.org/

Additional material

Additional file 1: Supplemental Material file. Table S1. Numbers of

species, breeds, animals and trios used to call CNVs genotyped by

BovineSNP50 assay. Table S2. Btau_4.0 cattle CNV regions and their

frequencies. Table S3. Comparison of CNV regions identified on two

cattle genome assemblies. Table S4. UMD3 cattle CNV regions and their

frequencies. Table S5. The comparison of CNVs from 39 trios using three

CNV calling algorithms: individual-calling, posterior-calling and joint-

calling. Table S7. Outgroup CNV regions and their frequencies. Table S8.

The effects of CNV length and frequency on calling consistances

between CNV callings based on SNP array and aCGH. Table S9. qPCR

Summary. Table S10. Over/Underrepresentation of PANTHER molecular

function, biological process and pathway terms. Table S12. CNVR

frequency differences among breeds. Figure S1. Illustration of a typical

CNV call with qPCR validation.

Additional file 2: Supplemental Material file. Table S6. Gene contents

of cattle CNV regions.

Additional file 3: Supplemental Material file. Table S11. Cattle CNV

regions overlap with genomic regions under positive selection, human

orthologous OMIM genes and cattle QTLs.
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