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Enterococci are commensal bacteria of the gastrointestinal tract of humans, animals, and 
insects. They are also found in soil, water, and plant ecosystems. The presence of 
enterococci in human, animal, and environmental settings makes these bacteria ideal 
candidates to study antimicrobial resistance in the One-Health continuum. This study 
focused on Enterococcus hirae isolates (n = 4,601) predominantly isolated from beef 
production systems including bovine feces (n = 4,117, 89.5%), catch-basin water (n = 306, 
66.5%), stockpiled bovine manure (n = 24, 0.5%), and natural water sources near feedlots 
(n = 145, 32%), and a few isolates from urban wastewater (n = 9, 0.2%) denoted as 
human-associated environmental samples. Antimicrobial susceptibility profiling of a subset 
(n = 1,319) of E. hirae isolates originating from beef production systems (n = 1,308) showed 
high resistance to tetracycline (65%) and erythromycin (57%) with 50.4% isolates harboring 
multi-drug resistance, whereas urban wastewater isolates (n = 9) were resistant to 
nitrofurantoin (44.5%) and tigecycline (44.5%) followed by linezolid (33.3%). Genes for 
tetracycline (tetL, M, S/M, and O/32/O) and macrolide resistance erm(B) were frequently 
found in beef production isolates. Antimicrobial resistance profiles of E. hirae isolates 
recovered from different environmental settings appeared to reflect the kind of antimicrobial 
usage in beef and human sectors. Comparative genomic analysis of E. hirae isolates 
showed an open pan-genome that consisted of 1,427 core genes, 358 soft core genes, 
1701 shell genes, and 7,969 cloud genes. Across species comparative genomic analysis 
conducted on E. hirae, Enterococcus faecalis and Enterococcus faecium genomes 
revealed that E. hirae had unique genes associated with vitamin production, cellulose, 
and pectin degradation, traits which may support its adaptation to the bovine digestive 
tract. E. faecium and E. faecalis more frequently harbored virulence genes associated 
with biofilm formation, iron transport, and cell adhesion, suggesting niche specificity within 
these species.
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INTRODUCTION

Antimicrobial resistance (AMR) is recognized as one of the 
major global health challenges of the 21st century. The 
interconnected microbiomes between humans, animals, and 
the environment contribute to the emergence, acquisition, and 
spread of AMR (Hiltunen et al., 2017). A One-health approach 
provides an in-depth knowledge of the evolution of AMR by 
focusing on those biological elements that influence the 
emergence of antimicrobial resistance genes (ARGs) within 
the microorganism and their dissemination among hosts (human 
and animals) and the environment (Hernando-Amado et  al., 
2019). Gram-positive enterococci are core members of the 
gastrointestinal microbiota of humans and animals and are 
frequently isolated from soil and water (Byappanahalli et  al., 
2012; Gilmore et al., 2014). Enterococci often carry ARGs as 
they compete within complex microbial communities and are 
exposed to antimicrobials in clinical settings and during livestock 
production (Murray, 1990; Moreno et  al., 2006). Furthermore, 
depending on the species, enterococci exhibit intrinsic  
resistance to several antibiotics including cephalosporins,  
anti-staphylococcal penicillins, aztreonam, aminoglycosides, 
lincosamides, and streptogramins (Miller et  al., 2014). 
Enterococci are typically commensals, but they can cause 
nosocomial infections in humans including septicemia, 
endocarditis, and urinary tract infections (Barnes et al., 2021). 
There are over 50 species of enterococci with E. faecalis and 
E. faecium most frequently linked to human infections. 
Occasionally, other species including E. hirae, E. avium, 
E. durans, E. gallinarum, E. casseliflavus, and E. raffinosus may  
also be  associated with infections in people (Brayer et  al., 
2019; Pinkes et  al., 2019; Winther et  al., 2020). Due to their 
widespread occurrence and persistence in the environment, 
enterococci are considered indicators of fecal contamination 
(Byappanahalli and Fujioka, 2004; Yan et  al., 2011) and also 
serve as key indicator bacteria for AMR surveillance systems 
in humans and animals (Harwood et  al., 2000; Layton 
et  al., 2010).

Studies have indicated that E. faecium and E. faecalis are 
more prevalent in human-associated environments, whereas 
E. hirae are prevalent in beef cattle production systems 
(Zaheer et  al., 2020). E. hirae only accounts for 1% of 
enterococcal infections in humans (Heval Can et  al., 2020) 
and is mainly linked to pyelonephritis (Chan et  al., 2012; 
Pãosinho et  al., 2016; Nakamura et  al., 2021), endocarditis 
(Talarmin et  al., 2011; Pinkes et  al., 2019), and biliary tract 
infections (Tan et  al., 2010; Bourafa et  al., 2015). As with 
E. faecalis and E. faecium, E. hirae infections are typically 
treated with ampicillin, gentamicin, or vancomycin (Nakamura 
et  al., 2021).

The focus of this study was to investigate the genomic 
relatedness of E. hirae across the environmental continuum 
and to identify the genetic nature of AMR in E. hirae. 
Furthermore, we  applied a pan-genome analysis to identify 
genes that may account for the predominance of E. hirae within 
beef cattle production systems.

METHODOLOGY

Bacterial Isolates
A total of 8,430 Enterococcus strains were isolated in a 
One-Health surveillance study from different segments of 
the environmental continuum using samples collected from 
beef production systems (i.e., feedlot cattle feces, catch-basin 
water, and manure), natural water sources, urban wastewater, 
and human clinical samples (Zaheer et  al., 2020). Bovine 
fecal samples came from four feedlots in southern Alberta 
over two years (March 2014–April 2016). Wastewater samples 
were collected from catch basins that accumulate runoff 
from the feedlots. Natural surface water samples came from 
up-stream and down-stream of the feedlots. Urban wastewater 
samples came from two wastewater plants located in southern 
Alberta. Enterococcus spp. recovered from patients with 
clinical infections were obtained through the Division of 
Medical Microbiology, Calgary Laboratory Services (now 
Alberta Precision Laboratories, Alberta Health Services) 
(Zaheer et  al., 2020). This study focuses on Enterococcus 
hirae, collected as the most prevalent species from beef 
production system (n  = 4,601 isolate) (Zaheer et  al., 2020). 
Figure  1 represents the prevalence of E. hirae isolates in 
the sampled sources.

Enterococci were recovered in parallel from two different 
media types including Bile Esculin Azide (BEA) agar without 
antibiotic and BEA supplemented with 8 μg/ml erythromycin, 
followed by species identification. E. hirae were identified 
via multiplex PCR targeting groES-EL and muramidase genes 
(Zaheer et  al., 2020). As E. hirae was absent among clinical 
Enterococcus isolates (n  = 1892; Figure  1), complete genomes 

FIGURE 1 | Prevalence of Enterococcus hirae isolates (n = 4,601) identified 
across a One-health continuum.
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(n  = 3) of clinical E. hirae were retrieved from NCBI  
database for comparative genomic analysis (Supplementary  
Table S1).

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility testing was performed on a randomly 
selected subset (n  = 1319, 29%) of E. hirae isolates using the 
disk diffusion method, as per the Clinical and Laboratory 
Standards Institute (CLSI) documents M02-A12 and M100-S24. 
A panel of twelve antibiotics was used for testing based on 
their common usage for treatment of human enterococcal 
infections that included those drugs of critical importance 
(levofloxacin, linezolid, quinupristin/dalfopristin, teicoplanin, 
vancomycin, and tigecycline), high importance (erythromycin, 
ampicillin, gentamicin, and streptomycin), and medium 
importance (nitrofurantoin and tetracycline). Staphylococcus 
aureus ATCC 25923 and E. faecalis ATCC 29212 were used 
as reference quality controls (Zaheer et  al., 2020). The BioMic 
V3 imaging system (Giles Scientific, Inc., Santa Barbara, CA, 
USA) was used to read zones of inhibition. Isolates were 
categorized based on CLSI interpretive criteria, except for 
tigecycline for which EUCAST interpretive criteria (The European 
Committee on Antimicrobial Susceptibility Testing, 2014) 
were used.

Whole-Genome Sequencing
Whole-genomic sequencing of a subset of E. hirae isolates 
(n  = 286), including isolates originating from bovine feces 
(n = 168), feedlot catch basin (n = 62), bovine manure stockpiles 
(n  = 8), natural water sources (n  = 42), and urban wastewater 
(n  = 7), was performed using next-generation sequencing 
technology. Briefly, genomic DNA was extracted using the 
DNeasy Blood and Tissue Kit (Qiagen, Montreal, QC, Canada) 
with modifications (Zaheer et  al., 2020), followed by DNA 
quality assessment and quantification using a Nanodrop  2000 
spectrophotometer and a Qubit Fluorometer with PicoGreen 
(Thermo Fisher Scientific, Mississauga, ON, Canada). Isolates 
were sequenced on an Illumina MiSeq platform using the 
MiSeq Reagent Kit V3 to generate 2 × 300 bp paired-end reads. 
Raw read FASTQ files were assessed for the quality of sequence 
data using FastQC (Galaxy Version 0.72 + galaxy1) (Wingett 
and Andrews, 2018) and de novo assemblies were performed 
using Shovill (Bankevich et  al., 2012). Assembled contigs were 
then annotated by Prokka to identify all gene-coding sequences 
(Seemann, 2014).

AMR Determinants, Virulence, and Plasmid 
Detection
Assembled genomes were screened for the presence of AMR 
determinants, virulence genes, and plasmids using ABRicate 
(https://github.com/tseemann/abricate/) against the NCBI 
Bacterial Antimicrobial Resistance Reference Gene database 
(NCBI BioProject ID: PRJNA313047), VirulenceFinder [pmid 
15,608,208], and PlasmidFinder databases (Zankari et al., 2012), 
respectively. Intact prophage were identified using PHASTER 
tool (Arndt et  al., 2016).

Comparative Genomic Analysis
A total of 289 genomes including 286 assembled genomes 
from this study and 3 complete E. hirae genomes of clinical 
isolates retrieved from NCBI database (strain: 708, accession: 
NZ_CP055232.1; strain: FDAARGOS_234, accession: NZ_
CP023011.2; and strain: 13344, accession: NZ_CP055229.1) 
were subjected to phylogenomic analysis. A core-genome 
phylogenomic tree was constructed using the (SNVPhyl v 1.0) 
pipeline (Petkau et al., 2017). Briefly, all paired-end reads were 
mapped against the E. hirae reference genome (strain R17; 
GenBank accession: CP015516.1) to produce read pileups 
(SMALT v.0.7.5; https://www.sanger.ac.uk/tool/smalt-0/). The 
read pileups were evaluated for mapping quality (minimum 
mean mapping quality score of 30), coverage cut offs (15X 
minimum depth of coverage), and a single-nucleotide variant 
(SNV) abundance ratio of 0.75 to generate a multiple sequence 
alignment of SNV containing sites. The final maximum likelihood-
based phylogeny was generated by PhyML using unfiltered 
SNV alignment. Phylogenomic trees and associated metadata 
were visualized using Interactive Tree Of Life (iTOL) v5 tool 
(Letunic and Bork, 2021).

Comparative genome analysis was done using the Roary v3.12.0 
pipeline with default parameters (Page et al., 2015). Genes identified 
by Prokka were used to construct pan-genomes. A pan-genome 
of 289 E. hirae isolates was reconstructed to identify core and 
accessory genes present in E. hirae. Furthermore, comparative 
analysis was performed between E. faecium and E. faecalis, which 
are predominantly associated with humans infections, and E. hirae. 
For this purpose, a small subset of E. hirae isolates (n  = 16) 
representative of the various sources and phylogenetic clades were 
randomly selected. Similarly, a subset of E. faecium (n  = 26) and 
E. faecalis (n  = 24) isolates were randomly selected on the same 
bases from our previous study (Zaheer et  al., 2020; BioProject 
PRJNA604849). The phandango interactive viewer tool (Hadfield 
et  al., 2017) was used to interpret pan-genome data obtained 
from Roary analysis. This tool utilizes two of the Roary output 
files: one is a gene absence and presence matrix file that creates 
a heat map based on the number of genes present or absent in 
each isolate and a Newick-formatted tree file of accessory genomes 
used to plot a relatedness dendrogram of the accessory genes 
present in all isolates.

A pan-genome plot was generated using ggplot2 package 
of R Studio Version 1.4.1103 (R Studio Inc., Boston, MA, 
USA) based on two Roary output files (the number of conserved 
genes and the number of total genes). The number of conserved 
genes represented the size of the core genome. The number 
of total genes represented both the core and accessory genomes, 
creating a curve based on the pan-genome completeness. The 
pan-genome of an organism is considered “closed” if the curve 
is predicted to plateau or “open” if the curve is predicted to 
continue to rise. In contrast to a closed genome, the number 
of new gene families in an open genome increases with the 
inclusion of new genomes in the analysis.

Discriminatory genomic signatures between E. hirae, 
E. faecium, and E. faecalis were identified using Neptune v1.2.5 
with default parameter (Marinier et  al., 2017). The signature 
discovery process using Neptune identifies sequences that are 
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sufficiently common to a group of target sequences (inclusion 
group) and sufficiently absent from non-targets (exclusion 
group) using probabilistic models. Analyses was done using 
E. hirae genomes as the inclusion group and E. faecium  
and E. faecalis as independent exclusion groups, respectively. 
The genomic signature found in ≥90% of isolates in the 
inclusion group were selected and annotated using Prokka 
(Seemann, 2014).

RESULTS

Antimicrobial Susceptibility Testing
Phenotypic susceptibility testing was conducted on 1,319 E. hirae 
isolates originating from bovine feces, feedlot catch-basin water, 
stockpiled bovine manure, and natural and urban wastewater 
sources. (Figure  2). Fifty-one different resistance profiles were 
identified with the most frequent being resistant to doxycycline 

and erythromycin (364/1319, 27.6%) followed by resistance to 
doxycycline alone (242/1319, 18.3%) (Supplementary Table S2). 
Across all tested isolates, 14.1% (186/1319) were multi-drug 
resistant (resistant to ≥3 tested antimicrobials). Antimicrobial 
susceptibility profiles of all tested isolates are presented in 
Supplementary Figure S2.

Isolates Recovered From BEA Plates Without 
Erythromycin
Out of 1,319 total isolates tested for antimicrobial susceptibility, 
666 isolates were recovered from BEA plates without 
erythromycin. From these, isolates originating from beef 
production systems (i.e., bovine feces, catch basin, and stockpiled 
bovine manure; n = 632) exhibited a high prevalence of resistance 
to tetracycline (376/632, 59.4%), followed by macrolides (200/632, 
31.6%), nitrofurantoin (102/632, 16.1%), tigecycline (76/632, 
12.0%), linezolid (40/632, 6.32%), ampicillin (9/632, 1.42%), 
quinupristin/dalfopristin (8/632, 1.26%), vancomycin (1/632, 

FIGURE 2 | Phenotypic resistance profiles of Enterococcus hirae isolated from beef production system (n = 1,264) including bovine feces and feedlot catch basin, 
natural water source (n = 45), and urban wastewater sample (n = 9).
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0.15%), and teicoplanin (1/632, 0.15%) (Supplementary  
Figure S1).

The natural water source isolates recovered from BEA plates 
without antibiotics (n  = 28) also showed a high prevalence of 
tetracycline resistance (22/28, 78.5%), followed by macrolides 
(8/28, 28.5%), nitrofurantoin (5/28, 17.8%), and tigecycline 
(1/28, 3.57%). Resistance against quinupristin/dalfopristin, 
linezolid, ampicillin, and fluoroquinolones was not detected 
(Supplementary Figure S1).

Of the 233 Enterococcus spp. isolates recovered from urban 
wastewater (Zaheer et  al., 2020), only nine were identified 
as E. hirae. Six of those were recovered from media without 
erythromycin. Four of the six isolates exhibited resistance 
to tigecycline (4/6, 66.6%) followed by nitrofurantoin (3/6, 
50%), linezolid (3/7, 48.85%), fluoroquinolones (2/6, 33.3%), 
vancomycin (1/6, 16.6%), and ampicillin (1/7, 14.2%) 
(Supplementary Figure S1).

Isolates Recovered From BEA Plates With 
Erythromycin
A total of 652 isolates from erythromycin plates were selected 
for phenotypic antimicrobial testing. Of these isolates, 632 
originated from beef production (i.e., bovine feces, catch 
basin, and stockpiled bovine manure). Tetracycline resistance 
(437/632, 69%) was the most prevalent resistance in the  
beef isolates from production systems, followed by macrolides 
(525/632, 83%), tigecycline (67/632, 10.6%), nitrofurantoin 
(60/632, 9.5%), linezolid (33/632, 5.2%), quinupristin/
dalfoprstin (13/632, 2.0%), ampicillin (9/632, 1.42%), 
fluoroquinolones (5/632, 0.79%), and gentamicin (1/632, 0.15%) 
(Supplementary Figure S1).

The isolates recovered from natural water sources (n  = 17) 
showed a high prevalence of resistance to macrolides (15/17, 
88.2%), followed by tetracycline (13/17, 76.4%), tigecycline 
(2/17, 11.76%), quinupristin/dalfoprstin (1/17, 5.88%), and 
nitrofurantoin (1/17, 5.88%). None of the isolates were resistant 
to linezolid, ampicillin, or fluoroquinolones (Supplementary  
Figure S1).

A total of three E. hirae isolates were recovered from urban 
waste sources on erythromycin plates. Two of those isolates 
showed macrolide resistance (2/3, 66.6%), followed by  
tetracycline (1/3, 33.3%), nitrofurantoin (1/3, 33.3%), 
quinupristin/dalfoprstin (1/3, 33.3%), and streptomycin (1/3, 
33.3%). These isolates were sensitive to teicoplanin, ampicillin, 
vancomycin, gentamicin, tigecycline, fluoroquinolones, and 
linezolid (Supplementary Figure S2). Overall, 16.8% of isolates 
(110/652) recovered from erythromycin plates showed 
intermediate resistance to erythromycin.

Whole-Genome Sequencing
Of the E. hirae isolates tested for antimicrobial susceptibility, 
286 randomly selected isolates were used for whole-genome 
sequencing. The size of E. hirae genomes as interpreted from 
the assembled sequence read data ranged from 2,307,753 bp 
to 3,200,875 bp, with a GC content of 36.7%. Detailed assembly 
statistics are provided in Supplementary Table S3.

AMR Determinants
Assembled genomes (n  = 286) were screened for the presence 
of AMR determinants using the Abricate tool along with the 
NCBI AMR gene database. Ten different ARGs, including 
aminoglycosides ARGs aac(6′)-Iid, ant(6)-Ia and aph(3)-III, 
streptothricin sat4, tetracycline ARGs tet (L, M, O, S/M, 
(O/32/O)), and macrolide ARG erm(B) were identified across 
the examined genomes (Figure  3). Overall, nineteen  
different resistance genotypes were identified with the most 
frequent being aac(6′)-lid-tet(L)-erm(B) (87/286, 30.41%) 
followed by aac(6′)-lid-tet(L)-tet(M)-erm(B) (64/286, 22.37%) 
(Supplementary Table S4). The aminoglycoside resistance 
gene aac(6′)-lid was identified in all but two of the E. hirae 
genomes (284/286, 99.30%).

Of the 286 sequenced isolates, 238 were recovered from 
beef production systems (i.e., bovine feces, feedlot catch basin, 
and stockpiled bovine manure). tet(L) (199/238, 83.61%) was 
the most prevalent ARG identified in these isolates, followed 
by erm(B) (179/238, 75.21%) and the tetracycline resistance 
genes, tet (M) (73/238, 30.67%), tetO (36/238, 15.12%), 
tet(O/32/O) (13/238, 5.46%), and tet(S/M) (03/238, 1.26%).

Similar to beef production system isolates, E. hirae isolates 
recovered from natural water sources located near feedlots 
showed a high prevalence of tet(L) (38/41, 92.68%) followed 
by erm(B) (27/41, 65.85%). Occasionally, tet(M) (4/41, 9.75%), 
tet(O) (4/41, 9.75%), and tet(O/32/O) (2/41, 4.87%) were also 
present in these isolates.

Among seven E. hirae isolates recovered from urban 
wastewater, the streptomycin resistance gene ant(6)-la was 
present in two isolates (2/7, 28.57%). The kanamycin/neomycin 
aph(3′)-III and streptothricin sat4 resistance genes were both 
found in a single urban wastewater isolate (1/7, 14.28%). 
Tetracycline resistance gene(s) were not found in any of these 
isolates, whereas erm(B) was only detected in one isolate (1/7, 
14.28%).

tet(L) and erm(B) were found together in 63.63% of total 
isolates (182/286) indicating a strong correlation. Similarly, tet 
(L) and tet (M) coexisted in 24.12% of isolates (69/286) and 
in most cases were found on the same contig (60/69, 87%) 
in assembled genomes.

E. hirae genotypes generally associated with quinolone 
resistance (i.e., presence of quinolones resistant gene (qnr) or 
DNA gyrase and DNA topoisomerase IV genes mutations) 
and linezolid resistance (i.e., mutations in the 23S ribosomal 
RNA gene or presence of resistance genes including cfr, cfrB, 
optrA, and poxtA) were not identified.

Virulence Factors
Within the 286 E. hirae isolates, we  identified nine different 
virulence genes associated with biofilm formation (bopD), 
capsular polysaccharides biosynthesis (cpsA, cpsB, and cap8E), 
hyaluronic acid production (hasC), proteolytic activity/chaperones 
(clpP), fibrinogen adhesions protein (fss3), bile salt hydrolase 
(bsh), and listeria adhesion protein (lap). All isolates carried 
cap8E, clpP, cpsA, cpsB, bopD, and lap genes, while hasC, bsh, 
and fss3 were found in 98.95% (283/286), 89.86% (257/286), 
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and 2.44% (7/286) of total isolates, respectively. These  
genes were also identified in publicly available clinical E. hirae 
genomes from humans. Pili protein-encoding gene ebpC was 
only detected in one of the human clinical isolates retrieved 
from NCBI. Detailed information is provided in Supplementary  
Table S5.

Plasmid Identification
Among all E. hirae isolates (n  = 286), 16% carried plasmids. 
Seven different plasmids (rep1, rep2, rep11, rep17, rep18, repUS7, 
and repUS12) were identified. Among these, rep2 and rep17 
were recovered from all sample types except urban wastewater. 
In contrast, rep1, rep18, and repUS7 were recovered from 
urban wastewater samples. Two out of fifteen rep17 plasmids 
carried erm(B), whereas one out of twenty rep2 plasmids carried 
tet(L). Of six repUS12 plasmids, five carried tet (L) and were 
recovered from bovine feces.

Prophage Identification
A total of 30 genomes were randomly selected from all sample 
sources to identify bacteriophage using PHASTER. All isolates 
contain at least one prophage ranging from 7 to 48 kb in size. 

Twenty-four intact prophage sequences were identified, with 
95.5% identified as members of the family Siphoviridae. None 
of the identified prophages harbored ARGs.

Comparative Genomic Analysis
Core-genome phylogenomic analysis was conducted on the 
286 E. hirae isolated in this study and the three E. hirae 
genomes retrieved from NCBI. The E. hirae isolates clustered 
into six different clades, with no obvious segregation by source 
(Figure  3).

Pan-genome analysis of E. hirae isolates identified 1,427 
core genes (99 to 100% of strains), 358 soft core genes (95 
to 99% of strains), 1701 shell genes (15 to 95% of strains), 
and 7,969 cloud genes (0 to 15% of strains) (Figure  4A). 
The pan-genome of E. hirae is open as the number of accessory 
genes progressively increased with increasing genomes 
(Figure  4B). In addition, the gene presence and absence 
heat map showed that the accessory genome constituted a 
large part of the pan-genome, indicative of a high level of 
genomic diversity within this species (Figure  4C). Cross-
species comparative analysis of E. hirae, E. faecium, and 
E. faecalis genomes, highlighted the genomic diversity within 

FIGURE 3 | Core-genome phylogenetic tree based on analysis of single-nucleotide polymorphisms (SNPs) of Enterococcus hirae genomes (n = 291) isolated from 
different environmental settings including beef production systems and human-related isolates. The genomes were compared using E. hirae OG1RF genome 
(GenBank accession # NZ_CP015516.1/CP015516.1) as a reference.
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Enterococcus spp. as the total core genome shared between 
three species was small (Figure  5). Furthermore, it also 
demonstrated the distinct genomic traits of each species as 
illustrated by the gene absence and presence heat map 
(Figure  5).

A total of 1,069 discriminatory genomic signatures were 
recognized in E. hirae compared to E. faecalis (n  = 808) and 
E. faecium (n = 261). Most of these genomic signatures encoded 
for unknown hypothetical proteins (454/1069, 42.46%).

Neptune analysis is capable of identifying inter-species genomic 
variation, as discriminatory loci were identified in all three 
species. These loci coded for genes required for the synthesis 
of aromatic amino-acids including chorismate synthase (aroC), 
cyclohexadienyl dehydrogenase (tyrC), genes for sugar transport 
including permease (yteP), transcriptional regulator (mtlR), 
lichenan permease IIC component (licC), and lipoprotein (lipO).

Signatures found exclusively in E. hirae genomes included 
genes associated with the phosphotransferase system for galactitol 
(gatA, B, and C) and fructose (fruA, frwA, and frwD), 
peptidoglycan synthesis (rodA ftsW, mur E, F, J, and Y), teichoic 
acid synthesis (tag H, G, and U), coenzyme A biosynthesis 
(coaD), vitamin B12 synthesis (nrdZ), chitin degradation (chiA), 
capsule synthesis (epsE, pglF, ywqD, and ywqC), riboflavin 
synthesis (ribBA, D, E, and H), vitamin B6 synthesis (yvgN), 
vitamin uptake transporter (queT), gamma-aminobutyric acid 
(GABA) production (glsA2, gadC, and amt), cardiolipin 
biosynthesis (clsA), bacitracin export (bceA and B), xenobiotic 
degradation (nylA), and iron transport (yqgN, feuC, feuB, fepC, 
and yfiY).

Furthermore, genes that may be associated with antimicrobial 
resistance were also identified in E. hirae genomes such as 
those encoding for multi-drug transporters (marA, mepE msrR, 

A

C

B

FIGURE 4 | Pan-genome estimation of Enterococcus hirae (A) genomic statistics and pan-genome estimation of 291 isolates. (B) Development of pan- and core 
genomes, illustrating the open nature of the pan-genome. (C) Heat map representing absence or presence of genes in isolates and the phylogenetic genetic tree 
generated from accessory genes.
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and yxlF), doxorubicin resistance (drrA), sulfonamide resistance 
(bcr), and penicillin-binding protein (pbp). Early secreted 
antigenic target (ESAT) system genes (eccC, essB, and esxA) 
were also found in E. hirae genomes.

Compared to E. hirae, 160 and 944 discriminatory genomic 
signatures were identified in E. faecium and E. faecalis genomes, 
respectively, with most of these genes associated with various 
aspects of cellular metabolism, such as molybdopterin 
biosynthesis (mog, modB, and modB); cadmium, zinc, and 
cobalt transport (cadA); copper export (copY and copA); 
phosphotransferase system for glucitol/sorbitol (srlA, srlE, and 
srlB), sorbose (sorB, sorF, and sorA), mannose (manX and 
manZ), cellobiose (celA), mannitol (mtlA, mtlF, and mtlD), 
maltose (malX), ascorbate (ulaC and ulaA), and beta-glucosides 
(bglF). In addition, genes encoding E. faecalis and E. faecium 
pathogenesis were also identified, such as biofilm formation 
genes (brpA, icaA, and lytR); virulence genes, including 
unsaturated chondroitin disaccharide hydrolase (ugl); anthrax 
toxin regulator positive (atxA); hemin transport system (hmuU 
and hmuT); sialic acid TRAP transporter small permease (siaQ); 
carnitine transport system (opuCB and opuCA); arginine/
ornithine system (argR and arcD1); genes encoding the adhesions, 
including gelatinase (gelE) and collagen (cna); and genes encoding 
for antimicrobial resistance, including penicillin-binding protein 
(PbpE, PbpX, and PbpF), multi-drug resistance protein (YkkC, 
YkkD, and Stp), tetracycline repressor protein (TetR), 
fluoroquinolones export protein (Rv2688c), and macrolide export 
protein (MacB) (Supplementary Table S7).

DISCUSSION

Enterococci are ubiquitous Gram-positive bacteria. They colonize 
gastrointestinal tracts of most multicellular eukaryotic organisms 
including humans, animals, and insects and aide in digestion 

and gut metabolic pathways (De Graef et  al., 2003; Farrow 
and Collins, 1985; Devriese et  al., 1990; Andrew and Mitchell, 
1997; de Vaux et  al., 1998; Muniesa et  al., 1999; Fogarty et  al., 
2003; Law-Brown and Meyers, 2003; Maria da Gloria et  al., 
2006; Layton et  al., 2010; Giraffa, 2014). In addition, they are 
also found in food, plant, and water ecosystems (Müller et  al., 
2001; Svec et al., 2001; Klein, 2003; Švec et al., 2006; Byappanahalli 
et  al., 2012). Enterococci are remarkably resilient to broad pH 
ranges, temperature variation, and osmotic pressure, traits that 
contribute to their broad distribution in nature (Heim et  al., 
2002; Caretti and Lubello, 2003; Anderson et al., 2005). Resistant 
bacterial populations are selected by the exposure of commensal 
gut microorganisms such as enterococci to antimicrobials that 
are used for disease treatment and prevention (Francino, 2016). 
The ubiquitous nature of enterococci may facilitate the 
dissemination of antimicrobial resistance genes between different 
environments. For this reason, it is imperative to identify 
antimicrobial resistance determinants and their role in the 
spread of antimicrobial resistance (Cameron and McAllister, 
2016). Here, we  focused on E. hirae isolates recovered from 
a One-Health surveillance study (Zaheer et  al., 2020). The 
genomic relatedness of E. hirae was examined across various 
sampling matrices of the continuum and AMR determinants 
that contribute to antimicrobial resistance were identified. 
Furthermore, we  examined the genomic traits of E. hirae that 
may facilitate their growth in the cattle gut as compared with 
other human-associated Enterococcus species.

As described previously, E. hirae is highly prevalent in cattle 
and thus can be  readily isolated from bovine feces, bovine 
manure, and feedlot catch-basin water samples (Jackson et  al., 
2011; Zaheer et  al., 2013, 2020; Beukers et  al., 2015). The 
number of E. hirae isolates recovered from urban wastewater 
was low (3%) and most of the Enterococcus spp. from this 
source were identified as either E. faecalis or E. faecium. 
Similarly, only E. faecalis or E. faecium was identified among 

FIGURE 5 | Heat map representing absence or presence of genes and phylogenetic genetic tree generated from accessory genes of Enterococcus hirae (n = 16), 
Enterococcus faecium (n = 26), and Enterococcus faecalis (n = 24).
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human clinical isolates, confirming that E. hirae is generally 
not associated with human infections. However, E. hirae have 
occasionally been isolated from human cases of septicemia 
(Gilad et  al., 1998), endocarditis (Poyart et  al., 2002; Talarmin 
et al., 2011), urinary tract infections (Chan et al., 2012; Bourafa 
et  al., 2015), spondylodiscitis (Canalejo et  al., 2008), and acute 
pancreatitis (Dicpinigaitis et al., 2015). The rarity of this species 
among clinical enterococci isolates suggests that this species 
may not be  as virulent as E. faecalis and E. faecium. This 
finding is also evident from our comparative genomic analysis 
where virulence genes were frequently identified in E. faecalis 
and E. faecium, but not in E. hirae.

The phenotypic resistance profiles of 1,319 E. hirae isolates 
showed that antimicrobial use and resistance phenotype were 
linked within a particular environment. For example, macrolides 
and tetracyclines are commonly used in beef cattle production 
systems for disease treatment and prevention including 
prophylaxis/metaphylaxis (Hurd and Malladi, 2008; Cameron 
and McAllister, 2016; Vikram et  al., 2017). Isolates recovered 
from bovine feces, feedlot catch basin, stockpiled bovine manure, 
and natural surface water in the vicinity of the feedlots showed 
high occurrence of resistance to these antibiotics. Although 
only nine E. hirae isolates were recovered from urban wastewater, 
their resistance profiles indicated linkage with drugs commonly 
used to treat human infections including nitrofurantoin, 
tigecycline, and linezolid.

Genotypic resistance profiles of E. hirae corroborated to 
their phenotypic profiles, where tetracycline and macrolide 
resistance genes were predominantly present in isolates recovered 
from the beef cattle production system and natural water 
sources. This is consistent with previous studies where tetracycline 
and macrolide resistance genotypes were prevalent in beef 
production systems (Zaheer et  al., 2013, 2019; Rovira et  al., 
2019). Tetracycline resistance was associated with the presence 
of tetL, M, and O. Two mosaic tetracycline genes tetS/M and 
tetO/32/O were also identified. tetL confers resistance via an 
efflux mechanism, while tetM, tetS/M, O, and O/32/O encode 
for ribosomal protection proteins (Safferling et  al., 2003; 
Kazimierczak et  al., 2008; Barile et  al., 2012; Crespo et  al., 
2012; Dönhöfer et  al., 2012). These genes are mostly found 
on transposable elements that are often linked with 
chloramphenicol and macrolide resistance determinants (Opal 
and Pop-Vicas, 2015). Macrolide resistance was associated with 
the presence of erm(B), which confers resistance against 
macrolide-lincosamide-streptogramin antibiotics (Okitsu et  al., 
2005). Others have also found erm(B) in E. hirae (Portillo 
et  al., 2000; Chajęcka-Wierzchowska et  al., 2016), as well as 
in E. faecalis and E. faecium isolated from chickens (Kim et al., 
2019, 2021), turkies (Tremblay et  al., 2011; Demirgül and 
Tuncer, 2017), pigs (Aarestrup, 2000), fermented food (Sanchez 
Valenzuela., 2013), and clinical settings (Schmitz et  al., 2000; 
Chen et  al., 2010; Wang et  al., 2021). The macrolide resistance 
gene and tetracycline resistance genes in E. hirae appear to 
be  identical to those in E. faecalis and E. faecium (Beukers 
et  al., 2017; Zaheer et  al., 2020). Considering that all of these 
species carry similar AMR determinants, the possibility of 
horizontal gene transfer across species seems probable (Palmer 

et al., 2010). Studies have identified the presence of pheromone 
responsive plasmids in E. faecium and E. faecium that either 
encode vancomycin resistance or facilitate the transfer of 
plasmids carrying vancomycin ARGs into recipient cells 
(Flannagan and Clewell, 2002; Johnson et  al., 2021). These 
plasmids can also transfer between Enterococcus species, as 
the pMG1 plasmid has been shown to transfer between E. faecium 
and E. faecalis, and from E. faecium to E. hirae (Costa et al., 1993).

Aminoglycoside gene acc(6′)-lid is known to be  intrinsic 
in E. hirae (Costa et  al., 1993) and was detected in all but 
two genomes, likely as a result of gene coverage and assemblage 
issues. It is not surprising that vancomycin resistance genes 
were not identified in E. hirae, as this drug is not approved 
for veterinary use in North American cattle. Our result is 
consistent with a previous study where vancomycin resistance 
genes were not identified in Enterococcus spp. isolated from 
bovine feces (Beukers et al., 2017). The virulence genes identified 
in E. hirae were mostly associated with biofilm formation and 
polysaccharide biosynthesis, as described by others (Hashem 
et  al., 2017). The 10 virulence genes that were identified in 
E. hirae were similar to those in E. faecalis and E. faecium, 
but many more (i.e., 49) virulence genes were found in E. faecium 
and E. faecalis (Zaheer et  al., 2020).

Pan-genome analysis is an important comparative analysis 
tool that allows linkages between genetic changes and specific 
phenotypes as it describes core- and accessory genomes as 
well as species-specific genes (Vernikos, 2020). The core genome 
constituted only 64% of the total genome in E. hirae. Both 
horizontal and vertical transfer of genes, including those that 
confer antimicrobial resistance, play a significant role in shaping 
the pan-genome of a bacterial species (Ding et  al., 2018). The 
pan-genome of E. hirae was considered “open” as there was 
no sign of saturation and it would be  expected to expand 
with the addition of new genomes as illustrated by the 
pan-genome curve (Figure  4B). The high presence of cloud 
genes reflects the heterogeneity of the pan-genome of E. hirae. 
The existence of E. hirae in diverse environments may increase 
the chance of gene acquisition, in contrast to other Enterococcus 
species that may live in more specific environments that require 
less genomic variation for survival (Costa et  al., 2020).

Gram-positive bacteria have sophisticated cell wall structures 
that ensure bacterial structural integrity and cellular viability 
and are also a major component of the host defense system 
(Koch, 2003; Silhavy et  al., 2010). For this reason, numerous 
studies have been conducted to explore components of cell 
wall synthesis pathways as potential targets for drug therapy. 
Genes involved in cell wall synthesis were identified as 
discriminatory genomic signatures between E. faecalis and 
E. hirae. Identification of these different signatures [peptidoglycan 
synthesis genes (Mur E, F, and Y), penicillin-binding protein 
(pbpE and pbpX), teichoic acid synthesis genes (tag H, G, and 
U), and enterococcal polysaccharide antigen (eps E, D, M, and 
N)] may identify targets that offer more specific drug development 
against E. faecalis and E. faecium (Parisien et  al., 2008).

Members of gut microflora compete with each other for nutrient 
availability. Therefore, the ability of one bacterial species to utilize 
multiple nutrients for energy generation provides an advantage 
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over other species. We  found genes involved in the synthesis of 
cobalamin (vitamin B12), pyridoxine (vitamin B6), riboflavin 
(vitamin B2), biotin (vitamin B7), and folic acid exclusive to the 
E. hirae species compared with other enterococci analyzed in this 
study. With vitamins being undeniably important for both bacteria 
and the mammalian host, gut bacteria associated with their 
production directly contribute to the development and welfare 
of the host and thus may have a specific function within the 
microbiome of the digestive tract of cattle. In E. hirae genomes, 
multiple phosphotransferase systems (PTS) for fructose, galactitol, 
mannose, sorbose, glucose, N-acetyl glucosamine, and cellobiose 
were identified. The presence of these PTS promotes colonization 
of these bacterial populations (Jeckelmann and Erni, 2020). In 
addition, compared to E. faecalis and E. faecium, E. hirae harbored 
genes that were predicted to contribute to the synthesis of bacterial 
cellulose. These findings indicate that cellular metabolism genes 
identified in E. hirae may contribute to fitness within the cattle 
gut, accounting for its high prevalence in beef cattle.

Analysis of the annotated genomes indicated that E. hirae 
possessed genes coding for the production of antimicrobial 
agents like bacilysin, subtilosin, and narbonolide. Bacilysin is 
a dipeptide antimicrobial with antifungal and antibacterial 
activity (Özcengiz and Öğülür, 2015). Subtilosin belongs to 
the lantibiotics class of bacteriocins and has anti-biofilm activity 
(Babasaki et  al., 1985; Algburi et  al., 2017). These bacteria are 
also capable of producing gamma-aminobutyric acid (GABA), 
an inhibitory neurotransmitter. GABA may increase feed intake 
in cattle and reduce anxiety and pain (Sarasa et  al., 2020; 
Mamuad and Lee, 2021). These findings suggest that E. hirae 
may have probiotic properties that could benefit the 
gastrointestinal environment of cattle (Ben Braïek and Smaoui, 
2019). Previously, E. hirae has been employed as a probiotic 
bacteria in freshwater fish (Adnan et  al., 2017). Recent studies 
have also demonstrated that E. hirae may confer probiotic 
properties within the intestinal tract of cattle (Arokiyaraj et al., 
2014; Daillère et  al., 2016).

One of the goals of this study was to identify the niche-
specific genes in E. faecalis and E. faecium that may contribute 
to virulence and infection. Several virulence factors that contribute 
to the pathogenesis of E. faecalis and E. faecium have been 
reported (Ali et  al., 2017; Zhou et  al., 2020). Several virulence 
genes were unique to E. faecium and/or E. faecalis and were 
not found in E. hirae. Members of the SlyA/ MarA family of 
proteins are associated with virulence gene regulation, promote 
biofilm formation, and act as cell adhesions. The presence of 
genomic signatures corresponding to these genes may in part 
account for the higher prevalence of E. faecalis and E. faecium 
infections than E. hirae infections in humans (Mäkinen et  al., 
1989; Michaux et  al., 2011; Yang et  al., 2015). Lipoproteins 
facilitate intake of nutrients and are often associated with ABC 
transporters that are linked to pathogenesis. This supports our 
findings as genes encoding lipoproteins mapped with ABC 
transport systems for manganese, arabinose, and methionine 
(Zhang et  al., 1998; Hutchings et  al., 2009). Furthermore, in 
E. faecalis and E. faecium, we also identified an arginine-ornithine 
antiporter which could contribute to cell fitness by facilitating 
arginine uptake. A study conducted to investigate the role of 

arginine-ornithine antiporter in Streptococcus suis reported that 
intercellular survival of this pathogen within epithelial cells was 
compromised in the absence of the antiporter (Fulde et al., 2014).

The potential of E. hirae as an opportunistic pathogen cannot 
be  ignored, as it is occasionally recovered from both human 
and animal clinical samples (Nicklas et  al., 2010; Dicpinigaitis 
et  al., 2015; Ebeling and Romito, 2019; Pinkes et  al., 2019; Bilek 
et  al., 2020). Despite a higher prevalence of virulence genes in 
E. faecium and E. faecalis, some virulence genes were also identified 
in E. hirae, like genes associated with the ESX (or Type VII) 
secretion system, bicyclomycin resistance, capsule biogenesis, 
quorum sensing system, and an ABC transporter for iron import 
(Stauff et  al., 2008; Rutherford and Bassler, 2012; Borst et  al., 
2015; Hatosy and Martiny, 2015; Poweleit et al., 2019). In addition, 
a lipoprotein gene associated with the iron transport system has 
been identified and is thought to play a role in E. hirae establishing 
opportunistic infections (Hutchings et  al., 2009).

In conclusion, E. hirae has a tremendous ability for survival 
and adaptation. It has acquired resistance to the most common 
antimicrobials used in beef production systems. In addition, 
cellular metabolism genes involved in vitamin biosynthesis, 
multiple ABC and PTS transport systems, chitin degradation, 
and cellulose synthesis provide selective advantage and facilitate 
intestinal colonization of the cattle gut. As E. hirae appears 
to be  uniquely adapted to cattle hosts, this likely limits the 
extent to which it transfers genes to bacteria that are important 
in human health. Regardless, the absence of resistance to 
critical antimicrobials in E. hirae gives credibility to limiting 
use of these drugs in feedlots and suggests that prudent 
management of antimicrobials in feedlot settings is an 
important practice.
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