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Genomic characterization of genes encoding
histone acetylation modulator proteins identifies
therapeutic targets for cancer treatment
Zhongyi Hu1, Junzhi Zhou1, Junjie Jiang1, Jiao Yuan1, Youyou Zhang1,2, Xuepeng Wei3, Nicki Loo1,

Yueying Wang1, Yutian Pan1, Tianli Zhang1, Xiaomin Zhong4, Meixiao Long5, Kathleen T. Montone6,

Janos L. Tanyi2, Yi Fan7, Tian-Li Wang8,9, Ie-Ming Shih8,9, Xiaowen Hu1,2 & Lin Zhang1,2

A growing emphasis in anticancer drug discovery efforts has been on targeting histone

acetylation modulators. Here we comprehensively analyze the genomic alterations of the

genes encoding histone acetylation modulator proteins (HAMPs) in the Cancer Genome

Atlas cohort and observe that HAMPs have a high frequency of focal copy number alterations

and recurrent mutations, whereas transcript fusions of HAMPs are relatively rare genomic

events in common adult cancers. Collectively, 86.3% (63/73) of HAMPs have recurrent

alterations in at least 1 cancer type and 16 HAMPs, including 9 understudied HAMPs, are

identified as putative therapeutic targets across multiple cancer types. For example, the

recurrent focal amplification of BRD9 is observed in 9 cancer types and genetic depletion of

BRD9 inhibits tumor growth. Our systematic genomic analysis of HAMPs across a large-scale

cancer specimen cohort may facilitate the identification and prioritization of potential drug

targets and selection of suitable patients for precision treatment.
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H
istone acetylation modulator proteins (HAMPs), the pri-
mary protein families that mediate the modification and
recognition of histone acetylation, include histone acet-

yltransferases (HATs; writers), histone deacetylases (HDACs;
erasers), and proteins containing bromodomains (BRD-contain-
ing proteins or acetyl-Lys-binding proteins; readers)1–5. HATs
acetylate the conserved lysine side chains of histone proteins by
transferring an acetyl group from acetyl-coenzyme A, thereby
forming N-ε-acetyl-L-lysine. In general, chromatin adopts a more
relaxed structure after histone acetylation, which enables the
recruitment of the transcriptional machinery and increases gene
transcription. In contrast, HDACs remove acetyl groups from the
N-ε-acetyl-L-lysines of histones, which allows the histones to wrap
the DNA more tightly. A BRD is a protein domain (~110 amino
acids) that recognizes acetylated lysine residues in histone tails.
This recognition is a prerequisite for protein–histone association
and chromatin remodeling. An increasing number of HDAC
inhibitors (HDACis) have been approved for the clinical care of
patients with hematological malignancies and BRD-protein
inhibitors are emerging as a new class of anticancer agents that
have shown promising therapeutic potential in early clinical
trials5–12.

Recent genomic studies have shown that the genes involved in
epigenetic regulation are altered in cancers at unexpectedly high
frequencies13–17, suggesting that certain HAMPs may serve as
driver genes during cancer development. Advances in large-scale
and multi-dimensional profiles of cancer genomes, such as the
Cancer Genome Atlas (TCGA) project, have provided novel
resources for identifying potential cancer driver genes and ther-
apeutic targets. In this study, by integrating multi-omic profiles,
we comprehensively characterized the genomic alterations of 73
HAMP genes (Supplementary Data 1)1, including 18 HAT genes,
43 BRD-containing genes (including 6 HATs that also contain
BRDs), and 18 HDAC genes, across the whole TCGA data cohort
(n > 10,000, including samples of 33 cancer types from 27 primary
sites, Supplementary Data 2). A publicly accessible database was
developed to assist researchers with analyzing and visualizing
HAMP genomic alteration data through the Functional Cancer
Genome data portal (FCG data portal: http://52.25.87.215/home/).
Our integrated genomic study indicates that many uncharacter-
ized HAMPs are putative cancer-causing genes with therapeutic
potential in certain cancer types.

Results
Ubiquitous mRNA expression of HAMPs across cancers. To
characterize the messenger RNA expression of HAMPs in cancer,
we analyzed the RNA sequencing (RNA-seq) profiles in TCGA
(Supplementary Data 2). We found that most HAMPs were
ubiquitously expressed across the 33 cancer types (Fig. 1a and
Supplementary Data 3). Only TAF1L was not detected in any of
the cancer types examined and BRDT, CECR2, SP140, HDAC9,
SIRT4, SP110, and TRIM66 had restricted expression in 5, 17, 23,
25, 30, 32, and 32 cancer types, respectively (Fig. 1b). Similar
expressional patterns were also observed in corresponding nor-
mal adjacent tissues as well as established cancer cell lines
(Supplementary Figure 1). Although these lineage-specific
HAMPs were mainly detected in the cancer types derived from
the tissues in which the corresponding HAMPs are normally
expressed, they were also ectopically expressed in a small fraction
of other cancer types. For example, the testis-specific BRD gene
BRDT was not solely detected in testicular germ cell tumors
(TGCT); it was also found in a small fraction of lung cancers
(25.34% of lung adenocarcinomas [LUAD] and 16.97% of lung
squamous cell carcinoma [LUSC]), uterine carcinosarcoma
(UCS;16.07%), and esophageal carcinoma (ESCA; 11.18%). This

finding indicates the therapeutic potential of targeting lineage-
specific HAMPs in certain cancer types. Among the ubiquitously
expressed HAMPs, TRM28, BRD2, and HDAC1 had remarkably
higher mRNA expression levels than the other HAMPs. Unex-
pectedly, although HAMPs were ubiquitously expressed in can-
cers, their mRNA expression levels were informative and
facilitated the differentiation of the tumor specimens from dif-
ferent cancer types via a machine learning algorithm (t-dis-
tributed stochastic neighbor embedding)18 (Fig. 1c). Notably, the
cancer types with related tissue origins clustered together. For
example, cancers derived from the digestive tract epithelium
(head and neck squamous cell carcinoma [HNSC], ESCA, sto-
mach adenocarcinoma [STAD], colon adenocarcinoma [COAD],
and rectum adenocarcinoma [READ]) shared similar HAMP
expression signatures. In contrast, melanoma (skin cutaneous
melanoma [SKCM] and uveal melanoma [UVM]), hematologic
(lymphoid neoplasm diffuse large B-cell lymphoma [DLBC] and
acute myeloid leukemia [LAML]), neurological (glioblastoma
multiforme [GBM] and brain lower-grade glioma [LGG]), and
germline (TGCT) cancers were clearly distinct from the cancers
with epithelial origins. Collectively, most HAMPs were ubiqui-
tously expressed across cancer types, but their expression patterns
were largely cancer type- and tissue lineage-specific.

Somatic copy number alterations of HAMPs across cancers. To
characterize the somatic copy number alterations (SCNAs) of
HAMPs in cancer, we analyzed the single-nucleotide poly-
morphism (SNP) array profiles from TCGA (Supplementary
Data 2). The putative cancer-causing HAMPs driven by SCNAs
in each cancer type were identified using four criteria (Fig. 2a).
We initially identified 496 recurrent focal SCNA events in
HAMPs across 33 cancer types, and 68 of 73 (93.15%) HAMPs
were observed in a significantly recurrent focal SCNA region in at
least one cancer type (Supplementary Data 4). This finding is
consistent with the recent report that the recurrent SCNA regions
in cancer are significantly enriched for genes involved in epige-
netic regulation19. We next estimated the G-score (Supplemen-
tary Data 5), which considers both the amplitude of the
aberration and the frequency of its occurrence across samples, for
each recurrent focal SNCA event by GISTIC220. The events with
low frequency and amplitude were removed (G-score < 0.1). After
we removed the non-detectable HAMPs, we analyzed the corre-
lations between mRNA expression and predicted copy number by
Pearson’s test. A significant and positive correlation was observed
for 80.2% (154/192) of HAMP SCNA events identified in the first
three steps, strongly suggesting that SCNA is an important
mechanism that leads to the dysregulation of HAMPs in cancers.

Across 33 cancer types, we identified 54 HAMPs that met all
four criteria in at least one cancer type (Fig. 2b, Supplementary
Figure 2, and Supplementary Data 6). For example, the well-
known oncogenic HAMP BRD4 was recurrently amplified in six
cancer types, including adrenocortical carcinoma (ACC), breast
invasive carcinoma (BRCA), ESCA, liver hepatocellular carci-
noma, ovarian serous cystadenocarcinoma (OV), and uterine
corpus endometrial carcinoma (UCEC) (Fig. 2b). Notably,
SCNAs of HAMPs were largely cancer type-specific (Fig. 2b
and Supplementary Figure 2): 21 of 54 (38.89%) HAMPs with
recurrent SCNAs were only observed in one cancer type and no
HAMP SCNA was found in more than nine cancer types. Bladder
urothelial carcinoma (BLCA, n= 16), sarcoma (SARC, n= 13),
and LUSC (n= 12) had the largest numbers of recurrent SCNAs
in HAMPs, whereas DLBC, kidney chromophobe (KICH), kidney
renal papillary cell carcinoma (KIRP), pancreatic adenocarci-
noma (PAAD), pheochromocytoma and paraganglioma (PCPG),
thyroid carcinoma (THCA), and thymoma (THYM) had none
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(Fig. 2b and Supplementary Figure 2). Importantly, only six
HAMPs had both recurrent copy number gain and loss in
different types of tumors. Most HAMPs were consistently altered
(either gain or loss) across different cancer types, suggesting that
these HAMP SCNAs are not merely the result of genomic
instability but may functionally contribute to tumor development.
Notably, most identified focal regions contained multiple genes

that co-altered with HAMPs (Supplementary Data 7). In addition,
several HAMPs (SP140/SP140L/SP100/SP110, HADC10/BRD1,
HDAC8/TAF1, and NCOA3/ZMYND8) were co-altered due to
their genomic proximity. Among the three types of HAMPs, BRD
proteins showed the highest frequency of recurrent SCNAs,
whereas HATs presented few recurrent events (Fig. 2c). Five
HDAC genes (HDAC2, HDAC4, HDAC5, HDAC10, and SIRT3)
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showed copy number loss in at least two cancer types (Fig. 2c).
The HDAC4, HDAC10, and SIRT3 copy numbers were
recurrently lost in eight, six, and six cancer types, respectively
(Fig. 2b).

Collectively, we identified 33 HAMPs that recurrently gained
or lost copy numbers in more than one cancer type (Fig. 2b). To
estimate the SCNAs for these genes at a pan-cancer level, we
calculated an overall G-score by an unweighted numeric sum of

Fig. 1 Ubiquitous HAMP mRNA expression across cancers. a The heatmap shows the mRNA expression levels of HAMPs across cancers. The intensity of

purple indicates the percentile (25th, 50th, 75th, and 90th) of the FPKM value of each HAMP in a given cancer type. The phylogenetic trees were

generated by multiple sequence alignments of the full-length sequences of the proteins. b Summary of the overall mRNA expression of each HAMP across

33 cancer types. The intensity of purple indicates the number of cancer types in which a given HAMP was defined as detectable (the 90th FPKM value≥ 1).

Gray indicates the HAMPs with mRNA expression levels that are cancer type-specific. The phylogenetic trees were generated by multiple sequence

alignments of the full-length sequences of the proteins. c TCGA specimens were arranged in two dimensions based on the similarity of their HAMP

expression profiles by the dimensionality reduction analysis t-SNE (t-distributed stochastic neighbor embedding). Colors represent cancer types. The

cancer types (n= 33) and their color keys are listed based on tissue origin
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Fig. 2 Somatic copy number alterations of HAMPs across cancers. a The workflow of somatic copy number alteration analysis. Four criteria were used to

identify the putative cancer-causing HAMPs driven by SCNAs in each cancer type. The numbers of HAMPs that passed each filter in at least one cancer

type are shown on the right. b The bubble plot shows the G-scores, which consider both the amplitudes of the aberrations and the frequencies of their

occurrence across samples, of the putative cancer-causing HAMPs driven by SCNAs in each cancer type. The size of the bubble: G-score; red: gain; blue:

loss. The phylogenetic trees were generated by multiple sequence alignments of the full-length sequences of the proteins. c Summary of the overall

G-scores of the putative cancer-causing HAMPs driven by SCNAs, which were identified in at least one cancer type. The size of the bubble: the overall

G-score; red: gain; blue: loss. The HAMPs coding in black and gray indicate a gene with an overall G-score ≥ 0.8 and < 0.8, respectively. The phylogenetic

trees were generated by multiple sequence alignments of the full-length sequences of the proteins
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G-scores estimated for each cancer type (Fig. 2c and Supple-
mentary Data 8). BRD9, BRD4, KAT6A, ATAD2, CLOCK, ASH1L,
and BPTF showed high overall G-scores for copy number gain,
whereas HDAC4, BRD1, SIRT3, HDAC10, SP100, SP140L, SP110,
and PBRM1 had high overall G-scores for copy number loss
(overall G-score > 0.9; Fig. 3a–c). Notably, ~3.2–18.8% of HAMP
gains appeared to be high-level alterations (GISTIC status= 2;
Fig. 3b); in contrast, high-level alterations (GISTIC status=− 2)
were markedly less frequent in HAMPs with copy number loss
(0.8–9.4%; Fig. 3c). Consistent with this observation, homozygous
deletions, as estimated with the ABSOLUTE algorithm, were rare
events for these genes. This finding suggests that HAMPs may
have critical roles in cell survival and complete loss may be lethal.
Taken together, we identified 54 putative cancer-causing HAMPs
driven by SCNAs in certain cancer types.

Somatic mutations of HAMPs across cancers. To characterize
the somatic mutations (single-nucleotide variants and indels) of
HAMPs in cancer, we analyzed whole-exome sequencing profiles
from TCGA (Supplementary Data 2). The mutation call set was
generated via an ensemble calling strategy by the MC3 (Multi-
Center Mutation Calling in Multiple Cancers21) project, then we
integrated five complementary methods to identify the genes with
mutations that have significant signs of positive selection during
tumor evolution (Fig. 4a). Collectively, across 33 cancer types, we
identified 34 HAMPs that have recurrent mutations in at least
one cancer type (Fig. 4b, c and Supplementary Data 9 and 10).
Although EP300 and CREBBP were widely mutated in multiple
cancer types (7 and 4 cancer types, respectively; Fig. 3b), the
recurrent mutations of HAMPs were largely cancer type-specific
(Fig. 4b): 17 of 34 (50%) HAMPs with recurrent mutations were
only observed in one cancer type and no recurrent mutation of
HAMPs was found in more than 7 cancer types. Interestingly,
except for PBRM1, which showed a markedly high mutation
frequency in kidney renal clear cell carcinoma (KIRC; 40.1%),
most HAMPs showed mutation frequencies < 5% in a given
cancer type (Supplementary Data 11). UCEC (n= 20), SKCM (n
= 8), BLCA (n= 6), cervical squamous cell carcinoma, and
endocervical adenocarcinoma (CESC; n= 6), and HNSC (n= 6)
had the largest numbers of recurrent mutations in HAMPs,
whereas ACC, DLBC, ESCA, KICH, LAML, LGG, mesothelioma
(MESO), OV, PAAD, PCPG, READ, SARC, TGCT, THCA,
THYM, UCS, and UVM had none (Fig. 4b and Supplementary
Figure 3). Among the three types of HAMPs, BRD proteins and
HATs had the highest frequencies of recurrent mutations and
HDACs had few recurrent events (Fig. 4c). To estimate the
overall recurrent mutations of HAMPs at a pan-cancer level, an
overall M-score was calculated by an unweighted numeric sum of
M-scores estimated for each cancer type (Fig. 4c and Supple-
mentary Data 12).

Among eight HAMPs with M-scores > 0.4, EP300, PBRM1, and
CREBBP had the largest overall M-scores across the 33 cancer
types (Fig. 5a). CREBBP and EP300 appeared to be widely
mutated in multiple cancer types at a low to modest frequency
(0.2–13.5% and 0.2–14.8%, respectively) and PBRM1 was highly
mutated in KIRC (40.1%). At a pan-cancer level, except for
PBRM1, the most common mutation category of HAMPs was
missense mutation (53.0–77.5%; Fig. 5b and Supplementary
Data 13) and the dominant mutation type was heterozygous
mutations (67.2–89.0%; Fig. 5c and Supplementary Data 14). In
contrast, PBRM1 was most commonly affected by truncating
mutations (49.1%; Fig. 5b) and homozygous mutations (37.5%;
Fig. 5c). Using the ABSOLUTE algorithm22, we also determined
the timing of the mutational processes and the clonal statuses of
the mutations in HAMPs. More than 50% of mutations in

HAMPs were early genomic events (Fig. 5d and Supplementary
Data 15) and more than 65% of mutations in HAMPs were clonal
mutations (Fig. 5e and Supplementary Data 16), which suggests
that targeting these early, clonal mutations may be a novel
strategy for the treatment of cancer. We also analyzed the
distributions of the mutations across the gene bodies and found
that mutations in HAMPs were widely spatially distributed along
the entire coding sequences, not concentrated within a specific
local region (Fig. 5f). Next, we performed this analysis in each
cancer type (Fig. 5g–k and Supplementary Data 13–16). Except
for PBRM1, most recurrently mutated HAMPs did not show a
cancer type-specific pattern for mutation category, type, timing,
or clonal status, although BRCA, COAD, GBM, SKCM, STAD,
and UCEC had higher mutation frequencies than average.
Notably, we observed that PBRM1 mutations showed a unique
pattern in KIRC and cholangiocarcinoma (CHOL). Compared
with other cancer types, KIRC and CHOL showed higher
frequencies of PBRM1 mutations (40.1% in KIRC and 19.4% in
CHOL vs. an average of 2.3% among other cancer types).
Importantly, the dominant PBRM1mutation category and type in
KIRC and CHOL were truncating (83.9% and 85.7%, respectively)
and homozygous (85.2% and 71.4%, respectively) mutations,
which were remarkably higher than the averages in other cancer
types (30.3% and 19.4%, respectively).

Interestingly, we observed that, in both the CREBBP and EP300
genes, the most frequent mutations were located within the
catalytic domain, although the mutations were not statistically
significant hotspot mutations at the individual gene level based on
OncodriveCLUST analysis (Fig. 5f). We expanded the mutation
hotspot analysis from a single gene to a gene family that shares
evolutionarily conserved protein modules. To this end, we
performed domain mutation analysis using the LowMACA
algorithm23 on five domains that are shared by HAMPs. Seven
hotspot positions (p < 0.05, false discovery rate < 0.05, LowMACA
algorithm) were identified in the HAT_KAT11, MOZ_SAS, BRD,
and Hist_deacetyl domains of HAMPs (Fig. 5l–n and Supple-
mentary Data 17). Consistent with our analysis, one of the
hotspot mutations that we identified in the HAT_KAT11 domain
was also recently reported in a pan-cancer analysis of protein
domain mutations in 5496 tumors24. Taken together, we
identified 34 HAMPs that may be putative cancer-causing
HAMPs driven by somatic mutations in given cancer types.

Transcript fusions of HAMPs across cancers. To characterize
transcript fusions of HAMPs in cancer, we retrieved the gene
fusion data of TCGA from the TumorFusions database25. We
observed 400 fusion transcripts (349 fusion pairs) of 73 HAMPs
in 9799 tumor specimens across 33 cancer types (Fig. 6a and
Supplementary Data 18), which suggests that transcript fusion is a
rare genetic alteration compared with SCNAs and mutations in
HAMPs in common adult cancers. Across all cancer types, UCS
(9/57 tumor specimens with fusion information), UCEC (26/180),
and LUAD (41/516) had the highest frequencies of HAMP
transcript fusion events, whereas only one HAMP fusion was
detected in CHOL, COAD, DLBC, TGCT, THCA, and THYM
(Supplementary Figure 4 and Supplementary Data 19). Among
400 detected HAMP fusion transcripts, 298 (74.5%), 50 (12.5%),
30 (7.5%), and 22 (5.5%) events were tier 1, tier 2, tier 3, and tier
4, respectively (Fig. 6a and Supplementary Data 20). Only 81 of
400 (20.25%) HAMP fusion transcripts, representing 30 of 349
fusion pairs, were recurrent fusions that occurred at least twice
across all cancer types. KAT6B-ADK (n= 6), BPTF-PITPNC1
(n= 5), and NCOA3-EYA2 (n= 5) were the most frequent
fusions among the common cancer types examined in our study
(Fig. 6a and Supplementary Data 18). When we analyzed the
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Fig. 3 The putative cancer-causing HAMPs driven by SCNAs across cancers. a The scales of the alteration percentage (upper) and G-score (lower).

b, c Seven and eight putative cancer-causing HAMPs that are commonly and recurrently gained (b) or lost (c), respectively, across 33 cancers (overall

G-score > 0.9). In the center of each circle, the cancer types that harbored recurrent alterations of a given HAMP are indicated by a color-coded bubble

(red: gain; blue: loss). The size of the bubble plot represents the G-score of the HAMP in a given cancer type. The bar diagram of each circle shows the

percentage of gain/amplification (b) or loss/deletion (c) of certain HAMPs in individual cancer types. The cancer type is coded by color. Gain: GISTIC

status= 1; amplification: GISTIC status= 2; loss: GISTIC status=− 1; and deletion: GISTIC status=− 2. The overall G-score and the number of cancer

types that harbored recurrent alterations are indicated as G and n, respectively
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fusions of the same HAMPs with multiple different partners,
ASH1L, SMARCA4, BPTF, CREBBP, and KMT2A were the most
prominent and recurrent HAMPs, associated with 24, 20, 20, 18,
and 17 fusion events, respectively (Fig. 6a and Supplementary
Data 18). Among the three types of HAMPs, BRD proteins
showed the highest frequency of transcript fusions, whereas
HDACs had the fewest events (Fig. 6b). Notably, among the 9799
tumor specimens analyzed in our study, fusion events for HAMPs
were only detected in 365/9799 (3.63%) tumors (Fig. 6c, d). Taken
together, these results suggest that, although certain HAMP
transcript fusions may be actionable for clinical cancer care,
transcript fusion is a rare genomic alteration compared with
SCNAs and mutations of HAMPs in common cancers.

Putative therapeutic target HAMPs across cancers. To estimate
the recurrent alterations of HAMPs at a pan-cancer level, we

calculated an overall recurrent score via an unweighted numeric
sum of the numbers of recurrent events for a given HAMP
across all cancer types (Fig. 7a). We found that 63 HAMPs were
recurrently altered at the genomic level in at least one cancer
type (Fig. 7b and Supplementary Data 20). Among those
HAMPs, BRD9, PBRM1, EP300, HDAC4, ATAD2, BPTF, BRD1,
BRD4, and SP100 had the highest recurrent scores. Across the
different lineages of cancers, three types of alterations were
observed: (1) consistent, putative gain-of-function (such as for
KAT6A and CLOCK, which were focally amplified in six and five
cancer types, respectively); (2) consistent, putative loss-of-
function (such as for PBRM1, which is mutated in four and
focally deleted in five cancer types, and for CREBBP, which is
mutated in four and focally deleted in two cancer types); and (3)
diverse alterations (such as for ATAD2, which is mutated in
three and focally amplified in five cancer types, and for BPTF,
which is mutated in three and focally amplified in five cancer
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Fig. 4 Somatic mutations of HAMPs across cancers. a The workflow of somatic mutation analysis. Seven algorithms were used for variant calling and five
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cancer-causing HAMPs driven by somatic mutations in each cancer type. The size of the bubble: mutation frequency; intensity of color: mutation index.
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types). This suggests that a large fraction of HAMP alterations
may be commonly shared by multiple cancer types, whereas
others may be tumor-lineage dependent.

Next, we calculated the numbers of recurrently altered
HAMPs for each individual cancer type and found that they are
remarkably diverse among different tumors. UCEC, BLCA,
LUSC, and SKCM had higher numbers of alterations, whereas
KIRP and LAML had only one recurrent alteration, and DLBC,

KICH, PAAD, PCPG, THCA, and THYM did not have any
therapeutic targets (Fig. 7c, Supplementary Figure 5, and
Supplementary Data 21). Among the recurrent genomic events,
those in BRD9, EP300, ATAD2, HDAC4, PRBM1, BRD4, and
BRD1 were observed in the highest numbers of cancer types
(nine, eight, eight, eight, seven, seven, and seven, respectively)
(Supplementary Figure 6 and Supplementary Data 20).
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Finally, to survey whether the HAMPs with high recurrent
scores had been characterized in physiological and pathological
conditions, we performed a database search for related publica-
tions through PubTator using gene/protein names. We found that

nearly two-thirds of the HAMPs had not been well characterized
(i.e., PubTator score < 150), including many HAMPs with high
recurrent scores (Fig. 7d). When we searched for HAMPs in the
databases of patents (World Intellectual Property Organization)
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a gene with fusion events ≥ 10 and < 10, respectively. The phylogenetic trees were generated by multiple sequence alignments of the full-length sequences

of the proteins. c Percentage of tumor specimens with HAMP transcription fusion events across all cancer types. d Percentage of tumor specimens with

HAMP transcription fusion events in each cancer type

Fig. 5 The putative cancer-causing HAMPs driven by somatic mutations across cancers. a Overall M-scores of the seven putative cancer-causing HAMPs

(M-scores > 0.4) across all cancer types. b–e The fractions of the mutation categories (b), types (c), timing status (d), and clonal heterogeneity (e) of the

seven HAMPs across all cancer types. f The lollipop plots illustrate the distribution and categories of somatic mutations in the EP300, CREBBP, and PBRM1

gene-coding sequences across all cancer types. Note that although mutations are randomly distributed along the entire coding sequence, in both the EP300

and CREBBP genes the most frequent mutations are located within the HAT catalytic domain. g–j The fractions of the mutation categories (g), types (h),

timing status (i), and clonal heterogeneity (j) of EP300, CREBBP, and PBRM1 in individual cancer types. k Clonal heterogeneity of EP300, CREBBP, and PBRM1

across cancers. On the basis of the probability distributions of the cancer cell fractions, mutations were determined to be either clonal (red blocks) or

subclonal (blue blocks). l An example of a meta-domain represented 51 different BRDs within BRD-containing genes. The x-axis shows the amino acid

positions of the alignment. The y-axis, from top to bottom panel, indicates the mutation number of each position, the significance of a mutation in a given

position (LowMACA), the amino acid conservation of the meta-domain, and the Pfam hidden Markov model sequence logo generated via the Skylign tool

where the height of each stack of residues indicates the relative entropy for that position.m Bar plots showing the stacking of mutations within the six main

HAMP Pfam domains. The x-axis depicts the position in the global alignment and the y-axis shows the mutation number of each position. The red bars

highlight the residues that are significant according to the Benjamini–Hochberg procedure for multiple testing correction of p-values, which we performed

on the conserved positions using LowMACA. n Ribbon drawings of the crystal structures of the HAT_KAT11 domain within EP300 (3BIY) and

Bromodomain within PBRM1 (3G0J). The D1399 and R710 residues that were identified as hotspot mutations are shown in red
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and clinical trials (ClinicalTrials.gov), we found that patent
applications, drug development, and clinical trials were narrowly
focused on HAMPs that have been well characterized in academic
laboratories, such as HDACs and BRD2/3/4 (Fig. 7d). We
identified 57 drugs that are currently being investigated in 787
clinical trials with 16 HAMPs listed as primary targets
(Supplementary Data 22-23). Among them, HDACs (11/16,

68.8%) are the most common targets for drug development and
clinical trials. In contrast, a large percentage of the putative
therapeutic target HAMPs are still not extensively characterized
and lack chemical probes for targeting. For example, 66.7%
(42/63) of putative therapeutic target HAMPs are largely
uncharacterized with limited indications about how these genes
influence cell biology and cancer, although many of these
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understudied HAMPs are recurrently altered among cancers,
such as BRD9, BRD1, BPTF, and ATAD2 (Fig. 7e). Notably,
although a large percentage of reader genes among HAMPs
showed high recurrent scores, the research efforts into biological
function and drug development for these genes are still relatively
limited compared with those for eraser genes (Fig. 7d). Taken
together, our findings indicate that functional studies are urgently
needed for these putative therapeutic target HAMPs, which may
stimulate novel epigenetic therapeutic approaches.

Identification of BRD9 as a potential therapeutic target. Our
integrated genomic analysis identified 63 potential therapeutic
target HAMPs, many of which (42/63) are understudied proteins
according to their PubTator scores (<150). We hypothesized that
well-annotated genomic and clinical information from TCGA
may serve as a powerful resource to guide functional character-
ization of those candidate genes. We chose BRD9 as a candidate
to prove this concept, because it is an understudied HAMP gene
with the highest recurrent score in our analysis (Supplementary
Figure 7). To perform a clinically relevant analysis, we focused on
nine cancer types in which BRD9 is focally amplified. First, we
analyzed BRD9 mRNA expression and found that BRD9 mRNA
expression levels were significantly higher in the BRD9-amplified
tumors than in the non-amplified tumors across all nine cancer
types (Fig. 8a). We also compared BRD9 mRNA expression
between tumors and their corresponding control specimens from
TCGA, except ACC, OV, and CESC, for which the RNA-seq
profile from a normal control is unavailable (ACC and OV) or
insufficient for sample numbers (CESC, n= 3) at TCGA. We
found that BRD9 mRNA was significantly upregulated in all
cancer types studied (Fig. 8a). Identical results were also observed
at a pan-cancer level (Fig. 8a). We confirmed BRD9 protein
expression in cancers by retrieving the immunohistochemical
staining data from the Human Protein Atlas26. Nuclear staining
of BRD9 protein was detected in more than 90% of tumor spe-
cimens (Fig. 8b), which is consistent with its predicted nuclear
function.

We proposed that the functions of a poorly characterized
epigenetic regulator may be predicted on the basis of the known
functions of genes that are co-expressed. Thus, Guilt-by-
association (GBA) analysis may be particularly useful for gleaning
an understanding of BRD9 functions, given that BRD9 is a
subunit of the SWI/SNF complex27–29. As TCGA provides multi-
omic profiles of large-scale sample sets, it is an excellent resource
for GBA-based function prediction. We ranked the genes whose
expression were positively correlated with BRD9 at both the
cancer type-specific and pan-cancer levels (Fig. 8c), then
performed gene-set enrichment analysis. Among the 44 pathways
identified, eight pathways were commonly shared by most cancer
types (n > 5) and 21 pathways appeared to be enriched in certain
cancer types (Fig. 8d and Supplementary Data 24). The biological
processes that were most over-represented for BRD9-associated
genes across nine cancer types were the cell cycle, DNA damage
repair, and RNA metabolism pathways (Fig. 8e and Supplemen-
tary Data 24). Interestingly, the SWItch/Sucrose Non-Fermen-
table (SWI/SNF) complex has been reported to regulate genes
involved in cell cycle and DNA damage repair30–33. To further
test the function of BRD9 in cancer, we knocked down BRD9
expression in four breast and ovarian cancer cell lines with short
hairpin RNAs (shRNAs) (Fig. 8f), then analyzed cell growth in
both anchorage-dependent (Fig. 8g) and -independent (Fig. 8h)
conditions. Consistent with the GBA prediction, knocking down
BRD9 expression dramatically inhibited cancer cell growth
in vitro (Fig. 8f, g). Finally, we demonstrated that the expression
of BRD9 shRNAs significantly suppressed the growth of

subcutaneous tumors formed by MDA-MB-231 or OVCAR8
cells in nude mice (Fig. 8j–m). Collectively, our results
demonstrate that genetic depletion of BDR9 expression signifi-
cantly represses tumor cell growth in vitro and in vivo, suggesting
that small molecular compounds targeting BRD9may have strong
clinical application potentials.

Discussion
Given that the genes that modulate the epigenome are altered in
cancer at unexpectedly high frequencies, there is great interest in
the development of therapeutic approaches that effectively target
cancer epigenomes5–8,12,34. Thus, a systematic analysis of the
epigenome based on the integration of multi-dimensional geno-
mic profiles in large patient cohorts is urgently needed. TCGA
provides a powerful resource to analyze the recurrent genomic
alterations of the epigenome-modifying genes across different
tumor lineages and develop an integrated view of the common-
alities and differences. In the present study, by integrating various
computational algorithms, we systematically characterized the
genomic alterations of HAMPs across TCGA patients (n=
11,193, including 33 cancer types from 27 primary sites) at both
the pan-cancer and cancer type-specific levels. We developed a
publicly accessible database (FCG data portal: http://52.25.87.215/
home/) to assist researchers with analyzing and visualizing the
expression and genomic alterations of HAMPs in cancer. In our
study, an overall recurrent score for each HAMP was estimated at
a pan-cancer level by an unweighted numeric sum of the numbers
of recurrent events. This overall recurrent score can prioritize the
potential candidates for future anticancer drug development. A
HAMP with a high score indicates its recurrent alterations are
common genomic events across multiple adult cancer types.
Thus, successful strategies targeting such HAMPs may benefit
relatively larger proportions of patients from different cancer
types. For example, BRD9 shows highest overall recurrent score
among HAMPs (e.g., focally amplified in nine cancer types),
strongly suggesting that targeting BRD9 by small molecular
inhibitors may be a novel treatment strategy with wide clinical
application for cancer therapy. Finally, given that many HAMPs
with high scores are understudied genes (e.g., BRD9), the overall
recurrent score may also be used to prioritize the genes for basic
biological studies in context of cancer.

Our expression analysis showed that most HAMPs were ubi-
quitously expressed across all cancer types. However, the HAMP
expression signatures differentiated the specimens from different
cancer types and grouped together the tumors with related line-
age origins. This finding suggests that cancer type-dependent
acetylation status should be considered when designing treat-
ments to target histone acetylation in cancer. Interestingly, we
also identified eight HAMPs with expression restricted to certain
cancer types, which may be exploited for potential cancer-specific
HAMP-targeted approaches. For example, we observed that
BRDT was specifically expressed in testicular cancer and a small
proportion of lung, esophageal, and uterine cancers. Next, con-
sistent with a previous pan-cancer analysis19, our SCNA analysis
showed that a large percentage of HAMPs had recurrently altered
DNA copy numbers. For example, the BRD proteins BRD9,
BRD4, and ATAD2 were focally amplified in multiple cancer
types and their increased copy numbers were significantly, posi-
tively correlated with higher mRNA expression levels. Given that
BRD proteins are putative druggable proteins6,7,11,35–37, our
results provide clinically relevant targets for future anticancer
drug discovery. Notably, several HDAC genes, such as HDAC4
and HDAC10, showed significant, focal copy number loss, which
is consistent with the experimental evidence that certain HDAC
genes may serve as tumor suppressors during tumorigenesis.
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Furthermore, genetic depletion of HDACs in tumor cells leads to
cell cycle arrest, apoptosis, and senescence, suggesting that
HDACs are required for the survival and growth of tumor
cells4,9,10. Collectively, our findings indicate that targeting select
HDAC isoforms in certain cancer types may be a more precise
approach for the treatment of cancer compared to the use of pan-

HDACis. Third, our mutation analysis showed that HAMPs were
recurrently mutated in cancers with different behaviors. For
example, CREBBP and EP300 were widely mutated across mul-
tiple cancer types at relatively low frequencies; most of these
mutations were heterozygous missense mutations. In contrast,
PBRM1 showed high-frequency, cancer type-specific mutations in
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KIRC (40.1%). Importantly, a high percentage of homozygous
truncating mutations were observed in the PBRM1 gene in KIRC.
Finally, it has been reported that transcript fusions of HAMPs
occur frequently in certain cancer types, which provides a ratio-
nale for targeted cancer therapy. For example, BRD4 or BRD3 can
be fused to the coding sequence of NUTM1, to create a chimeric
gene that encodes the BRD–NUT fusion protein in about 75% of
NUT midline carcinomas, a rare squamous cell epithelial can-
cer38. However, our transcript fusion analysis indicates that
fusion events are rare genomic alterations to HAMPs in common
adult cancers. Among the 9799 specimens analyzed, we observed
only 400 HAMP fusion events, including 298 tier 1 fusion events,
which suggests that targeting HAMP fusion proteins in common
adult cancers may have limited clinical application.

Collectively, our comprehensive genomic analysis identified 63
putative cancer-causing HAMPs driven by SCNAs and/or
mutations (recurrent score ≥ 1). Among the 15 HAMPs with copy
numbers that were significantly altered in cancer (overall G-score
> 0.9), 7 had recurrently, focally increased copy numbers, which
suggests that they may function as oncogenes during tumor-
igenesis. Thus, the development of potent and specific inhibitors
to directly target these amplified HAMPs may be a therapeutic
approach to treat certain cancer types identified in our study. For
example, the breast and ovarian cancer patients with BRD4
amplifications may be potential candidates for treatment with
BET inhibitors that have been successfully developed to the
preclinical stage39,40. In addition, eight HAMPs focally lost copy
numbers (overall G-score > 0.9) and eight HAMPs showed high
frequencies of mutations (overall M-score > 0.4), which indicates
that their functions may be reduced and/or deficient due to
partial loss of wild-type alleles during cancer development. These
cancer-specific vulnerabilities may represent tractable therapeutic
opportunities via the induction of synthetic lethality. For exam-
ple, mutations of the BRD-containing protein SMARCA4 in
tumor cells results in a unique functional dependence on
SMARCA2. Thus, SMARCA2 serves as a potential therapeutic
target for SMARC4-mutant cancers41. Notably, very few homo-
zygous deletions or mutations of HAMPs (except for PBRM1)
were observed in cancer, suggesting that HAMPs may be essential
for tumor growth, and that complete loss may be lethal. There-
fore, beyond the synthetic lethal approach, hemizygous loss of
HAMP genes may render tumor cells highly dependent on the
remaining wild-type allele. This vulnerability in tumor cells may
present potential therapeutic opportunities. For example, tumor
cells may be more sensitive than normal cells, which have two
copies of the genes, to inhibitors that target these HAMPs.

Among the three groups of HAMPs, HDACs are the best-
characterized gene family and their inhibitors have been

approved to treat hematopoietic malignancies5–10,34. Although
HDACis have also been widely tested in solid tumors in early
clinical phases, the results from the clinical trials have revealed
limited anticancer activity. Our results indicate that certain
HDAC genes (e.g., HDAC4 and HDAC10) focally lose copy
numbers in selected cancer types. The copy numbers lost in
tumors may depend on the remaining HDAC allele; thus, further
suppression of HDACs may lead to greater anticancer effects in
these tumors. In addition, given that different HDAC genes have
distinct genomic alterations in cancer, the development of
isoform-selective HDACis is urgently needed for future clinical
application. Importantly, a large portion of putative cancer-
causing HAMPs identified in our study are understudied HAMPs
(PubTator Score < 150) that have not been targeted with chemical
compounds or Food and Drug Administration-approved drugs.
This study provides promising candidate genes for both basic
cancer research and medical chemistry development. For exam-
ple, well-ordered, deep, hydrophobic pockets in BRDs provide a
highly favorable locus for the binding of small molecule com-
pounds. We identified 15 BRD genes that may function as
oncogenes in cancers, including BRD9, BRD4, and ATAD2.
Excitingly, a number of inhibitors that target BRD4 have been
developed42,43 and evaluated in multiple preclinical cancer
models40,43–54.

Among 63 potential therapeutic target HAMPs identified in
our study, BRD9 is one of the most promising understudied
candidates. Our genomic and functional studies demonstrated
that: (1) BRD9 is recurrently and focally amplified in nine cancer
types with the highest recurrent score; (2) the expression of BRD9
is significantly increased in cancer specimens compared with that
in corresponding normal tissues; (3) computational prediction
suggests that BRD9 expression is associated with cell cycle, DNA
damage repair, and RNA metabolic pathways in cancer; and (4)
genetic depletion of BRD9 by shRNAs reduced cancer cell growth
in vitro and in vivo. Furthermore, although BRD9 is an under-
studied epigenetic regulator with limited functional character-
ization (< 35 publications in PubMed), evidence from recent
independent studies also strongly suggests its potential roles in
cancer28,29. BRD9is a subunit of the SWI/SNF complex27–29,33,
which is highly altered in cancer genomes and has both tumor
suppressor and oncogenic roles30–33. Certain types of hematolo-
gic cancer cells (e.g., acute myeloid leukemia cells) require BRD9
to sustain MYC transcription, cell proliferation, and a block in
differentiation28. Most importantly, due to its BRD, with its well-
ordered, deep, hydrophobic pockets, BRD9 is a druggable protein.
Several small molecule compounds have been recently developed
to target BRD9; they have shown promising anticancer effects in
preclinical models28,55–63. Taken together, our functional studies

Fig. 8 Identification of BRD9 as a potential therapeutic target for cancer treatment. a Expression levels of BRD9 mRNA in nine cancer types in which BRD9

was focally amplified. Gray: normal controls; white: tumors without BRD9 amplification; red: tumors with BRD9 amplification. BRD9 copy number status in

each tumor specimen was estimated by a GISTIC analysis. b Expression of BRD9 protein was retrieved from the Human Protein Atlas dataset. A typical

immunohistochemical staining of each cancer type is presented. Scale bar indicates 100 μm. c The heatmap of the genes that were significantly, positively

co-expressed with BRD9 in nine cancer types. Each tumor is represented in a column and each gene in a row. The RNA expression of BRD9 is presented as

a bar graph under the heatmap. The genes were arranged from top to bottom in descending order of their correlation with BRD9. d The pathways over-

represented for BRD9-associated genes at the pan-cancer and individual cancer levels, according to pre-ranked gene-set enrichment analysis. e The

functional hubs of pathways associated with BRD9 expression as analyzed by pre-ranked gene set enrichment. f BRD9 was knocked down with two

independent shRNAs in four different breast and ovarian cancer cell lines. Knockdown efficiency was confirmed by real-time RT-PCR. g Four-day growth

curves of cancer cell lines transfected with control or BRD9-specific shRNAs. h, i Soft agar assays of MDA-MB-231 (h) and OVCAR8 (i) cells expressing

control and BRD9-specific hairpins. Scale bar indicates 1 cm. Quantification of the number of colonies from the soft agar assays on MDA-MB-231 (h) and

OVCAR8 (i) cells. j In vivo xenograft tumor growth curve of MDA-MB-231 (upper) and OVCAR8 (lower) cells expressing control and BRD9-specific

hairpins. k Representative pictures of tumors derived from control and BRD9-specific hairpin-expressing cells. Scale bar indicates 1 cm. l In vivo tumor

weight curves for MDA-MB-231 (upper) and OVCAR8 (lower) cells expressing control and BRD9-specific hairpins. m Knockdown efficiency of xenograft

tumors was confirmed by real-time RT-PCR. *t-test p-value < 0.05
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on BRD9 are the proof-of-concept for the HAMP candidates
identified in our study and strongly suggest the clinical potential
of targeting BRD9 in common adult solid cancers.

Methods
The HAMP family gene definition. The HAMP gene family members (n= 73)
were defined based on a review article1 and were further complemented by data-
base searching via the Human Protein Reference Database (http://www.hprd.org/),
the Pfam protein family database (http://pfam.xfam.org/), and the SMART (Simple
Modular Architecture Research Tool) database (http://smart.embl-heidelberg.de/).

RNA-seq data processing and gene expression analysis. The poly(A)+ RNA-
seq (Illumine) data were generated by the University of North Carolina and the
British Columbia Cancer Agency Genome Sciences Centre as part of the TCGA
project, and were processed by the TCGA Research Network using the NCI
Genomic Data Commons (GDCs) mRNA quantification analysis pipeline (https://
docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/).
The gene-level RNA expression data (in fragments per kilobase of transcript per
million mapped reads [FPKM]) of tumor specimens across 33 cancer types from 27
primary sites, as well as corresponding normal adjacent specimens from 24 mat-
ched tissue types were downloaded from the GDC Data Portal (https://portal.gdc.
cancer.gov/) (retrieved date: 27 October 2017). If more than one sample existed for
a participant, one single tumor sample (and matched adjacent sample, if applic-
able) was selected based on the following rules: (1) tumor sample type: primary
(01) > recurrent (02) > metastatic (06); (2) order of sample portions: higher portion
numbers were selected; and (3) order of plate: higher plate numbers were selected.
The gene expression data of 2012 cancer cell lines were downloaded through the
Expression Atlas (https://www.ebi.ac.uk/gxa/download.html) under the accessions
E-MTAB-2770, E-MTAB-3983, and E-MTAB-2706.

SNP array data collection and processing. The SNP array data (Affymetrix
Genome-Wide Human SNP Array 6.0) in CEL format across 33 cancer types were
downloaded from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/).
Segmentation files of TCGA tumor samples processed by circular binary seg-
mentation algorithm64 were retrieved from the TCGA GDAC Firehose of the
Broad Institute (http://gdac.broadinstitute.org/; retrieved date: 3 January 2018). If
multiple samples existed for one participant, one pair of tumor and matched
control was selected for ABSOLUTE analysis and one tumor sample was kept for
focal SCNA analysis. Sample selection based on following rules: (1) sample type: for
tumor tissues, primary (01) > recurrent (02) > metastatic (06); for normal control
tissues, blood (10) > solid (11); (2) molecular type of analyte for analysis: prefer D
analytes (native DNA) over G, W, or X (whole-genome amplified); (3) order of
sample portions: higher portion numbers were selected; and (4) order of plate:
higher plate numbers were selected.

Recurrent focal SCNA estimation. The Genomic Identification of Significant
Targets in Cancer (GISTIC 2.0) algorithm20 (https://www.broadinstitute.org/
cancer/cga/gistic) was used to identify significantly recurrent focal genomic regions
that were gained or lost in a given tumor type. Segmentation files retrieved from
the TCGA GDAC Firehose of the Broad Institute were used as input. GISTIC
deconstructed copy number alterations into broad and focal events and applied a
probabilistic framework to identify location and significance levels of SCNA. For
the recurrent focal SCNA estimation, the significance levels (q-values) were cal-
culated by comparing the observed gains/losses at each locus to those obtained by
randomly permuting the events along the genome. Tumors which had more than
2000 segments were excluded from our analysis. Default parameters of GISTIC
were used with the confidence level set to 0.99 (by -conf). Focal events with q-value
below 0.25 were considered as significantly recurrent. Significant focal events in
individual samples were then classified into four categories according to the
amplitude threshold of GISTIC: GISTIC status= 0, below threshold; GISTIC sta-
tus= 1, amplified (gain); GISTIC status= 2, highly amplified (amplification);
GISTIC status=− 1, deleted (loss); GISTIC status=− 2, highly deleted (deletion).
In each cancer type, a GISTIC score (G-score), which counts in both frequency and
amplitude of a given SCNA event20, was generated by GISTIC for each HAMP
gene for gain or loss separately. The gene with a G-score < 0.1 was excluded from
downstream analysis due to its low frequency and/or amplitude. For a given
HAMP gene, an overall G-score across all cancer types was calculated by an
unweighted sum of G-scores in every cancer type.

Correlation analysis between copy number and RNA expression. To identify
HAMP genes that had positive correlations between their RNA expression levels
and copy number alterations, the putative gene-level copy number of a given gene
was estimated by the GISTIC algorithm. The HAMP genes that were detectable in
at least 10% of tumor specimens (90th percentile of FPKM value ≥ 1) in a given
cancer type were subjected to correlation analysis. Pearson’s correlation analysis
was performed by R software and the threshold of significant correlation between
the estimated copy number and RNA expression level for each gene was set to p <
0.001 (Pearson’s correlation).

Identification of the putative cancer-causing HAMPs driven by SCNAs. At the
individual cancer type level, we identified the putative cancer-causing HARP genes
driven by SCNAs using four criteria as follows: (1) located in a peak region of a
significantly recurrent focal SNCA locus estimated by GISTIC (q ≤ 0.25); (2) altered
with high frequency and large amplitude (G-score ≥ 0.1); (3) mRNA expression
was reliably detected in at least 10% of tumor specimens in a given cancer type (the
90th percentile of FPKM value ≥ 1); and (4) expression level of mRNA was sig-
nificantly and positively correlated with the estimated copy numbers (p-value of
Pearson’s correlation coefficient between log[FKPM+ 1] and logR < 0.001). To
estimate SCNAs for these putative cancer-causing HARP genes at a pan-cancer
level, we calculated an overall G-score by an unweighted numeric sum of G-scores
that met all four criteria in each individual cancer type.

Whole-exome sequencing data collection and processing. Mutation Annota-
tion Format (MAF) profiles for 33 cancer type were downloaded from the TCGA
MC3 project (https://doi.org/10.7303/syn7214402), a variant calling project of
TCGA21. The MC3 data were generated through seven independent mutation
calling algorithms, including Pindel (INDEL), MuSE (SNV), Radia (SNV)65,
VarScan2 (SNV/INDEL), MuTect (SNV), Indelocator (INDEL), and SomaticSniper
(SNV). Variants from each caller were merged, quality control filtered, and stored
in MAF file21. If multiple samples existed for a participant in the MAF, one single
pair of tumor/matched control sample was kept following the rules: (1) sample
type: for tumor tissues, primary (01) > recurrent (02) > metastatic (06); for normal
tissues, blood (10) > solid (11); (2) molecular type of analyte for analysis: prefer D
analytes (native DNA) over G, W, or X (whole-genome amplified); (3) order of
sample portions: higher portion numbers were selected; and (4) order of plate:
higher plate numbers were selected. We excluded all mutations that were not
tagged with PASS or WGA alone in all cancer types.

Recurrent mutation gene estimation. To predict the putative cancer-causing
HAMP genes driven by mutation, five independent methods were integrated and
applied to identify recurrent mutations: (1) MutSigCV (http://software.
broadinstitute.org/cancer/software/genepattern/modules/docs/MutSigCV), which
identifies genes that are significantly mutated in cancer genomes, using a model
with mutational covariates. It analyzes the mutations of each gene to identify genes
that were mutated more often than expected by chance, given the background
model; (2) Oncodrivefm (http://bg.upf.edu/group/projects/oncodrive-fm.php),
which computes a metric of functional impact using three well-known methods
(SIFT, PolyPhen2, and MutationAssessor) and assesses how the functional impact
of variants found in a gene across several tumor samples deviates from a null
distribution to detect candidate driver genes; (3) OncodriveCLUST (http://bg.upf.
edu/group/projects/oncodrive-clust.php), which is designed to exploit the feature
that mutations in cancer genes, especially oncogenes, often cluster in particular
positions of the protein and change their functions, thus used to nominate novel
candidate driver genes; (4) ActiveDriver (http://reimandlab.org/software/
activedriver/), which identifies posttranslational modification sites in proteins (i.e.,
active sites such as signaling sites, protein domains, regulatory motifs) that are
significantly mutated in cancer genomes; and (5) HotSpot3D (https://github.com/
ding-lab/hotspot3d), which identifies mutation hotspots from linear protein
sequence and correlate the hotspots with known or potentially interacting domains
and mutations. MC3 MAF files were used as input for the above programs and
default parameters were used for all five programs. A mutation index x (ranges
from 0 to 5) was assigned to a gene, which has passed the threshold of x out of five
programs in a given cancer type. In addition, a mutation score (M-score) was
calculated for each mutated HAMP gene in a given cancer type, which take into
account both the mutation index and its frequency of mutation across samples (i.e.,
M-score=mutation index × mutation frequency). Genes with mutation index ≥ 2
(identified as positive by at least two programs) were considered as recurrently
mutated. An overall M-score was generated to measure the recurrent mutation
level of a given HAMP gene across all cancers, by unweighted sum of M-scores
estimated for each individual cancer type.

Intra-tumor genetic heterogeneity analysis. The intra-tumor heterogeneity was
estimated by ABSOLUTE algorithm22 (http://archive.broadinstitute.org/cancer/
cga/absolute). ABSOLUTE calculated the purity, ploidy, and absolute DNA copy
numbers from the segmented copy number alterations and mutation profiles of
tumor samples. HAPSEG package66 was used to generate copy number data seg-
mented by haplotype for each cancer type using TCGA SNP array data (Affymetrix
Genome-Wide Human SNP Array 6.0) as input files. The default setting of
HAPSEG was applied, except that the minimum segment size and outlier prob-
ability was set to 5 and 0.001, respectively. The output segmented copy ratios data
of HAPSEG together with filtered MC3 MAF files were passed to ABSOLUTE for
analysis. The parameters for ABUSOLUTE were as follows: sigma.p= 0, max.
sigma.h= 0.02, min.ploidy= 0.95, max.ploidy= 10, max.as.seg.count= 1500,
max.non.clonal= 0, max.neg.genome= 0, platform= “SNP_6.0”, and copy_-
num_type= “allelic”. The cancer cell fraction of each somatic single-nucleotide
variant was extracted from the output. Mutations were classified as clonal/sub-
clonal and heterozygous/homozygous as reported by ABUSOLUTE. Mutation
timing was inferred as previously reported67. Briefly, mutations were classified as
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early or late based on their clonal status and mutation copy numbers. In general,
clonal mutations represent relatively early events occurring before or at the time of
the most recent clonal expansion, whereas subclonal mutations represent later
events. In the context of genome-doubling or amplification, a mutation occurring
before doubling would be expected to have multiple copies, whereas a mutation
occurring after doubling will likely have only one copy. Thus, to timing mutations
relative to copy number events, mutations with mutation copy number > 1 were
classified as before event and any mutations with a mutation copy number of 1
were classified as after event. Integrating this with our clonal/subclonal status
estimation, all clonal mutations that were classified as before event were assigned to
early and all subclonal or after event mutations were assigned to late.

Domain mutation analysis. Domains that shared by HAMP genes were analyzed
by the R package LowMACA23 (https://www.bioconductor.org/packages/release/
bioc/html/LowMACA.html). LowMACA was used to analyze the mutation profile
of multiple proteins via consensus alignment and identify their mutational hot-
spots. The HAMP genes along with their associated Pfam domains (HAT_KAT11-
PF08214, MOZ_SAS-PF01853, Acetyltransf_1-PF00583, Bromodomain-PF00439,
Hist_deacetyl-PF00850, and SIR2-PF02146) and non-silent mutation information
retrieved from the TCGA MC3 MAF file were used as the input. Default para-
meters were used for LowMACA analysis. ZMYND11 residues 122–203 within
domain PF00439 and HDAC11 residues 23–320 within domain PF00850 were
excluded from the analysis, because the maximum similarity with any other
sequence was < 20%.

Transcript fusion data collection and analysis. The gene fusion data of TCGA
were retrieved from TumorFusions data portal (http://tumorfusions.org/), which
analyzed transcript fusions across 33 cancer types from TCGA25. The transcript
fusion events were called by Pipeline for RNAseq Data Analysis68 and fusions
detected in normal samples were excluded. Six filters controlling for sequence
similarity of the partner genes, transcriptional allelic fraction, dubious junctions,
germline events, and the presence in non-neoplastic tissue were applied25. If more
than one sample existed for a participant, one single sample was kept following the
rules: (1) sample type: for tumor tissues, primary (01) > recurrent (02) > metastatic
(06); (2) order of sample portions: higher portion numbers were selected; and (3)
order of plate: higher plate numbers were selected. The genome-wide view (Circos
plot) of transcript fusion events in HAMP genes was generated by Circos (http://
circos.ca/).

Recurrent gene score estimation. The recurrent gene score was defined to esti-
mate to what extent the HAMP gene could be cancer-driving at a pan-cancer level.
The recurrent genomic alterations of each gene were integrated to assess its cancer-
driving potential. In a given cancer type, each time when a HAMP gene was
identified having a recurrent event (recurrent focal SCNA, recurrent mutation, or
recurrent fusion), the gene was assigned a number 1, otherwise a number 0 was
assigned. Then each HAMP gene will have a recurrent score ranged from 0 to 3
according to how many recurrent events were identified in a given cancer type. The
overall recurrent gene score for a given gene was calculated by unweighted sum of
its recurrent scores across all cancer types. The higher the score, the more likely
this gene will be a putative cancer-causing genes.

Cell culture. Cancer cell lines were purchased from the ATCC or NCI Develop-
ment Therapeutics Program. All cancer cell lines were cultured in RPMI1640
medium (Invitrogen) supplemented with 10% fetal bovine serum (VWR).

shRNA knockdown and lentiviral transduction. The pLKO.1 empty vector was
purchased from Open Biosystms. Lentiviral shRNAs targeting BRD9 were con-
structed. Non-target shRNA (SHC002) was used as controls. Lentiviral vectors and
packaging vectors were transfected into the packaging cell line 293T (ATCC) using
the FuGENE6 Transfection Reagent (Promega). The media was changed 8 h post
transfection and the media containing lentivirus was collected 48 h later. Cancer
cells were infected with lentivirus in the presence of 8 µg/ml polybrene (Sigma).
Knockdown efficiency was detected 72 h after infection by quantitative reverse-
transcriptase PCR (qRT-PCR). The shRNA sequences are listed below:

BRD9 sh1:
F:5′-CCGGCCTGGATATTCAATGATAATACTCGAGTATTATCATTGAA

TATCCAGGTTTTTG-3′

R:5′-AATTCAAAAACCTGGATATTCAATGATAATACTCGAGTATTATC
ATTGAATATCCAGG -3′

BRD9 sh2:
F:5′-CCGGCAAGTCAGTTACGGAATTTAACTCGAGTTAAATTCCGTAA

CTGACTTGTTTTTG -3′

R:5′-
AATTCAAAAACAAGTCAGTTACGGAATTTAACTCGAGTTAAATTCCGTA
ACTGACTTG-3′

Control sh:
F:5′-CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTT

CATCTTGTTGTTTTTTG -3′

R:5′-AATTCAAAAAACAACAAGATGAAGAGCACCAACTCGAGTTGGTG
CTCTTCATCTTGTTG-3′

RNA isolation and qRT-PCR. Total RNA was extracted using TRIzol Reagent
(Invitrogen) and reverse-transcribed using a High Capacity RNA-to-cDNA Kit
(Applied Biosystems) under conditions provided by the supplier. Complementary
DNA was quantified by real-time RT-PCR using ABI ViiA 7 System (Applied
Biosystems). qRT-PCR was performed using SYBR Green reagents (Applied Bio-
systems) according to the manufacturer’s instructions. GAPDH (glyceraldehyde
3-phosphate dehydrogenase) was used as an internal control. Primers used for
qRT-RCR are listed below:

BRD9:F: 5′-GGCAAGATGGGCTATCTGAAG-3′

R: 5′-GGGAGTAGCTTACTGGAGAGC-3′

GAPDH:F: 5′-ACACCATGGGGAAGGTGAAG-3′

R: 5′-AAGGGGTCATTGATGGCAAC-3′

Cell growth assay. Cells infected with BRD9 shRNAs and control shRNA were
seeded in a 96-well plates, respectively. Cell numbers were estimated by MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, using the Cell
Proliferation Kit (I) (Roche) following the manufacturer’s instructions. The
resulting colored solution was quantified using an ELx800 Absorbance Microplate
Reader (BioTek) at 570 nm with a reference wavelength of 630 nm.

Soft agar assay. The bottom layer was prepared with a 0.8% agarose (Invitrogen)
solution in culture medium in six-well plates and the gel was allowed to set for 20
min. Cells (2.5 × 103) were resuspended in 0.4% top agarose solution (in culture
medium) then carefully placed on top of the bottom agarose in the six-well plates.
The plates were incubated at 37 °C with 5% CO2 until colonies were formed. Cell
culture medium then was changed one to two times per week. After 2–3 weeks, cell
colonies were stained using crystal violet (Sigma) and counted under a microscope.

Mouse xenograft model in vivo. Six- to eight-week-old female nude mice
(Jackson Laboratory) were used for the xenograft assays. MDA-MB-231 cells and
OVCAR8 were trypsinized and suspended in phosphate-buffered saline (PBS), then
a total volume of 0.1 ml PBS containing MDA-MB-231 cells (1.5 × 106) or
OVCAR8 cells (2 × 106) were injected subcutaneously into the mouse flank.
Approximately 8 days later, tumors were detectable and tumor size was measured
using a Vernier caliper. Tumor volumes were calculated by the formula V= (4/3)
π × r3, where r is the radius of a tumor. Tumor weights were measured at the end
point of the experiment.

Statistical analysis. Statistical analysis was performed using R software. All results
were expressed as mean ± SD and p < 0.05 indicated significance.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
This study is based on the genomic profiling data generated by the TCGA project

supported by the NCI and NHGRI. Information about TCGA and the TCGA research

network can be found at the TCGA project website (http://cancergenome.nih.gov). The

raw profiling data used for the current study are public available through the Genomic

Data Commons (GDC) portal (https://gdc-portal.nci.nih.gov), the TCGA data portal

(https://tcga-data.nci.nih.gov/tcga/), the GDAC Firehose of the Broad Institute (http://

gdac.broadinstitute.org/), the TCGA Multi-Center Mutation Calling in Multiple Cancers

(MC3) project (https://doi.org/10.7303/syn7214402), and TumorFusions data portal

(http://tumorfusions.org/). The data generated by this study are public available through

the Functional Cancer Genome data portal (FCG data portal, http://52.25.87.215/home/).
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