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Anti-EGFR antibodies are effective in therapies for late-stage colorectal cancer (CRC); however, many 
tumours are unresponsive or develop resistance. We performed genomic analysis of intrinsic and 
acquired resistance to anti-EGFR therapy in prospectively collected tumour samples from 25 CRC 
patients receiving cetuximab (an EGFR inhibitor). Of 25 CRC patients, 13 displayed intrinsic resistance 
to cetuximab; 12 were intrinsically sensitive. We obtained six re-biopsy samples at acquired resistance 
from the intrinsically sensitive patients. NCOA4–RET and LMNA–NTRK1 fusions and NRG1 and GNAS 

amplifications were found in intrinsic-resistant patients. In cetuximab-sensitive patients, we found 
KRAS K117N and A146T mutations in addition to BRAF V600E, AKT1 E17K, PIK3CA E542K, and 
FGFR1 or ERBB2 amplifications. The comparison between baseline and acquired-resistant tumours 
revealed an extreme shift in variant allele frequency of somatic variants, suggesting that cetuximab 
exposure dramatically selected for rare resistant subclones that were initially undetectable. There 
was also an increase in epithelial-to-mesenchymal transition at acquired resistance, with a reduction 
in the immune infiltrate. Furthermore, characterization of an acquired-resistant, patient-derived cell 
line showed that PI3K/mTOR inhibition could rescue cetuximab resistance. Thus, we uncovered novel 
genomic alterations that elucidate the mechanisms of sensitivity and resistance to anti-EGFR therapy in 
metastatic CRC patients.

Cetuximab-based chemotherapy has demonstrated survival benefit in patients with metastatic colorectal can-
cers (CRCs) over the past decade1–4. Cetuximab binds to the extracellular domain of the epidermal growth fac-
tor receptor (EGFR), which inhibits the RAS–RAF–mitogen-activated protein kinase 1 (MAPK1) and the v-akt 
murine thymoma viral oncogene homolog 1 (AKT1) axis, the pathways involved in cell proliferation, cell survival 
and tumour invasion5.

In approximately 40% of CRC patients, tumours harbour mutations in the v-Ki-ras2 Kirsten rat sarcoma viral 
oncogene homolog (KRAS), mainly in codons 12, 13, and 616,7. KRAS mutations are the key negative predictive 
factors for cetuximab-based treatment in mCRC patients8,9. Although patients with KRAS wild-type (wt) CRC 
tumours are known to be responsive to cetuximab-based treatment, up to 65% of patients with KRAS wt tumours 
are resistant to anti-EGFR monoclonal antibodies10. Aberrations in other effectors of the EGFR signalling cascade 
(PIK3CA, PTEN, and NRAS) have been suggested to affect the primary response to cetuximab sensitivity11–13. In 
addition, MET amplification has been detected in CRC patients who initially responded to cetuximab but even-
tually acquired resistance14; however, MET amplification occurs only in 1% of CRC patients. Limited progress 
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has been made in understanding the mechanism of resistance to cetuximab, particularly in patients who initially 
respond to cetuximab but acquire resistance during cetuximab-based chemotherapy.

In this study, we aimed to evaluate intrinsic and acquired resistance to anti-EGFR therapy in prospec-
tively collected tumour samples of KRAS wt metastatic CRC (mCRC) patients who were administered 
cetuximab-containing regimens in real-world clinical care. We also attempted to obtain tumour tissues at tumour 
progression to investigate the genomic aberrations responsible for acquired resistance. Finally, we established 
patient-derived tumour cells from the tissues at the time of acquired resistance to cetuximab to explore alternative 
treatment regimens for these patients.

Results
Patient cohort. Genomic profiling was performed on 25 metastatic CRC patients treated with cetuxi-
mab-based chemotherapy (Table 1). All baseline tumours used for sequencing were from the primary tumour 
site. DNA and RNA were extracted for whole-exome and transcriptome sequencing, as well as copy number (CN) 
analysis using genotype arrays (Table S1). Fourteen patients were administered first-line cetuximab/FOLFIRI or 
cetuximab/FOLFOX for metastatic disease, and 11 patients were administered cetuximab/irinotecan as a salvage 
treatment. Patients who showed stable disease (SD) or progressive disease (PD) following cetuximab treatment 
were categorized as ‘intrinsic-resistant’, and patients with complete response (CR) or partial response (PR) were 
categorized as ‘intrinsic-sensitive’ (Fig. 1a). Moreover, among patients showing intrinsic sensitivity to cetuximab, 
those who developed resistance to cetuximab during cetuximab-based treatment or within 2 months following 
the completion of cetuximab-based treatment were defined as ‘acquired-resistant’. In the first-line setting (n = 14), 
eight (57.1%) patients achieved a confirmed PR (Fig. 1b). Of the 11 patients administered irinotecan/cetuximab 
as a salvage treatment, four (36.4%) achieved a PR (Fig. 1b). Of these 12 cetuximab-sensitive patients (eight in 
the first-line setting and four in the salvage setting), we successfully obtained re-biopsies at the time of acquired 
resistance in six patients (blue stars; four in the first-line setting and two in the salvage setting; Fig. 1b). The 
re-biopsy sites at acquired resistance following the initial response to cetuximab were as follows: colon, n = 2; 
peritoneal seeding, n = 2; bone, n = 1; and liver, n = 1.

Intrinsic-resistant tumours. The genomic landscape of the intrinsic-sensitive, intrinsic-resistant, and 
acquired-resistant tumours using exome, transcriptome, and CN analysis is shown in Fig. 2. Genetic alterations 
(Fig. 2a,b) in RAS/RAF pathway regulators were frequently observed in intrinsic-resistant tumours. Although all 
patients were selected based on direct sequencing of KRAS at the time of cetuximab administration, whole-exome 
sequencing identified four additional patients with KRAS mutations (two with G12V and once each with G13D 
and Q61H). An NRAS G12D mutant tumour also showed cetuximab resistance. Nearly all tumours profiled 
showed a low somatic mutation burden (0.0–3.9 non-silent Mut/Mb), which is consistent with our previous 
classification of all patient tumours as microsatellite stable. Notably, the two exceptions with high mutation 
burden (patient #3080, 29.5 Mut/Mb; patient #73, 17.8 Mut/Mb) showed cetuximab resistance (Fig. 2a, top). 
Consistent with the results of recent studies, we also detected point mutations in ERBB2 and PDGFRA that likely 
confer cetuximab resistance15,16. The PDGFRA A978T variant is near the PDGFRA kinase domain and is close 
to the R981H mutation, which has been shown to confer cetuximab resistance in an earlier study15. In that same 
study, a xenograft model carrying the PDGFRA R981H mutation treated with imatinib in combination with 
cetuximab showed increased efficacy, suggesting that PDGFRA kinase inhibitors might be useful for treating 
cetuximab-resistant CRC. One somatic EGFR mutation, D522Y, was also identified in the EGFR extracellular 
domain of an intrinsic-resistant tumour; however, residue 522 is not in the EGFR cetuximab-binding domain. Its 
impact on cetuximab affinity17 requires further validation.

Using RNA sequencing data, we also identified two in-frame gene fusions (Tables S2, S3, and Fig. 3), including 
NCOA4–RET and LMNA–NTRK1 fusions. These fusions were both confirmed to be tumour-specific (Fig. 3b,f) 
and preserved the tyrosine kinase domain in the 3′ fusion partners RET and NTRK1, respectively (Fig. 3a,d,e,h). 

Variables n %

Sex
Male 17 68.0

Female 8 32.0

Age (range) 63 25–85

ECOG performance status 1 25 100

Pathological differentiation

W/D adenocarcinoma 1 4.0

M/D adenocarcinoma 17 68.0

P/D adenocarcinoma 2 8.0

Mucinous adenocarcinoma 4 16.0

Signet ring cell carcinoma 1 1.0

Regimens including cetuximab

Irinotecan + cetuximab (+3rd line) 11 44.0

FOLFIRI + cetuximab (1st line) 10 40.0

FOLFOX + cetuximab (1st line) 4 16.0

KRAS mutational status (direct 
sequencing)

Wild-type 25 100

Table 1. Clinicopathological characteristics of all enrolled patients (n = 25). *W/D: well differentiated; M/D: 
moderately differentiated; P/D: poorly differentiated.
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Expression analysis further revealed the dramatic upregulation of RET and NTRK1 fusion transcripts in the 
tumours relative to their matched normal tissue (Fig. 3c,g). While NTRK1 fusions have been reported in 
cetuximab-resistant patients18,19, this is the first clinical report demonstrating RET fusion as the putative cause 
of cetuximab resistance. RTK fusions, including RET and NTRK1 fusions, have been identified in ~0.4% of CRC 
patients16.

Genome-wide CN analysis of the 13 intrinsic-resistant tumours revealed NRG1 and GNAS amplifications in 
CRC tumours without any aberrations in RAS/RAF pathway genes (Fig. 2a). Neuregulin 1 (NRG1; also known 
as heregulin), encodes an EGF-like signalling molecule that binds and activates ERBB2/3 heterodimers. The 
high CN of NRG1 as a resistance marker is consistent with previous findings of higher NRG1 protein and RNA 

Figure 1. Clinical response to cetuximab. (a) Representative computed tomography scans from cetuximab 
intrinsic-sensitive and acquired-resistant colorectal cancer (CRC) patients. (b) Horizontal bar plots represent 
time (months) for which patients were on cetuximab treatment until progressive disease (PD) (black dots) for 
first-line cetuximab-based chemotherapy (n = 14) (top) or salvage cetuximab/irinotecan chemotherapy (n = 11) 
(bottom). Orange, blue, and grey bars indicate partial response (PR), stable disease (SD), and PD, respectively. 
Blue stars indicate successful re-biopsy in patients who achieved PR and then developed acquired resistance. 
Vertical waterfall bar plots in the right panels show the percent change in tumour size (y-axis) from baseline 
during cetuximab treatment. As defined by RECIST criteria, patients who achieved a shrinkage in tumour size 
of >30% were classified as PR and ‘intrinsic sensitive’ for our study.
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expression levels corresponding to cetuximab resistance13,20. GNAS encodes the Gs-alpha subunit of G-proteins, 
and GNAS amplification or point mutations have been identified in approximately 10% of CRC tumours, often 
coinciding with KRAS mutations21. GNAS gain-of-function variants result in elevated cAMP and ERK/MAPK 

Figure 2. Landscape of somatic variants and gene set expression signatures in sensitive, resistant, and acquired-
resistant tumours. (a,b) Somatic variants identified in genes grouped by molecular pathways. MUT, non-
synonymous single nucleotide or small indel mutation; FUS, gene fusion; AMP, copy number amplification (CN 
≥4). The top bar chart shows the tumour mutation burden of non-synonymous somatic variants. Amino acid 
change is shown for a subset of genes in (b). (c) Hierarchical clustering of gene set expression signatures for a 
panel of published molecular signatures (see Methods). The Z score represents both the magnitude and relative 
direction of a signature’s expression. Baseline tumour (T), acquired-resistant tumour (RT).
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activation22. GNAS was also predicted to play a role in resistance to BRAF + EGFR inhibition in BRAF V600E 
mutant CRC23. GNAS amplification in patient #53 correlates with >6-fold increased RNA expression.

Furthermore, to explore whether changes in the expression of known molecular pathways contribute to 
cetuximab resistance, we performed gene set enrichment analysis (Figs 2c, S1). We identified no consistently 
up- or downregulated pathways for differentiating sensitive from resistant tumours in well-characterized path-
ways in CRC. Overall, our genomic analyses identified potential resistance-causing alterations in 11 of the 13 
intrinsic-resistant tumours. These variants appear to bypass the anti-EGFR blockade by activating alterations in 
RAS/RAF pathway genes.

Intrinsic-sensitive tumours. For cetuximab-sensitive tumours, there were no major aberrations in the RAS 
pathway in any of the 12 tumours (Fig. 2a,b). Two patients showed KRAS K117N and A146T mutations, respec-
tively, which are in KRAS exon 4 rather than in the more dominant exon 2 (G12/13)24,25. We also found other 
RTK/RAF and PI3K/AKT pathway mutations in the cetuximab-sensitive cohort, including BRAF V600E (n = 1), 

Figure 3. Characterization of NCOA4–RET and LMNA–NTRK1 gene fusions. (a,e) Schematic depiction of 
the gene fusion detected by RNA-Seq, indicating the genomic position, resulting fusion mRNA, and predicted 
protein consequences (with key protein domains indicated). (b,f) RT-PCR of RNA from the tumour or adjacent 
normal tissue with primers upstream and downstream of the gene fusion breakpoint. NTC, no template control. 
Red arrows indicate the size of the expected PCR product. (c,g) Overexpression of the 3′ fusion gene partner 
in the tumour relative to the adjacent normal tissue. RPM, reads per million. (d,h) Sanger sequencing of the 
RT-PCR product from (b) and (f). The red arrowheads indicate the position of the fusion junction and in-frame 
amino acid sequence.
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AKT1 E17K (n = 2), PIK3CA E542K (n = 1), FGFR1 amplification (n = 1), and ERBB2 amplification (n = 2). In 
patient #5804, in addition to an ERBB2 amplification in primary and metastatic lesions, we also discovered an 
ERBB2–MED24 fusion present only in liver metastasis (Table S2 and Fig. S2). The fusion lacks the ERBB2 kinase 
domain, and expression analysis indicates that it did not contribute to ERBB2 expression (data not shown), lead-
ing us to conclude that it might not be a driver mutation. Extended analysis of ERBB2 fusion transcripts in TCGA 
RNA-Seq data shows a close association of ERBB2 fusions with high ERBB2 CN, possibly a result of secondary 
passenger events in the amplification process (Table S4).

Acquired-resistant tumours. Among the 12 cetuximab-sensitive patients, 11 developed acquired resist-
ance following the response to cetuximab, and we obtained follow-up resistant tumour specimens from six 
patients (Fig. 1b). We successfully profiled all six acquired-resistant tumours using exome sequencing, but due 
to low tissue volume and quality, we were only able to analyse five for CN variants and three with RNA-Seq 
(Table S1). We compared the variant and CN profiles between the pre-treated baseline and re-biopsied tumours 
as shown in Fig. 2. Previously described cetuximab resistance-related genomic aberrations were not found in the 
acquired-resistant tumours, and novel variants did not immediately suggest any apparent resistance mechanisms.

We plotted and compared the variant allele fraction (VAF) of silent and non-silent variants in six pre- and 
post-treatment paired samples (Fig. 4a). The comparison revealed both an extreme loss (variants found along the 
x-axis, VAF = 0 for acquired-resistant tumour) and simultaneous gain (variants found along the y-axis, VAF = 0 
for baseline tumour) of somatic variants in acquired-resistant tumours at the time of disease progression. Of 
note, patient #GJG showed no gain of non-silent acquired-resistant variants. These results suggest that cetuximab 
exposure dramatically selected for rare resistant subclones of the baseline tumour that were undetectable at the 
start of the treatment. These observations were further validated by CN array B-allele frequency (BAF) analy-
sis in the re-biopsied resistant samples (Fig. 4b). The BAF plots showed many loci with BAF imbalance in the 
baseline-sensitive tumours, which were ‘lost’ in the acquired-resistant tumours. For example, chromosome 10 in 
patient #GJG showed BAF skewing in the sensitive tumour, which was no longer present in the acquired-resistant 
tumour. Because tumour evolution is unlikely to restore BAF imbalances as the tumour progresses, we concluded 
that the acquired-resistant tumour was likely derived from a minor subclone that originally had normal BAF bal-
ance at the chromosome 10 locus prior to cetuximab treatment. Patient #4612 showed the most dramatic changes 
in BAF, which is also consistent with the shift observed in its non-silent VAF.

To evaluate whether clonal selection of acquired-resistant tumours would be reflected in the activation of spe-
cific CRC-related transcription pathways, we looked for enrichment scores for gene expression pathways between 
baseline and acquired-resistant tumour pairs (pts. #JJ, #4612, #PYM) (Fig. 5a). Patient #4612 showed enrichment 
for several molecular pathways, including an increase in epithelial-to-mesenchymal transition (EMT), with a 
reduction in the immune infiltrate. To explore these findings further, we compared the expression of all genes 
constituting the EMT signature and found a clear upregulation of mesenchymal markers compared to epithe-
lial markers in the acquired-resistant tumour from patient #4612 but not patient #JJ or patient #PYM (Fig. 5b). 
Using the ESTIMATE tool to quantify the immune and stromal infiltration, we also confirmed that patient #4612 
had a dramatic reduction in immune and stromal scores (Fig. 5c)26. Additional signature analyses of EMT and 
immune and metabolic pathways in patient #4612 are depicted in Supplementary Fig. S3. Patient #JJ also demon-
strated a drop in the stromal infiltration score but instead showed an increase in the immune infiltration score 
at resistance (Fig. 5c). In addition, patient #JJ also showed an increase in MYC signalling in his parental ver-
sus acquired-resistant samples (Fig. 5a). No clear change was observed in the expression signatures for patient 
#PYM. These results suggest that multiple mechanisms are involved in clonal evolution under selective pressure 
by cetuximab.

In vitro analysis of an acquired-resistant, patient-derived cell line. To investigate the develop-
ment of a treatment strategy for overcoming the acquired resistance to EGFR-targeted therapy, we established a 
cetuximab-resistant, patient-derived cell (PDC) line from peritoneal seeding tissue of patient #4612 at acquired 
resistance. This 60-year old female patient initially had KRAS wt, NRAS wt, and TP53 mt colorectal mucinous 
adenocarcinoma with peritoneal seeding and showed a dramatic response to cetuximab for 5 months; however, 
during cetuximab treatment, she was found to have peritoneal seeding (Fig. 6a).

To confirm that the PDC line originated from the acquired-resistant tumour, we measured the expression 
of EMT markers and performed Sanger sequencing of two acquired-resistant mutations. We correspond-
ingly observed a loss of E-cadherin expression and gain of N-cadherin, vimentin, and AXL expression in the 
acquired-resistant tumour for patient #4612 (Table S5). Similarly, we confirmed the presence of the acquired 
variants GTF2H5 and SLC17A1 (Table S6).

Cell proliferation assays using the PDC showed resistance to EGFR inhibition with cetuximab or erlotinib 
as expected (Fig. 6b). We next tested whether the cetuximab-resistant PDC would be sensitive to the inhibi-
tion of the MEK/ERK pathway, which has been suggested as a cetuximab resistance mechanism in previous cell 
line and animal studies27,28. However, the Erk1/2 inhibitor GDC-0994 did not suppress the growth of the PDC 
line (Fig. 6b). Further analysis of the acquired mutations and RNA expression in the acquired-resistant tumour 
for patient #4612 revealed both an acquired IRS1 P313S variant (Fig. 2b), as well as a ~5-fold decrease in the 
expression of the PI3K regulatory subunit PIK3R1, leading us to hypothesize that the PI3K/mTOR pathways 
might be dysregulated in the resistant tumour. Although canonical PI3K/mTOR expression signatures were not 
considerably altered in our gene signature analysis closer investigation of individual gene expression revealed 
greater expression shifts relative to baseline for patient #4612 (Fig. S4), which could impact protein-level pathway 
activation that is not captured by the canonical RNA expression signatures. Indeed, the PDCs were sensitive 
to dual PI3K/mTOR (BEZ-235), mTOR (AZD-8055), and to a lesser degree, pan-PI3K (BKM-120) treatments. 
Immunoblot assays for downstream pathway activation also revealed that dual PI3K/mTOR (BEZ-235) and 

https://doi.org/10.1038/s41598-019-51981-5


7SCIENTIFIC REPORTS |         (2019) 9:15365  | https://doi.org/10.1038/s41598-019-51981-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

mTOR (AZD-8055) treatments potently inhibited the phosphorylation of S6RPS240/244 and 4E-BP1S65/101 (Fig. 6c), 
which was concordant with the inhibition of cell proliferation.

Discussion
The aim of this study was to evaluate the mechanisms underlying sensitivity and resistance to cetuximab-based 
chemotherapy in CRC patients. Given the complexity of EGFR crosstalk that affects sensitivity and resistance to 
anti-EGFR therapy in mCRC as previously described29, a simple genomic aberration or pathway may not explain 
the sensitivity or resistance to cetuximab in mCRC. Comparative genomic analyses suggested that most of the 
acquired-resistant tumours in our study resulted from a selective outgrowth of a minor clonal variant in the pri-
mary tumour that was not detectable at baseline by the standard NGS approach, as suggested earlier30. Detailed 
analysis of intrinsic-resistant tumours revealed several single-nucleotide variants in KRAS, NRAS, ERBB2, and 
PDGFRA, which likely confer resistance. Moreover, we identified NCOA4–RET and LMNA–NTRK1 fusions 
in two patients who were both refractory to cetuximab-based chemotherapy. The LMNA–NTRK1 fusion was 
recently identified as a potential target in cetuximab-resistant tumours18. The largest global survey of 17 RET 

Figure 4. Variant and copy number changes in sensitive and acquired-resistant tumour pairs. (a) Variant allele 
frequency (VAF) of somatic mutations detected in baseline (T) versus acquired-resistant (RT) tumours. Variants 
were grouped as non-silent (blue) and silent (black) based on the predicted impact on protein sequence. 
(b) B-allele frequency (BAF) plots show regions of genomic imbalance from copy number variants for each 
chromosome (1–22) of T and RT.
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fusion-positive mCRC patients demonstrated that all patients with rearranged RET had KRAS wt, and 10 of them 
had an NCOA4–RET fusion associated with significantly poorer survival compared to the RET fusion-negative 
KRAS wt patients31,32. This is the first study to detect an NCOA4–RET fusion in cetuximab-resistant KRAS wt 
CRC. The possibility that RET fusions drive resistance to EGFR inhibition is corroborated by recent studies show-
ing that RET fusions confer resistance to osimertinib in non-small cell lung cancer patients33. Furthermore, the 
lung cancer cell line Lc2/ad, which carries a RET fusion, shows more resistance to erlotinib compared to SW48 
cells, and direct targeting of RET inhibition in Lc2/ad cells can be bypassed by EGFR activation34,35.

Figure 5. Gene expression signatures in sensitive and acquired-resistant tumour pairs. Analysis of RNA 
expression signatures and enrichment scores in sensitive versus acquired-resistant tumour pairs. Baseline 
tumour (T), acquired-resistant tumour (RT). (a) Pathway enrichment Z-scores plotted for each molecular 
pathway expression signature. The green line represents a smooth local regression LOESS curve, and grey 
shading highlights the 95% confidence interval around the curve. Pathways with the highest enrichment 
Z-scores in each panel are labelled. Red arrows highlight pathways of interest. (b) Expression (log2) of 
individual genes that comprise the epithelial (E.EMT) and mesenchymal (M.EMT) gene expression signature. 
A diagonal line is plotted for comparison. The EMT signature genes showing >4-fold change difference of 
expression between baseline tumour and acquired-resistant tumour are labelled. (c) Gene expression signatures 
for stromal and immune cell tumour infiltration were quantified using the ESTIMATE tool (see Methods). 
Orange bars represent scores for immune cell infiltration and grey bars, scores for stromal cell infiltration.
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Novel amplifications of NRG1 and GNAS may predict resistance to cetuximab (both found in KRAS wt, NRAS 
wt patients). In the RAS pathway, NRG1 and other EGFR ligands were previously found to play a major role 
in conferring primary cetuximab resistance in CRC pre-clinical models, although a correlation between NRG1 
expression and NRG1 amplification was not reported36. The patient harbouring the NRG1 amplification (patient 
#3772) was a 76-year-old woman with poorly differentiated adenocarcinoma, who demonstrated progression 
after three cycles of cetuximab/irinotecan. NRGs are encoded by four individual genes (NRG1–4), and NRG1 
generates six types of proteins (I–VI) in at least 31 isoforms (29). All isoforms contain an extracellular EGF-like 
domain that induces the activation of ERBB RTKs. Recently, an NRG1 fusion inducing ERBB3 activation was 
characterized in lung cancer37 and breast cancer38; however, NRG1 amplification has not been characterized in 
CRC.

In cetuximab-sensitive tumours, we identified several mutations in PI3K/AKT and RTK/RAS pathway genes, 
which would be expected to confer cetuximab resistance, including variants in BRAF, KRAS, PIK3CA, AKT1, 
FGFR1, and ERBB2. Our findings suggest that the presence of these specific variants alone is not sufficient to 
preclude an objective response to cetuximab. A recurrent AKT1 E17K hotspot mutation was found in two out 
of 25 patients in our cohort (8%). In one study, AKT1 was found to be mutated in only ~1.5% of TCGA CRCs39, 
suggesting that the mutation frequency is higher in Asian populations. Several of these putative resistance vari-
ants co-occurred in three cetuximab-sensitive tumours, indicating that some interplay between the variants may 
sensitize tumours to cetuximab.

Notably, patient #4612 acquired resistance to cetuximab and demonstrated several interesting genomic fea-
tures at progression. First, the EMT signature was low at baseline, but was converted to a high EMT subtype at 
progression to cetuximab, which corresponds with recent findings showing that five of eight paired biopsies 
exhibited subtype switching to EMT at PD40. EMT has been associated with an invasive and metastatic phe-
notype, as well as drug resistance to both chemotherapy and molecularly targeted agents, while mechanisms 
to reverse EMT have been shown to re-sensitize some tumours to drug rechallenge41,42. Second, the PDC line 
established at acquired resistance from this patient was sensitive to dual PI3K/mTOR and mTOR inhibition. The 
re-biopsied tumour at resistance was PIK3CA wt but had low PIK3R1 expression and acquired an IRS1 P313S 
variant that was not present in the sensitive tumour. The PIK3R1 gene encodes the p85 regulatory subunit of 

Figure 6. Sensitivity of a patient-derived cell line from patient #4612 to PI3K/mTOR inhibition. (a) Computed 
tomography scans for patient #4612 at baseline and following 3 and 12 cycles of cetuximab treatment. A patient-
derived cell (PDC) line was cultured from the acquired-resistant tumour (malignant ascites, which developed 
following 12 cycles). (b) Dose-dependent inhibition of PDC cell proliferation by 5-day treatments with 
cetuximab (EGFR), erlotinib (EGFR), GDC-0994 (Erk1/2), BEZ-235 (dual PI3K/mTOR), AZD-8055 (mTOR), 
and BKM-120 (pan-PI3K). Results from four independent experiments are shown. The IC50 values of AZD-
8055, BEZ-235, and BKM-120 are 0.02, 0.047, and 0.971 µM, respectively. (c) Western blot expression of basal 
and 24 h treatments of PDC. Cetuximab concentration, 75 µg/mL; other compounds, 1 µM. The experiments 
were repeated thrice.
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PI3K, and IRS1 directly binds with p85 following IRS1 tyrosine phosphorylation43,44. IRS1 tyrosine phosphoryl-
ation is downregulated by the phosphorylation of multiple IRS1 serine residues in an mTOR-dependent manner. 
Proline-directed serine phosphorylation of human IRS1 Ser312, immediately adjacent to the IRS1 P313S variant, 
is a key serine residue for IRS1 feedback regulation43–45. Thus, low expression of p85 and an inability of IRS1 to 
respond to negative feedback signals could contribute to higher PI3K/mTOR activity and cetuximab resistance. It 
is unclear if EMT and acquired-resistant IRS1/PIK3R1 alterations are both contributing to cetuximab resistance 
in pt. #4612. EMT and ALK mutations were recently found to co-exist and separately contribute to resistance 
in the same crizotinib-resistant tumor lesions. Inhibition of the PI3K/mTOR pathway has also been previously 
shown to reverse expression of EMT markers, however, reversion of EMT alone does not directly account for 
blocking cell proliferation as demonstrated in recent studies that have pharmacologically reversed EMT but 
needed additional drug rechallenge to inhibit tumor growth. Therefore, we propose that sensitivity to PI3K/
mTOR inhibitors is most likely due to IRS1/PIK3R1 acquired mutations rather than EMT reversion. Nonetheless, 
regardless of the specific resistance mechanism, our results clearly show that the patient-derived tumor cells are 
‘oncogene addicted’ to PI3K/mTOR activation and therefore inhibition of this pathway is sufficient to overcome 
cetuximab resistance in this patient.

In summary, we show that NCOA4–RET and LMNA–NTRK1 fusions, along with NRG1 and GNAS amplifi-
cations, are potentially novel cetuximab-resistance (intrinsic) alterations in patients with KRAS wt CRC. Clonal 
selection in acquired resistance appears to be common with changes in CRC-related pathways and its microen-
vironment. We demonstrated that a PDC model derived from an acquired-resistant tumour was successfully 
suppressed by PI3K/mTOR inhibitors such as AZD-8055 or BEZ-235. The clinical benefit from these molecules 
should be evaluated in clinical trials, especially in a salvage setting with patients who have acquired resistance to 
cetuximab.

Methods
Patients and samples. Twenty-five mCRC patients administered treatment containing cetuximab were 
enrolled for the prospective collection of tumour samples. All study participants provided written informed con-
sent. The study was approved by the institutional review board at Samsung Medical Center (IRB# 2013-10-014). 
The study was conducted in accordance with the Declaration of Helsinki and the Guidelines for Good Clinical 
Practice. Baseline tumour samples were collected before initiating cetuximab-based chemotherapy in all enrolled 
patients, and additional tumour samples were obtained at progression. All collected tumour samples were con-
firmed by our pathologists for tumour content and characteristics. All hematoxylin and eosin-stained slides were 
also reviewed. Patient age at diagnosis, sex, Eastern Cooperative Oncology Group performance status, number of 
involved organs, metastatic site, and chemotherapy data were collected.

Study procedure and statistical analysis. Biopsies were performed before cetuximab-based chemother-
apy regimens. DNA and RNA were extracted for whole-exome and transcriptome sequencing, as well as CN anal-
ysis using genotype arrays. Response criteria were assessed every 2 months by computed tomography scanning 
and defined according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1.

Exome sequencing. Whole-exome sequencing was performed on an Illumina HiSeq. 2000 system (San 
Diego, CA, USA) using the SureSelect Human All Exon v4 (51 Mb) capture protocol (Agilent Technologies, Santa 
Clara, CA, USA). Paired-end sequencing with a read length of 100 base pairs and 100X average on-target cov-
erage was conducted. Sequencing reads were mapped to the human genome (hg19) using the Burrows-Wheeler 
Aligner MEM algorithm. Variants were called using SAMtools24, Genome Analysis Toolkit (GATK-lite version)46, 
and FreeBayes47. Variants were filtered with a genotype Q score of ≥30, ≥3 variant reads, variant allele fraction 
of ≥0.05, and read coverage of ≥10 reads. Somatic mutations were called at positions with matched normal 
coverage of ≥10 reads, normal variant allele fraction of ≤0.05, normal variant allele fraction <2X of the tumour 
variant fraction, and no more than two pooled normal samples (pooling of all matched normal samples) with a 
variant allele fraction of ≥0.20.

CN analysis. DNA was prepared and loaded according to the manufacturer’s protocol on Affymetrix’s 
Genome-Wide Human SNP Array 6.0 (SNP6; Santa Clara, CA, USA). CEL files were used for CN analysis using 
three methods: (i) PICNIC47, for ploidy estimation; (ii) ASCAT48, for genome-wide visualization; and (iii) the 
Copy Number Inference Pipeline (CNIP) in GenePattern, for gene CNs. Three samples (5225AR, 4612S, and 
7522S) failed to be completed using the PICNIC method. Candidate cancer genes included in the Sanger Cancer 
Census Gene list (http://cancer.sanger.ac.uk/census) with CN calls of ≥4 or <0.5 copies based on CNIP analysis 
were further confirmed using exome CN calls from CNVkit49. CN calls without matching support in SNP6 and 
exome data were not considered reliable.

RNA sequencing analysis. RNA sequencing of all samples was conducted in four data delivery batches. 
RNA-Seq was performed on an Illumina HiSeq. 2000 with the Illumina TruSeq RNA Sample Preparation Kit 
v2. Paired-end sequencing with a read length of 100 bp and targeted read depth of 50 million reads/sample was 
performed. Sequencing reads were mapped to the human reference genome (B37.p5 including all alternative 
contigs) using GSNAP (Wu et al., version 2013-11-27) with NCBI annotation as of December 2013. Read counts 
were generated against exons annotated in NCBI gene models and then summarized at the gene level to provide 
a single number/gene/sample using a custom perl script. Data were filtered to remove genes with fewer than 10 
counts across 80% of the samples from the analysis. The resulting data were quantile-normalised and summarised 
across samples. Clustering analysis was carried out using all genes (21,344 genes) and genes with relatively high 
signals (10,346 genes, signals >10 in all samples). All samples were grouped into three batches based on clustering 
analysis results.
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Data analysis was carried out on log2-transformed signals using a proc mixed procedure in SAS (SAS Institute, 
Cary, NC, USA). The statistical model included sensitivity as a fixed effect and batch as a random effect. Samples 
from the same subject were treated by repeated measurement using the covariance matrix option toep. A small 
number of genes used the ar(1) option if the model could not converge with toep. The results of comparisons of 
interest were then derived from the statistical modelling outputs. Fold changes and mean signals were converted 
back to count levels.

Fusion gene detection. BAM files generated by GSNAP (see above) were investigated for reads that had 
split alignments, identifying more than one gene either through normal splicing (indicated by an ‘N’ CIGAR) 
or through chimeric alignment (indicated by the ‘XT’ tag). Only fusions joining CDS in-frame and including 
at least 10 amino acids from both proteins were retained. Normal splicing reads for genes within 5 KB were dis-
carded. Putative fusions previously found to occur in >1% of a large internal collection of non-cancer samples 
or in >10% of cancer samples were discarded as likely false-positives. Paired-end reads identifying putative gene 
fusions were also recorded. Potential fusions with ≥5 total reads (split and paired) were subjected to further 
analysis.

Fusion gene confirmation. RNA from tumour and normal tissues were used to produce cDNA using the 
SuperScript VILO MasterMix (Invitrogen, Carlsbad, CA, USA; #11755-050). A forward primer upstream of the 
fusion junction (previously identified from RNA-Seq data) and reverse primer downstream of the fusion junction 
were designed using the online program Primer3 for PCR and Sanger sequencing primers. The primer sequences 
are NCOA4_F1: GAGCCTGAGAAGCATAAAGATTCC, RET_R1: CCCATACAATTTGATGACATGTGG, 
LMNA_F2: CAAAGTGCGTGAGGAGTTTAAGG, NTRK1_R2, and CACTGAAGTATTGTGGGTTCTCG. 
PCR was carried out using Advantage®2 Polymerase Mix (Clontech, Mountain View, CA, USA; #639201) with 
Advantage 2 PCR buffer and cycled at 95 °C for 2 min; 35 cycles of 95 °C for 30 s; 65 °C for 30 s, 72 °C for 30 s; and 
a final extension at 72 °C for 10 min. PCR was also performed for the GAPDH gene as a control (GAPDH_F: 
ATCCCATCACCATCTTCCAG, GAPDH_R: CCATCACGCCACAGTTTCC). PCR products were purified with 
a Wizard® SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA; #A9281). Sequencing PCR was 
performed using an ABI BigDye Terminator v3.1 cycle sequencing kit (Life Technologies, Carlsbad, CA, USA; 
#4337457). The resulting products were run on an ABI 3730xl DNA analyser. All sequences were visually analysed 
with Sequencher (Gene Codes Corp., Ann Arbor, MI, USA).

PCR and Sanger sequencing primers used to confirm the identity the PDC line were as follows: SLC17A1_F: 
TACCACTCAGCCAGTCAAATACC, SLC17A1_R: TCTGTGGTGACACTAGAAAGTTGC; GTF2H5_F: 
TTGTTAACACTTGAGGCAGAGAGG, GTF2H5_R: CCAAATTACAGCCAACTGTTAAAGC.

Gene set enrichment analysis. We performed gene set enrichment analysis using previously described 
signatures and well-characterized pathways in CRC50. These gene sets included canonical pathways, immune 
signatures, an immune and stromal cell admixture in tumour samples, and metabolic pathways. The signature 
score as an activation index was calculated using a combined Z score method51,52, which combines Z scores for 
each gene in a signature set for each sample. The Z score represents both the magnitude and relative direction of a 
signature’s expression. ESTIMATE R package was used to quantify immune and stromal cell infiltration26.

Patient-derived cell culture. Fresh tissue specimens were extensively washed with serum-free RPMI 1640, 
minced, and enzymatically dissociated for 2 h at 37 °C with agitation in serum-free RPMI 1640 containing 0.4 mg/
mL collagenase (Gibco, Grand Island, NY, USA), 0.5 mg/mL dispase (Gibco), and 0.2 mg/mL DNase I (Roche, 
Basel, Switzerland), as described previously53. The cells were cultured in RPMI 1640 supplemented with 10% 
foetal bovine serum. Experiments were conducted within four passages after PDC derivation.

Cell proliferation assay. Cells were seeded at 5,000 cells per well in 100 µL of media in a 96-well plate, 
grown overnight, and then treated with different concentrations of drugs for 5 days prior to analysis using 
CellTiter-Glo (Promega; #G7572) according to the manufacturer’s instructions. All treatments were performed 
in duplicate, and four independent experiments were performed.

Immunoblot analysis. Cells were treated with 75 µg/mL cetuximab and 1 M erlotinib, GDC-0994, BEZ-235, 
AZD-8055, and BKM-120 for 24 h and then lysed with RIPA lysis buffer + Halt protease/phosphatase inhibitor 
cocktail. Protein concentration was measured using the BCA protein assay. Equal amounts of protein were sep-
arated on a 4–12% Bis-Tris Criterion polyacrylamide gel (Bio-Rad, Hercules, CA, USA) in MOPS buffer under 
reducing conditions and then transferred to a nitrocellulose membrane. The membranes were blocked with 
Odyssey blocking buffer in Tris-buffered saline and probed overnight at 4 °C with the indicated primary antibod-
ies diluted in Odyssey blocking buffer + 0.2% Tween-20. The phosphor- and total EGFR, AKT, S6RP, 4E-BP1, and 
ERK antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA), while the β-actin antibody 
was from Sigma (St. Louis, MO, USA). IRDye secondary antibodies were from Li-Cor, and a Li-Cor Odyssey 
scanner was used for visualization (Lincoln, NE, USA).

Real-time quantitative reverse transcription PCR. Real-time quantitative reverse transcription PCR 
(RT-qPCR) assays were performed using Taqman® probes for E-cadherin (CDH1; assay ID Hs01023895_m1), 
N-cadherin (CDH2; Hs00983056_m1), vimentin (Hs00958111_m1), and AXL (Hs01064444_m1). All reactions 
were performed in triplicate in 384-well plates following the manufacturer’s instructions and measured with a 
Quant Studio7 Flex (Thermo Fisher Scientific, Waltham, MA, USA). RT-qPCR analysis was performed using the 
comparative Ct (cycle threshold) method (2−∆∆Ct) using RNA18S5 as the control gene; the results are reported 
as the fold difference from matching normal tissue.
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