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Abstract

Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities

worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1)

mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adap-

tation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be

available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics

breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae

of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into

indirectmeasuresofcellularandbiochemical traitsunderlyingvariation in larvalperformance (i.e.,growth rates).Molecular responses

to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities.

Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segre-

gating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative

genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.

Key words: System genetics, climate change, genetic variation, plasticity, RNAseq, gene set variation analysis.

Introduction

The rapid pace of climate change threatens the persistence of

species worldwide by exposing individuals to environmental

conditions outside the range of recent historical precedents

(IPCC 2014). In the marine realm, the combination of elevated

temperatures and decreased pH (i.e., ocean acidification [OA])

poses a particularly acute challenge (Caldeira and Wickett

2003; Doney et al. 2009). Phenotypic responses to environ-

mental factors may be a key determinant of a species’ pros-

pects for survival, by buffering critical life processes via altered

behavior, phenology, or stress response mechanisms (Williams

et al. 2008). Evolutionary adaptation provides another path for

species persistence and may be particularly advantageous over

the long term (Davis and Shaw 2001; Davis et al. 2005). The

prospects for evolutionary rescue depend on many factors,
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including demography, life history, and the amount of stand-

ing genetic variation in traits directly related to the tolerance

of the environmental challenge (Lynch and Lande 1993;

Bürger and Lynch 1995; Gomulkiewicz and Holt 1995).

Even if a population harbors extensive genetic variation

that influences traits necessary for adaptation, genetic or

developmental trade-offs can place limitations on its ability

to adapt (Lande and Arnold 1983). Although many studies

have documented genetic variation that influences the tol-

erance of stressors related to climate change, evidence for

recent adaptation—particularly adaptation that can keep up

with the rapid pace of climate change—remains limited

(Gienapp et al. 2008; Hendry et al. 2008; Kelly et al. 2013

Vander Wal et al. 2013).

Most evolutionary and ecological studies focus on acces-

sible traits such as growth, survival, or phenology (e.g.,

Parmesan and Yohe 2003; Hendry et al. 2008; Gienapp

et al. 2008), whereas variation in physiological, metabolic,

and developmental traits is less commonly considered even

though they are also key determinants of environmental re-

sponses (Wikelski and Cooke 2006; Chown and Gaston

2008; Somero 2010; Pan et al. 2015). Importantly, the link

between these internal traits and external metrics of perfor-

mance is often not obvious (Houle 2010). A comprehensive,

unbiased approach is therefore needed to understand the

genetic basis for plasticity and evolutionary responses to cli-

mate change.

A central challenge facing such efforts is that key physio-

logical and developmental traits are often difficult, time con-

suming, or expensive to measure, making it impractical to

survey a population for genetic variation affecting these

traits. Genomic approaches, particularly ones that combine

high-throughput molecular phenotyping with measures of

high-level performance traits, provide a partial but highly prac-

tical solution. Transcriptome-wide gene expression assays are

increasingly affordable and produce a rich source of data,

both on variation in gene expression and on variation in cel-

lular, physiological, and developmental processes that leave

signatures in the covariation of functionally related genes

(Alvarez et al. 2015). To list just a few examples, recent studies

using transcriptomics in evolutionary ecology have identified

gene networks underlying adaptive developmental plasticity in

cichlid fish (Schneider et al. 2014), physiological mechanisms

of cold and hypoxia tolerance in deer mice (Cheviron et al.

2014), and hormone signals regulating drought responses in

Arabidopsis (Marais Des et al. 2012). Analytical approaches

that leverage databases of gene function or genetic pathways

(gene set enrichment analyses; Subramanian et al. 2005) are

particularly promising: they reduce the high-dimensional data

to a more accessible scale, highlight variation in informative

molecular processes, and increase the power to detect subtle

signals in noisy gene expression data. Here, we apply a tran-

scriptome-based systems genetics approach (Civelek and Lusis

2013) to study the molecular response to changes in ocean pH

relevant in the context of OA in larvae of the green sea urchin,

Strongylocentrotus droebachiensis.

In marine systems, OA is one of the most immediate results

of climate change and is recognized as a major threat to many

species and communities (IPCC 2014; Breitburg et al. 2015;

Gaylord et al. 2015). CO2 from the atmosphere dissolves in the

ocean and reacts with water, lowering seawater pH and alter-

ing the carbonate balance of seawater (Doney et al. 2009). OA

can affect a wide range of physiological processes in marine

species, including acid–base balance, metabolism, develop-

ment, deposition of skeleton, and growth rates (Dupont and

Pörtner 2013). A number of studies in recent years have inves-

tigated the tolerance of sea urchins to decreased pH (reviewed

in Dupont et al. 2010; Byrne 2011). In general, sea urchins have

proven surprisingly robust to low pH (Dupont and Thorndyke

2013). However, large differences in tolerance are apparent

even among closely related species, different life history stages

can differ in their tolerance of low pH, and effects may increase

when combined with other climate-related stressors such as

increasing temperatures (Byrne 2011; Gianguzza et al. 2014).

At the molecular level, larvae grown under low pH show in-

creased expression of genes related to metabolic and ion reg-

ulation, and differential regulation of several genes involved in

stress responses, apoptosis, calcification and skeletal formation

(Todgham and Hofmann 2009; Martin et al. 2011; Stumpp

et al. 2011a; Evans et al. 2013; Padilla-Gamiño et al. 2013;

Pespeni et al. 2013). Several studies have also observed genetic

variation in the response of growth rates (Sunday et al. 2011;

Kelly et al. 2013) and development (Foo et al. 2012) to de-

creased pH in sea urchin embryos and larvae, as well as genetic

changes in allele frequencies in artificial populations grown

under simulated future conditions (Pespeni et al. 2013).

We extend these studies using transcriptome-wide gene

expression profiling and a quantitative genetic breeding

design to quantify molecular plasticity and test for segregating

genetic variation affecting cellular and physiological traits in

cultures of larvae spawned from S. droebachiensis individuals

collected in northern Europe. We demonstrate that the molec-

ular response to decreased pH in these larvae is broad and

complex. Surprisingly, we also find that the gene expression

plasticity to pH is dwarfed in magnitude and frequency by the

influence of genetic variation among families. Finally, we show

how combining signals over many functionally related genes

can provide detailed information regarding 1) molecular mech-

anisms underlying responses to decreased pH and 2) aspects of

these mechanisms that are mostly likely to contribute to near-

term adaptations.

Materials and Methods

Experimental Design

Traits with ample genetic variation can efficiently respond to

natural selection. A traditional tool to assess genetic variation
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in a population is to test for consistent differences among the

offspring with different fathers (Lynch and Walsh 1998) be-

cause sperm is thought to contribute little to zygotes beyond

DNA although the generality of this conclusion has been

challenged by recent studies (Krawetz 2005; Curley et al.

2011; Crean et al. 2013). Consistent differences among off-

spring with different mothers may also be caused by genetic

(heritable) variation, but may additionally be caused by mater-

nal environmental variation that is passed transgenerationally

through egg quality or epigenetic modifications. We used a

three-way factorial breeding design to quantify effects of

genetic background and seawater pH on larval gene expres-

sion, survival, and growth. The three factors were as follows:

father (seven levels), mother (two levels), and pH (two levels;

8.0 and 7.6). A decrease by 0.4 units from the average pH at

the study site (pHT 8.0) is within the range of the projections

from the IPCC (2014) for average pH in 2100. Additionally,

taking into account local environmental variability, a pH of

7.6 is the extreme of present environmental variability (Dorey

et al. 2013). Cultures of larvae representing all 42 combina-

tions of these three sets of factors were created and monitored

for up to 9 days.

Animal Collection and Rearing

Adult S. droebachiensis were collected during the fall of 2009

from northern Norway (three males and one female;

Hammerfest: 70�39’N/23�39’E, collected by SCAN-AQUA)

and northern Denmark (four males and two females;

Anholt: 56�42N/11�31’E, collected by the Marine Biological

Laboratory of Helsingør). The original experimental design in-

tended to test for differences between the populations in

early-life responses to low pH; however, we do not focus on

these differences here. Adults were maintained in a deep-

water flow-through aquarium at the Sven Lovén Centre for

Marine Sciences - Kristineberg (Fiskebäckskil, Sweden) and

were fed ad libitum using Ulva spp. for 6–7 months before

starting the experiment (March 2010). Spawning was induced

by injecting ~2 ml 0.5 mM KCl into the coelomic cavity. Sperm

(four males from Denmark and three from Norway) was col-

lected by pipette and kept dry until fertilization. Eggs (two

females from Denmark and one from Norway) were collected

in 250-ml beakers of filtered ambient seawater (FSW;

0.22mm) and washed once. Total egg number was estimated

by counting small-volume samples of the egg solution, and

~200K–350K eggs were divided among seven 250-ml beakers

to be fertilized, each with sperm from a different male.

Fertilization was followed by monitoring the elevation of the

vitelline envelope under a stereomicroscope (fertilization in all

cultures was >95%). This created 21 families of full-sib em-

bryos (fig. 1).

Each family of embryos was split between two 5-l

Erlenmeyer flasks of FSW for culturing at an initial density of

3–5 embryos/ml. All culture vessels were preequilibrated at

the target pH (table 1. control: ca. pHT&8.00,&420 matm,

and low pH: pH T&7.6,&1,150 matm). Culture vessels were

aerated and gently mixed with a stream of bubbles of pres-

surized air and kept in the dark. Cultures were monitored for

growth and survival until sampling.

Seawater pH, temperature, and dissolved inorganic carbon

(DIC) were monitored throughout the experiment (table 1).

Culture pH was maintained (�0.04 units) using Aqua Medic

pH controllers (NBS scale, AquaMedic, Germany) that con-

trolled valves for injection of pure CO2 into the culture flasks

once pHNBS exceeded the target value. pH-system settings

were adjusted from pH measurements on the total scale

low pHControl

A B C D

1

2

3

E F G

FIG. 1.—Experimental layout. We used a three-way factorial layout to assess the effects of pH (control vs low pH), male parent (seven individuals), and

female parent (three individuals). Cultures were created representing all 42 combinations of these three factors. Larvae were raised for 14 days, and

monitored daily for mortality, growth rate (days 1�8), and seawater chemistry (table 1).
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(pHT) using TRIS (Tris/HCl) and AMP (2-aminopyridine/HCl)

buffer solutions with a salinity of 32.0 (provided by Unité

d’Océanographie Chimique, Université de Liège, Belgium).

DIC was measured with an automated carbon dioxide ana-

lyzer (CIBA Corning 965 UK). pCO2 and calcium carbonate

saturation states for calcite and aragonite (�ca and �ar) were

calculated from DIC and pHT using the R package seacarb

(Gattuso et al. 2015).

Larval Mortality

On day 6, two 10-ml samples of each culture were aspirated

and counted. This provided an estimate of the concentration

of surviving larvae in each culture. Larval mortality associated

with father or pH treatment was tested by comparing larval

concentrations among the cultures with the same mother

using a three-way analysis of variance (ANOVA) because the

batch of eggs from each mother was distributed equally

among all of her cultures. The ANOVA table is presented in

supplementary table S1, Supplementary Material online.

Larval Growth Rate

Average growth rates were estimated for each culture over

the first 7 days. Each day, 10 larvae were randomly sampled

from each culture, fixed with 4% PFA, and imaged with a

Leica microscope mounted with a DFC295 camera. From

these images, the average body length (see measurement

from Stumpp et al. 2011b) of each culture on each day was

calculated. Growth rates were calculated in mm/day using

linear regression of body length on age.

Gene Expression Measurements

Gene expression was measured using RNAseq on pools of

young unfed embryos from each of the 42 cultures.

Collection times were calibrated for each culture individually

based on the per-culture growth rates and varied between 5.4

and 9.4 days when the average larval body length was ap-

proximately 0.36 mm. Sampling based on size rather than on

physical time accounts for potential effects of pH on develop-

mental rates (Pörtner et al. 2010; Stumpp et al. 2011a,

2011b). Developmental stages were consistent at the time

of sampling, with most larvae in all cultures just starting to

form buds for the posterodorsal pair of skeletal arms (supple-

mentary figure S1, Supplementary Material online).

Approximately 3,000 larvae were collected by gently pour-

ing 1–l of each culture into a 1.5-cm sieve consisting of a

submerged nylon mesh and then pipetting the concentrated

larvae into a clear 2-ml screw-top microcentrifuge tube. Once

in the tube, the larvae were quickly mixed again and two

100-ml samples of highly concentrated larvae (50–200 larvae

each) were collected and fixed in 4% PFA to estimate the

number of collected larvae and the average larval size.

Remaining larvae were pelleted by centrifugation, the seawater

removed by aspiration, and 600 ml of RLT buffer (Qiagen,

Hilden, Germany) added to stabilize the RNA. Tubes were vor-

texed rapidly for 15 s to lyse the cells and then stored at�80�C.

The entire process from sieve to RLT took about 1minute. RNA

was extracted with the RNeasy kit (Qiagen) after treatment

with DNase, and RNA quality was assessed with a total RNA

analysis ng sensitivity (Eukaryote) assay on an Agilent 2100

Bioanalyzer. No samples showed signs of RNA degradation.

The resulting mRNA was purified by poly-A selection.

RNAseq libraries were prepared by the Duke GCB

Sequencing and Genomic Technologies Shared Resource

using the Illumina TruSeq v1 kit with poly-A selection to

purify mRNA. Six samples were pooled per lane to be run

on the Illumina HiSeq 2000 system with version 3 chemistry.

1.3� 109 50-bp single-end reads were generated, represent-

ing 1.8–5.3 � 107 reads per sample (median 3.2 � 107).

Because no genome sequence of S. droebachiensis is avail-

able, we mapped reads to the genome sequence of the closely

related species, Strongylocentrotus purpuratus (v3.1;

Sodergren et al. 2006). We used the program bowtie2

(v2.0.0-beta5; Langmead et al. 2009; Langmead and

Salzberg 2012) to map reads with the “–local” option and

settings “-D 20 -R 3 -N 1 -L 20 -i S,1,0.50.” Across individuals,

74–86% of reads mapped to the S. purpuratus genome, and

67% of these mapped uniquely. Only uniquely mapped reads

were used to estimate gene expression.

To convert mapped reads into gene expression measure-

ments, we used the program HTseq-count (Anders et al.

2015) to count the number of reads that aligned uniquely

to any exon, or either the 5’ or 3’ untranslated region of any

isoform of the 29,016 v3.1 GLEAN gene models (GLEAN-UTR-

3.1.gff3, http://www.echinobase.org/Echinobase/SpDownloads;

last accessed July 26, 2012). Gene expression analyses were

performed in R (R Development Core Team 2010). Sample

normalization factors were calculated with the calcnormfac-

tors function of the edgeR package (Robinson and Oshlack

2010; Robinson et al. 2010) using default parameters. Genes

with fewer than 10 counts over the 42 samples were not

analyzed further, leaving a total of 22,430 genes.

Table 1

Seawater Carbonate Chemistry in Cultures at Each pH Treatment

Treatment Control (n = 41) Low pH (n = 96)

pHT 8.00 � 0.03 7.62 � 0.11

T (�C) 10.17 � 0.20 10.34 � 0.24

DIC (mmol/kg) 2.00 � 0.08 2.13 � 0.06

pCO2 (matm) 419 � 39 1145 � 296

�ar 1.76 � 0.14 0.83 � 0.25

�ca 2.77 � 0.22 1.30 � 0.40

NOTE.—Seawater total scale pH (pHT), temperature (T), and DIC were
measured daily in four control bottles and eight to 20 randomly-chosen acidified
bottles (10 days). These measurements were used to calculate CO2 partial pressure
(pCO2) as well as aragonite and calcite saturation states (respectively �ar and �ca),
assuming a salinity of 34.7, using the package seacarb for R. All the values are
expressed as mean� SD.
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Gene Set Variation Analysis

We used gene set variation analysis (GSVA; Hänzelmann et al.

2013) implemented in the R package GSVA to explore varia-

tion in higher-order molecular traits. GSVA defines a set of

synthetic traits based on a list of gene ontology terms. Each

trait’s value represents the extent to which genes labeled with

a specific term tend to be up- or downregulated in that

sample, measured using a Kolmogorov–Smirnov-like

random walk statistic. Coordinated regulation of genes in

the same pathway or involved in similar processes is evidence

for changes in the activity of specific cellular functions

(Subramanian et al. 2005).

We used two sources for gene function assignments: the

PANTHER database (Mi et al. 2013) and a sea urchin-specific

database of 130 ontology terms annotated by the sea urchin

research community ("hand-annotated ontology": Sodergren

et al. 2006; Tu et al. 2012). The PANTHER ontology is a re-

duced set terms from the Gene Ontology Project. For the sea

urchin, the PANTHER ontology (PTHR8.1_sea_urchin) consists

of 128 molecular function (MF) terms, 165 biological process

(BP) terms, 22 cellular component (CC) terms, and 171 protein

class (PC) terms with at least 10 and not >1,000 genes. We

report results for all classes of ontology terms in the

Supplementary Material online, but only discuss results from

the MF and hand-annotated ontologies because we find them

to be the most straight-forward to interpret. The hand-anno-

tated ontologies are less comprehensive than the PANTHER

ontologies, but include annotations for processes that have

been especially studied in sea urchins, including biominerali-

zation-related genes. Phenotypic correlations among gene set

traits within and among ontologies can help guide interpreta-

tion and are presented as heatmaps in supplementary figure

S1, Supplementary Material online.

We used the bubble plot method described by Supek et al.

(2011) to visualize relationships among gene set traits. Within

each of the PANTHER ontologies, specific terms are associated

in a hierarchical tree, with more general terms (containing

more genes) toward the base of the tree and more specific

terms (containing fewer genes) toward the tips. We calculated

the SimREL Semantic Similarity (Schlicker et al. 2006) distance

between terms in the ontology based on the tree distance and

term sizes and represent this distance on the 2D plane of the

bubble plot using multidimensional scaling (R function

sammon).

Statistical Analyses

All statistical analyses were performed in R v3.2.2

(R Development Core Team 2010).

Our experimental design consisted of three sets of factors:

father, mother, and pH treatment fig. 1. The goal of the sta-

tistical analysis was to identify traits affected by each of these

factors. For each trait, we considered a factor to be important

if the main effect or any of the interactions of that factor with

other factors were significant. Therefore, our lists of pH-re-

sponsive traits include all traits affected by pH in the offspring

of any father or any mother. Traits are considered to be ge-

netically variable if father effects were detected in either pH

treatment or offspring of any of the three mothers.

To quantify the importance of each factor, we used the

R Bioconductor package limma (Ritchie et al. 2015) to fit the

following Gaussian linear models to the variation in each trait:

Yijk ¼ mþ pHi þ PopFj þ PopMk þ pHxPopFj þ pHxPopMk

þ PopFjxPopMk þ Fj þMk þ pHixFj þ pHixMk

þ FjxMk þ eijk (1)

where Yijk was the trait value of the sample in pH treatment

i with father j and mother k, pHi, Fj, and Mk are effects of the

specific levels of each factor, PopFj and PopMk are effects of

the source population (Norway or Denmark) of each parent,

terms with x’s denote interactions, and m is a global intercept.

The source population terms accounted for any systematic

differences (genetic or environmental) between urchins col-

lected from each population. Although genetic differences

among populations can serve as a source of variation for ad-

aptation, trans-generational environmental effects cannot. To

be conservative, we excluded differences in trait means or

responses to pH between source populations from our esti-

mates of the amount of genetic variation in each trait. Given

our limited sample size (3–4 fathers and 1–2 mothers per

population), we were unable to effectively test for population

differences in any trait.

For the gene expression data, we converted counts to

log2CPM (counts-per-million, with prior.count = 1) with the

function cpm (Robinson et al. 2010), calculated sample-

weights (accounting for variation in sample quality) with the

arrayWeights function (Ritchie et al. 2006) and then fit model

(1) and calculated smoothed Type III F-statistics for the sets of

coefficients associated with each factor using the functions

lmFit and eBayes (Smyth 2004) using the limma-trend

method (Law et al. 2014). The sample-weights calculated

for the gene expression data were carried over to the analysis

of the gene set variation traits because these relied on the

same gene expression values, but not to the analyses of sur-

vival and growth rate traits. Empirical Bayes smoothing of SEs

was performed separately for the gene expression traits, each

class of gene set traits, growth rate, and the survival traits.

We calculated the percentage of variance explained by a

factor as the total weighted sum-of-squares for that factor

(including interactions) after accounting for all other factors

divided by the total weighted sum-of-squares of the observa-

tions around the global mean. We used the qvalue package

(Storey et al. 2015) to calculate family-wise false discovery

rates (FDR) and estimated numbers of true positives (1�p0)

for each set of tests. We tested for enrichments of genes with
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functional annotations among genes with small P values using

the Wilcoxon rank-sum test (Wilcox.test).

We used multiple linear regressions to test for associations

between gene expression variation and variation in perfor-

mance. For each performance trait (growth rate or survival

fraction), we ran a penalized regression of the trait value on

either the entire gene expression matrix (22,430 genes), or

one of the classes of gene set traits using the LASSO penalty

(Tibshirani 1996) implemented in the R function glmnet

(Friedman et al. 2010). For each regression, we used leave-

one-out cross-validation to select the tuning parameter

lambda and scored models based on the improvement in

the mean squared error of prediction.

Results

All trait values are presented in supplementary table S2,

Supplementary Material online, and statistics for all tests of

pH and parental effects are presented in supplementary table

S3, Supplementary Material online.

Impact of Seawater pH

We did not observe any effects of low pH seawater on larval

mortality (supplementary table S1, Supplementary Material

online). Low pH seawater caused a 14% reduction in larval

growth rate (low pH: 0.033 mm/day, control: 0.039 mm/day;

P<0.0001, fig. 2).

Gene expression responses to low pH seawater were

common but generally subtle. Using the qvalue function

(Storey et al. 2015), we estimated that 43.4% of the

22,430 measured genes were affected by the pH treatment

in any of the family groups (cultures sharing a father or a

mother), but the average response to low pH across all cul-

tures was smaller than 2-fold for all but nine genes

(log2FC<+/- 1, fig. 3A, supplementary table S1,

Supplementary Material online). Overall, among the 517

genes, we could declare significant at an FDR of 5% (corre-

sponding to a P value threshold of 0.002, fig. 3A, supplemen-

tary table S1, Supplementary Material online), many more

genes were upregulated than downregulated at low pH

(65%).

In order to gain insight into biological responses to low pH,

we used gene ontology annotations to group genes into func-

tionally similar modules and measured how these modules

responded to the pH treatment. The set of gene ontology

annotations we used included annotations for 14,951

genes, which were significantly enriched for responses to

the pH treatment (Wilcoxon sign-rank W: 5.49 � 107,

P = 0.016). Using GSVA (Hänzelmann et al. 2013), we com-

bined the expression levels of these 14,951 genes into mea-

sures of 616 synthetic gene set traits, divided into five

categories (PANTHER ontologies: MF: 128 terms, BP: 165

terms, CC: 22 terms, PC: 171 terms, and hand-annotated

ontology: 130 terms). We focused on MF and hand-annotated

categories that are the easiest to interpret. Results for all gene

set traits are presented in supplementary table S1,

Supplementary Material online. pH responses in the 128 MF

gene set traits were larger in magnitude (relative to the total

among-sample variance, Wilcoxon sign-rank W: 1.73 � 106,

P<0.0001) and were more common than the responses to

pH of the individual genes (fig. 3B). We estimated that 60.9%

of these MF gene set traits were affected by the pH treatment.

pH treatment effects (either as main effects or as interactions

with genetic backgrounds) accounted for >25% of the

among-sample variation in 38 of these traits and >50% of

the variation in 2. The bubble plot in figure 4 summarizes the

25 MF gene set traits that we could declare to be significantly

affected by low pH in any cohort at a 5% FDR. Several key

groups of MF gene sets constitute the core of the response to

pH. Downregulated gene sets were mostly related to DNA

and RNA metabolism and cell division. Upregulated gene

sets were related to cell signaling and other transmembrane

functions such as ion channel activities and G-protein coupled

receptor activity.

Results were largely congruent for the 130 gene set traits

based on the hand-annotated ontologies. Low pH seawater

affected 71.2% of these traits and explained >25% of the

variance in 46. The 62 hand-annotated gene set traits we

could declare to be significantly affected by low pH in any

cohort primarily involved processes such as the cell cycle,

cell–cell signaling and immune-related processes (supplemen-

tary table S3, Supplementary Material online). The category of
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FIG. 2.—Larval growth rates are reduced in low pH seawater. Boxplots

show median and quartiles of the distributions of growth rates for cultures

grown in control or low pH seawater (N =21 for each). The effect of pH

treatment on growth rate was significant (P =2.78� 10�8). Growth rates

(mm/day) were calculated using linear regression of daily measures of ~10

larvae/culture over the first 6–9 days of development.
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biominerlization genes was significantly downregulated by

low pH (�0.204).

Genetic and Maternal Effects on Larval Traits

Across both performance and molecular traits, differences as-

sociated with larval parentage tended to be larger and more

common than differences induced by low seawater pH (fig. 3B).

We detected significant mother effects on growth rate

(P =0.001), but no significant father effects (P = 0.44).

Among the 22,430 genes, 77.4% had expression variation

associated with inherited father effects and 48.9% had ex-

pression variation associated with mother effects (note that

the experiment included seven fathers and only three mothers,
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FIG. 4.—Summary of the response to pH in Molecular Function gene set traits. Bubble plot of MF gene set variation traits with significant (5% FDR)

responses to low pH seawater. Bubble plots represent: (i) The a priori relationship among the MF gene sets. Bubble centers are arranged based on a

multidimensional scaling projection (R function sammon) of the SimREL distances (Schlicker et al. 2006) among the PANTHER MF ontology terms. This

distance takes into account both the tree-relationships among terms and the number of genes in each category. (ii) The number of genes linked to each MF

term (bubble area is proportional to gene number). (iii) The percentage of variation in each gene set explained by the pH treatment and the mean direction of

the response to low pH (orange= increase in expression, blue= decrease in expression). This plot is based on the REVIGO scatter plot (Supek et al. 2011).
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FIG. 3.—Physiological and molecular responses attributed to seawater pH are common but subtle relative to variation attributed to father or mother
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responses to low pH seawater (5% FDR) are highlighted in blue. (B) Boxplots show median and quartiles of the distributions of percentage of total among-

culture variation in each gene expression trait (n = 22,430) or each MF gene set (n = 128) trait that could be attributed to each experimental factor (mother,

father or pH).
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but only among parent differences within the same source

population were counted). Again, genes with functional an-

notations were enriched for significant father or mother ef-

fects relative to unannotated genes. Gene expression profiles

integrated into gene set traits also showed high levels of

parent-associated variation: 93.8% of the 128 MF gene set

traits showed father-associated variation and 55.7% showed

mother-associated variation.

Interactions between Genetic Variation and the Response
to Low pH

By splitting cultures of genetically related larvae between the

two pH treatments, we were able to test for differences in

responses to pH among culture with different fathers or

mothers, and differences in the father effects when crossed

to different mothers. We estimated that 20% of genes had a

different expression response to pH across families with dif-

ferent fathers and 6.7% of genes had a different response

across cultures with different mothers. Among the 128 MF

gene set traits, 1% had a different response to pH among

cultures with different mothers, but we found no evidence for

a different response to pH in any of these traits among cul-

tures with different fathers. We estimated that 6.7% of genes

and 28.6% of MF gene set traits had different father effects

depending on the mother. However, due to the low level of

replication of these interactions in our experimental design,

we were not able to declare more than a handful to be sig-

nificant while maintaining a FDR< 5% (supplementary table

S3, Supplementary Material online) and the true frequencies

of these gene–environment, or gene–gene interactions may

be higher.

Relationship between Molecular Traits and Larval
Performance

To test if the molecular traits could help explain variation in

larval performance, we used multiple regression with a LASSO

penalty to try to predict the variation in growth rate among

cultures based on the whole matrix of 22,430 genes, or each

of the five classes of gene set traits. We used the LASSO

penalty because it provides variable selection among the pre-

dictors and helps with model regularization when there are

more predictors than samples. The BP and hand-annotated

gene set traits were the best predictors of growth rate varia-

tion, as measured by cross-validation performance, and out-

performed the raw gene expression data (table 2). The best

model selected 25 BP gene set traits and improved the mean

squared error by 79.2% relative to a model with only culture

pH. These 25 BP gene set traits are displayed in figure 5. In this

model, the BP traits pyrimidine base metabolic process (posi-

tive) and RNA localization (negative) were selected as the most

strongly associated with growth rate.

Discussion

Molecular Responses to Low pH

Our results demonstrate that the molecular response to low

pH in larvae of S. droebachiensis is wide-ranging and complex.

We observed plasticity in response to low pH in the expression

of nearly half of all assayed genes, and in three quarters of the

higher-order molecular traits inferred by integrating the ex-

pression variation across groups of functionally related

genes. Previous studies investigating the effects of low pH

on gene expression in sea urchin larvae have reported changes

in the expression of genes related to calcification and biomin-

eralization (Todgham and Hofmann 2009; Martin et al. 2011;

Stumpp et al. 2011a; Padilla-Gamiño et al. 2013; Evans et al.

2013), cytoskeleton and cell division (Todgham and Hofmann

2009; Padilla-Gamiño et al. 2013), acid/base regulation

(Todgham and Hofmann 2009; Stumpp et al. 2011a;

Stumpp et al. 2015), and metabolism (Todgham and

Hofmann 2009; Stumpp et al. 2011a), with the direction

and strengths of the responses varying by species and the

particulars of the environment treatments (e.g., simultaneous

increases in temperature). We observed changes in many of

these same processes in S. droebachiensis larvae. This is con-

sistent with physiological studies showing that S. droebachien-

sis pluteus larvae are unable to compensate for an extracellular

acidosis (pHe) resulting from an exposure to low pH. However,

the calcifying primary mesenchyme cells are able to fully com-

pensate an induced intracellular acidosis (pHi) using a bicar-

bonate buffer mechanism involving secondary active Na+-

dependent membrane transport proteins (Stumpp et al.

2012). Additional energetic costs also derived from compen-

satory mechanisms associated with larval gastric pH changes

(Stumpp et al. 2013). These extra costs lead to a shift in energy

budget, with less energy available for growth and leading to a

delay in development (Dupont and Thorndyke 2013; Jager

et al. 2016). Our results also highlighted a strong signal of

increased expression of many genes involved in immune

Table 2

Percent Decrease in Mean Squared Error of Prediction (MSE) Values

Relative to pH Treatment Alone for the Regression of Growth Rate on

Each Set of Molecular Traits

Molecular Trait Class Growth Rate

BP 79.2% (24)

MF 46.8% (13)

CC 18.5% (9)

PC 36.9% (29)

Hand 64.7% (41)

Gene expression 56% (40)

NOTE.—MSE was calculated using the cv.glmnet function with alpha =1 for
the LASSO penalty. Values represent 1�MSE(full)/MSE(pH) for each model at the
optimal value of the lambda tuning parameter. The number in parentheses is the
number of molecular traits with non-zero regression coefficients in the best
model.
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responses and other responses to extracellular environments,

perhaps indicating an involvement of the immune system in

pH tolerance or an increased sensitivity of the larvae to infec-

tions or additional environmental stresses. This is in contrast

with studies of mussels (Bibby et al. 2008) and starfish

(Hernroth et al. 2011) both showed a depressed immune

system under low pH but consistent with an increased in cel-

lular immune response in two adult echinoderm species, in-

cluding S. droebachiensis (Dupont and Thorndyke 2012).

Dupont and Thorndyke (2012) hypothesized that there may

be a direct link between pHe and cellular immune-response.

As it was demonstrated that decreased environmental pH also

lead to an uncompensated pHe decrease in pluteus larvae, the

observed upregulation of the immune system may result from

such a link. However, other measures of cellular stress did not

show evidence of a pH response: no consistent expression

changes were observed in the class of heat shock proteins,

or other molecular chaperones, unlike what has been seen in

other environmental stressors, such as temperature

(Hammond and Hofmann 2010; Runcie et al. 2012).

The increased number of significant effects in our data

relative to previous studies is largely a function of our in-

creased sample size (21 cultures per treatment), as the mag-

nitude of pH effects on gene expression were generally small

as previously reported (Todgham and Hofmann 2009; Pespeni

et al. 2013). Despite this molecular plasticity, we found a gen-

eral robustness of larval development to predicted near-future

levels of pH, with the larvae appearing healthy despite slower

growth rates and no increase in larval mortality due to pH. This

replicates similar findings in previous studies (Dupont and

Thorndyke 2008; Martin et al. 2011; Stumpp et al. 2011b).

In the absence of data from long-term cultures, however,

potential impacts of lower pH on survival to metamorphosis

and lifetime fecundity remain unclear.

Natural Variation in Larval Traits

Despite clear evidence of physiological, developmental, and

growth impacts of pH on the larvae, the pH treatments did not

account for a particularly large portion of the total gene ex-

pression variation among cultures of larvae. pH treatment ef-

fects accounted for <25% of the among-culture variation in

the majority of the gene expression traits measured (fig. 3B).

Instead, our results show that genetic variants and/or effects

of differences in paternal or maternal environments contrib-

uted to a much larger fraction of the trait variation (fig. 3B).

Although it is not possible using our experimental design to

unequivocally differentiate between paternal environmental

effects and genetic variation, a high frequency and magnitude

of genetic variation in gene expression has been observed

before in sea urchins (Runcie et al. 2012; Garfield et al.

2013), as well as in other taxa including fish, plants,

Drosophila, and primates (Oleksiak et al. 2002; Schadt et al.

2003; Nuzhdin et al. 2008; Ayroles et al. 2009). We extended

these results by demonstrating that there is a high level of

genetic variation in higher-order molecular traits, captured

by the gene set traits defined by ontology terms from the

PANTHER gene ontology (Mi et al. 2013), and by the sea ur-

chin-specific gene function ontology (Sodergren et al. 2006;

Tu et al. 2012). For example, the father and mother effects on

the MF signatures were as frequent and of as large a magni-

tude (proportionally to the total amount of trait variation) as

the parental effects on the expression of individual genes.

Prospects for Evolutionary Rescue

The large amount of genetic variation in molecular gene ex-

pression and survival fractions suggests that rapid adaptation

to low pH seawater might be possible in this species. Large

amounts of standing genetic variation can accelerate

response to stress
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adaptation if the variation contributes to variation in fitness,

and if genetic correlations among traits with contrasting ef-

fects on fitness are not too strong (Walsh and Blows 2009). We

observed considerably more genetic variation (father-associ-

ated variation) in the molecular traits than in larval growth

rates (fig. 3B). It is possible that genetic variation can accumu-

late in low-level traits like gene expression because gene net-

works are structured to buffer much of this variation from

affecting high-order phenotypes such as morphology (Runcie

et al. 2012; Garfield et al. 2013). However, at least a portion of

the variation in the gene expression traits was correlated with

variation in growth rate (fig. 5 and table 2) and thus may be

relevant for fitness. It is also possible that this molecular varia-

tion may be a source of "cryptic" genetic variation that could

be exposed by changing environments (Gibson and Dworkin

2004), and thus accelerate adaptation in changing environ-

ments. We found evidence for gene and environment interac-

tions being important for a small percentage of the gene

expression traits, but our sample sizes were too small to clearly

identify any patterns as to which traits might show a change in

genetic variance in acidified seawater. The fact that we ob-

served as strong evidence for genetic variation in the higher

order gene set traits as in the individual genes suggests that

much of this genetic variation may be highly pleiotropic. The

possibility of extensive pleiotropy is an important caveat in the

interpretation of our finding that many genes show variation in

expression. This is because pleiotropy places genetic con-

straints on the direction of evolutionary change (Walsh and

Blows 2009), and thus the capacity of a population to adapt

in any particular way may be more limited than the magnitude

of genetic variation in each trait initially suggests.

Another limitation of our finding is the use of the two

scenarios used in this study: the average pH at present (pHT

8.0) and the average pH projected for 2100 (pHT 7.6).

However, both pH values are within the present range of

natural variability (Dorey et al. 2013). Previous physiological

works on the impact of acidification across a wide range of pH

on the development of S. droebachiensis have demonstrated a

clearly pH-dependent increase in stress with decreasing pH,

including an apparent tipping point around a pH of 7.5 (Jager

et al. 2016). Below that threshold, different physiological pro-

cesses were involved leading to increased mortality at low pH

(Dorey et al. 2013). Different evolutionary processes may also

be involved, as demonstrated in copepods. When exposed to

decreased pH with the present day’s range of natural variabil-

ity, copepods responded mostly through phenotypic plasticity.

When exposed to pH below present day’s natural variability,

transgenerational effects (including genetic adaptation) set in

(Thor and Dupont 2015; De Wit et al. 2015).

Gene Expression Profiling in Climate Change Research

The use of RNAseq to address problems in ecological and evo-

lutionary functional genomics is growing rapidly and shows

great potential to greatly improve our understanding of the

key traits underlying adaptation and acclimation to changing

climates (Gracey 2007; Whitehead 2012; Alvarez et al. 2015;

Papetti et al. 2016; Todd et al. 2016). Transcriptome profiling

by RNAseq can now be applied to nearly any organism. The

principal advantage of RNAseq for climate change research is

that it rapidly profiles a wide range of molecular processes,

many of which are difficult to measure directly (Evans and

Hofmann 2012). For example, techniques to measure respira-

tion and immune system activity are technically challenging to

apply to large numbers of individuals (Hernroth et al. 2011;

Stumpp et al. 2011b). With gene expression profiling, we can

quickly sort through hundreds of conceivable molecular pro-

cesses to identify ones that are likely relevant and are worth

further study. As sequencing costs continue to decline rapidly,

it is becoming feasible to measure gene expression in many

hundreds or even thousands of samples. Such sample sizes are

necessary for accurately estimating genetic variances and ge-

netic correlations among traits that are necessary for predicting

evolutionary change (Roff 1995).

By themselves, transcriptome-wide gene expression data

can be overwhelming in their scale. Individual gene expression

measurements are often too noisy (whether due to measure-

ment error or systematic variation such as genetic effects) to

use as reliable signatures of underlying molecular trait varia-

tion. Directly incorporating information on gene function

(Hänzelmann et al. 2013) and modeling the correlation

among traits (Runcie and Mukherjee 2013) can dramatically

increase both the power to detect molecular variation, and

make the results easier to interpret. There are important limi-

tations: characterizing traits based on functional classification

of genes is inherently imprecise would benefit from explicit

information about how genes in gene sets interact (Khatri

et al. 2012) and requires follow-up studies to directly measure

the traits identified by gene expression signatures.

Nevertheless, by simultaneously measuring many aspects of

physiology and development, gene expression can provide a

vastly more comprehensive estimate of the potential for adap-

tation to climate change (De Wit et al. 2015; Rose et al. 2016).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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