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Abstract

Food animals act as a reservoir for many foodborne pathogens. Salmonella enterica is one

of the leading pathogens that cause food borne illness in a broad host range including ani-

mals and humans. They can also be associated with a single host species or a subset of

hosts, due to genetic factors associated with colonization and infection. Adult swine are

often asymptomatic carriers of a broad range of Salmonella servoars and can act as an

important reservoir of infections for humans. In order to understand the genetic variations

among different Salmonella serovars, Whole Genome Sequences (WGS) of fourteen Sal-

monella serovars from swine products were analyzed. More than 75% of the genes were

part of the core genome in each isolate and the higher fraction of gene assign to different

functional categories in dispensable genes indicated that these genes acquired for better

adaptability and diversity. High concordance (97%) was detected between phenotypically

confirmed antibiotic resistances and identified antibiotic resistance genes fromWGS. The

resistance determinants were mainly located on mobile genetic elements (MGE) on plas-

mids or integrated into the chromosome. Most of known and putative virulence genes were

part of the core genome, but a small fraction were detected on MGE. Predicted integrated

phage were highly diverse and many harbored virulence, metal resistance, or antibiotic

resistance genes. CRISPR (Clustered regularly interspaced short palindromic repeats) pat-

terns revealed the common ancestry or infection history among Salmonella serovars. Over-

all genomic analysis revealed a great deal of diversity among Salmonella serovars due to

acquired genes that enable them to thrive and survive during infection.

Introduction

Salmonella enterica subsp. enterica has the ability to infect a wide range of hosts, including

both animals and humans. In the latter group, the bacterium causes foodborne illnesses
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ranging from mild diarrhea and gastroenteritis to severe systemic infections such as enteric

fever [1], second only to norovirus as the causative agent of foodborne illness; Salmonella

infections in humans are the leading cause of hospitalization and deaths from foodborne ill-

ness in the United States [2]. The Centers for Disease Control and Prevention has estimated

1.2 million foodborne illnesses with 19,000 hospitalizations and approximately 380 deaths in

the United States annually (https://www.cdc.gov/salmonella/index.html). S. enterica ranks as

the leading cause of foodborne disease as measured by the combined cost of illness and qual-

ity-adjusted life-year [3]. The direct economic losses owing to salmonellosis in the US exceed

an estimated $3.5 billion per year. More than 2,600 Salmonella serovars has been confirmed by

the agglutination properties of the somatic O, flagellar H, and capsular Vi antigens [4].

Inappropriate use of antimicrobials in food animal production during treatment and pre-

vention of diseases and for growth promotion contribute to resistance, including acquisition

of antibiotic resistance (AR) genes through horizontal gene transfer (HGT). Multi drug resis-

tant (MDR) bacteria are recognized as a major threat to public health [5] and require a com-

prehensive approach to combat them [6]. Resistance determinants are often present on mobile

genetic elements (MGE), such as plasmids, integrons etc. and can be transferred among multi-

ple bacterial genera [7, 8]. A wide range of plasmids that carry AR and virulence genes have

been reported in Salmonella [9–11]. Here we catalog all the antibiotic resistance genes and

their organization in a diverse set of Salmonella from swine.

Phage play a profound role in bacterial evolution as they assist in transfer of antibiotic resis-

tance (AR) and, virulence genes, including inserting their genome into the host’s DNA [12].

These lysogens can also become lytic by replicating and then killing their temporary host bac-

teria. A large number of phage have been reported from Salmonella, such as Fels-1, Gifsy-2,

P22, FelixO1, etc., and some of them carry several virulence and resistance gene cassettes [5,

13–16]. Here, we investigate phage distribution among Salmonella serovars to determine the

resistance and virulence genes associated with phage. Here we also characterize the CRISPR

(clustered regularly interspaced short palindromic repeats) elements, which act as an adaptive

immune system against exogenous DNA [17], including phage DNA. In addition, analysis of

CRISPR sequences improve the discriminatory power of molecular characterization of Salmo-

nella [18].

Few studies have been conducted to identify genetic factors associated with Salmonella ser-

ovars isolated from swine using WGS [19, 20]. In order to understand the genetic variations

among different Salmonella serovars, the WGS of fourteen Salmonella serovars isolated from

swine and swine swab were analyzed. The WGS data was assessed for resistance and virulence

determinants, and their association with MGE was predicted. WGS was further analyzed to

identify CRISPR elements and phage associated resistance and virulence genes.

Material andmethods

Isolate selection and antimicrobial susceptibility testing

Fourteen Salmonella isolates were collected by the National Antimicrobial Resistance Moni-

toring System (NARMS) in year 2004–2005. All isolates were streaked onto Mueller-Hinton

(MH) agar (Oxoid, Cambridge, UK). A single colony was selected and subsequently inoculated

in MH broth (Oxoid, Cambridge, UK), and incubated for 16–18 h at 37˚C with shaking (250

rpm). All isolates were subjected to susceptibility testing via the SensititreTM semi-automated

antimicrobial susceptibility system (TREK Diagnostic Systems, Inc.) using a custom-made

panel including amikacin, gentamicin, kanamycin, streptomycin, ampicillin, amoxicillin-cla-

vulanic acid, ceftiofur, ceftriaxone, cefoxitin, sulfamethoxazole/sulfisoxazole, trimethoprim-

sulfamethoxazole, chloramphenicol, ciprofloxacin, nalidixic acid, and tetracycline [21]. The
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isolates were subjected to preliminary biochemical screening to distinguish the different ser-

ogroups using serogroup-specific antisera (Difco Laboratories, Detroit, MI) and serotyping

was used to identify serovars at the National Veterinary Services Laboratories, APHIS, USDA

(Ames, IA).

Genome sequencing and analysis

Genomic DNA was isolated using GenElute bacterial genomic DNA kit (Sigma-Aldrich,

St. Louis, MO) according to manufacturer’s protocols. The quality of DNA was tested using

Nanodrop and quantified using an Invitrogen Qubit 2.0 Fluorometer (Life Technologies,

Carlsbad, CA). The extracted DNA was stored in 1X TE buffer (pH 8.0) at -20˚C until further

use. Paired-end sequencing was performed on an Illumina HiSeq2500 (Illumina Inc., San

Diego, CA) as described elsewhere [22] and the reads were deposited in the SRA database

under the bioproject PRJNA254816. The SRA accession numbers is available in Table 1. The

reads were retrieved from the SRA dataset and reads with a phred score�30 were de novo

assembled using the A5-pipeline_version_20141120 [23]. The genome and plasmid contigs

from the assembly were sorted on the basis of remote blast using an in-house python script.

The genomic contigs were annotated using PROKKA [24]. In order to reconstruct the pan-

genome the assembled genomes were annotated with Prokka and used as input for Roary with

the identity cut-off of 95% [25]. Roary generated clusters of homologous gene groups from

which core, accessory and unique genes were predicted. The Clusters of Orthologous Groups

of proteins (COGs) database was used for the functional annotation [26]. The amino acid

sequences generated from the Prokka was used as input for functional annotation based on

orthologous group using WebMGA online server (http://weizhong-lab.ucsd.edu/meta

genomic-analysis/server/cog/). The assembled contigs and deduced amino acid sequences

from Prokka were used to predict the acquired antibiotic and metal resistance genes using the

ARG-ANNOT [27] and BacMet [28] respectively, with e-value (1e -10), coverage�90% and

identity�90%. The adherence-associated gene cluster were identified using the Virulence Fac-

tor Database (VFDB) [29] using a threshold of�95% identity and�95% coverage. Lysogenic

phage were predicted using the web-based tool PHASTER [30]. CRISPR regions were pre-

dicted using CRISPR finder [31] and blastn was done to identify similar phage among

Table 1. Assembly statistics of the Salmonella enterica serovars isolated from swine and their products.

Salmonella serovar Strain Year Genome No of CDS SRA_ID

Length (b) No of Contigs Coverage(x) GC (%) N50

Agona CRJJGF_0019 2005 4933904 101 78 52.1 162691 4,680 SRX791372

Anatum CRJJGF_0121 2004 4707212 65 76 52.1 156274 4,414 SRX791374

Bovismorbificans CRJJGF_0070 2004 4662088 89 93 52.1 168471 4,354 SRX791423

Choleraesuis CRJJGF_0148 2004 4708469 99 80 52.1 149708 4,528 SRX791500

Cubana CRJJGF_0088 2004 4929533 78 58 52.1 155115 4,604 SRX791441

Give CRJJGF_0073 2004 4613042 61 89 52.1 226100 4,308 SRX791426

Heidelberg CRJJGF_0002 2004 4853670 123 92 52.1 158927 4,558 SRX791355

Infantis CRJJGF_0031 2005 4650782 75 76 52.1 157448 4,351 SRX791384

Minnesota CRJJGF_0078 2004 4651740 87 95 52.1 372885 4,352 SRX791431

Manhattan CRJJGF_0112 2005 4668352 201 90 52.1 260620 4,361 SRX791465

Ohio CRJJGF_0161 2005 4854746 91 74 52.1 216733 4,532 SRX791512

Tennessee CRJJGF_0089 2004 4772495 92 53 52.1 164659 4,462 SRX791442

Typhimurium CRJJGF_0051 2004 4939221 130 69 52.1 172339 4,667 SRX791404

Worthington CRJJGF_0141 2004 4848597 97 75 52.1 210218 4,559 SRX791493

https://doi.org/10.1371/journal.pone.0224518.t001
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Salmonella serovars and linear comparison of similar phage was done using Easyfig [32]. The

Integrall integron database (http://integrall.bio.ua.pt) was used to analyze and assign integron

sequences [33]. Genes associated with plasmid replicon were identified using PlasmidFinder

to identify the target sequence in the genomes of each isolate [34].

Results

This study was the part of retrospective study to maximize the understanding of the AR gene

distribution, MGE and genome diversity of the Salmonella [22] from food animals. Fourteen

Salmonella isolates from swine were selected based on differences in phenotypic AR profile,

serotype from the collection of NARMS isolates between 2004 and 2005.

General features and sequenced genomes

The genome statistics are presented in Table 1. In brief, the average number of contigs per

genome was 95 (range: 61 to 201 contigs). The median assembly coverage ranged between 53

to 95 fold which was adequate to produce bacterial draft genomes [35]. The average GC con-

tent of each genome was 52.1% which was consistent with that of the complete S. enterica chro-

mosome [36]. The average number of coding sequences (CDSs) per isolate was 4,480 and the

highest and lowest number of CDS was obtained for S. Agona (4,680) and S. Give (4,308),

respectively. Additionally, average nucleotide identity matrix showed>98% identity among

the serovars and>99.9% identity to their respective reference genome sequences from NCBI

Gen-Bank. The high average nucleotide identity (ANI) [37] values of pair wise genome com-

parisons again confirmed that these serovars were nearly identical to their corresponding ref-

erence serovars. The reads were deposited in the GenBank Sequence Read Archive (SRA)

database and details are provided in Table 1.

Antimicrobial resistance genes, integrons, and plasmids

Antibiotic susceptibility assays were performed according to Clinical and Laboratory Stan-

dards Institute (CLSI) standards. Eleven isolates were resistant to at least one of the tested anti-

biotics and nine of them were multidrug resistant (MDR; resistant to two or more

antimicrobials); the remaining three Salmonella serovars Give, Infantis, and Manhattan were

susceptible to all tested antimicrobials. None of the isolates were resistant to azithromycin, cip-

rofloxacin or nalidixic acid. The susceptibility testing results and corresponding predicted AR

genes results are summarized in Table 2. High frequency of resistance to tetracycline (9/14,

64.3%) was observed among the isolates, followed by resistance to beta-lactams (7/14, 50.0%),

aminoglycosides (7/14, 50.0%) and sulfonamides (7/14, 50.0%). Three isolates 3/14, 21%). (S.

Agona, S. Ohio and S. Typhimurium) were resistant to two antibiotics (chloramphenicol and

sulfamethoxazole) while two isolates (2/14, 14.3%); S. Anatum and S. Worthington) were only

resistant to tetracycline. The correlation between phenotypically confirmed AR and in silico

predicted AR genes of the serovars is presented in Table 2. Resistance determinants were pre-

dicted with ARG-ANNOT. Hits with> 90% identity and 100% coverage were considered as

positive resistance determinants. A total of 73 AR genes (59 in Table 1 and 14 aac6-I variants)

were predicted from the genome sequences and at least one AR gene was predicted in each iso-

late (Table 1). The aminoglycoside resistance gene variants Y and aa of aac6-I was detected in

all the isolates and these cryptic variants were the only aminoglycoside resistance gene variants

predicted in Salmonella serovars Give, Infantis, and Mannhattan exhibited no phenotypic

resistance. Among eight streptomycin resistant isolates strA and strB were detected in five iso-

lates while four isolates carry aadA gene variants and all these three genes (strA, strB, and

aadA) were detected in S. Heidelberg. Seven isolates were resistant to beta-lactams and three
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Table 2. Antibiotic resistance phenotype and predicted antibiotic resistance and virulence genes in different Salmonella serovars.

Salmonella
serovar

Virulence Gene AGly Bla Tet Sul Chl Others Replicons

Agona lpfA/B/C/D/E; avrA, slrP, sspH2,
sseK1

G� aph3”-Ia, strA, strB blaCMY-2 tet
(A)

sul1,
sul2

flo
(R)

dfrA7/fosA incA/C2

P�� STR AMP, AUG, AXO,
FOX, TIO, COT

TET FIS CHL –

Anatum avrA, slrP, sspH2 G – – tet
(C)

– – – colE10

P – – TET –

Bovismorbificans lpfA/B/C/D/E, avrA, ratB, slrP, sspH2,
sodCI, sseK1

G aph4-Ia, aac-Iva, strA,
strB

blaTEM-1 tet
(B)

sul1 – – IncHI2
incHI2A

P GEN, STR AMP, TET FIS

Choleraesuis lpfA/B/C/D/E; gogB, ratB, slrP, sspH2,
sodCI, sseK1

G strA, strB – tet
(B)†

sul1 – – Col440II,
incFIB, incQ1

P STR – – FIS

Cubana lpfA/B/C/D/E; avrA, slrP, sspH2,
sseK1

G aadA7 – tet
(A)

sul1 – – –

P STR – TET FIS

Give ratB, slrP, cdtB G – – – – – – –

P – – – –

Heidelberg lpfA/B/C/D/E; avrA, ratB, slrP, sspH2,
sodCI

G stra, strB, Aph4-Ia, aac-
Iva, aadA2, sph, aphA2

blaTEM-1 tet
(B)

sul3 -
–

dfrA12/ fosA incFII, incHI2,
incHI2A

P GEN, STR AMP, COT TET FIS

Infantis lpfA/B/C/D/E; avrA, ratB, slrP, sspH2,
sseK1

G – – – – – – incI1

P – – – –

Minnesota avrA, ratB, cdtB, slrP, sseK1 G – blaCMY-2 tet
(A)

– – – incI1, incP6

P – AMP, AUG, AXO,
FOX, TIO

TET –

Manhattan lpfA/B/C/D/E; avrA, ratB, slrP, sspH2 G – – – – – – –

P – – – –

Ohio ratB, sspH2, sseK1 G strA, strB, aph3''Ia blaTEM-1, blaCMY-2 tet
(A)

sul1,
sul2

flo
(R)

dfrA1 incA/C2

P STR AMP, AUG,AXO,
FOX, COT, TIO

TET FIS CHL

Tennessee lpfA/B/C/D/E; avrA, slrP, sspH2,
sseK1

G aadA2 blaCARB-2 – – –
–

DfrA16/ere
(A)/fosA

incN

P STR AMP, COT – –

Typhimurium lpfA/B/C/D/E; pefA/B/C/D; spvB/C/R;
avrA; gogB, ratB, slrP, sspH2, sodCI,

sseK1

G aadA2, blaCARB-2 tet
(G)

sul1 floR – incFIB

P STR AMP TET FIS CHL

Worthington lpfA/B/C/D/E; avrA, slrP, sspH2,
sseK1

G – – tet
(B)

– – – incI1

P – – TET –

No of ARG 22 8 9 9 3 8

�: Predicted gene
��: Confirmed phenotype

†: Partial/truncated gene

Antibiotic used- AMP: Ampicillin, AUG: Augmentin, AXO: Ceftriaxone, AMX: Amoxicillin, AZM: Azithromycin, COT: Cotrimoxazole, CHL: Chloramphenicol, ERY:

Erythromycin, FIS: Sulfisoxazole, FOX: Cefoxitin, GEN: Gentamicin, STR: Streptomycin, TET: Tetracycline, TIO: Ceftiofur

Antibiotic classes- AGly: Aminoglycosides, Bla: Betalactamases, Tet: Tetracycline, Sul: Sulfonamides, Chl: Chloramphenicol

https://doi.org/10.1371/journal.pone.0224518.t002

Genomic comparison of Salmonella serovars from swine

PLOSONE | https://doi.org/10.1371/journal.pone.0224518 November 1, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0224518.t002
https://doi.org/10.1371/journal.pone.0224518


genes encoding beta-lactamases were identified in these seven isolates, with the most common

being blaTEM-1 ((3/14), 21.4%) and blaCMY-2 ((3/14), 21.4%), followed by blaCARB-2 ((2/14),

14.3%). The Amber class A β-lactamase gene (blaCARB-2) conferring resistance to ampicillin

were detected in serovar Tennessee and Typhimurium. Amber classA potential ESBL

(extended spectrum of beta-lactamase) gene (blaTEM-1) conferring resistance to ampicillin was

detected in serovars Bovismorbificans, Heidelberg and Ohio. Amber class C genes (blaCMY-2)

that conferred resistance to ampicillin, amoxicillin, and ceftiofur were detected in serovars

Agona, Minnesota and Ohio. Four different tetracycline resistance gene allele’s tetA, tetB, tetC

and tetG were identified in the analyzed Salmonella serovars. With tetA and tetB the most fre-

quently detected tetracycline resistances, occurring in 4/14, 28.6% and 3/14, 21.4% of isolates,

respectively, followed by tetC and tetG each in 1/14, 7.1% of isolates. The macrolide resistance

gene ereA was detected in Tennessee, while trimethoprim gene variants (dfrA1, A7, A12, and

A16) were detected in serovars Ohio, Agona, Heidelberg, and Tennessee respectively. The sul-

fonamide resistance gene alleles were identified in seven Salmonella serovars; only sul1 was

detected in serovar Bovismorbificans, Choleraesuis, Cubana and Typhimurium ((4/14);

28.6%), while sul1 and sul2 were detected in serovar Agona and Ohio ((2/14); 14.3%) and sul3

was detected in serovar Heidelberg ((1/14); 7.1%). The floR gene was detected in three of four-

teen chloramphenicol resistant isolates and only these three serovars Agona, Ohio, and Typhi-

murium conferred resistance to chloramphenicol. No mutations in chromosomal genes gyrA,

gyrB, parE: conferring resistance to ciprofloxacin and nalidixic acid and rRNA genes 23S

rRNA, rplD, rplVb conferring resistance to macrolide were observed; a point mutation in parC

at position T57S was observed in most of the studied serovars except Bovismorbificans and

Typhimurium; however, none of these isolates were resistant to nalidixic acid (S2 Table).

Class 1 integrons were detected in six isolates that were grouped into five different integron

profiles (ln127, in167, in363, in1581, and ln1582). Most of these integrons carried a quaternary

ammonium compound resistance gene, qacE, and a sulfonamide resistance gene, sul1, as addi-

tional genes after the 3‘end of the conserved segment. The class 1 integron genesin different

Salmonella serovars are summarized in Table 3.

The presence of plasmids in the assembled contigs were confirmed by in silico replicon typ-

ing. The replicon type IncA/C2 was identified in MDR serovars Agona and Ohio and both

these isolates harbored identical class 1 integrons In363. The replicon type IncHI2 was detected

in serovars Bovisformicans and Heidelberg while IncI1 was identified in serovars Infantis,

Minnesota andWorthington. The replicon type IncFII was identified in serovars Choleraesuis,

Heidelberg and Typhimurium while IncN and IncP6 were detected in serovars Tennessee, and

Minnesota, respectively. No replicon types were identified in serovars Cubana, Give, or Man-

hattan. Additional replicon col440II, and IncQ was identified in S. Choleraesuis. Eight different

Table 3. Class 1 integrons identified in different Salmonella isolates.

Salmonella
serovar

Strain name Integron genes Integron
number

Other resistance and virulence genes on
integron

Agona CRJJGF_0019 IntI1-dfrA1-attC—gcuC-attC-3'CS In363 sul1, qacE,

Cubana CRJJGF_0088 IntI1-aadA7-attC-3'CS In1581 sul1, qacE

Heidelberg CRJJGF_0002 IntI1-dfrA12-attC—gcuF—attC—aadA2-attC-3'CS In127 qacE�

Ohio CRJJGF_0161 IntI1-dfrA1-attC-gcuC-attC-3'CS In363 sul1, qacE

Tennessee CRJJGF_0089 IntI1-dfrA16c-attC- blaCARB-2-attC-aadA2-attC-ereA1c-
attC3'CS

In1582 qacE�

Typhimurium CRJJGF_0051 IntI1-blaCARB-2—attC-3'CS In167 qacE�

�: Partial gene

https://doi.org/10.1371/journal.pone.0224518.t003
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resistance gene clusters were detected in different Salmonella serovars and are presented in

Fig 1.

The AR genes clusters were highly diverse, with the exception of a> 35 kb (99.9% identical)

region of homologous genes carrying tetA, strA, strB, sul2, and blaCMY-2, which were detected

in Salmonella serovar Agona and Ohio. The region of homologous genes carrying strA/strB,

and strA/strB/sul2 were detected in Salmonella serovar Bovismorbificans and Choleraesuis

respectively, while aadA/ebr/sul1 and ereA/aadA2/blaCARB-2/dfrA16 were detected in Salmo-

nella serovar Cubana and Tennessee respectively. The gene clusters aphA2/sph, and sul1/floR/

tetA were detected in Salmonella serovar Heidelberg and Typhimurium respectively.

The pan-genome and functional genes comparison

Pangenome analysis was initiated using 62,730 genes of 14 Salmonella serovars that resulted

into 8,174 clusters, of these 3,456 (42.3%) and 2,201 (26.9%) clusters were part of the core and

accessory gene respectively. The remaining 2,517 (30.8%) independent genes identified as the

unique genes. The core, accessory and unique genes are represented as inner circle, outer cir-

cle, and petals in the floral diagram respectively (Fig 2) and the details of core, accessory and

unique genes in each serovars is given in S1 Fig.

The unique genes among serovars ranged from 93 to 268, with highest and lowest genes in

serovars Worthington and Bovismorbificans respectively. The functional distribution of genes

among serovars were examined using the COG database [26]. Functions encoded by the genes

in these serotypes revealed> 75% of predicted ORFs were assigned to 24 COG functional

group (Fig 3).

Fig 1. Antibiotic resistance gene clusters in different Salmonella serotypes. Bleomycin and EtBr resistance gene (Green)
flanked by antibiotic resistance genes marked in green. The arrow shows orientation of the genes and genes are color coded
to define different classes of antibiotic resistance, mobile and other genes categories.

https://doi.org/10.1371/journal.pone.0224518.g001
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The most abundant COG functional group among serovars was the transport and metabo-

lism of carbohydrates (G) and the highest (426) and lowest number of genes (385) in this cate-

gory was noticed in S. Typhimurium and S. Minnesota respectively. The next abundant COGs

were Transcription (K) followed by amino acid metabolism and transport (E). The highest

number of genes in K and E category were noticed in S. Worthington (346) and S. Ohio (381)

respectively, however the lowest number of genes in K (322) and E (370) COGs were noticed

in S. Minnesota. A single COG functional gene was noticed in all the S. serotypes from extra-

cellular structure categories. The distribution of functionally characterized COG genes in core

and accessory genome in Salmonella serovars (Fig 4) revealed that the functional genes in the

core genome ranged 76% to 82%.

Uniform distributions of functional genes from different COG category was observed for core

and accessory genes among Salmonella serovars. However, the percent abundances of genes in

category G (carbohydrate transport andmetabolism; 26–28%) and L (Replication, recombination

and repair 21–23%) among accessory genomes were greater among Salmonella serotypes com-

pared to other functional categories. The core genomes in each S. serotype were commonly

enriched in COG categories D, F, H, I, J, O and Q relative to those seen in the accessory genomes.

Virulence genes, phage and CRISPR in Salmonella serovars

Genes with>95% sequence homology and coverage when compared to the virulence factor

database (VFDB) were considered matches in this analysis. The complete virulence gene pro-

files of each Salmonella isolate is shown in S1 Table and some of the gene variants that were

Fig 2. Floral venn diagram showing the pangenome of 14 Salmonella serovars from swine. The orthologus genes
identified in all serovars presented in the center as core genes, orthologus genes identified among the serovars but not
in all serovars presented in the periphery as accessary genes and each petals represents the unique genes in respective
serotypes.

https://doi.org/10.1371/journal.pone.0224518.g002
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not detected in all the isolates is shown in Table 2. The majority of the virulence genes were

detected in all the Salmonella serovars. These virulence genes were very similar, with small var-

iations in nucleotide/amino acid sequences, while few virulence genes were missing in single

or multiple Salmonella serovars. The fimbrial adherence gene operons bcfA/B/C/D/E/F/G,

fimI/C/D/H, invA/B/C/E/F/G/H/I/J, csgBA and csgD/E/F/A were the most common. Most of

the isolates were positive for the long polar fimbrial operon (lpfA/B/C/D/E) except Salmonella

serovars Anatum, Give, Minnesota, and Ohio; however, lpfD was highly diverse among all of

the Salmonella isolates. The plasmid-encoded fimbrial operon (pefA/B/C/D) and Salmonella

plasmid virulence (spvB/C/R) genes were detected in S. Typhimurium and none of these genes

were detected in other isolates. The pathogenicity island 1 (SPI-1), encoding type III secretion

system (T3SS) secreted effector genes sipA/B/C/D, sopA, sopB, sopE2, andmisL, were highly

similar in all the isolates with the exception of sipD genes that shared 91% similarity to the ref-

erence gene (S. Typhimurium; NP_461804) in S. Minnesota. AvrA was identified in all the iso-

lates except S. Choleraesuis and S. Ohio. The SPI-2 encoded T3SS genes, including spiC, sifA,

sifB, sseF, sseG, sseL, pipB, pipB2, sopD2, and slrP, were detected in all the isolates. GogB was

only detected in Salmonella serovars Choleraesuis and Typhimurium. Other effector genes,

including ratB, sseK1, sseK2, and sspH2, were detected in some of the Salmonella serovars (S1

Table). The sspH2 effector homolog was divergent (85.52% identical) in S. Ohio. The sensory

systems genes phoP/Q were identical in all the serovars with an exception in S. Worthington

where a secondary mutation was observed at nucleotide position 450 (A-T) with coverage

depth>50x.

Genome contents were further compared, and it was observed that several genes were

confined to one serovar, or were highly diverse even if they were annotated as the same gene

(S3 Table). For example a 27 kb conting in S. Agona harboring subset of type VI secretion sys-

tem (T6SS). A unique pathogenesis protein, kcpA, was identified on a phage in S. Anatum.

Fig 3. Distribution of functional classes of predicted genes according to the clusters of orthologous groups in
Salmonella serovars.Different colors define different COG categories of genes.

https://doi.org/10.1371/journal.pone.0224518.g003
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Homologs of the safA (saf-pilin pilus formation protein) was identified in 6 of the 14 Salmo-

nella serovars (Anatum, Bovismorbificans, Cubana, Give, Johanesberg and Manhattan), but

these homologs were so diverse that they were included in the list of unique genes. Highly

diverse toxin-antitoxin (TA) systems type II genes were detected in different Salmonella sero-

vars, including vapB (Agona and Typhimurium), higA (Choleraesuis and Cubana), yfjZ (Min-

nesota and Manhattan) and cbtA (Bovismorbificans and Tennessee). UDP-L-Ara4N

formyltransferase (arnA), a bifunctional genes facilitating polymyxin resistance, was detected

in S. Choleraesuis. Highly diverse colonization factor antigen I subunit E (cfaE) gene was

detected in Salmonella serovar Choleraesuis, Give, Minnesota andWorthington. Microcin-M

immunity protein (cmi) was detected in S. Heidelberg.

The PHASTER analysis identified intact, questionable, and incomplete phage in genomes

of the Salmonella isolates. Only intact phage were analyzed in this study and a total of 52 intact

Fig 4. Distribution of clusters of orthologous groups in core, accessory and unique genes in the genomes of different Salmonella serovars. Common numbers of
core genes in each COG categories were observed and presented in Fig 4(A), The bars represents the number of clusters of orthologous groups assigned genes present in
accessory (grey bars) and in the unique genes (black bars).

https://doi.org/10.1371/journal.pone.0224518.g004
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lysogenic phage were predicted by PHASTER and they are listed in Table 4. Most phage were

highly diverse. The most common families included relatives of Gifsy-1 (NC_010392), Gifsy-2

(NC_010393), and Salmon_SEN34 (NC_028699). Gifsy-1 like phage were detected in Salmo-

nella serovars Bovismorbificans, Infantis, Typhimurium, andWorthington, Gifsy-2 like phage

were detected in Salmonella serovars Choleraesuis, Heidelberg and Typhimurium, and the Sal-

mon_SEN34 like phage were detected in Salmonella serovars Choleraesuis, Cubana and Give.

Individual phage found in only one of the 14 included in Cubana (Entero_Psp3 [NC_005340]),

Heidelberg (Escher_D108 [NC_013594]; Entero_P4 [NC_001609]), Minnesota (Entero_I2_2

[NC_001332]; Entero_SfV [NC_003444]; Salmon_vB_SemP_Emek [NC_018275]), Manhattan

(Salmon_epsilon34 [NC_011976]; Entero_186 [NC_001317]) and Typhimurium (Enter-

o_ST104 [NC_005841]). Of particular interest is the fact that some of the phage carried non-

phage “cargo” genes. The AR beta-lactamase gene blaTEM-1 was seen in S. Heidelberg (Sal-

mon_118970_sal4_NC030919), S. Ohio (Entero_lato_NC001422). The blaCARB-2 gene was

seen in S. Tennessee (Entero_lato_NC001422) and S. Typhimurium (Salmon_119870_sal3_

NC031940). The tetracycline gene tetCwas seen in S. Anatum (Salmon_118970_sal3_NC031940);

Table 4. Phage harboring virulence and resistance genes in Salmonella serovars.

S. enterica
serovar

Isolate No of
Phage

Best match (kb) Antibiotic resistance and virulence
genes on Phage

Agona CRJJGF_0019 4 Aeromo_phiO18P_NC_009542 (18.4), Entero_fiAA91_ss_NC_022750
(28.6), Salmon_vB_SosS_Oslo_NC_018279(49.9), Entero_lato_NC_001422

(11)

–

Anatum CRJJGF_0121 4 Salmon_Fels_2_NC_010463(34.2), Salmon_SPN3UB_NC_019545(46.4),
Haemop_HP1_NC_001697(26), Salmon_118970_sal3_NC_031940(63.3)

sipABCD, invABCEFGHIJ, spaOPQRS,
prgHIJK, sptP, sicAP, sopD,pipB2, orgBC,

sicA,mig-14,mgtC

tetC

Bovismorbificans CRJJGF_0070 3 Shigel_SfII_NC_021857 (39.8), Gifsy_1_NC_010392 (55.1),
Entero_lato_NC_001422 (5.6)

sodC1

Choleraesuis CRJJGF_0148 4 Salmon_g341c_NC_013059(37.1), Salmon_118970_sal3_NC_031940(36.5),
Gifsy_2_NC_010393 (33.3), Phage_Gifsy_1_NC_010392 (23.1)

sodC1

Cubana CRJJGF_0088 3 Salmon_SEN34_NC_028699 (42.2), Entero_PsP3_NC_005340 (35.2),
Entero_lato_NC_001422(66.3)

SopB
tetA

Give CRJJGF_0073 4 Salmon_SEN34_NC_028699 (29.3), Entero_mEp235_NC_019708(26.3),
Pseudo_PppW_3_NC_023006(26.3), Entero_lato_NC_001422(5.3)

pipB

Heidelberg CRJJGF_0002 4 Gifsy_2_NC_010393 (39.9), Entero_fiAA91_ss_NC_022750(33.9),
Entero_lato_NC_001422(13.8), Entero_P4_NC_001609 (14.1),
Salmon_118970_sal4_NC030919 (40.3)

sodC1, grvA, gtrA
blaTEM-1

Infantis CRJJGF_0031 3 Entero_SfI_NC_027339 (41.6), Salmon_vB_SosS_Oslo_NC_018279(24.3),
Salmon_vB_SosS_Oslo_NC_018279(39.6)

–

Minnesota CRJJGF_0078 6 Entero_I2_2_NC_001332 (5.2), Salmon_Fels_1_NC_010391 (14.7),
Haemop_HP1_NC_001697(43.2), Aeromo_phiO18P_NC_009542 (32.8),
Salmon_118970_sal3_NC_031940(44.1), Entero_lato_NC_001422 (10.7)

–

Manhattan CRJJGF_0112 3 Salmon_g341c_NC_013059 ((41.8), Entero_186_NC_001317 (37.5),
Entero_lato_NC_001422(19.9)

–

Ohio CRJJGF_0161 2 Salmon_ST64T_NC_004348(38.6), Entero_lato_NC_001422(24.8) blaTEM-1

Tennessee CRJJGF_0089 3 Salmon_vB_SosS_Oslo_NC_018279 (50.8), Haemop_HP1_NC_001697
(27.2), Entero_lato_NC_001422(13.7)

aadA2, ere(A), blaCARB-2

Typhimurium CRJJGF_0051 6 Entero_ST104_NC_005841 (42.7), Gifsy_2_NC_010393 (27.8),
Salmon_118970_sal3_NC_031940(47.8), Salmon_118970_sal3_NC_031940

(75.1), Gifsy_1_NC_010392 (18.3), Entero_lato_NC_001422 (7.1)

gyrA, sodC1, sspH2, rck, gtrA
aadA2, blaCARB-2, sul1

Worthington CRJJGF_0141 3 Gifsy_1_NC_010392 (31.8), Salmon_SPN3UB_NC_019545(47.2),
Entero_lato_NC_001422(23.5)

sspH1

�The virulence genes highlighted in bold are detected in resistance gene carrying phage

https://doi.org/10.1371/journal.pone.0224518.t004
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and tetAwas seen in S. Cubana (Entero_lato_NC001422). The aminoglycoside gene aadA2was

seen in S. Tennessee (Entero_lato_NC001422) and S. Typhimurium (Salmon_118970_-

sal3_NC031940). Our analysis further confirmed that blaCARB-2 was harbored on the class 1

integrons In1582 and In167 that integrated into the possible phage Entero_lato_NC001422 (S.

Tennessee) and Salmon_119870_sal3_NC031940 (S. Typhimurium), respectively. We also

observed that metal resistance genesmerDACPTR and silA/C/P/P2were on the possible prophage

Entero_lato_NC_001422 and Salmon_118970_sal4_NC030919 of S. Cubana and S. Heidelberg,

respectively (Fig 5).

These phage were further analyzed for the presence of virulence genes and results are sum-

marized in Table 4. Eight of fourteen isolates harbored at least one virulence gene on phage.

The comparisons for the homologous regions in prophage revealed 10 different phage shared

similar regions, although these prophage were not 100% identical, but showed similarity rang-

ing between 40 to 98%. The linear comparisons of the phage are presented in Fig 6. The identi-

cal regions were mostly part of the phage related genes.

CRISPR loci were identified in the majority of isolates and these loci were compared for

homology across serovars. The common spacers were observed towards the ancestral end of

the CRISPR array e.g. common spacer was identified in eight serovars (Agona, Cubana, Cho-

leraesuis, Heidelberg, Infantis, Manhattan, Typhimurium andWorthington). Spacer numbers

varied between serovars and across the CRISPR loci (Table 5).

The sequential identical spacers towards the ancestral end was identified among these sero-

vars for eg. two spacers detected in Salmonella serovar Cubana andWorthington, three spacers

detected in Salmonella serovar Agona, Heidelberg and Typhimurium, four spacers detected in

Salmonella serovar Heidelberg and Typhimurium. Unique spacer arrays were observed in sero-

var Minnesota, Ohio and Tennessee (the last spacer i.e. spacer 57 was identical to spacer 2 of ser-

ovar Anatum). The signature protein of the Type I CRISPR systems Cas3 gene was detected in

all the S. serovars and variations were noticed in this gene when compared with S. typhimurium

Fig 5. Examples of integrated bacteriophage. Cargo genes are annotated, such as antibiotic and other resistance genes (Hg resistance gene [merA/C/
P/T/ and mer regulatorsmerD/R; S. Cubana], Ag resistance genes [silA/C/P/P2, SRP; S. Heidelberg], quaternary ammonium compound gene [qacC; S.
Tennessee and S. Typhimurium]). The arrow shows orientation of the genes in the contigs and genes are color coded to define different gene
categories.

https://doi.org/10.1371/journal.pone.0224518.g005
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LT2 cas3 as summarized in Table 5. Spacer sequences were also analyzed to detect target prophage

with the help of Blast using UniProt phage sequences (https://www.uniprot.org/). Prophage tar-

gets were observed in most CRISPR loci, with the most common prophage targets being tail,

head, and capsid proteins. Besides this, the other targets were integrase and recombinase regions.

Discussions

The implementation of WGS allows broader inference of pathogen characteristics including

prediction of antibiotic resistance and virulence profiles from the sequences. WGS has been

previously used for the prediction of AR genes in a wide range of microbes including Salmo-

nella [38]. Phenotypic and genotypic correlation analysis confirmed high concordance (97%)

between phenotypically confirmed and in silico predicted AR genes. No absolute concordance

was observed due to insertional inactivation if tet(B) gene in Choleraesuis and no resistance

phenotype was shown by this isolate (Table 2). Resistance to aminoglycosides is either due to

inactivation or modification by acetyltransferases, phosphotransferases, and nucleotidyltrans-

ferases [39]. The aac6-I variants Y and aa of was detected in all the isolates and located on the

chromosome. This cryptic gene has previously been reported in Salmonella that was due to a

deletion in the promoter region [40]. The strA/B and aadA genes are frequently associated

with MGE that easily disseminate aminoglycoside resistance genes in Salmonella and other

gram negative bacteria; streptomycin resistance has also been used as an important epidemio-

logical marker to indicate the possibility of MDR in pathogens [41–43]. Many class 1 integrons

harbor aadA gene variants [44]; four aadA variants were associated with class 1 integrons in

this analysis. Other aminoglycoside resistance genes that confer resistance to kanamycin (aph

(3”)-Ia) and hygromycin B (aph(4’)-Ia) were predicted in this analysis and these genes have

Fig 6. Alignment of closely homologous intact integrated phage among Salmonella serotypes. A. Phage genes
synteny in five serotypes. B. Phage gene arrangement along with mobile genes (transposase, recombinase) in six
serotypes. The arrow shows orientation of the genes and genes are color coded to define mobile, phage and other
genes.

https://doi.org/10.1371/journal.pone.0224518.g006
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also been previously identified in WGS data of Salmonella; moreover, aph(3”)-Ia was the most

frequently detected gene from food sources [19]. All three β-lactam resistance genes (blaTEM-1,

blaCMY-2 and blaCARB-2) are highly prevalent in Salmonella isolated from U.S. animals, and

humans. These genes are the mostly horizontally acquired β-lactamases in Salmonella [42, 45].

Tetracycline is widely used in food animals to combat respiratory infections and have also

been used as growth enhancer and an additive in feed [46](45,46). The genes conferring resis-

tance to tetracycline are widespread among Salmonella serovars and easily transferred among

Table 5. Prophage target identified in spacer sequences in CRISPR arrays in Salmonella serovars.

Salmonella serovar % identity with cas3 gene Number of CRISPR array Spacer

No Target Gene

Agona 98.20 21 8 Prophage Phage EaA protein

10 Prophage Portal protein

Anatum 98.87 24 5 Prophage Tail tube

8 Prophage Phage integrase

11 Prophage Phage EaA protein

15 Prophage Phage-related protein

Bovismorbificans 45.42 23 18 Bacteria/Prophage Integrase

17 14 Bacteria/Prophage Repressor

Cubana 99.32 21 6 Prophage Bacteriophage Mu

14 N/A Uncharacterized protein

9 6 Prophage Adenine methylase

Give 45.62 15 4 Prophage Tail fiber protein

6 Prophage P1 DNA replication

8 Prophage Integrase

18 14 Prophage lambda ninG

Heidelberg 99.32 18 8 Prophage Phage-related protein

Infantis 99.21 26 14 Prophage Repressor protein

30 7 Prophage Phage protein

11 Caudovirus Capsid protein

13 Prophage Uncharacterized protein

18 Prophage DNA-binding protein

Manhattan 98.42 11 8 Prophage Phage EaA protein

10 Prophage Portal protein

Minnesota 46.74 15 3 Prophage Tail proteins

10 Spiroplasma phage Protein

12 Escherichia phage RCS47 Head protein

Ohio 99.21 24 15 Prophage lambda Terminase large subunit (GpA)

Tennessee 45.45 22 20 Salmonella phage SE1 Uncharacterized protein

22 Salmonella phage SEN34 DNA polymerase III theta subunit

57 17 Prophage Terminase

Typhimurium 99.89 26 8 Bacteria/Prophage Tyrosine recombinase xerC2

21 Prophage Uncharacterized protein

Worthington 97.97 28 1 Prophage Integrase

20 Prophage Terminase

23 Prophage Tail

26 Bacteria Chromosome partitioning protein parB

16 9 Prophage Phage protein

14 Prophage Regulatory Protein

https://doi.org/10.1371/journal.pone.0224518.t005
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wide range of microbes through HGT [47, 48]. All isolates except one with tet genes were resis-

tant to tetracycline in this analysis and only tetracycline efflux pump genes were identified. No

other tet genes (ribosomal protection protein or inactivated enzyme) were detected which sug-

gested that the efflux pump mediated resistance was the major tetracycline resistance mecha-

nism among these Salmonella serovars. The high prevalence of these efflux pump genes have

been reported in Salmonella species [49] which further confirmed our findings (Table 2). The

erythromycin resistance gene ere(A) was detected on a class 1 integrons that harbored dfrA,

blaCARB-2 and aadA2 resistance determinants (Table 3). The ere(A) gene has previously been

reported in class 1 integrons [50]. All dfr variants (A1, A7, A12 and A16), are associated with

different profiles of class 1 integrons encoding resistance to trimethoprim. The class 1 integron

carrying dfrA gene variants and other resistance genes have been reported from several Salmo-

nella serovars Anatum, Choleraesuis, Corvallis, Eppendorf, Gallinarum, Kentucky, Rissen,

Stanley, Schwarzenrund, Typhimurium, andWeltevreden [51–54]. Identical class 1 integron

gene cassette (In363) were detected in Salmonella serovar Agona and Ohio (Table 3), that indi-

cated that inter or intra species transfer of integrons help in the spread of antimicrobial resis-

tance genes among bacteria. The fosfomycin resistance fosA gene alleles are located on the

chromosome.The floR genes has been isolated from a wide range of animals and humans and

it has been previously reported from various Salmonella serovars including S. Typhimurium.

Chloramphenicol was used to treat MDR infections in human and animals [55–57]. The sulfi-

soxazole resistance genes sul1 (located within 3‘-conserved segment [3‘-CS] of class 1 inte-

grons) and sul2 (associated with small multicopy plasmids or large transmissible

multiresistance plasmids) are the most frequently found genes for sulfonamide resistance

among sulfonamide-resistant isolates from food animals and humans, whereas sul3 is detected

in various large Salmonella plasmids [58, 59]. The sulfonamide resistance genes sul1 and sul2

were the most abundant AR genes detected in this analysis, which was in accordance with the

previous study where high prevalence of these genes has been reported in the MDR Salmonella

isolated from animals, humans and retail meats from Northern America [60]. A secondary

mutation in parC without primary mutation in gyrA is ineffective to make these isolates resis-

tant to nalidixic acid; however, these isolates may become highly resistant once primary muta-

tion occurs in gyrA gene as reported previously where several fold increase in resistance was

observed when a secondary mutation in parC was seen in an isolate that had a primary muta-

tion in gyrA [61, 62].

The AR genes carrying contigs were distinct and none of them were identical among Sal-

monella serovars except AR contigs of S. Agona and S. Ohio that shared 99.9% sequence simi-

larity and gave best hit with virulence-resistance plasmids (incA/C2) of S. Typhimurium [63].

This>35.0 kb fragment carried tetA, tetR, strA, strB, sul2 and blaCMY-2. The strA, strB, sul2

AR genes was flanked by Tn7 elements in this partial incA/C2 plasmid and this was the most

frequently recorded resistance gene combination among Salmonella serovars located on small

broad-host-range plasmids, as well as detected on the chromosome in Salmonella [49].

Another 5.0 kb fragment from S. Bovismorbificans carrying strA and strB best matched with

the genome of S. Enteritidis (CP020442 and CP022069) and showed 99% coverage and 100%

identity to the region and appear to be widely distributed in Salmonella and other gram-nega-

tive bacteria [49]. These genes have been described as being part of transposon Tn5393 and

have also been identified in bacteria circulating in humans, animals, and plants [64]. Another

contig carrying aadA, ebr and sul1 was detected in S. Cubana and gave best hit with E. coli plas-

mid pBM0133 (KJ170699)/ pDGO101 and this array of genes is harbored by class 1 integron

In1581 (Table 3) [65, 66]. The contig from S. Heidelberg that harbored neomycin (aphA2),

bleomycin and streptomycin (sph) resistance genes best matched with the E. coli transposons

Tn5 (U00004). These genes (aphA2 and sph) are encoded by Tn5 and used as selectable
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markers in cloning vectors for both eukaryotes and prokaryotes [67, 68]. A 8.69 kb contig

from S. Choleraesuis carrying strA, strB and sul2 gave best hit with TY474p3 plasmid

(CP002490) and it was a closed plasmid [49]. Another 5.5Kb contig carrying ereA, aadA2, bla-

CARB-2 and dfrA16 from S. Tennessee gave best hit with E. coli integron intl1 (KX57988). This

integron carrying ereA and aadA2 is rarely reported [69], while a 5.0Kb fragment carrying floR

and tetA in S. Typhimurium, this fragments was the part of Salmonella genomic island 1

(SGI1) that best matched with the regions of complete genome of Salmonella Typhimurium

(CP028318:4845261–4850261, and CP014979:42459–47459). SGI1 has been identified in sev-

eral Salmonella serovars including Typhimurium, Agona, Paratyphi B, Albany, Meleagridis

and Newport [70–74]. The detection of SGI1 in different Salmonella serovars from various

sources including animals and humans across the world indicates frequent dissemination of

the SGI1 through horizontal transfer [75].

The size of the core genome in this analysis was in accordance with the previous studies

where the size of the pan-genome expanded slightly while the size of core genome shrunken

with addition of new genomes. The inter serovars core genome size (3, 224 core genes) within

the 35 Salmonella subsp. enterica was lower while the intra serovar core genome size (3, 836

core genes) for S. Typhimurium was higher compared to our analysis [76, 77]. Low number of

unique genes was directly related to the reduced genomes size, where HGT events were less

and S. Bovismorbificans well correlated in this context with lowest numbers of unique genes

and lower genome size. We could not draw any correlation between high number of unique

genes and with large genome size. However, moderate genome length with high unique genes

revealed its evolutionary significance. Uniform distribution of genes was noticed for other

COG categories among S. serotypes. The abundance of E, G, and K cog categories of genes

increases the diversity, uniqueness and their complex transcriptional regulatory networks that

support morphological and physiological differentiation. The abundance of G and L functional

categories of genes in dispensable genes clearly showed that these functional genes acquired

for the better adaptability and diversity [78].

The majority of virulence genes were part of the core genes and essential for pathogenicity

and infection. WGS data helped to correctly interpret the variations in genes among Salmo-

nella serovars for better understanding of pathogen and evolution. This analysis clearly identi-

fied some of the genes specifically detected in one or several Salmonella serovars. For example,

the pef operon comprising pefABCD genes that is needed to form structural fimbria and medi-

ate the binding of bacteria to the microvilli of enterocytes and spvBCR that enhance virulence

were solely identified in S. Typhimurium; these operons were not detected in S. Choleraesuis.

However, they have been reported in virulence plasmid pSCV50 [79] harbored in S. Cholerae-

suis. RatB which encodes a secreted protein associated with intestinal colonization and persis-

tence was detected in all the analyzed serovars except Agona, Anatum, Cubana, Tennessee,

andWorthington [80] while gogB an anti-inflammatory effector that limits tissue damage dur-

ing infection was detected in serovars Typhimurium and Choleraesuis which are predomi-

nantly associated with swine [81, 82]. Several studies have demonstrated the loss of genes

associated with host specificity, thus some microbes only adapted to become a better pathogen

to specific hosts while losing the ability to infect other potential hosts [83]. The lpf operon has

been reported in Salmonella and is involved in the adhesion to the small intestine [84]. This

operon was detected in most Salmonella serovars with high variations in lpfD genes that are

highly host specific; variations in these genes could be an important factor that may influence

the host range. The conserved nature of phoP/Q genes suggests that its pivotal regulatory role

in Salmonella promotes several phenotypes including cationic antimicrobial peptides resis-

tance which enhance outer membrane barrier function, and the ability to cause invasive and

systemic disease [85, 86].
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The genes which are confined to one serovar or their highly variable variants detected

among serovars were mostly acquired genes and many of them were harbored on phage or

plasmid. The T6SS is a versatile secretion system widespread among Gram-negative bacteria

and directly involved in a variety of cellular processes, including virulence in several bacterial

pathogens [87, 88]. Homology search resulted in best hits with Salmonella serovars Weltevre-

den (LN890520), Agona (CP015024), and Sloterdijk (CP012349). These loci have been

reported to encode T6SS harbored on SPI-19 in Agona andWeltevreden [89]. safA plays a crit-

ical role in host recognition; highly diverse safA genes in six different Salmonella serovars con-

firmed that these serovars could be the part of swine asymptomatic carriers. Whereas highly

identical (>98%) safA was found in S. Choleraesuis and S. Typhimurium which may recognize

similar hosts as these two serovars are predominantly associated with swine [90]. The cfa gene

in S. Choleraesuis was highly conserved and were identical with other S. Choleraesuis in Gen-

Bank database (CP012344 and CP007639) and it may be essential for the attachment to a spe-

cific host [91]. The antimicrobial peptides encoding cmi from S. Heidelberg best matched with

Escherichia coli plasmids harboring this gene (CP035337 and CP035355) and these plasmids

harbored several AR genes. We believe cmi was transferred to S. Heidelberg as an accessory

gene with other AR genes.

The integration of phage genetic elements in the genomes results in genome diversification

of closely related bacterial strains [92] as these phage harbors AR and virulence factor that can

enhance bacterial fitness [93]. Phage-associated resistance and virulence genes have been

reported in Salmonella revealing the role of phage-transferred genes in pathogenicity and resis-

tance [94, 95]. Gifsy-1 and Gifsy-2 like phage were highly prevalent among Salmonella serovars

and these phage have previously been reported in Salmonella [96, 97]. In this study, we found

a number of phage that encode for resistance and virulence genes. For example, we identified a

75.1 kb phage that harbor class 1 integrons carrying aadA2, blaCARB-2, sul1 AR genes and

encodes a glucosyl transferases gtrA in the serovar Typhimurium, this putative virulence gene

has previously been reported in P22-like and P2-like prophage in different Salmonella serovars

[98].

The analysis and interpretation of the CRISPR region is complex. Spacers can only be

added to the 50 end and deleted anywhere in the locus, leaving the 30-spacer as ancestral. The

conserved spacers at the ancestral ends allowed us to understand the common infection his-

tory or common ancestory of these serovars though there is a possibility of the degradation of

many internal spacers [17]. A careful analysis of CRISPR locus alignments provided an evolu-

tionary framework to view the phylogenetic patterns of CRISPR diversity as we observed dele-

tion of spacers in serovars Choleraesuis, Heidelberg and Typhimurium. Prophage targets were

observed in most CRISPR loci; and about 87% (33/38) of spacer sequences were found to

match with sequences from phage suggesting that phage were an important type of HGT in

Salmonella. In this study, all eight cas genes pattern was not identified in S. Worthington as

draft genome sequences was used and missing sequencing data cannot be ruled out. Cas3

involved in the cleavage of invading DNA and considered as an important component of the

CRISPR mechanism and it was the only cas gene detected in all the serovars [99]. Comparison

of cas3 among the serovars confirmed two distinct pattern,that was in accordance with earlier

report where two distinct cas3 pattern was reported [100].

Vehicles of dissemination (plasmid, phage, integrons etc.) are crucial for microbial evolu-

tion and they play a major role in genetic innovation and genome evolution. Resistance deter-

minants were located either on plasmids, integrons or integrons were also associated with

phage which indicated that they were acquired horizontally. Highly diverse class 1 integrons

containing different AR gene cassettes were detected among Salmonella serovars and these AR

genes accounted for resistance to relative drugs. This suggests that these determinants of AR
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are functional and crucial for the survival of the microbes. A fraction of the virulence determi-

nants were also identified on mobile elements and this suggests that these determinant are cru-

cial for better survival. The common ancestral ends in CRISPR suggest that these isolates

shared common ancestry and microbes are continuously acquiring new phage to counter the

CRISPR regulation.

Conclusions

The insight into theWGS data enabled us to virtually access the genetic content for the assess-

ment of genetic diversity, pathogenesis, evolution, serotyping, virulence and resistance profiling

that enhanced our understanding of the genomic diversity among Salmonella serovars. The pan-

genome size was in accordance with the earlier report however the core genome was compara-

tively higher due to less isolates used in this analysis. Most of the virulence factors were part of

the core genomes indicating absolutely required factor for virulence; however, a small fraction

of virulence factors were highly diverse (safA) or confined to one isolates (cfa, pefABCD, and

spvBCF) indicating variation in pathogenicity among Salmonella serovars. Inter and the intra

species transferability of MGE enhance their reachability to the specific or the broader host. Var-

iable MGE information from theWGS enables understanding of the dynamics of horizontal

gene transfer carrying resistomes that were widely distributed in other Gram-negative bacteria.

Detection of class 1 integrons carrying resistance determinants (In1582 and In167), high

sequence diversity among related prophage carrying various resistance and virulence genes, sug-

gesting extensive horizontal gene transfer that enhanced bacterial fitness. WGS enabled us to

obtain a comprehensive resistome profile that can be useful to develop antibiotic resistance com-

bat strategies. Comprehensive genome analysis with large dataset could profoundly enhance our

understanding of the adaptability and survival mechanism in Salmonella serovars.
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