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SUMMARY. A dense set of single nucleotide polymorphisms (SNP) covering the genome and an efficient 
method to assess SNP genotypes are expected to be available in the near future. An outstanding question is 
how to use these technologies efficiently to identify genes affecting liability to complex disorders. To achieve 
this goal, we propose a statistical method that has several optimal properties: It can be used with case- 
control data and yet, like family-based designs, controls for population heterogeneity; it is insensitive to 
the usual violations of model assumptions, such as cases failing to be strictly independent; and, by using 
Bayesian outlier methods, it circumvents the need for Bonferroni correction for multiple tests, leading to 
better performance in many settings while still constraining risk for false positives. The performance of our 
genomic control method is quite good for plausible effects of liability genes, which bodes well for future 
genetic analyses of complex disorders. 

KEY WORDS: Bayesian inference; Case-control; Complex genetic disorder; Outliers; Population heterogene- 
ity; Single nucleotide polymorphism genotypes. 

1. Introduction 

A spin-off of the Human Genome Project is the massive gov- 

ernmental and industry-sponsored effort to develop a dense 

set of biallelic markers (single nucleotide polymorphisms; 

SNP) throughout the human genome (Collins et al., 1998; 

Wang et al., 1998). Coupled with this effort is intense research 

to produce techn6logy to assess SNP genotypes rapidly and 

economically. These efforts have been spurred by the realiza- 

tion that a dense set of SNP throughout the genome could 

yield critical information for determining the genetic basis of 

complex diseases (Risch and Merikangas, 1996), in large part 

through population-level association induced by the interplay 

of linkage and evolution. 

An outstanding question is how to use SNP technology effi- 

ciently. One possibility is to apply it to case-control samples. 

Case-control studies have numerous advantages for the ge- 

netic dissection of complex traits (Morton and Collins, 1998; 

Risch and Teng, 1998). Case-control studies have been criti- 

cized, however, because they rely on the unrealistic assump- 

tion of population homogeneity; in the face of population het- 

erogeneity, spurious associations can arise (Li, 1972). There- 

fore, alternative methods, which employ family-based sam- 

pling to obviate the effects of population heterogeneity (Falk 

and Rubinstein, 1987; Spielman, McGinnis, and Ewems, 1993; 

Curtis, 1997), have become increasingly popular. 

Despite population heterogeneity, case-control designs are 

appealing because they do not require recruitment of addi- 

tional family members for cases, which can be expensive at 

best. What is needed is a method that has the advantages 

of both case-control and family-based designs. In this article, 

we propose such a method for either SNP association scans or 

tests of candidate genes. For case-control data, our method 

effectively uses the genome itself to induce controls similar 

to family-based studies and to determine what constitutes a 

significant departure from the null model of no linkage dise- 

quilibrium. 

An advantage of dense association genomic scans is that 

they can detect loci having a small impact on risk to hu- 

man disorders (Risch and Merikangas, 1996). A disadvantage 

is that a large number of false positives occur when many 

significance tests are conducted. A traditional solution is to 

impose Bonferroni correction. Instead we propose a Bayesian 

outlier test as a means of determining which markers ex- 

hibit significant linkage disequilibrium with the disorder. In 

essence, the outlier test bypasses the usual rigid assumptions 

required to obtain chi-square distributed random variables in 
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favor of more flexible statistics and weaker assumptions. This 

test is appropriate for family-based and case-control designs. 

For this article, however, we focus on the latter. 

Another feature of our proposed methodology is that it 

allows for violations in the usual model assumption, indepen- 

dence of observations, which, when violated, leads to extra 

variance in the test statistic. For instance, for case-control 

studies, affected individuals are more likely to be related than 

are control individuals because they share a genetic disorder 

and, ideally, a common genetic basis for the disorder. In fact, 

this is the sine qua non of association-based genetic studies. 

Hence, for case-control studies, test statistics are generally 

inflated relative to expectation under the assumption of an in- 

dependent sample and no genetic association with the disease. 

For this reason, simple marker-by-marker hypothesis tests will 

almost surely produce false positives, even after a Bonferroni 

correction. These false positives often are attributed to pop- 

ulation heterogeneity, but we offer cryptic relatedness as a 

more important explanation. 

Our proposed method, when applied to case-control stud- 

ies, does not require knowledge of the genealogy of the pop- 

ulation or the nature of population heterogeneity. The test 

adapts and corrects for problems arising from population het- 

erogeneity, poor choice of controls, and cryptic relatedness of 

cases, albeit at a cost in power. Our goal in this article is 

to describe the method and assess its power for reasonable 

choices of population and genomic characteristics. 

2. Methods 

2.1 The Data and Genetic Models 

2.1.1. Properties of a single locus. For a case-control study 

and n biallelic markers, the data for each marker are given in a 

standard 2 x 3 table of genotype by case and control (see Table 

1). To test for lack of independence, three 1-d.f. chi-square 

statistics are possible, corresponding to dominant, recessive, 

and additive genetic models. For an association genome scan 

to assess the genetic basis of a complex disorder, there is 

usually no prior information about mode of inheritance. In 

this setting, then, an additive model should perform well, 

and this is the model that we will investigate in depth. The 

additive genetic model can be tested using Armitage's trend 

test (Armitage, 1955), 

y 2 N{N(ri + 2r2) - R(n1 + 2n2)} 2 

R(N -R)fN(ni + 4n2) -(ni + 2n2)21} 

This test is equivalent to the score test in the logistic 

regression model. 

For each marker, the data also can be summarized via 

a 2 x 2 allelic table (Table 2). (See Sasieni [1997] for a 

thorough analysis of the features of allelic versus genotypic 

analyses.) Here we review some of his results and explore 

these issues further, as they are critical to our methodological 

development. 

Based on the allelic data, the chi-square test for associa- 

tion is 

2 - 2N{2N(ri + 2r2) - 2R(n1 + 2n2)}2 2 

^ (2R)2(N 
- 

R){2N(n1 + 2n2) 
- (ni + 2n2)2} 

( 

The numerators of both trend and allelic tests are 
proportional to the square of the weighted difference between 

Table 1 

Genotype distribution 

A1 alleles 

0 1 2 Total 

Case ro r1 r2 R 

Control so SI S2 S 

Total no n1 n2 N 

the number of A1 alleles in the cases and the controls, 

N(rl + 2r2) - R(ni + 2n2) = S(rl + 2r2) - R(sl + 2S2)- 

The tests differ due to their denominators and, as we shall 

see shortly, by their assumptions concerning independence, 

i.e., 

y4/Y2 = 1 + 4non2 - n/{(nr + 2n2)(n1 + 2no)}. (3) 

Under independence or Hardy-Weinberg equilibrium in the 

population, this ratio is approximately equal to one (Sasieni, 

1997). The trend test is more conservative than the allelic test 

because this ratio tends to be greater than one, even under 

the null hypothesis, when the population is not in Hardy- 

Weinberg equilibrium. 

Let F denote Wright's coefficient of inbreeding (Elandt- 

Johnson, 1971, p. 214). Here we define inbreeding broadly to 

denote any form of mating leading to increased homozygosity. 

Two distinct processes lead to this end: matings among 

relatives and population substructure. For either process, F 

measures the correlation between uniting gametes, but the 

value and meaning of F is context dependent. 

If pi is the frequency of Ai in the population, then the 

genotypic frequencies are described by 

Pr(i A ) {Fpi + (1 1-F)pi2 if _ Pr(A~A3) 12(1 - F)p-pj if i <j (4 

Let G be the number of A1 alleles in the genotype of a 

single individual. Clearly, E[G] is not a function of F, but 

the variance of G is inflated by a factor of (1 + F) from that 

expected for a population in Hardy-Weinberg equilibrium, 

var[G] = (1 + F)2p1p2 (cf., Elandt-Johnson, 1971, pp. 216- 

218). 

Noting that E(nI + 2n2)/2N = P1 and replacing nmj i 

O, 1, 2, by their expected values reveals that (3) is approxi- 

mately equal to (1 + F) under any population genetic model 

for which genotype probabilities are given by (4). Conse- 

quently, we see that the trend test automatically accounts 

for the extra-binomial variance induced by correlation of 

uniting gametes. What of correlation across individuals? The 

trend test assumes that the genotypes of individuals are 

Table 2 

Allele distribution 

A1 A2 Total 

Case rl + 2r2 rl + 2ro 2R 
Control sl + 2s2 sl + 2so 2S 

Total -nr + 2t12 nr + 2no 2N 
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independent, but that assumnption is false if there is 

population substructure or related individuals within one or 

both of the samples. 
In fact, concern about the effect of population substructure 

on case-control studies is common (Spielman et al., 1993). 
The Wahlund effect, a well-known result of substructure, 
predicts an allelic correlation within genotypes, which results 

in an excess of homozygotes in a substructured population. 
As we just saw, the trend test accounts for this effect. More 

troublesome, then, is the fact that the allelic correlation 

extends across individuals within the subpopulation as well. 

For a substructured population, F is also the correlation 
between alleles from members of the same subpopulation. As a 

consequence of this correlation, the usual chi-square analyses 
can result in a rate of false positives exceeding the nominal 
level. As we demonstrate below, whether or not excess false 
positives occur depends on the nature of the substructure. 

Let Gi, i = 1,.. , R, denote the number of A1 alleles 
in the ith case. Let Hj, j = 1, ... , S, denote the same 
for the controls. Let al, a2,.. ., am and bl2,b . . ., bm denote 

the sample size of cases and controls from each of the m 

subpopulations, E ak = R and E bk = S. For simplicity 
of exposition, take R = S. The trend and allelic tests are 

proportional to the square of T = Gi - EZ Hj. We analyze 
the behavior of the test statistic T under the null hypothesis. 
The variance of T is highly dependent on the similarity 
between ak and bk, 

R S 

var (T) Zvar(Gj) + Zvar(Hj) 

Z=l j=l 

+ 2Ecov(G GIO) +2Ecov(Hj,H1) 

i<l j<l 

- 2ZE cov(Gi,Hj). 

i i 

From the above, we have var(Gi) var(Hj) = 2plp2(1 + F). 
For any pair of genotypes from the same subpopulation, 

cov(Gi,GI) = cov(Hj,HI) = cov(Gi,Hj) = 4FpIp2,i 4 

l,j # 1. 

It follows that the variance of the difference above equals 

4Rplp2 (1 + F) 

+ 4Fplp2 {ak(ak-1) + bk(bk -1) -2akbk} (5) 

k 

This quantity achieves its maximum, 2Rpip2 (2 + F(2R - 1)), 
when ai takes the value R for some i and a3 0, j 7& i, and 

bk takes the value S for some k, k 7& i, and b.3 0, j 71 k. Its 

minimum, 4Rplp2(1 -F), occurs when ak = bk, k 1,. . , m. 

Contrast these with the limiting variance utilized in the trend 

test, 4Rplp2(1 + F), and the allelic test, 4RpIp2. Define 

A = var(T)/{4Rplp2(1 + F)} as the variance inflation factor 

relative to the trend test. 

The most extreme effect of substructure occurs if cases and 

controls define distinct subpopulations. In this instance, even 

small values of F can have a large impact on the variance 

of T. Alternatively, it is optimal for affection status to be 

independent of subpopulation membership. In this scenario, 
population substructure has essentially no impact on the 

distribution of T. In fact, at its minimum, A = (1-F)/(1+F). 

For most cases, however, the probability of affection varies 

somewhat by subpopulation. To see its effect, take F 0.05, 

R = S = 100, m = 10, and ak = bl = 16 for k 1,.5. ,5 
and I = 6, ... I,10 and ak = bl = 4 for k = 6,. ..,10 and 

= 1,.. ., 5. This fairly extreme scenario results in a variance 

inflation factor A of 1.3. For a more realistic level of admixture, 

F = 0.01, A is only 1.06. 

In a case-control study of a disease with a genetic basis, 

cases are likely to be related; after all, they share a genetic 

disorder. By contrast, the controls are more likely to be 

independent, but they too may be related to a minor degree. 

For an inbred population, F is the probability uniting gametes 

that are identical by descent (i.b.d.). The kinship coefficient 

gives a related quantity: For relatives i and j, it is the 

probability that an allele selected randomly from i and an 

allele selected randomly from the same autosomal gene of j 

are i.b.d. In both cases, F can be interpreted as the correlation 

between alleles. 

Because cryptic relatedness among affected individuals may 

have a large impact on a case-control study, we turn our 

attention to this case. For simplicity, consider a case-control 

sample with R = S; an allelic correlation equal to F1 (F2) 

is assumed for all individuals in the case (control) sample. 

Case and control samples are independent. This model is 

mathematically equivalent to assuming the most extreme 

substructure except that F1 need not equal F2. Under this 

model, var[Zi Gi] = 2RpIp2 x {1 + F1 (2R - 1)}. A similar 

argument holds for the controls. Consequently, under the null 

hypothesis of no genetic association, 

var[T] = 2RpIp2 x {2 + (F1 + F2) x (2R - 1)}. (6) 

Thus, even for small values of F1 and F2, the variance of 

T is substantially inflated over the binomial variance and 

it increases as a function of the sample size. For example, 

if F1 0.001, F2 = 0, and R = S = 1000, A is 2; with 

R= S 2000, A is 3. 

Compare this result with the admixture example given 

above for F = 0.01. Consider a sample of cases who 

are cryptically related and assume the case and control 

subpopulations differ somewhat with F1 = 0.0075, F2 = 

0.0025, and F1 + F2 = 0.01. For R = S = 100, the variance 

inflation is 2 versus 1.06 for substructure alone. While these 

examples are quite artificial, the same arguments apply for 

more complicated instances of cryptic relatedness because the 

variance of T is the product of the binomial variance and a 

complex function of various kinship coefficients. 

2.1.2. Variance inflation estimated from multiple markers. 

With data from a single locus, it is impossible to correct for 

the effect of population substructure and cryptic relatedness. 

This fact motivated development of matched case-control 

designs in epidemiology generally and family-based designs 

for genetic epidemiology. When a set of SNP is evaluated for 

cases and controls, however, it is possible to simultaneously 

estimate the variance inflation and adjust the test for 

association of each locus with the disorder. 

In the ideal case, the inflation factor A would be a constant 

for all markers. For the model of cryptic relatedness, the 

variance inflation is due to correlations or kinship coefficients 

unrelated to properties of individual loci, and thus it is the 

same for all markers throughout the genome. For the variance 
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inflation due to locus-specific attributes, the results are not as 

transparent, but under certain conditions, the inflation factor 

is roughly constant. Several conditions must be met: (a) the 
loci under study must not have very different mutation rates 

(Chakraborty and Jin, 1992); (b) they cannot be under strong 
and subpopulation-specific selection (Crow and Kimura, 
1970); and (c) with respect to population substructure, F 

should not vary greatly across loci. The advantage of SNP for 

our analyses is that they are assumed to have a minuscule 

mutation rate, thus meeting condition (a). Little is known 

about selection on the human genome, but strong, differential 

selection for extant SNP alleles seems unlikely. Thus, it is 

plausible that condition (b) is met. At issue is whether or not 

F varies greatly across loci. 

According to Lewontin and Krakauer (1973), the variance 
in F is negligible, provided the number of subpopulations 
is large and F is small. Under a more complex model 

of relationships among subpopulations, Robertson (1975) 
derived a different expression that allows for the possibility of 

considerably more variance in F across the genome. Lewontin 
and Krakauer's results are based on a model that assumes 

that all subpopulations are equally related. Robertson's 

model more nearly describes the world's subpopulations 
because subpopulations within an ethnic group/race are more 

closely related than subpopulations across ethnic groups (e.g., 

Devlin, Risch, and Roeder, 1993). 

In a well-designed case-control study, subjects are drawn 

from the same ethnic group or additional heterogeneity is 

modeled explicitly. Take, e.g., a random sample of Caucasians 

drawn from Europe. Some rough calculations based on the 

results of Cavalli-Sforza, Menozzi, and Piazza (1994) for 122 

classical genetic markers suggest an average F = 0.0006 and 

standard deviation 0.0012. Clearly, F is not constant, but, as 

Lewonton and Krakauer predicted, its variance is not large 
for such a sample. For the remainder of the methodological 

development, we will assume A is constant across loci. The 

impact of variation in A will be described in the sequel. 

2.2 Statistical Analysis 

To determine which markers are in association with the 

disorder, we first propose a Bayesian outlier model that 

automatically corrects for violations of the independence 
model. The model uses the results for a set of loci (e.g., a 

genome scan) to estimate the variance inflation, A. Formally, 
the Bayesian framework of this model is similar to the one 

proposed by Verdinelli and Wasserman (1991) for general 
outlier detection. A less flexible, but simpler, frequentist 
solution is described at the close of this section. 

2.2.1. The Bayesian approach. For marker locus i, we obtain 

a statistic Yi2 using the trend test, i = 1, . . . , n. For this 

report, we assume the statistics are independent (see Section 

4 for further discussion). When the marker is in linkage 

equilibrium with the disorder and there is no population 
substructure or cryptic relatedness, yi2 is distributed as 
X2 (0). We expand this null model to allow for extra variance 

by assuming Yi2/A , X2(0). 
To allow for outliers (i.e., markers associated with the 

disorder), the model is enhanced so that the distribution for 
y2 is a mixture of chi-square distributions, i.e., 

yV-2 /> e 
t Xl(Ai2) I (1-e) X1 (0), (7) 

where e is the prior probability a given observation is an 

outlier and A 2 is the noncentrality parameter associated 

with the ith outlier. It follows that Yi - EN(Ai, A) + (1 - 

E)N(O, A). To simplify computations, an auxiliary variable 5i 
is introduced, 6i - Bernoulli(e). Given 5i, Yi - N(65Ai, A). 

We observe Xi = lYil, not Yi. The latter would be 

observable only if we knew a priori which allele was 

potentially associated with the disorder. When 5i = 0, 

knowing Xi is sufficient for inferential purposes. When 5i = 1, 

we assume Yi = Xi. If Ai/A'/2 > 2, then Pr(Yi > 0) is high. 

When Ai/A1/2 is substantially less than two, it is not possible 

to distinguish this observation from the null model. Thus 6i is 

taken to be zero with high probability, and we incur little error 

with our approximation. Finally, because the vast majority of 

the markers are not associated with the disorder of interest, 

this approximation has little effect on our inferences. 
To complete our Bayesian probability model, we require 

a prior specification for A, Ai, and e. Let A - 

inverted chi-square(v, (). A choice of parameters that imposes 

almost no effect on the likelihood is v = 0, ( = 1000; this 

is essentially the reference prior (Lee, 1989). Let Ai be a 

set of independent random variables, each with a normal 

distribution N(K, T2). A prior could also be placed on e 

(Verdinelli and Wasserman, 1991), but we obtained better 

results with a fixed value of e. The best choice of values for 

(i, T2, ) depends on whether the markers under study are 

part of a genome scan or a candidate gene study (see below). 

This model is quite convenient for making Bayesian 

inferences via Gibbs sampling (Carlin and Louis, 1996), 

with simple conditional distributions required to compute 

the Gibbs updates. Conditional on the data and the other 

parameters, the following distributions result. If 5i = 1, Ai is 

N(c, d) with d-' (1/T2 + 1/A) and c = (Xi/A + KIT2) X 

d-1. If instead, 5i 0, then Ai has the prior density N(,, T2). 

Each 6i is independent and is distributed as a Bernoulli with 

success probability 

q {(Xi -Ai)/A'/2} e 

Pi 

{(Xi -Ai)/Al/21 e + 0 (Xi/Al/2) (1 -e) 
' 

'8 

where q(.) represents the standard normal density. A 

has an inverted chi-square distribution. More precisely, 

E (Xi - 5iAi)2 + vA/ 
2 

Determining if 5i is one or zero is a binary Bayesian 

hypothesis testing problem (Berger, 1985). When the loss is 

zero or one, then the rule is to choose 5i - 1 if 

f (Xi 1 6= ) (l -)(g 

f(X-i i= e0) 

where f(Xi l 5i) is the marginal distribution of Xi, given 

5i. The rule above is equivalent to declaring Xi an outlier 

whenever (1/M) ziLm lpi) (1/M) YJ-1 i > 0.5, where 

j 1, ... , M indexes the cycles of the Gibbs sampler. For 

e-0.01 (0.0001), the test requires the likelihood of the data 

under the alternative to be 99 (9999) times greater than under 

the null model. In this sense, e can be viewed as a tuning 

parameter the smaller E, the higher the hurdle for declaring 
an observation as an outlier. 

Genome scan. Risch and Merikangas (1996) proposed a 

genome-wide association scan using SNP as a means of 
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determining the genetic basis of complex disease. While 

the number of SNP required to perform an effective scan 

is unknown, a reasonable estimate is between 50,000 and 

100,000 SNP. A frequentist approach might use Bonferroni 

correction to account for such a large number of hypothesis 

tests. In Bayesian decision theory, the multiple comparison 

problem must be handled via choice of prior distributions. To 

avoid incurring an excess of false positives for such large n, 

a relatively small value of e is required. For a genome scan 

in which no prior information is available for E, we suggest e 

equal to 10/n. In addition to adjusting E, a data-dependent 

prior for K helps to account for the larger number of tests 

performed by moving the prior for the outlier distribution to 

the right of the expected size of the largest order statistic 

obtained in n independent tests. We suggest data-dependent 

values for both r, and T2, with es = A1/2 x E[X(n) + 1] and 

T2 = >, where A = {median(X1,X2,... ,X.,)/0.675}2 is a 

robust measure of A and E[X(n)] is the expected value of 

the largest order statistic from a sample of size n from a 

standard normal distribution. The largest order statistic is of 

order {log(n)}1/2, or about 1.6{log(n)}1/2 - 1, in the range 

of interest. 

Candidate genes. A slightly different approach, consisting 

of two stages, better utilizes the potential of a Bayesian 

analysis in a candidate gene study. Here we assume that the 

n loci consist of c biallelic polymorphisms in candidate genes 

and (n - c) SNP dispersed throughout the genome. The SNP 

markers are examined for other purposes, such as a linkage 

study. Because the SNP markers are widely spaced, perhaps 

throughout the genome, we assume that they are not likely to 

be near enough to a susceptibility gene to exhibit a detectable 

level of association. Consequently, only the candidate gene 

markers will be tested for association. 

In stage 1, the outlier test is performed. Because a small 

number of tests are to be performed (c versus n) and because 

there is prior information implicating the markers under 

study, a candidate gene study has the potential of yielding 

much more powerful inferences. The key tuning parameter is 

e. We suggest using e = 0.10 and/or 0.05 for a preliminary 

screening test. According to Jeffrey's criterion (Kass and 

Raftery, 1995), loci that are declared outliers with e = 0.05 

provide strong evidence of association and those that are 

outliers with the less stringent e = 0.10 provide substantial 

evidence of association. The remaining tuning parameters 

(ii, T2) are of less importance, and we suggest setting them at 

(4A1/2, A). With these choices, the test should have acceptable 

Type I error rates. 

Those candidate genes with the highest posterior probabili- 

ty of association and strongest associations with the disorder 

are the most promising ones to pursue further. At stage 

2, these quantities are computed for each candidate gene 

determined to be an outlier in stage 1. To complete the 

computations, we require a subjective declaration of E, which 

is interpreted as the prior probability a given candidate gene 

is associated with the disorder. For instance, if the candidate 

gene was strongly implicated in one or more prior studies, 

e might be set at 0.20 or even greater. Alternatively, if the 

candidate gene was weakly implicated based on a single poorly 
designed study, e 0.05 might be appropriate. For any 

prespecified prior probability ~, the posterior probability of 

association is computed as given by (1/M) EZ p($. If there 

is cause to vary e by marker, then this analysis should 

be performed on a locus-by-locus basis. The posterior 

distribution of the strength of the association, Ai - N(c,d), 

can be computed simultaneously. 

2.2.2. Frequentist approach. The idea of genomic control 

can also be implemented without resorting to Bayesian 

techniques. Numerous frequentist outlier tests are applicable 

to this situation (see Barnett and Lewis, 1995, chapter 6). 

Many of these tests, however, are sensitive to swamping and 

masking effects. For this reason, we favor the simple, robust 

technique described below. 

Testing. A frequentist outlier test can be derived based on 

the fact that Xi = lYil is approximately distributed as the 

absolute value of an N(O, A) random variable under the null 

hypothesis. Although A is unknown, with large n, it can be 

estimated with high precision using a robust estimator such 

as A (defined in the previous section). When n, R, and S are 

large, y2/A is approximately distributed X2 under the null 

hypothesis. A Bonferroni correction provides a conservative 

critical value for the test, x21(a/n). When A is constant 

across the genome, this simple adjustment will result in a 

test statistic with Type I error rate close to the nominal 

level. When A follows a distribution across the genome with 

standard deviation of the same order as the mean, this 

adjustment will result in a test statistic with Type I error 

rate roughly equivalent to the nominal level. 

Power. An advantage of the genomic-control methodology 

is that levels of heterogeneity and cryptic relatedness need 

not be prespecified. However, without knowledge of A, it is 

difficult to design a study that attains a prespecified level of 

power. Because the greatest impact on the test statistic arises 

due to cryptic relatedness, we recommend using a fixed level of 

cryptic relatedness to obtain a conservative estimate of power. 

From (6), A can be computed. Then N can be determined 

based on a test that rejects for values greater than AX2 

3. Simulation Results 

In real populations, clusters of individuals are related to 

varying degrees and population heterogeneity varies some- 

what over loci. Even if it were practical to simulate reality, it 

would be difficult to summarize the simulations in a compact 
form. Fortunately, because F can be interpreted both in 

terms of the correlation due to relatedness and correlation 

due to population substructure, there is a simple way of 

generating data to evaluate the methods. As noted previously, 
the most extreme population heterogeneity occurs when cases 

and controls are sampled from distinct subpopulations. When 

this occurs, cases (and controls) are related to each other by 

a fixed degree. 
To model outliers, we produce data from a multiplicative 

model for genotype relative risk (Risch and Merikangas, 

1996) with approximate risk parameter -y (see Sasieni, 1997, 

Theorem 1). For risk to individuals carrying zero, one, and 

two alleles at a liability locus being 7ro, 7TI, and 7r2, -y equals 

rTI/7T( and _,2 equals ir2/7rO. 

By standard techniques for beta-binomials, we simulate 

data with the desired correlation structure: Within the 

population as a whole, the cases possess a fixed allelic 

correlation both within and across genotypes equal to F1, 
but the genotypes of the cases are uncorrelated with the 

genotypes of the controls. Similarly, the controls are generated 
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Table 3 

Comparison of power and Type I error rates for the genomic-control test and the standard procedure (trend tests 
with Bonferroni correction). For each configuration, 100 data sets with 400 (100,000) loci were generated, each with 

10 loci actually in association with the disorder [relative risk equal to -y, e = 0.01, (0.0001) and , = 4A (5A)]. The 

columns labeled Outliers give the average number of observations correctly declared as being in association with the 

disorder by the two statistical procedures; this column divided by 10 gives the power to detect an outlier with this 

level of relative risk. The columns labeled Errors give the average number of observations incorrectly declared as 

outliers by the two statistical procedures; this column divided by 390 (99,990) gives the Type I error rate per locus. 

Genomic-control Standard 

R S -y F1 F2 Outliers Errors Outliers Errors 

n 400 

1000 1.25 0.00001 0.00001 5.45 0.39 4.44 0.14 
1.50 0.001 0.00001 9.59 0.29 10.00 3.71 
2.25 0.01 0.00001 8.51 0.40 10.00 106.21 
1.50 0.001 0.001 6.51 0.34 9.72 13.41 
2.50 0.01 0.001 9.38 0.31 10.00 114.83 
3.00 0.01 0.01 5.39 0.21 10.00 166.50 

500 1.50 0.00001 0.00001 8.86 0.34 8.09 0.11 
1.75 0.001 0.00001 9.89 0.42 9.94 0.92 
2.50 0.01 0.00001 9.26 0.33 10.00 53.64 
1.75 0.001 0.001 8.84 0.40 9.83 3.76 
2.75 0.01 0.001 9.54 0.36 10.00 59.46 
3.25 0.01 0.01 6.39 0.26 10.00 107.60 

100 2.00 0.00001 0.00001 5.18 0.25 3.63 0.25 
2.25 0.001 0.00001 6.62 0.32 5.99 0.12 
3.00 0.01 0.00001 6.16 0.23 9.20 3.48 
2.25 0.001 0.001 5.79 0.23 9.20 3.48 
3.50 0.01 0.001 7.80 0.24 9.81 4.16 
4.50 0.01 0.01 7.09 0.28 9.92 12.70 

n 100,000 

1000 1.40 0.00001 0.00001 7.96 0.96 6.40 0.08 
2.75 0.01 0.00001 5.28 0.32 10.00 14,125.47 
1.75 0.001 0.001 8.12 0.68 10.00 465.12 

100 3.00 0.00001 0.00001 7.48 0.72 5.84 0.04 
4.50 0.01 0.00001 5.56 0.28 9.64 36.92 
3.00 0.001 0.001 5.60 0.56 5.52 0.48 

with a fixed allelic correlation equal to F2 but unrelated to 

the cases. Data for cases and controls are generated indepen- 

dently with each population in Hardy-Weinberg equilibrium. 

For cases, p = Pr(Ai) is sampled from a beta distribution with 

parameters az = 1 = (1 - F)/(2F); then a binomial sample of 

2R alleles is drawn using this value of p; these alleles are ran- 

domly paired to form genotypes. For controls, a new value of p 

is sampled and then a sample of 2S alleles is drawn using this 

value of p. A new value of p is generated for each locus in both 

the cases and controls. In each draw, the expected value of p 

is 1/2 except for the loci designated as outliers. For the out- 

liers, the alleles are sampled from a binomial{2R, -y/(1 + y)} 
distribution and are randomly paired to form genotypes. 

We simulate from values of F ranging from 0.01 to 0.00001. 

Within a randomly mating population, these values represent 

a range of cryptic relatedness spanning approximately second 

to seventh cousins. F = 2-2(k+1) for k-cousins. We choose 

fairly large values of F to account for the possibility that the 

cases and controls are from slightly different subpopulations. 

From Table 3, it is apparent that the Type I error rate is 

small and quite stable for the Bayesian genomic-control test. 

A single false positive is obtained with probability roughly 

0.33 for n = 400 and 0.60 for n = 100,000. Contrast this sta- 

bility with the standard test (trend tests with a Bonferroni 

correction a = 0.10/n), which yields wildly unstable num- 

bers of false positives ranging from 0 to over 14,000 errors per 

genome scan. In general, a larger number of false positives 

occurs when F is larger. As expected, correlation among sub- 

jects has a strong effect on the distribution of the test statistic 

and this effect is most acute when the sample size is larger 

(i.e., the effect increases as R increases). 

Another feature illustrated by the simulations is that the 

power of the tests decreases as n increases. This is not surpris- 

ing because a good test must be more conservative to prevent 
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a large number of false positives when a dense genome-wide 

scan is performed. 

F1 = F2 = 0.00001 represents the ideal model because 

alleles are essentially uncorrelated and the test statistics are 

very nearly asymptotically chi-square distributed under the 

null hypothesis. Not surprisingly, the standard test results in 

very few false positives both for n = 400 and n = 100,000. For 

n = 400, the power of the standard test is about 10% lower 

than that of the genomic-control test. For n = 100,000, the 

loss of power is more substantial, i.e., approximately 16%. 

4. Discussion 

Our genomic-control methods target the detection of popula- 

tion-level association between marker and disease from a case- 

control sample. They are designed to exploit advancing tech- 

nology for the detection of genes underlying human diseases, 

such as single nucleotide polymorphisms detected using a gene 

chip, a glass wafer to which is bound high-density arrays of 

prepooled primers for multiplex polymerase chain reaction as- 

says. The first generation of gene chips is due in 1999 (see 

http://www.affymetrix.com/), and up to 100,000 SNP scat- 

tered throughout the genome are anticipated to be available 

within a few years (Collins et al., 1998). 

For a case-control sample, population substructure and 

cryptic relatedness among subjects leads to overdispersion of 

the chi-square test statistic for association and causes spuri- 

ous rejections of the null hypothesis. Under reasonable pop- 

ulation genetic assumptions, however, this overdispersion is 

roughly constant across the genome, allowing for a natural 

correction to the case-control test statistic. Plainly, this cor- 

rection comes at a cost: Case-control studies analyzed using 

the genomic-control approach incur a reduction in power if 

the sample is not independent. The larger the overdispersion 

parameter, the smaller is the power. Consequently, although 

the genomic-control method allows for the analysis of case- 

control samples that do not meet the independence assump- 

tion, a carefully collected sample from a homogeneous popu- 

lation of unrelated individuals will yield a more powerful test 

statistic. 

In fact, the genomic-control method produces control in 

many ways comparable to genetic epidemiology's family-based 

designs (Spielman et al., 1993; Curtis, 1997). These family- 

based designs, which are matched case-control designs with 

appropriate test statistics (e.g., Laird, Blacker, and Wilcox, 

1998), circumvent spurious association due to population het- 

erogeneity. As we have demonstrated here, the genomic-con- 

trol method also eliminates spurious associations due to pop- 

ulation heterogeneity. There are other favorable features of 

case-control methods, which, when teamed with genomic- 

control methodology, make case-control a very compelling 

method for the genetic analysis of complex diseases. For in- 

stance, family-based designs generally are not efficient rela- 

tive to case-control designs for genetic analysis of complex 

diseases (Risch and Teng, 1998). In addition, family-based 

designs require tremendous effort during the data collection 

phase compared with case-control studies and therefore cost 

far more to implement. 
The proposed genomic-control method is built on a Bay- 

esian probability model. This model easily accommodates 

overdispersion due to heterogeneity and relatedness. With the 

help of tuning parameters, the method also scales as the size 

of the genome scan increases, alleviating concerns over multi- 

ple testing. By adjusting the tuning parameters, the test can 

be scaled to have the desired Type I error rate. We provide 

default values that result in fairly low levels of false positives; 

however, if larger numbers of false positives can be tolerated, 

then the tuning parameters (particularly e) can be adjusted 

to enhance the power of the test. (Software to implement 

genomic-control methods and select tuning parameters are 

available from the authors on request.) 

We also described a frequentist version of the genomic- 

control approach. In many cases, such as our simulations, the 

Bayesian and frequentist methods will behave similarly. As 

witnessed by our suggested treatment of candidate gene anal- 

yses, however, the Bayesian approach has the advantage of 

being readily extended to solve more complex problems. 

From the simulation study, it is clear that the genomic- 

control method performs substantially better than the stan- 

dard method for a wide spectrum of conditions. When the 

sample is approximately independent, the genomic-control has 

greater power than that obtained by the standard procedure, 

but it also has a slightly greater number of false positives due 

to the choice of tuning parameters. Of much greater impor- 

tance is the comparison of the procedures when the samples 

are not independent. Here we find that the genomic-control 

approach maintains a nearly constant low level of false posi- 

tives, while the standard procedure has a wildly unpredictable 

level of errors. The Type I error rate for the standard proce- 

dure is especially large when the sample size is large because 

of the cumulative effect of the violations of independence in 

the sample. The power of both methods naturally declines 

as n, the number of markers tested, increases. This is a pre- 

dictable result of the need to control for a greater risk of false 

positives. 

We have deferred to this point a discussion of the impact of 

the heterogeneity of F, due to population substructure, on the 

genomic-control method. Clearly, F does vary in many set- 

tings, and the degree to which it varies depends on the design 

of the case-control study. Intuitively, the effect of this varia- 

tion is to increase the variance of the test statistics, thereby in- 

creasing the value of A. The net effect on the genomic-control 

procedure is to decrease its power. From some simulation anal- 

yses, it appears that A is overestimated, and therefore the 

genomic-control method maintains a small false positive rate 

even in the presence of variation in F. Thus, because of its 

impact on the power of the test, it is important to design 

case-control studies to limit the size of F (and, implicitly, the 

variance of F). 

Currently, the genomic-control approach is limited to bial- 

lelic markers for three reasons. First, a stronger case can be 

made for nearly constant overdispersion in this setting. With- 

out this, the approach loses much of its power and appeal. 

Second, with only two alleles, it is not necessary to spec- 

ify which allele is potentially associated with the disorder. 

Third, the approach is based on the comparison of test statis- 

tics across the genome to find outliers. This comparison re- 

quires that the tests all follow the same distribution under the 

null hypothesis. With differing allele counts, the test statistics 

would have differing degrees of freedom. This simple version of 

the genomic-control approach ignores potential spatial depen- 

dence in the test statistics. A more powerful approach could 
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be designed that incorporates the spatial configuration. Such 

an approach is one focus of our current research. 
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RESUME 

Un panel dense de polymorphismes bialleliques (SNP) cou- 
vrant le genome et une methode efficace pour tester les geno- 
types SNP sont attendues dans un futur proche. Une ques- 
tion primordiale est comment utiliser efficacement ces tech- 
niques pour identifier les genes affectant la susceptibilite a 
des desordres complexes. Pour arriver a cet objectif, nous 
proposons une methode statistique qui a plusieurs proprietes 
optirmales: elle peut etre utilisee avec des donnees cas-te'moin 
ou encore, comme dans les etudes familiales, des contr6les 
pour l'heterogeneite de la population; elle est insensible aux 
violations habituelles aux hypotheses des modeles, comme 
les observations n'etant pas strictement independantes; et, 
en utilisant des methodes bayesiennes de detection de points 
eloignes, elle evite la necessite d'utiliser une methode de cor- 
rection de Bonferroni pour tests multiples, aboutissant a de 
meilleures performances dans beaucoup de situations tout 
en contr6lant le risque de faux positifs. Les performances 
de notre methode de "contr6le genomique" est plut6t sat- 
isfaisante pour des effets plausibles de genes de susceptibilite, 
ce qui est de bon presage pour les futures analyses genetiques 
de desordres complexes. 
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