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ABSTRACT

Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of

a Chilean Patagonian fjord. Morphological characterization together with antibacterial

activity was assessed in various culture media, revealing a carbon-source dependent ac-

tivity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome

mining of this antibacterial-producing bacterium revealed the presence of 26 biosyn-

thetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have

low similarities with known BGCs. In addition, a genomic search in Streptomyces sp.

H-KF8 unveiled the presence of a wide variety of genetic determinants related to

heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance

(97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8

bacterium has the capability to tolerate a diverse set of heavy metals such as copper,

cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature

first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses

a major resistance towards oxidative stress, in comparison to the soil reference strain

Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance

to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic

stressors. The combination of these biological traits confirms the metabolic versatility

of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability

to confront the dynamics of the fjord-unique marine environment.

Subjects Genomics, Microbiology

Keywords Marine actinomycete, Genome mining, Streptomyces, Biosynthethic gene clusters,

Antimicrobial activity, Heavy metal tolerance, Abiotic stressors, Chilean Patagonian fjord

INTRODUCTION

There has been a burst of genomic data in recent years due to the advances in various

technologies such as next-generation sequencing. Whole genome sequencing is providing

information-rich data that can hugely contribute and orientate the discovery of natural

products in microorganisms. Indeed genome mining has been positioned as a fundamental
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bioinformatics-approach in the natural product field (McAlpine et al., 2005; Van Lanen

& Shen, 2006; Challis, 2008; Doroghazi & Metcalf, 2013; Jensen et al., 2014; Antoraz et al.,

2015; Tang et al., 2015a; Tang et al., 2015b; Katz & Baltz, 2016). Natural products have

clearly demonstrated to play a significant role in drug discovery, in fact 78% of antibiotics

marketed during 1982–2002 originated from natural products (Peláez, 2006). Considering

the year 2014, 25% of the approved new chemical entities were from natural or natural-

derived products (Newman & Cragg, 2016). In natural environments, these metabolites

also play important roles as signal molecules, facilitating intra- or inter-species interactions

within microbial communities related to virulence, colonization, motility, stress response

and biofilm formation (Romero et al., 2012).

Streptomyces aremycelium-forming bacteria with a complex developmental life cycle that

includes sporulation and programmed cell death processes (Flärdh & Buttner, 2009; Yagüe

et al., 2013). Their unsurpassed richness and diversity concerning secondary metabolism

pathways has made them valuable providers for bioactive molecules, being responsible

for two-thirds of all known antibiotics (Bérdy, 2012). Genome mining has become a

powerful tool to unveil the biotechnological potential of Streptomyces species, where

biosynthetic gene clusters (BGCs) can be identified (Weber et al., 2015) and even predict

the chemical core structure of the molecules. Unlike other bacteria, Streptomyces have

linear chromosomes (Chen et al., 2002) and their genome sizes are within the largest in the

bacterial world (Weber et al., 2003), ranging from 6.2 Mb for Streptomyces cattleya NRRL

8057 (Barbe et al., 2011) to 12.7 Mb for Streptomyces rapamycinicus NRRL 5491 (Baranasic

et al., 2013), considering complete sequenced genomes to date (Kim et al., 2015). Up to

5% of their genomes are devoted to the synthesis of secondary metabolites (Ikeda et

al., 2003). The ability to produce a wide variety of bioactive molecules is based on the

fact that they contain the largest numbers of BGCs such as polyketide synthases (PKS)

and non-ribosomal peptide synthetases (NRPS), or even PKS-NRPS hybrids (Challis,

2008). The genes required for secondary metabolites biosynthesis are typically clustered

together (Zazopoulos et al., 2003) and are tightly regulated both by specific regulation of

each product (Bibb & Hesketh, 2009) or by pleiotropic mechanisms of regulation that can

control several pathways at the same time (Martin & Liras, 2012). Due to these interesting

properties, nearly 600 species and 30,000 strains of Streptomyces have been identified

(Euzéby, 2011). To date, 653 Streptomyces genome assemblies are available in the GenBank

database (Studholme, 2016) and this number is likely to keep increasing.

Although soil microorganisms from the Streptomyces genus have generated vast interest

due to their exceptional role as antibiotic producers (Bérdy, 2012), their marine counterpart

has been less explored. The marine ecosystem is highly diverse, with extreme abiotic

selective pressures and immense biological diversity (Lam, 2006). In addition, many

marine organisms have a sessile life style, needing chemical weapons for defense and

survival (Haefner, 2003). Thus, research in natural products has been focusing on the

isolation of microorganisms from corals (Hodges, Slattery & Olson, 2012; Kuang et al.,

2015; Mahmoud & Kalendar, 2016; Pham et al., 2016), sponges (Kim, Garson & Fuerst,

2005; Montalvo et al., 2005; Zhang et al., 2006; Jiang et al., 2007; Vicente et al., 2013; Sun

et al., 2015), as well as marine sediments (Mincer & Jensen, 2002; Magarvey et al., 2004;
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Jensen et al., 2005; León et al., 2007; Gontang, Fenical & Jensen, 2007; Duncan et al., 2014;

Yuan et al., 2014). In spite of all the isolation studies associated to marine actinobacteria,

relatively little is known about the molecular mechanisms behind bacterial adaptation to

marine environments. It is supposed that marine actinobacteria have adapted through the

development of specific biological traits (Tian et al., 2016), which has led to hypothesize

that novel species from unexplored habitats may contain unique bioactive compounds

(Axenov-Gribanov et al., 2016). In addition, marine habitats are under a dramatic pollution

increase, where heavy metals have demonstrated to be one of the most negative causing

impacts in living beings. While many metals (iron, zinc, manganese, copper, cobalt, nickel,

vanadium, molybdenum) are essential micronutrients for enzymes and cofactors, they

still are toxic when available in high concentrations, causing adversary effects mainly

by oxidative stress damage to fundamental macromolecules (Schmidt et al., 2005). In

this context, marine microorganisms have developed mechanisms through molecular

adaptations in order to thrive in these adverse conditions. Moreover, secondarymetabolites

biosynthesis are strongly influenced by the presence and concentration of certain heavy

metals in Streptomyces genus (Locatelli, Goo & Ulanova, 2016), and also oxidative stress can

regulate antibiotic production (Kim et al., 2012; Beites et al., 2014) providing evidence of a

molecular crosstalk response between these stressors.

In the South Pacific region, Chile has an extensive marine coast that remains mostly

unexplored. Bioprospecting of actinobacteria for the discovery of novel marine-derived

natural products, specifically antibiotics, has been carried out in Valparaíso Central Bay

(Claverías et al., 2015) and in the Comau fjord in Northern Patagonia (Undabarrena et

al., 2016). Both sites proved to be a rich source for novel species of actinobacteria with

antimicrobial properties. In this context, the genome of a selected antimicrobial-producer

marine Streptomyces strain from Comau fjord was sequenced (Undabarrena et al., 2017).

In this study, we aimed to conduct a combined genomic, metabolic and physiological

analysis of the marine Streptomyces sp. H-KF8 bacterium, through the further exploration

of its antimicrobial activity and the genome mining of the BGCs encoded in its genome.

In addition, the genetic and functional response to abiotic stressors such as oxidative

stress, heavy metals and antibiotics, which may play an important role in the evolution of

secondary metabolism genes, was evaluated in Streptomyces sp. H-KF8.

METHODS AND MATERIALS

Bacterium selection

Underwater samples were previously collected from marine sediments from the Marine

Protected Area of the Comau fjord, in the Northern Chilean Patagonia (Undabarrena et

al., 2016). Fjords are especially attractive due to its unique biogeographic characteristics,

being a deep narrow inlet with significantly eroded bottom and communication with open

sea (Bredhold et al., 2007). Comau fjord is one of the deepest; it has a high precipitation

rate crucial for fresh water input; where water surface temperatures ranges between 5 ◦C

and >20 ◦C, sustaining a thermohaline circulation (Bustamante, 2009; Sobarzo, 2009). As

microorganisms of these ecosystems may display remarkable genetic features of tolerance
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to the dynamics of these abiotic stressors, marine actinobacteria were isolated with several

culture media and identified through 16S rRNA gene sequence (Undabarrena et al.,

2016). Antimicrobial potential was screened using two strategies, including assessing the

antimicrobial activity of crude extracts derived from liquid cultures (Undabarrena et al.,

2016). Streptomyces sp. H-KF8 was selected due to its antimicrobial activities against S.

aureus, L. monocytogenes and E. coli for whole genome sequencing, representing the first

genome of Chilean marine actinobacteria (Undabarrena et al., 2017).

Phenotypic characterization

Streptomyces sp. H-KF8 was characterized morphologically in several media agar plates:

ISP1-ISP9 (Shirling & Gottlieb, 1966), Marine Agar (MA) 2216 (Difco) and Triptic Soy

Agar (TSA) (Difco NO 236950). All media, with exception of MA, were prepared with

artificial sea water (ASW) (Kester et al., 1967) as the strain has a specific ASW requirement

for growth (Undabarrena et al., 2016; Undabarrena et al., 2017). Plates were incubated at

30 ◦C and visible colonies appeared after 5–7 days. Microscopic images were obtained

with a Leica Zoom2000 stereoscope (Arquimed), Gram-staining was performed with an

optical microscope L2000A (Arquimed) with 1,000× magnification, and unstained low

voltage electron microscopy (LVEM) was used for high contrast images (Delong LVEM5

microscope, Universidad Andrés Bello, Chile) after 21 days of Streptomyces sp. H-KF8

growth in ISP3-ASW media (Vilos et al., 2013).

Antimicrobial activity

Antimicrobial activity was evaluated previously in ISP2 and TSA-ASW agar plates, and

activity was corroborated by liquid culture derived crude extracts (Undabarrena et al.,

2016). In this study, a further evaluation of antimicrobial activity was assessed in 15

different media agar plates, to explore the relation between Streptomyces sp. H.KF8

morphology and antimicrobial activity. Various media were employed: ISP1-ISP9; MA;

King B; Medium V (Marcone et al., 2010); LB-ASW; Actino Agar (Difco) and NaST21Cx

(Magarvey et al., 2004), using cross-streak method as previously described (Haber & Ilan,

2014). The assay was slightly modified for marine actinobacteria by our group (Claverías

et al., 2015; Undabarrena et al., 2016). Antimicrobial activity was measured against five

reference bacteria: Staphylococcus aureusNBRC 100910T; Listeria monocytogenes 07PF0776;

Salmonella enterica subsp enterica LT2T; Escherichia coli FAP1 and Pseudomonas aeruginosa

DSM50071T. Briefly, inhibition zones were seen as part of the bacterial line where the

reference bacteria did not grow, and ranked qualitatively as:−, no inhibition;±, attenuated

growth of target bacterium; +, <50% growth inhibition of target bacterium (1–5 mm of

the line); ++, 50% growth inhibition of target bacterium (6–10 mm of the line); +++,

>50% growth inhibition of target bacterium (≥11 mm of the line). All experiments were

performed in duplicate, using as internal control one of the reference bacteria.

Additionally, the double-layer method (Westerdahl et al., 1991) was employed, in order

to perform a time-course assay to ascertain the days of incubation where most activity was

being produced. Streptomyces sp. H-KF8 macrocolonies were incubated on ISP2-ASW,

ISP3-ASW, TSA-ASW and MA agar plates. Macrocolonies were grown individually from

Undabarrena et al. (2017), PeerJ, DOI 10.7717/peerj.2912 4/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.2912


five to 20 days on the same agar plate, and subsequently, 7 mL of modified-LB (7 g/L of

agar instead of 15 g/L) with an aliquot of 100 µL of an overnight pre-grown S. aureus

bacterial culture with an OD = 0.3 was added above the macrocolonies of Streptomyces

sp. H-KF8. Inhibition zones were observed after incubation of plates for 24 h at 37 ◦C. If

inhibition zones overlapped, the experiment was repeated on separate agar plates, where

only one macrocolony in the center of the plate was incubated.

Genome mining and bioinformatic analysis

Streptomyces sp. H-KF8 whole genome sequencing was performed by Illumina and PacBio

(Undabarrena et al., 2017). Genome reads were de novo assembled using Canu (version

1.1) (Berlin et al., 2015) into 11 contigs, representing one linear chromosome of 7,684,888

bp genome. Full genome sequencing details can be found elsewhere (Undabarrena et

al., 2017). Gene calling an annotation was performed using the Prokaryotic Genome

Annotation Pipeline (PGAP) at NCBI (version 3.1) (Tatusova et al., 2016). Genes were

assigned to EggNOG categories (Huerta-Cepas et al., 2016) via an HMM search with

HMMER3 (http://hmmer.org). Genetic determinants involved in biological traits analyzed

in this report were manually established and the amino acidic signatures were validated

based on domain hits through Basic Local Alignment Search Tool (BLAST) from NCBI.

Also, BGCs were identified through AntiSMASH (version 3.0) online platform. Snapgene

software (version 2.3.2) was used to visualize ORFs related to functional biological traits

from each linear contig. Artemis software (version 16.0.0) was used to construct the

graphic representation of the circular chromosome, and to assign by colors manually all

the different categories of BGCs on it.

Functional response to heavy metal(loid)s

For metal-resistance experiments, agar plates containing filtered salts of several metal(loid)

solutions were prepared. Metals were diluted to obtain the following final concentration in

media plates: CuSO4 (0.25 mM, 0.5 mM and 0.75 mM); CoCl2 (2 mM, 4 mM and 6 mM);

ZnSO4 (50 mM and 100 mM); CdCl2 (0.75 mM and 1.5 mM); HgCl2 (20 µM, 40 µM

and 60 µM); K2TeO3 (10 µM, 20 µM and 40 µM); K2CrO4 (10 µM, 17 µM and 20 µM);

Na2HAsO4 (50 mM and 100 mM); NaAsO3 (2.5 mM and 5 mM) and NiSO4 (5 mM, 10

mM and 15 mM). Streptomyces sp. H-KF8 was evaluated after 5, 10 and 20 days of growth

in TSA-ASW plates. Additionally, a special Minimal Medium (MM) used to evaluate

metal resistance in Streptomyces spp. was prepared (Schmidt et al., 2009), modified with

the addition of ASW. Experiment was performed with two biological replicates. Reference

values for metal concentrations were decided based on metal-tolerance Streptomyces

obtained from literature (Schmidt et al., 2005; Schmidt et al., 2009; Wang et al., 2006; Polti,

Amoroso & Abate, 2007). Agar plates without addition of any metals were prepared as

negative controls.

Functional response to oxidative stress

For oxidative stress experiments, tolerance to hydrogen peroxide (H2O2) at various

concentrations (0.2 M, 0.5 M, 1 M, 2 M, and 4 M) was evaluated by directly adding 10 µL

of the H2O2 solution to a sterile paper disk positioned on a TSA-ASW agar plate where
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Streptomyces sp. H-KF8 was streaked out to grow as a thin lawn (Dela Cruz et al., 2010).

The model strain Streptomyces violaceoruber A3(2) (DSM 40783) was used to test the

tolerance response. Inhibitions areas (cm2) were observed after 5 days of growth at 30 ◦C.

Experiment was performed with three biological replicates, and standard deviation was

calculated. A statistical analysis by Student’s t -Test was carried out considering a p-value

<0.01.

Functional response antibiotics

Susceptibility to model antibiotics of Streptomyces sp. H-KF8 was explored previously

(Undabarrena et al., 2016). However, in this report a further characterization was pursued.

Streptomyces sp. H-KF8 was grown on Mueller-Hinton agar plates prepared with ASW

(MH-ASW) and commercial standard disks of model antibiotics were placed above. The

following antibiotics were tested: Amoxicillin 25 µM, Bacitracin 0.09 IU, Novobiocin 5 µ g

and Erythromycin 15 µg (LabClín); Optochin 5 µg (BritaniaLab); Clindamycin 2 µg,

Oxacillin 1 µg, Ciprofloxacin 5 µg, Ceftriaxone 30 µg, Chloramphenicol 30 µg, Penicillin

10 UOF, Cefotaxime 30 µg, Gentamicin 10 µg and Ampicillin 10 µg (Valtek). After 5 days

of incubation at 30 ◦C, radios of the inhibition halos were measured, and inhibition areas

(cm2) were calculated. Data was compared with standarized cut off values from Clinical

and Laboratory Standards Institute (CLSI) from year 2016, to determine susceptibility or

resistance against each antibiotic tested. Experiments were performed using three biological

replicates, and standard deviation was calculated for each antibiotic.

RESULTS

Phenotypic characterization

Morphological analysis of Streptomyces sp. H-KF8 was carried out by strain growth in

several media, containing different carbon sources (Fig. 1; inset colony morphology).

Growth of Streptomyces sp. H-KF8 was observed in the standard ISP1-ISP9 agar plates,

although differences in growth rates and pigmentation were noticed (Figs. 1A–1F). On ISP1

(yeast extract, pancreatic digest of casein), ISP2 (yeast extract, malt extract, dextrose) and

ISP6 (peptone, yeast extract and iron) media, white mycelia was observed, with appearance

of grayish-spores after 14 days of growth. In contrast, when Streptomyces sp. H-KF8 was

grown on ISP3 (outmeal), ISP4 (soluble starch and inorganic salts), ISP5 (glycerol and

asparagine) and ISP9 (glucose) media, creamy mycelia was observed, with appearance

of white spores at the periphery of the colonies. In contrast, poor growth was observed

in ISP7 (tyrosine) medium. A different morphology was perceived when Streptomyces

sp. H-KF8 was grown on MA medium (Fig. 1G). Colony size was comparatively smaller

(5.06 ± 1.1 mm in ISP2 vs 3.12 ± 0.78mm in MA; p< 0.01), and a dark-grey turning into

black pigmentation was noticed within 5 days of growth. On TSA-ASW plates, a white

mycelium was observed with no change in pigmentation over time, but with presence of

exudate drops in the colony surface (Fig. 1H). Additionally, morphology was visualized

microscopically, and typical Streptomyces structures of development such as hyphae and

spores were observed (Fig. 2). Exudate drops were appreciated in ISP2 medium during

late growth phase (Fig. 2A), spores were identified with optical microscopy (Fig. 2B) and
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Figure 1 Morphology of Streptomyces sp. H-KF8. Macrocolony showing anverse and reverse growth in

several media. Inset shows a zoom of colony morphology. (A) ISP1-ASW; (B) ISP2-ASW; (C) ISP3-ASW;

(D) ISP4-ASW; (E) ISP5-ASW; (F) ISP6-ASW; (G) Marine Agar (MA); (H) TSA-ASW.

hyphae with Gram staining (Fig. 2C). Moreover, the complex network of intertwined

hyphae and early spore chain assemblies was observed by LVEM microscopy, which is a

distinctive feature of Streptomyces genus (Fig. 2D).

Antimicrobial activity

Antimicrobial activity of Streptomyces sp. H-KF8 was further characterized using agar

media with different carbon sources (Table 1). In general, antimicrobial activity was

more evident against Gram-positive reference bacteria (S. aureus and L. monocytogenes),

although inhibition against E. coli was also observed in most media, which is consistent
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Figure 2 Microscopy of Streptomyces sp. H-KF8. (A) Stereoscope zoom of a macrocolony grown in

ISP2-ASW agar plate. Arrows shows exudates. (B) Optic Microscopy image at 1,000×. Arrows indicate hy-

phae and spores, respectively. (C) Streptomyces sp. H-KF8 gram staining, showing hyphae. (D) Scanning

Electron Microscopy (LVEM) image of Streptomyces sp. H-KF8 grown on ISP3-ASW agar plates for 21

days. Bar represent 100 µm.

with results obtained from Streptomyces sp. H-KF8 crude extracts (Undabarrena et al.,

2016). P. aeruginosa was the reference bacterium less inhibited. Among the 15 different

media used, inhibition of at least one reference bacterium was noted in 87% of the media.

Best media for antimicrobial activity were ISP1, ISP2, ISP6, and V media, where inhibition

of four of the five reference bacteria was observed. Notably, in ISP2 medium a unique

attenuation of P. aeruginosa growth was observed. Alternatively, a time-course assay using

the double-layer method was performed to visualize the starting day of the antimicrobial

activity, in four media that presented inhibition. Even though at day 5 a relatively scarce

colony growth of Streptomyces sp. H-KF8 was observed in ISP2 medium, at day 6 it was

possible to visualize a modest inhibition against S. aureus (Fig. 3A). Yet, inhibition zone

increased as incubation time for Streptomyces sp. H-KF8 extended, as shown in Fig. 3B,

showing a maximum halo size at day 15 (Fig. 3C), suggesting a tight relation between

growth and antimicrobial activity which is also correlated to the carbon source of the

media tested.

Bioinformatic analysis and genome mining for BGCs

Whole genome sequencing and genome features were previously described (Undabarrena

et al., 2017). Briefly, Streptomyces sp. H-KF8 genome was assembled into 11 contigs, with

a total genome length of 7,684,888 bp, and a G + C content of 72.1%. A total of 6,574

genes are represented among 6,486 CDS, 67 tRNAs and 6 16S rRNAs. Genes with coding

sequences were grouped into COGs categories, although 808 genes remain ungrouped.

Description and gene percentage of each category is depicted in Table 2. For Streptomyces

sp. H-KF8, the most abundant categories were transcription (522 genes), carbohydrate

transport and metabolism (362 genes), and amino acid transport and metabolism (362
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Table 1 Antibacterial activity of Streptomyces sp. H-KF8 in several culture media.

Medium Bacterial strainsa

STAU LIMO PSAU SAEN ESCO

ISP1 +++ +++ – +++ +++

ISP2 +++ +/− +/− – +

ISP3 + + – – +

ISP4 + – – – –

ISP5 + – – – –

ISP6 ++ +++ – + +

ISP7 +++ – – +/− ++

ISP9 +++ +++ – – –

TSA-ASW +++ +/− – – +

MA +++ +++ – – ++

King B – +/− – – –

Medium V ++ ++ – +/− +++

LB-ASW +++ ++ – +/− –

Actino Agar – – – – –

NaST21Cx – – – – –

Notes.
–, no inhibition; +/−, attenuated growth; +, <50% growth inhibition (1–5 mm ); ++, 50% growth inhibition (6–10 mm);

+++, >50% growth inhibition (≥11 mm).
aSTAU, S. aureus; LIMO, L. monocytogenes; PSAU, P. aeruginosa; SAEN, S. enterica; ESCO, E. coli.

Figure 3 Antibacterial activity of Streptomyces sp. H-KF8. Photographs depict inhibition zone against

Staphylococcus aureus. Bar represents 10 mm. Time course was performed using the double-layer method,

at various incubation days: (A) 6 days; (B) 9 days; (C) 15 days.

genes). The Streptomyces sp. H-KF8 categorized genes were compared to the model

Streptomyces violaceoruber A3(2) isolated from soil (Bentley et al., 2002) and the marine

Streptomyces sp. TP-A0598 (Komaki et al., 2015), in order to observe if these features

could be considered as source-derived traits (Fig. 4). As there are scarce reports available

on marine Streptomyces genomes that include COGs detailed annotation, Streptomyces

sp. TP-A0598 is one of the few that have these characteristics, and therefore selected

for comparison. While all three strains showed the same tendency in the categories

previously named in terms of abundancy, differences were observed in terms of percentage

in transcription and carbohydrate metabolism categories, where S. violaceoruber A3(2)
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Table 2 COGs distribution of genes with coding sequences in Streptomyces sp. H-KF8.

COG functional categories Abbreviation No of genes Percentage (%)

Energy production and conversion C 275 4.18

Cell division and chromosome partitioning D 41 0.62

Amino acid transport and metabolism E 322 4.90

Nucleotide transport and metabolism F 89 1.35

Carbohydrate transport and metabolism G 362 5.51

Coenzyme transport and metabolism H 136 2.07

Lipid metabolism I 142 2.16

Translation J 168 2.56

Transcription K 522 7.94

DNA replication and repair L 217 3.30

Cell envelope biogenesis, outer membrane M 169 2.57

Cell motility N 0 0.00

Post-translational modification, protein turnover,

chaperones

O 135 2.05

Inorganic ion transport and metabolism P 223 3.39

Secondary metabolism Q 148 2.25

General function prediction only R 238 3.62

Function unknown S 2,111 32.11

Signal transduction T 283 4.30

Defense mechanisms V 185 2.81

Not in COGs – 808 12.29

Figure 4 Comparative genomics of COGs categories. Percentage of each COG category is shown for

the different Streptomyces species, where blue is Streptomyces sp. H-KF8; light blue is the marine-derived

Streptomyces sp. TP-A0598; and red is the soil-derived Streptomyces violaceoruber A3(2).
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Figure 5 Representation of chromosome features and BGCs of Streptomyces sp. H-KF8. Colors de-
pict the different classification types of secondary metabolism gene clusters along the sequenced genome.

NRPS, Non-ribosomal peptide synthetase; PKS, polyketide synthase; RiPP, ribosomally synthesized and

post-translationally modified peptides. From outside inward: DNA strands reverse and forward; contigs;

GC content; GC skew.

strain was slightly higher. On the other hand, both marine strains (Streptomyces sp. H-KF8

and Streptomyces sp. TP-A0598) showed higher number of genes related to categories of

post-translational modification, protein turnover and chaperone functions, as well as in

secondary metabolism and translation categories.

Secondary metabolism category comprises 2.3% of the Streptomyces sp. H-KF8 genome,

being slightly higher when compared to both strains, the soil-derived S. violaceoruber A3(2),

and the marine-derived Streptomyces sp. TP-A0598, accounting for 1.9% and 2.0% of their

genomes, respectively. A bioinformatics analysis was performed using the antiSMASH

tool to detect biosynthetic gene clusters (BGCs) present in Streptomyces sp. H-KF8 that

may explain the antimicrobial activity observed, and a total of 26 BGCs were detected

(Undabarrena et al., 2017). In this report, we show that the spatial distribution of the 26

BGCs are evenly allocated throughout the contigs of Streptomyces sp. H-KF8 genome

(Fig. 5), which were grouped into 11 different types (NRPS, PKS, hybrids, terpenes,

RiPP, ectoine, melanine, siderophores, lantipeptides and butyrolactones). Furthermore,

a comparison of the BGCs present in Streptomyces sp. H-KF8 with other known BGCs

deposited into the MIBiG database, was performed (Table 3). In this line, Streptomyces sp.

H-KF8 bears two NRPSs BGCs with very low similarity to BGCs involved in the synthesis of

the lipoglycopeptide antibiotic mannopeptimycin, produced by S. hygroscopicus (Magarvey

et al., 2006); and the streptolydigin antibiotic, which interferes with the RNA elongation
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Table 3 Biosynthetic gene clusters (BGCs) for secondary metabolites in Streptomyces sp. H-KF8.

AntiSMASH type descriptor Scaffold Length (bp) Predicted product (%a) MIBiG-ID

NRPS tig_02 81,285 Streptolydigin (13%) BGC0001046

NRPS tig_02 79,174 Mannopeptimycin (7%) BGC0000388

PKS T1 tig_138 33,925 Kirromycin (6%) BGC0001070

PKS T2 tig_139 42,512 Spore Pigment (83%) BGC0000271

NRPS-PKS T1 tig_138 50,808 SGR PTMS (100%) BGC0001043

NRPS-PKS T1 tig_139 52,764 Neomycin (5%) BGC0000710

NRPS-PKS T1 tig_02 56,103 Himastatin (12%) BGC0001117

NRPS-PKS T3 tig_02 54,318 Furaquinocin A (21%) BGC0001078

Terpene-Siderophore tig_02 50,603 Isorenieratene (100%) BGC0000664

Nucleoside-Phosphoglycolipid tig_00 35,469 Moenomycin (100%) BGC0000805

Oligosaccharide-PKS T1 tig_16 42,574 Stambomycin (52%) BGC0000151

Lantipeptide-PKS T1 tig_138 61,004 Unknown –

Terpene tig_02 26,858 Hopene (76%) BGC0000663

Terpene tig_00 20,992 Unknown –

Terpene tig_02 21,253 Unknown –

Terpene tig_02 22,162 Unknown –

Terpene tig_138 21,220 Albaflavenone (100%) BGC0000660

Lantipeptide tig_02 21,819 Unknown –

Lantipeptide tig_139 24,585 Unknown –

Bacteriocin tig_02 11,412 Unknown –

Lassopeptide tig_10 22,692 Unknown –

Siderophore tig_139 11,808 Desferrioxiamine B (83%) BGC0000940

Butyrolactone tig_14 11,073 Griseoviridin/Viridogrisein (11%) BGC0000459

Ectoine tig_139 10,398 Ectoine (100%) BGC0000853

Melanin tig_139 10,509 Melanin (100%) BGC0000910

Other tig_00 43,290 Stenothricin (13%) BGC0000431

Notes.
aPercentage of genes from known BGCs that show similarity to genes predicted for BGCs from Streptomyces sp. H-KF8.

by inhibition of the bacterial RNA polymerase (Olano et al., 2009), with 7% and 13% of

gene similarity, respectively (Table 3). The two PKSs predicted in Streptomyces sp. H-KF8

genome corresponds to the type II spore pigment BGC showing 83% of gene similarity,

and also another BGC where only 6% of gene similarity to the antibacterial kirromycin

BGC from S. collinus Tü 365 was found (Weber et al., 2008) (Table 3). A total of eight

hybrid clusters, where four of them are PKS-NRPS hybrids were also predicted, which

presented low gene similarities with other known BGCs, except for one NRPS-PKS type

I cluster (Table 3). In addition, other BGCs found in Streptomyces sp. KF8 included five

terpenes BGCs, two lantipeptides and two ribosomally synthesized and post-translationally

modified peptides (RiPPs) such as the lassopeptide and bacteriocin BGCs. In general, only

six BGCs from Streptomyces sp. H-KF8 genome displayed 100% gene similarity to theirmost

related known cluster. Examples of these consists on the BGC for the previously mentioned

antibiotics moenomycin (Wallhausser et al., 1965;Ostash, Saghatelian & Walker, 2007) and

albaflavenone (Zhao et al., 2008) (Table 3). Additionally, BGCs for the aromatic carotene
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Figure 6 Metal-tolerance response in Streptomyces sp. H-KF8. (A) Genetic determinants involved in

metal-resistance observed by genome mining. (B) Functional response of metal-resistance in TSA-ASW

agar plates. Images show maximum concentration of metal(loids) where growth of Streptomyces sp. H-

KF8 was observed. Concentrations below these values also presented growth. Control, agar plate without

any metal.

isorenieratene, involved in anoxigenic photosynthesis in S. griseus (Krügel et al., 1999), the

conserved osmolite ectoine, that may provide protection from osmotic stress (Prabhu et

al., 2004; Graf et al., 2008) and the melanin pigment clusters (Guo et al., 2014; Sivaperumal,

Kamala & Rajaram, 2015) were observed with 100% similarity. Most of the BGCs (65%)

presented low similarity to BGCs of known compounds, evidencing the potential of

Streptomyces sp. H-KF8 strain to produce novel bioactive molecules.

Due to the dynamics of environmental parameters from the unique isolation site of

Streptomyces sp. H-KF8, genome mining of pathways involved in response to abiotic

stressors such as heavy metals, oxidative stress and antibiotics were also analyzed in this

study, in order to unveil genetic determinants that may explain tolerance to these stressful

environmental conditions.

Functional response to heavy metals and metalloids

Genetic determinants involved in heavy metal-resistance in Streptomyces sp. H-KF8

were analyzed by genome mining, and at least 49 predicted genes may be playing a role

in such tolerance (Fig. 6A). Amongst these, the most abundant genes were related to

tellurite, followed by arsenate, copper and mercury, and, to a lesser extent, chromate,

nickel and cobalt tolerance (Fig. 6A). Tellurite resistance genetic determinants involved

seven terD genes, four terB genes, two yceC genes, one terC gene and one tehB gene that

encodes a tellurite methyltransferase. In addition, 11 genetic determinants for arsenic

tolerance were found, involving three arsC genes encoding arsenate reductases, two

genes arsA encoding arsenical pump-driving ATPases, five genes arsR encoding arsenical

transcriptional regulators, and the arsenical resistance protein encoding gene acr3. Genetic

determinants encoding for copper resistance genes, included copA andmco genes encoding

multicopper oxidases, copD encoding a copper resistance protein, two genes ycnJ encoding
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for copper transport proteins, and two genes for the copper-sensing transcriptional

regulator, csoR. Mercury resistance genes consisted in the mercury reductase encoding

gene merA, and the mercury transcriptional regulator merR. In addition, the czcD and

rcnA genes coding for efflux pumps for cadmium, zinc, cobalt and nickel, respectively,

together with the chrR gene encoding a chromate reductase, and general heavy metal

tolerance such as the hmt1 gene and seven genes encoding for merR-family transcriptional

regulators, were also found. Considering all the genetic determinants listed above, we

attempted to determine if Streptomyces sp. H-KF8 was able to grow on various metal-

containing media. Streptomyces sp. H-KF8 was able to tolerate copper-, cobalt-, mercury-,

tellurite-, chromate- and nickel-containing media, as shown in Fig. 6B for the maximum

concentrations tested. Despite the arsenic tolerance-related genes present in Streptomyces

sp. H-KF8 genome, comprising 27% of the total number of metal-related genes, no evident

growth of Streptomyces sp. H-KF8 was perceived in this metalloid-containing medium,

even in the two different toxic forms of arsenic tested: arsenate and arsenite. Also, no

growth was observed in media containing cadmium or zinc.

Functional response to oxidative stress

A significant amount of genes (69 genes) that may participate in the detoxification of

reactive oxygen species (ROS) were found within the Streptomyces sp. H-KF8 genome

(Fig. 7A). Genes for mycothiol biosynthesis (20 genes), thioredoxin and thioredoxin

reductases system (11 genes), alkyl hydroperoxide reductases (nine genes), glutaredoxin

and glutathione peroxidase system (four genes), catalases (three genes), and superoxide

dismutases (three genes), among others, were identified (Fig. 7A). Interestingly, genes

involved in osmotic stress detoxification of chlorinated and brominated compounds

such as three bpo genes encoding for bromoperoxidases, one cpo gene encoding for

a chloroperoxidase and one gene encoding for a chlorite dismutase were also present

in Streptomyces sp. H-KF8 genome (Fig. 7A). Concerning transcriptional regulators

controlling the redox balance, transcriptional factors from perR, rex, lysR and soxR families,

were also present. Due to an important genetic content of oxidative stress related genes,

response of Streptomyces sp. H-KF8 to the toxic H2O2 was tested, and compared to the

model streptomycete S. violaceoruber A3(2). At various H2O2 concentrations, Streptomyces

sp. H-KF8 displayed smaller susceptibility areas against the toxic, in comparison with

S. violaceoruber A3(2) (Figs. 7B and 7C, respectively). A significant difference of the

susceptibility areas among the two strains was observed at concentrations of 1 M, 2 M and

4 M of H2O2, indicating a major resistance response of Streptomyces sp. H-KF8 towards

H2O2 toxicity (Fig. 7D).

Functional response to antibiotics

Antibiotic-producing Streptomyces strains usually encode resistance genes within their

BGCs to protect themselves against the noxious action of the synthetized compound

(Zotchev, 2014). In this line, resistance of Streptomyces sp. H-KF8 to commercial antibiotics

with different biological targets was explored. Genome mining revealed more than

90 genes that could be involved in antibiotic resistance. The most abundant genes
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Figure 7 Oxidative stress response of Streptomyces sp. H-KF8. (A) Genetic determinants involved in

oxidative stress-resistance observed by genome mining. Functional response of (B) Streptomyces sp. H-

KF8 and (C) Streptomyces violaceoruber A3(2) respectively, showing comparative inhibition zones with hy-

drogen peroxide where the concentration of hydrogen peroxide used in each disk is shown. (D) Quantita-

tive assay of inhibition area of both Streptomyces strains facing several concentrations of hydrogen perox-

ide. Asterisks indicate significant differences between strains (t -Test considering a p-value <0.01).
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Figure 8 Antibiotic-resistance response in Streptomyces sp. H-KF8. (A) Genetic determinants involved

in antibiotic-resistance observed by genome mining. (B) Functional response of antibiotic-resistance in

MH-ASW agar plates. Black columns indicate susceptibility to the antibiotic tested and grey columns indi-

cate resistance to the antibiotic tested.

encode for bleomycin resistance proteins (24 genes). Specific resistance genes related to

modification and inactivation of antibiotics such as aminoglycoside phosphotransferases

(eight genes), β-lactamases (three genes), metallo-β-lactamases (three genes), and one

gene for erythromycin esterase and penicillin amidase, respectively, were identified

(Fig. 8A). In addition, genes for efflux of toxic compounds including multidrug resistance

proteins (20 genes), daunorubicin/doxorubicin ABC transporter permeases (15 genes),

multidrug ABC transporters (seven genes) and one gene encoding for a multidrug MFS

transporter, were detected (Fig. 8A). Among the transcriptional regulators, the TetR-family

transcriptional regulators were the most abundant, with 10 genes. Also, the marR-family

transcriptional regulator and three marR genes encoding for multiple antibiotic resistance

proteins were identified (Fig. 8A). In the functional assay against 16 different antibiotics
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tested, Streptomyces sp. H-KF8 exhibited an 88 % of resistance-response, being susceptible

to only two antibiotics: novobiocin, which targets the DNA gyrase, and gentamicin,

which inhibits protein synthesis by irreversibly binding to the 30S subunit of the bacterial

ribosome (Fig. 8B).

DISCUSSION

In this report, phenotypic analysis of Streptomyces sp. H-KF8 in several agar media

was assessed, revealing in general one week of incubation time to obtain colonies and

two weeks for sporulation; although growth rates, sporulation rates and pigmentation

differs throughout the different media used. Antimicrobial production in Streptomyces

sp. H-KF8 was enhanced in late growth phase (>10 days) and favoured in media where

sporulation was observed. Streptomyces genus is characterized for slow growth and a

complex developmental life cycle (Flärdh & Buttner, 2009). Physiological differentiation is

tightly linked to secondary metabolism and hence, sporulation capacities of Streptomyces

might enhance the discovery of new compounds (Chater, 2013; Kalan et al., 2013; Zhu et

al., 2015). In addition, antibiotics synthesis is regulated by environmental nutrients, such

as carbon sources. Media carbon source has an important effect on antibiotic production,

being demonstrated that when bacteria are grownwith a preferred carbon source, secondary

metabolism seems repressed (Sánchez et al., 2010). This may explain the differences in

inhibition patterns observed for the Streptomyces sp. H-KF8 antagonistic assays displayed

in the various media tested, showing a maximum inhibition halo against S. aureus after 15

days of incubation. Due to the interesting antibacterial activity of Streptomyces sp. H-KF8,

its whole-genome was sequenced and previously reported (Undabarrena et al., 2017). Thus,

in this study an extended genome analysis for Streptomyces sp. H-KF8 was performed, in

order to gain insights into the mechanisms by which it displays antibiotic biosynthesis and

resistance to multiple stressors.

Genome mining has been used in various fields to describe the exploitation of genomic

information for the discovery of new processes, targets and products (Challis, 2008).

Through genome sequencing and bioinformatic analysis using antiSMASH platform

(Medema et al., 2011; Blin et al., 2013; Weber et al., 2015), it is possible to address the

secondary metabolic potential of a strain by identification of its biosynthesis gene clusters

(BGCs) (Iftime et al., 2016). A total of 26 BGCs were previously detected in Streptomyces

sp. H-KF8 genome (Undabarrena et al., 2017). In this report, an extended genetic analysis

including the distribution of these BGCs along Streptomyces sp. H-KF8 genome was

determined and comparison with known BGCs from the Minimum Information about a

Biosynthetic Gene cluster (MIBiG) database, which compiles a total of 1,170 experimentally

characterized known gene clusters (Medema et al., 2015) was aimed. Streptomyces sp.H-KF8

BGCs include two PKSs, two NRPSs and four hybrid PKS-NRPS, four other hybrids, five

terpenes, two lantipeptides, one bacteriocin, lassopeptide, siderophore, butyrolactone,

ectoine, melanin, and one with unknown classification. Notably, Streptomyces sp. H-KF8

presented only six BGCs with 100% similarity to a known cluster; suggesting that most

secondary metabolites produced by Streptomyces sp. H-KF8 are yet to be elucidated,
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and can contribute to the discovery of novel natural products. In this context, genome

mining has proven to be a fundamental tool for genome-based natural product discovery

(Jensen et al., 2014), and has guided the discovery of novel natural products from several

marine actinobacteria (Gulder & Moore, 2010; Tang et al., 2015b). Among these are the

aromatic polyketide angucyclinone antibiotic (Zhang et al., 2012) and polyene macrolides

with antifungal activity (Tang et al., 2015a). Moreover, marine Streptomycesmetabolites are

produced by different metabolic pathways in comparison to their terrestrial counterparts

(Li et al., 2011; Lee et al., 2014; Barakat & Beltagy, 2015). These metabolites emerge as

a result of the unique and dynamic conditions of the ocean, such as high hydrostatic

pressure, low temperature, variation in salinity, and depletion of micronutrients proper of

the marine environment (Das, Lyla & Khan, 2006; Lam, 2006; De Carvalho & Fernandes,

2010). Despite thatmarine adaptations are scarcely studied, recent comparative genomics of

marine-derived Streptomyces unveiled an enrichment in TrK and BCCT transporters, along

with the observation that their genomes are generally smaller in size and have a slightly

higher GC content in comparison to Streptomyces from other environmental sources

(Tian et al., 2016). Streptomyces sp.H-KF8 genome is consistentwith these findings, holding

distinctive biological and genomic signatures acknowledged formarine Streptomyces strains.

Therefore, its metabolite biosynthesis may be under marine abiotic selective pressures,

hence modulating secondary metabolism production.

Comparative genomics encompassing completely sequenced Streptomyces obtained from

several isolation sources revealed that themost abundantCOGcategories were transcription

(K), followed by carbohydrate metabolism (G) and amino acid metabolism (E) (Kim et al.,

2015). This is in agreement with the most abundant categories found in the Streptomyces

sp. H-KF8 genome, which also could explain the versatility of Streptomyces sp. H-KF8

to grow in several media with different carbon sources. Furthermore, in marine-derived

Streptomyces, a higher proportion of genes belonging to the COG categories of translation

(J) and post-translational modification, protein turnover and chaperones (O) was observed

(Tian et al., 2016). Accordingly, the (J) and (O) COGs categories were also overrepresented

in both marine strains analyzed, Streptomyces sp. H-KF8 and Streptomyces sp. TP-A0598

(Komaki et al., 2015), in comparison to the terrestrial Streptomyces violaceoruber A3(2)

(Bentley et al., 2002). This may indicate an important role of protein metabolism in marine

environments, probably due to the active responses against abiotic stressors and the

dynamics that microorganisms have to overcome to survive in these extreme ecosystems. In

addition, our analysis showed an increase in the categories of cell cycle control, cell division,

chromosome portioning (D), secondary metabolism (Q) and defense mechanisms (V), for

both marine strains in comparison to Streptomyces violaceoruber A3(2). Percentage of the

COG category for defense mechanisms (V) in Streptomyces sp. H-KF8 was interestingly

higher (2,81%) than in Streptomyces sp. TP-A0598 (1,8%), and comparatively similar

with what was observed for deep-sea bacteria (3,0%) (Qin et al., 2011). As the defense

mechanism category includes genes for resistance to heavy metals, osmotic and oxidative

stress as well as antibiotics, the functionality of these biological traits was evaluated for

Streptomyces sp. H-KF8, and notably, an important resistance to these multiple stressors

was evidenced.
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Environmental pollution by heavymetals can arise due to anthropogenic and/or geogenic

sources. Although metal-resistant strains isolated from contaminated areas have been

described (Amoroso et al., 2001; Schmidt et al., 2005; Schmidt et al., 2009; Polti, Amoroso

& Abate, 2007; Albarracin et al., 2008; Haferburg et al., 2008; Siñeriz, Kothe & Abate, 2009;

Lin et al., 2011; El Baz et al., 2015), there is limited information about the physiology of

Streptomyces in presence of environmental metal pollutants. Due to the naturally high

concentrations of certain heavy metals in Chilean northern Patagonia (Guevara et al.,

2004; Revenga et al., 2012; Hermanns & Biester, 2013) product of the highly active seismic

and volcanic activity (Pantoja, Luis Iriarte & Daneri, 2011), the ability of Streptomyces sp.

H-KF8 to grow in several metal(loid)s supplemented media was evaluated. Surprisingly,

resistance to copper, cobalt, mercury, tellurite, chromate and nickel was revealed.

Interestingly, themost abundant genes in Streptomyces sp. H-KF8were related to tellurite

resistance, involving the tellurite methyltransferase (encoded by tehB) and several tellurite

resistance genes (terB, terC, terD, yceC). Although the ter operon has been described pre-

viously (Taylor, 1999), specification of its mechanism of action remains obscure (Chasteen

et al., 2009). Mainly, it has been shown that tellurite detoxification is via enzymatic

reduction by several flavoprotein-mediated non-specific metabolic enzymes (Arenas-

Salinas et al., 2016), or by non-enzymatic mechanisms mediated by intracellular thiols like

glutathione (Turner et al., 2001). Either way, tellurite reduction generates oxygen reactive

species (ROS), especially superoxide anion (O−

2 ), which is deleterious to fundamental cell

macromolecules producing protein oxidation, lipid peroxidation and DNA damage (Pérez

et al., 2007; Tremaroli, Fedi & Zannoni, 2007). Surprisingly, Streptomyces sp. H-KF8 did

not show black pigmentation after tellurite exposure, which is a distinctive phenotype that

indicates tellurite reduction to elemental tellurium (Taylor, 1999), suggesting that other

mechanisms of resistance could be involved in Streptomyces sp. H-KF8. To our knowledge,

this is the first tellurite-resistant Streptomyces strain described so far.

Additionally, resistance to mercury at a concentration of 60 µM was observed for

Streptomyces sp. H-KF8. In general, bacteria capable of resisting mercury above 20

µM, should possess specific detoxification systems, as mercury is one of the most toxic

elements on earth and produces several health concerns for macroorganisms (Das, Dash

& Chakraborty, 2016). In bacteria, two different resistance operons are known, the basic

narrow-spectrum mer operon merRTPA for inorganic mercury, and the broad-spectrum

operon that additionally contains merB, which provides protection against organo-

mercurial compounds (Barkay, Miller & Summers, 2003). In addition, it was recently

demonstrated that mercury resistance mechanisms could also be involved in tellurite

cross-resistance (Rodríguez-Rojas et al., 2015). Studies in Streptomyces includes S. lividans

132, that carries two divergently transcribed operons named merAB and merRTP in

the chromosome (Sedlmeier & Altenbuchner, 1992; Brünker et al., 1996; Rother, Mattes &

Altenbuchner, 1999), and two Streptomyces spp. strains isolated from estuarine sediments

where these genes were also observed in giant linear plasmids (Ravel, Schrempf & Hill,

1998; Ravel et al., 2000). Interestingly, the genetic operons mentioned above were not

detected in Streptomyces sp. H-KF8, despite the fact that a mercury-resistance phenotype

was evidenced. Instead, the presence of two mercury-related genes, the transcriptional
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regulator merR and the mercuric reductase merA, may be playing a role in such resistance.

MerA is a flavoprotein NADPH-dependent enzyme responsible for the reduction of

mercury(II) to the elemental and less toxic volatile mercury(0) (Barkay, Miller & Summers,

2003). Similarly, evidence of functional operons conformed either bymerA ormerRA have

been previously reported in archaea (Boyd & Barkay, 2012).

However, no evident growth was observed in the presence of arsenate or arsenite,

although Streptomyces sp. H-KF8 bears at least 11 genetic determinants that could involved

in its detoxification. In general, the arsenic resistance operon consists of arsRABCD genes,

where arsC encodes for an arsenate reductase that converts arsenate to arsenite, which is

then exported through the ArsAB ATPase-efflux pump. In Streptomyces sp. H-KF8, arsA,

arsC and arsR genes are present, but lack the arsB gene,which encodes an arsenite antiporter,

crucial for anchoring ArsA to the inner membrane with concomitant detoxification

of arsenite. Absence of the arsB gene may explain the sensitivity of Streptomyces sp.

H-KF8 towards these toxics. Arsenic resistance genes are generally widespread amongst

both Gram-positive and Gram-negative bacteria, reflecting its broad distribution in the

environment (Silver & Phung, 2005). In fact, these genes were also conserved in several

marine streptomycetes from the South China Sea (Tian et al., 2016).

Streptomyces sp. H-KF8 displayed a notorious copper-resistant phenotype, concordant

with the detection of three copA genes encoding for multicopper oxidases that may be

responsible for the oxidation of Cu(I) to its less toxic form Cu(II) (Hobman & Crossman,

2014). Copper is an essential metal for living beings, but is extremely toxic at higher

concentrations (Gaetke & Chow, 2003). Moreover, Chile is the major copper-producing

country in the world, due to its geological nature (Wacaster, 2015). Hence, the widespread

of copper resistant genetic determinants that has been demonstrated in Chilean marine

sediments (Besaury et al., 2013) is expected.

Resistance to nickel and cobalt in Streptomyces sp. H-KF8 might be given by the

rcnA gene that participates in the efflux system of these metals. Highly nickel- and

cobalt-resistant Streptomyces were found in an acid mine drainage, where growth in

media containing up to 10 mM nickel(II) or 3 mM cobalt(II) was observed (Schmidt

et al., 2005). In this report, Streptomyces sp. H-KF8 was able to grow even at higher

concentrations: 15 mM nickel(II) and 6 mM cobalt(II), respectively. Furthermore,

chromate toxicity (20 mM) might be overcome in Streptomyces sp. H-KF8 due to the

presence of the chrR gene encoding a chromate reductase involved in the enzymatic

reduction of chromate to the less harmful chromite cation (Das, Dash & Chakraborty,

2016). Previously reported Streptomyces chromate-resistant strains isolated from sugar cane

plantwere able to grow in 17mM,where also chromate-removing activitywas demonstrated

(Polti, Amoroso & Abate, 2007).

Metal exposure and adverse abiotic environmental factors produces a general condition

of oxidative stress in microorganisms. As oxidative stress is hazardous for fundamental

macromolecules, bacteria have evolved several mechanisms to protect themselves from

these environmental stresses. In Streptomyces sp. H-KF8, an exceptional response to several

concentrations of H2O2 was observed, compared to the model Streptomyces violaceoruber

A3(2) which was more susceptible towards the toxic. Consequently, a wide number
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of genetic determinants related to ROS response were present in the Streptomyces sp.

H-KF8 genome. Remarkably, a high number of thioredoxins (trx) and alkyl hydroperoxide

reductases (ahp) genes (nine of each) were found in Streptomyces sp. H-KF8, in comparison

with Streptomyces violaceoruber A3(2)where five and one geneswere described, respectively.

The ahp and trx are fundamental H2O2-inducible genes that encodes for enzymes known

to participate in the bacterial response to oxidative stress, which are regulated by oxyR in

E. coli (Storz & Imlay, 1999; Seaver & Imlay, 2001; Chiang & Schellhorn, 2012). The oxyR

regulon is not present in Streptomyces sp. H-KF8, but instead two copies of the perR

regulator fulfill its role in Gram-positive bacteria (Ricci et al., 2002; Dubbs & Mongkolsuk,

2012). Also, the ohrR transcriptional regulator that senses organic peroxide (ROOH) and

sodium hypochlorite (NaOCl) (Dubbs & Mongkolsuk, 2012) was found in Streptomyces

sp. H-KF8. In addition, several genes regulated by the soxR transcriptional regulatory

system such as glutaredoxin and glutathione peroxidase, superoxide dismutases (sod),

catalases (kat ) and thioredoxin reductases were recognized in Streptomyces sp. H-KF8

genome, which overall may be accounting for it resistance through H2O2 exposure. Even

more, the chromate reductase (chrR) previously mentioned, could also provide additional

protection against H2O2 (Das, Dash & Chakraborty, 2016). Interestingly, unusual genes

encoding for bromoperoxidases, chloroperoxidases and chlorite dismutases, involved

in osmotic stress detoxification of brominated and chlorinated toxic compounds which

are abundant in the marine environments (Sander et al., 2003; Bouwman et al., 2012),

were also present in Streptomyces sp. H-KF8 genome. On the other hand, Streptomyces

violaceoruber A3(2) possess only one chloroperoxidase, suggesting that this might represent

another marine adaptation trait for Streptomyces sp. H-KF8. Osmotic and oxidative stress

response seems to be regulated via a network of sigma factors in Streptomyces violaceoruber

A3(2), that controls the activation of several oxidative defense proteins, chaperones and

systems that provide osmolytes and mycothiol (Lee et al., 2005). Consistently, a high

amount of genes for mycothiol biosynthesis was identified in Streptomyces sp. H-KF8.

Mycothiol is the major low-molecular-weight thiol present in actinobacteria, and serves as

a buffer to advert disulfide stress, in complement of the enzymatic system presented above

(Buchmeier & Fahey, 2006; Den Hengst & Buttner, 2008).

Recently, evidence of heavy metal driving co-selection of antibiotic resistance in both

natural environments (Seiler & Berendonk, 2012) and contaminated ones (Li, Li & Zhang,

2015; Henriques et al., 2016) have been reported. In this line, isolation of Streptomyces

with both metal and antibiotic co-resistances have been described (Van Nostrand et al.,

2007). In addition, co-evolution of resistance within closely related antibiotic-producing

bacteria has been demonstrated for Streptomyces (Laskaris et al., 2010).Hence, the antibiotic

response against pharmaceutical compounds was investigated in Streptomyces sp. H-KF8,

and resistance was observed to all antibiotics tested, with exception of gentamicin and

novobiocin. Resistance to almost all antibiotics tested, could be due to the presence of

multiple BGCs with different mode of action. A typical BGC cluster that produces a

bioactive compound is generally coupled to its corresponding resistance gene (Zotchev,

2014). The phenomena of widespread distribution antibiotic resistance genes in natural

environments is consequence of improper use of antibiotics in medical treatment,
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as well as by an indiscriminate use in agriculture, livestock and aquaculture (Brown

et al., 2006). Phenomena such as the grasshopper effect may also contribute to the

rapid transport of toxics around the globe through atmospheric and oceanic currents

(Sadler & Connell, 2012).

Overall, our study shows the response of a marine Streptomyces sp. H-KF8 against several

abiotic stressors such as heavymetals, oxidative stress and antibiotics, alongwith the genome

mining of the biosynthetic gene clusters that could be involved in the antimicrobial activity

observed. Altogether, these biological features may enable Streptomyces sp. H-KF8 to thrive

in the complex fjord marine environment.
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