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Genomic diversity across the Rickettsia and
‘Candidatus Megaira’ genera and proposal of
genus status for the Torix group
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Members of the bacterial genus Rickettsia were originally identified as causative agents of

vector-borne diseases in mammals. However, many Rickettsia species are arthropod sym-

bionts and close relatives of ‘Candidatus Megaira’, which are symbiotic associates of micro-

eukaryotes. Here, we clarify the evolutionary relationships between these organisms by

assembling 26 genomes of Rickettsia species from understudied groups, including the Torix

group, and two genomes of ‘Ca. Megaira’ from various insects and microeukaryotes. Our

analyses of the new genomes, in comparison with previously described ones, indicate that the

accessory genome diversity and broad host range of Torix Rickettsia are comparable to those

of all other Rickettsia combined. Therefore, the Torix clade may play unrecognized roles in

invertebrate biology and physiology. We argue this clade should be given its own genus

status, for which we propose the name ‘Candidatus Tisiphia’.
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Symbiotic bacteria are vital to the function of most living
eukaryotes, including microeukaryotes, fungi, plants, and
animals1–4. The symbioses formed are often functionally

important to the host with effects ranging from mutualistic to
detrimental. Mutualistic symbionts may provide benefits through
the biosynthesis of metabolites, or by protecting their hosts
against pathogens and parasitoids5,6. Parasitic symbionts can be
detrimental to the host due to resource exploitation or through
reproductive manipulation that favours its own transmission over
the host’s7,8. Across these different symbiotic relationships,
symbionts are often important determinants of host ecology and
evolution.

The Rickettsiales (Alphaproteobacteria) represent an order of
largely obligate intracellular bacteria that form symbioses with a
variety of eukaryotes9. Deianiraea, an extracellular parasite of
Paramecium, is the one known exception10. Within Rickettsiales,
the family Rickettsiaceae represent a diverse collection of bacteria
that infect a wide range of eukaryotic hosts and can act as sym-
bionts, parasites, and pathogens. Perhaps the best-known clade of
Rickettsiaceae is the genus Rickettsia, which was initially described
as the cause of spotted fever and other rickettsioses in vertebrates
that are transmitted by ticks, lice, fleas, and mites11.

Rickettsia have been increasingly recognised as heritable
arthropod symbionts. Since the description of a maternally
inherited male-killer in ladybirds12, we now know that heritable
Rickettsia are common in arthropods13,14. Further, Rickettsia-
host symbioses are diverse, with different symbionts being cap-
able of reproductive manipulation, nutritional and protective
symbiosis, as well as influencing thermotolerance and pesticide
susceptibility15–21.

Our understanding of the evolution and diversity of the genus
Rickettsia and its allies has increased in recent years, with the
taxonomy of Rickettsiaceae developing as more data becomes
available14,22. Weinert et al.14 loosely defined 13 different groups
of Rickettsia based on 16 S rRNA phylogeny, which showed two
early branching clades that appeared genetically distant from
other members of the genus. One of these was a symbiont of
Hydra and designated as Hydra group Rickettsia, which has since
been assigned its own genus status, ‘Candidatus Megaira’23. ‘Ca.
Megaira’ forms a related clade to Rickettsia and is found in cili-
ates, amoebae, chlorophyte and streptophyte algae, and
cnidarians24. Members of this clade are found in hosts from
aquatic, marine and soil habitats which include model organisms
(e.g., Paramecium, Volvox) and economically important verte-
brate parasites (e.g., Ichthyophthirius multifiliis, the ciliate that
causes white spot disease in fish)24. Whilst symbioses between
‘Ca. Megaira’ and microeukaryotes are pervasive, there is no
publicly available complete genome and the impact of these
symbioses on the host are poorly understood.

A second early branching clade was described from Torix tagoi
leeches and is commonly coined Torix group Rickettsia25. Sym-
bionts in the Torix clade have since been found in a wide range of
invertebrate hosts from midges to freshwater snails to fish-
parasitic amoeba13. The documented diversity of hosts is wider
than other Rickettsia groups, which are to date only found in
arthropods and their associated vertebrate or plant hosts14. Torix
clade Rickettsia are known to be heritable symbionts, but their
impact on host biology is poorly understood, despite the eco-
nomic and medical importance of several hosts (inc. bed bugs,
black flies, and biting midges). Rare studies have described the
potential effects on the host, which include larger body size in
leeches25; a small negative effect on growth rate and reproduction
in bed bugs26; and an association with parthenogenesis in
Empoasca Leafhoppers27.

Current data suggest an emerging macroevolutionary scenario
where the members of the Rickettsia clade originated as

symbionts of microeukaryotes, before diversifying to infect
invertebrates23,28,29. Many symbionts belonging to the Rick-
ettsiaceae (e.g., ‘Ca. Megaira’, ‘Candidatus Trichorickettsia’,
‘Candidatus Phycorickettsia’, ‘Candidatus Sarmatiella’ and
‘Candidatus Gigarickettsia’) circulate in a variety of
microeukaryotes23,30–33. The Torix group Rickettsia retained a
broad range of hosts from microeukaryotes to arthropods13. The
remaining members of the genus Rickettsia evolved to be
arthropod heritable symbionts and vector-borne pathogens14,34.
However, a lack of genomic and functional information for
symbiotic clades limits our understanding of evolutionary tran-
sitions within Rickettsia and its related groups. No ‘Ca. Megaira’
genome sequences are currently publicly available and of the 165
Rickettsia genome assemblies available on the NCBI (as of 29/04/
21), only two derive from the Torix clade and these are both draft
genomes. In addition, dedicated heritable symbiont clades of
Rickettsia, such as the Rhyzobius group, have no available
genomic data, and there is a single representative for the Adalia
clade. Despite the likelihood that heritable symbiosis with
microeukaryotes and invertebrates was the ancestral state for this
group of intracellular bacteria, available genomic resources are
heavily skewed towards pathogens of vertebrates.

In this study we establish a richer base of genomic information
for heritable symbionts Rickettsia and ‘Ca. Megaira’, then use
these resources to clarify the evolution of these groups. We
broaden available genomic data through a combination of tar-
geted sequencing of strains without complete genomes, and
metagenomic assembly of Rickettsia strains from arthropod
genome projects. We report the first closed circular genome of a
‘Ca. Megaira’ symbiont from a streptophyte alga (Mesostigma
viride) and provide a draft genome for a second ‘Ca. Megaira’
from a chlorophyte (Carteria cerasiformis). In addition, we pre-
sent the complete genomes of two Torix Rickettsia from a midge
(Culicoides impunctatus) and a bed bug (Cimex lectularius) as
well as a draft genome for Rickettsia from a tsetse fly (Glossina
morsitans submorsitans, an important vector species), and a new
strain from a spider mite (Bryobia graminum). A metagenomic
approach established a further 22 draft genomes for insect sym-
biotic strains, including previously unsequenced Rhyzobius and
Meloidae group draft genomes. We utilize these to conduct
pangenomic, phylogenomic, and metabolic analyses of our
extracted genome assemblies, with comparisons to existing
Rickettsia.

Results and discussion
We have expanded the available genomic data for several Rick-
ettsia groups through a combination of draft and complete gen-
ome assembly. This includes an eight-fold increase in available
Torix-group genomes, and genomes for previously unsequenced
Meloidae and Rhyzobius groups. We further report initial refer-
ence genomes for ‘Ca. Megaira’.

Complete and closed reference genomes for Torix Rickettsia
and ‘Ca. Megaira’. The use of long-read sequencing technologies
produced complete genomes for two subclades of the Torix group
limoniae (RiCimp) and leech (RiClec). Sequencing depth of the
Rickettsia genomes from C. impunctatus (RiCimp) and C. lectu-
larius (RiClec) were 18X and 52X, respectively. The RiCimp
genome provides evidence of plasmids in the Torix group (pRi-
Cimp001 and pRiCimp002) (Table 1). Notably, the two plasmids
share more similarities between them than to other Rickettsia
plasmids. However, both plasmids contain distant homologs of
the DnaA_N domain-containing proteins previously found in
other Rickettsia plasmids35. In addition, only two components of
the type IV conjugative transfer system known as RAGEs
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(Rickettsiales Amplified Genetic Elements)36 were present on the
plasmids including homologs of the proteins TrwB/TraD and
TraA/MobA. The majority of the RAGE elements including both
the F-like (tra) and P-like type IV components have been
incorporated in the main chromosome. The presence of RAGE
elements, alongside the fact conjugation apparatuses have narrow
host-ranges37, suggest horizontal transfer of these plasmids is
likely within the Rickettsiaceae and could occur between Torix
and the main Rickettsia clade, considering co-infections of these
genera have been noted previously38,39. We additionally assem-
bled a complete closed reference genome of ‘Ca. Megaira’ from
Mesostigma viride (MegNEIS296) from previously published
genome sequencing efforts. Likewise, MegNEIS296 genome
contains a plasmid which bears features of other Rickettsia plas-
mids including the presence of a tra conjugative element and the
presence of two DnaA_N-like protein paralogs.

General features of both genomes are consistent with previous
genomic studies of the Torix group (Table 1). A single full set of
rRNAs (16 S, 5 S and 23 S) and a GC content of ~33% was
observed. Notably, the two complete Torix group genomes show a
distinct lack of synteny (Supplementary Fig. 1), a genomic feature
that is compatible with our phylogenetic analyses that placed these
two lineages in different subclades (leech/limoniae) (Fig. 1 and
Supplementary Fig. 3). Gene order breakdown due to intragenomic
recombination has been previously associated with the expansion of
mobile genetic elements in both Rickettsia40 and Wolbachia41,
another member of the Rickettsiales. Both RiCimp and RiClec
genomes predicted to encode for a high number of transposable
elements with circa 96 and 119 annotated putative transposases,
respectively. This expansion of transposable elements along with
their phylogenetic distance is likely responsible for the extreme
synteny breakdown between RiCimp and RiClec. Of note within the
closed reference genomes MegNEIS296 and RiCimp is the presence
of a putative non-ribosomal peptide synthetase (NRPS) and a
hybrid non-ribosomal peptide/polyketide synthetase (NRPS/PKS)
respectively (Supplementary Fig. 2). Although, the exact products of
these putative pathways are uncertain, in silico prediction by Norine
suggests some similarity with both cytotoxic and antimicrobial
peptides hinting at a potential defensive role (Supplementary Fig. 2).
Further homology comparison with other taxa did not provide links
with any specific functions or phenotypes. Previously, an unrelated
hybrid NRPS/PKS cluster has been reported in Rickettsia buchneri
on a mobile genetic element, providing potential routes for
horizontal transmission42. The strongest blastp hits of MegNEIS296
NRPS proteins occur in Cyanobacteria (Supplementary Fig. 2)42. In
addition, putative toxin-antitoxin systems similar to one associated
with cytoplasmic incompatibility in Wolbachia have recently been

observed on the plasmid of Rickettsia felis in a parthenogenetic
booklouse35. Toxin-antitoxin systems are thought to be part of an
extensive bacterial mobilome network associated with reproductive
parasitism43. A BLAST search found a very similar protein in
Oopac6 to the putative large pLbAR toxin found in R. felis (88% aa
identity), and a more distantly related protein in the C. impunctatus
plasmid (25% aa identity).

Sequencing and de novo assembly of other Rickettsia and
‘Ca. Megaira’ genomes. Our direct sequencing efforts enabled
assembly of draft genomes for a second ‘Ca. Megaira’ strain from
the alga Carteria cerasiformis, and for Rickettsia associated with
tsetse flies and Bryobia spider mites. The Rickettsia genome
retrieved from a wild caught Tsetse fly, RiTSETSE, is a potentially
chimeric assembly of closely related Transitional group Rickettsia.
We identified an excess of 3584 biallelic sites (including 3369
SNPs and 215 indels) when the raw Illumina reads were mapped
back to the assembly. High read depth of 104X indicate that this
could be a symbiotic association, reflecting previous observations
in Tsetse fly cells44. However, there is a possibility that RiTSETSE
is not a heritable symbiont but comes from transient infection
from a recent blood meal.

From the SRA accessions, the metagenomic pipeline extracted
29 full symbiont genomes for Rickettsiales across 24 host species.
Five of 29 were identified as Wolbachia and discarded from
further analysis, one was a Rickettsia discarded for low quality,
and another was a previously assembled Torix Rickettsia,
RiCNE45. Thus, 22 high quality Rickettsia metagenomes were
obtained from 21 host species. One beetle (SRR6004191) carried
coinfecting Rickettsia Lappe3 and Lappe4 (Table 2). The high-
quality Rickettsia genomes covered the Belli, Torix, Transitional,
Rhyzobius, Meloidae and Spotted Fever Groups (Table 2 and
Supplementary Data 1).

Beetles, particularly rove beetle (Staphylinidae) species, appear
in this study as a possible hotspot of Rickettsia infection.
Rickettsia has historically been commonly associated with beetles,
including ladybird beetles (Adalia bipunctata), diving beetles
(Deronectes sp.) and bark beetles (Scolytinae)14,17,34,46,47. Though
a plausible and likely hotspot, this observation needs be
approached with caution as this could be an artefact of skewed
sampling efforts.

Phylogenomic analyses and taxonomic placement of assembled
genomes. The phylogeny and network illustrate the distance of
Torix from ‘Ca. Megaira’ and other Rickettsia, along with an
extremely high level of within-group diversity in Torix compared

Table 1 Summary of the closed ‘Ca. Megaira’ and Torix Rickettsia genomes completed in this project.

Group ‘Ca. Megaira’ Torix Rickettsia Torix Rickettsia

Strain Name MegNIES296 RiCimp RiClec

Symbiont genome accession GCA_020410825.1 GCA_020410785.1 GCA_020410805.1
Host Mesostigma viride NIES-296 Culicoides impunctatus Cimex lectularius
Raw reads accession SRR8439255,

SRX5120346
SRR16018514,
SRR16018513

SRR16018512, SRR16018511

Total nucleotides 1,532,409 1,566,468 1,611,726
Chromosome size (bp) 1,448,425 1,469,631 1, 611,726
Plasmids 1 (83,984 bp) 2 (77550 bp+ 19287 bp) None
GC content (%) 33.9 32.9 32.8
Number of CDS 1,359 1,397 1,544
Avg. CDS length (bp) 998 900 874
Coding density (%) 88.5 86 84
rRNAs 3 3 3
tRNAs 34 34 35

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30385-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2630 | https://doi.org/10.1038/s41467-022-30385-6 | www.nature.com/naturecommunications 3

https://www.ncbi.nlm.nih.gov/assembly/GCA_020410825.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_020410785.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_020410805.1
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8439255
https://www.ncbi.nlm.nih.gov/sra/?term=SRX5120346
https://www.ncbi.nlm.nih.gov/sra/?term=SRR16018514
https://www.ncbi.nlm.nih.gov/sra/?term=SRR16018513
https://www.ncbi.nlm.nih.gov/sra/?term=SRR16018512
https://www.ncbi.nlm.nih.gov/sra/?term=SRR16018511
www.nature.com/naturecommunications
www.nature.com/naturecommunications


to any other group (Fig. 1 and Supplementary Fig. 3). No sig-
nificant discordance was detected between the core and ribosomal
phylogenies. The phylogenies generated using core genomes are
consistent with previously identified Rickettsia and host associa-
tions using more limited genetic markers13,14,48,49. For instance,
Pfluc4 from Proechinophthirus fluctus lice is grouped on the same
branch as a previously sequenced Rickettsia from a different
individual of P. fluctus48. The following groups were identified in
the 22 genomes assembled from the SRA screening: 4 Transi-
tional, 1 Spotted Fever, 1 Adalia, 8 Belli and 7 Torix limoniae.
Targeted sequences were confirmed as: Torix limoniae (RiCimp),
Torix leech (RiClec), Transitional (RiTSETSE), ‘Ca. Megaira’
(MegCarteria and MegNEIS296), and a deeply diverging Torix
clade provisionally named Moomin (Moomin) (Table 2, Fig. 1,
Supplementary Fig. 3 and 4). The extracted Torix genomes
include one double infection giving a total of 10 new genomes
across 9 potential host species. The double infection is found
within the rove beetle Labidopullus appendiculatus, forming two
distinct lineages, Lappe3 and Lappe4 (Fig. 1 and Supplementary
Fig. 3).

We also report a putative Rhyzobius group Rickettsia genomes
extracted from the staphylinid beetle Oxypoda opaca (Oopac6)
and Meloidae group Rickettsia from the firefly Pyrocoelia
pectoralis (Ppec13). They have high completeness, low contam-
ination, and consistently group away from the other draft and
completed genomes (Figs. 1, 2, and Supplementary Data 1).
MLST analyses demonstrate that these bacteria are most like the
Rhyzobius and Meloidae groups described by Weinert et al.14

(Supplementary Fig. 4). Phylogenies of Oopac6 and Ppec13 sug-
gest that Rhyzobius sits as sister group to all other Rickettsia
groups, and Meloidae is more closely associated with Belli (Fig. 1,
Supplementary Fig. 3–5). Further genome construction will help
clarify this taxon and its relationship to the rest of the
Rickettsiaceae. The sequencing data for the wasp, Diachasma

alloeum, used here has previously been described to contain a
pseudogenised nuclear insert of Rickettsia material, but not a
complete Rickettsia genome50. The construction of a full, non-
pseudogenised genome with higher read depth than the insect
contigs, low contamination (0.95%) and high completion
(93.13%) suggests that these reads likely represent a viable
Rickettsia infection in D. alloeum. However, these data do not
exclude the presence of an additional nuclear insert. It is possible
for a whole symbiont genome to be incorporated into the host’s
DNA like in the case of Wolbachia51, or the partial inserts of
‘Ca. Megaira’ genomes in the Volvox carteri genome52. The
presence of both the insert and symbiont need confirmation
through appropriate microscopy methods.

Recombination is low within the core genomes of Rickettsia
and ‘Ca. Megaira’ but may occur between closely related clades
that are not investigated here. Across all genomes, the PHI score
is significant in 6 of the 74 core gene clusters, suggesting putative
recombination events. However, it is reasonable to assume that
most of these may be a result of systematic error due to the
divergent evolutionary processes at work across Rickettsia
genomes. Patterns of recombination can occur by chance rather
than driven by evolution which cannot be differentiated by
current phylogenetic methods53. The function of each respective
cluster can be found in Supplementary Data 1.

Gene content, pangenome and metabolic analysis. Across all
genomes used in the gene content comparison analysis (Supple-
mentary Fig. 6), Anvi’o identified only 208 core gene clusters of
which 74 are represented by single-copy genes. It is particularly
evident the large size of the accessory genome across the main
Rickettsia and the Torix clades. Out of the 2470 predicted
ortholog clusters for the Torix clade 1296 (52.5%) are uniquely
found among the Torix genomes, while for Rickettsia 2460 unique
ortholog clusters were predicted from a total of 3811 (64.5%)
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Fig. 1 Genome wide phylogeny of Rickettsia and ‘Ca. Megaira’. Maximum likelihood (ML) phylogeny of Rickettsia and ‘Ca. Megaira’ constructed from 74
core gene clusters extracted from the pangenome. New genomes are indicated by ◄ and bootstrap values based on 1000 replicates are indicated with
coloured diamonds (red= 91–100, yellow= 81–90, black <= 80). New complete genomes are: RiCimp, RiClec and MegNEIS296. Asterisks indicate
collapsed monophyletic branches and “//” represent breaks in the branch. Accessions used are provided in Supplementary Data 1.
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(Fig. 3). However, if we account for the number of genomes
available in each clade then Torix shows higher rates of gene
cluster and unique gene clusters accumulation with each addi-
tional genome (Fig. 4). Our results indicate that the main Rick-
ettsia clade and especially the Torix clade, seem to have a high
degree of genome diversity, suggesting a wider repertoire of genes
and potentially greater rates of gene turnover. As expected, the
more genomes that are included in analyses, the smaller the core
genome extracted. However, gene content analysis results of

increasingly diverged genomes should be always interpreted with
caution as true homology relationship between genes/proteins
might get obscured by their sequence divergence.

Torix is a distinctly separate clade sharing less than 65% AAI
similarity to any Rickettsia or ‘Ca. Megaira’ genomes (Fig. 2). It
contains at least five species-level clusters with >95% ANI similarity
that reflect its highly diverse niche in the environment
(Fig. 2)13,54,55. With only two examples, the true diversity of
‘Ca. Megaira’ is underestimated here. Overall, our results indicate
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higher genomic plasticity within Torix clade in terms of gene
content compared to Rickettsia.

We also investigated whether Torix and Rickettsia clades are
enriched for particular COGs (Supplementary Data 1). Among
the most highly enriched genes in Torix clade were genes
encoding for invasion associated proteins like the

exopolysaccharide synthesis protein ExoD (COG3932) and the
invasion associated protein IalB (COG5342), a carbonic anhy-
drase (COG0288) and a Chloramphenicol resistance associated
protein (COG3896). Both carbonic anhydrase and ExoD homo-
logs has been already reported in Torix clade45 and our results
here further support their important role in Torix biology. ExoD
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Fig. 3 Gene content comparison. Shared and unique gene clusters across genus putative genus clusters Rickettsia, Rhyzobius, Torix and ‘Ca. Megaira’ as
suggested by GTDB-tk. Vertical coloured bars represent the size of intersections (the number of shared gene clusters) between genomes in descending
order with known COG functions displayed in coral and unknown in blue. Black dots mean the cluster is present and connected dots represent gene
clusters that are present across groups. Numbers in parenthesis represent the number of genomes used in the analysis. Source data are provided in
Source Data.
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has been previously reported as essential for successful nodule
invasion of the nitrogen-fixing endosymbiont Rhizobium56.
When we consider both Torix and ‘Ca. Megaira’ clades the genes
involved in the non-oxidative phase of the PPP pathway were the
most highly enriched genes (Supplementary Data 1). It is
noteworthy that a large fraction of the enriched genes in both
Rickettsia and Torix clades are related to cell wall and membrane
biogenesis. These are likely associated with differences in the
biology of the two clades at the host-microbe interface.

Rickettsia lineages group together based on gene presence/
absence and produce repeated patterns of accessory genes that
reliably occur within each clade (Supplementary Fig. 6). AAI
scores separate Torix group, Rickettsia and ‘Ca. Megaira’ out into
genus groups with no score above 65% similarity outside of each
respective clade (Fig. 2)57. ANI scores suggest that Torix and the
remaining Rickettsia clades are multispecies clusters with less
than 95% similarity between genomes in the same groups except
for the Spotted Fever Group (Fig. 2)57.

Rickettsial genomes extracted from SRA samples are generally
congruent with the metabolic potential of their respective groups
(Fig. 5). Torix and ‘Ca. Megaira’ all have complete pentose
phosphate pathways (PPP); a unique marker for these groups
which seems to have been lost in the other Rickettsia clades45. The
PPP generates NADPH, precursors to amino acids, and is known
to protect against oxidative injury in some bacteria58, as well as
conversion of hexose monosaccharides into pentose used in
nucleic acid and exopolysaccharide synthesis. The PPP has also
been associated with establishing symbiosis between the Alpha-
proteobacteria Sinorhizobium meliloti and its plant host Medicago
sativa59. This pathway has previously been highlighted in Torix45

and its presence in all newly assembled Torix and ‘Ca. Megaira’
draft genomes consolidates its importance as an identifying
feature for these groups (Fig. 5, Supplementary Data 1).
Considering the trend towards gene loss, the PPP is likely an
ancestral feature that was lost in the main Rickettsia clade45,60.

Metabolic pathways for Glycolysis, gluconeogenesis, and
cofactor/vitamin synthesis are absent or incomplete across all
Rickettsia included in these analyses, except in the Rhyzobius
group member, Oopac6. Oopac6 has a putatively complete biotin
synthesis pathway (Fig. 5, Supplementary Fig. 7) and is likely a
separate genus according to GTDBtk analysis (Supplementary
Data 1). The Oopac6 biotin synthesis pathway is related to, but
distinct from, the Rickettsia biotin pathway from Rickettsia
buchneri36 with which it shares between 85% to 92% amino acid
sequence similarity across genes (Supplementary Fig. 7)36. More-
over, there is no sequence similarity outside of the biotin operon.
This, along with the presence on a plasmid in Rickettsia buchneri
makes it likely that Oopac6 operon is a result of horizontal gene
transfer. Animals cannot synthesize B-vitamins, so they either
acquire them from diet or from microorganisms that can
synthesize them. Oopac6 has retained or acquired a complete
biotin operon where this operon is absent in other members of
the genus. Biotin pathways in insect symbionts can be an
indicator of nutritional symbioses61, so Rhyzobius Rickettsia
could contribute to the feeding ecology of the beetle O. opaca.
However, like other aleocharine rove beetles, O. opaca is likely
predaceous, omnivorous or fungivorous (analysis of gut contents
from a related species, O. grandipennis, revealed a high prevalence
of yeasts62). We posit no obvious reason for how these beetles
benefit from harbouring a biotin-producing symbiont. One
theory is that this operon could be a hangover from a relatively
recent host shift event and may have been functionally important
in the original host. Similarly, if the symbiont is undergoing
genome degradation, a once useful biotin pathway may be present
but not functional63,64. Although the pimeloyl-ACP biosynth-
esis pathway is partially present (Fig. 5), a bioH homolog is not
found within or outside the biotin operon (Supplementary Fig. 7)
suggesting that this pathway may not be functional (as observed
in some Buchnera aphidicola64,65) or that it may be used in a
different way. As this is the only member of this group with a
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Fig. 5 Comparison of metabolic potential across selected Rickettsia and ‘Ca. Megaira’. Heatmaps of predicted KEGG pathway completion estimated in
Anvi’o 7, separated by function, and produced with Pheatmap. High to low completeness is coloured dark to light blue. Species groups are indicated with a
unique colour as shown in the legend. Pathways of interest are highlighted in red: a The pentose phosphate pathway only present in Torix and ‘Ca.
Megaira’, b The biotin pathway present only in the Rhyzobius Rickettsia Oopac6. c NAD biosynthesis only present in Moomin Rickettsia. d dTDP‐L‐
rhamnose biosynthesis pathway in Gdoso1, Choog2, Drufa1, and Blapp1. SFG is Spotted Fever Group. Source data are provided in Source Data.
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whole genome so far, further research is required to firmly
establish the presence and function of this pathway.

A 75% complete dTDP‐L‐rhamnose biosynthesis pathway was
observed in 4 of the draft belli assemblies (Gdoso1, Choog2,
Drufa1, Blapp1) (Fig. 5). Two host species are bird lice
(Columbicola hoogstraali, Degeeriella rufa), one is a butterfly
(Graphium doson), and one is a ground beetle (Bembidion
lapponicum). dTDP‐L‐rhamnose is an essential component of
human pathogenic bacteria like Pseudomonas, Streptococcus and
Enterococcus, where it is used in cell wall construction66. This
pathway67 may be involved in the moulting process of
Caenorhabditis elegans68, and it is a precursor to rhamnolipids
that are used in quorum sensing69. In the root symbiont
Azospirillium, disruption of this pathway alters root colonisation,
lipopolysaccharide structure and exopolysaccharide production70.
No Rickettsia from typically pathogenic groups assessed in Fig. 5
has this pathway, and the hosts of these four bacteria are not
involved with human or mammalian disease. Presence in feather
lice provides little opportunity for this Rickettsia to be pathogenic
to their vertebrate hosts because feather lice are not blood feeders,
and Belli group Rickettsia are rarely pathogenic. Further, this
association does not explain its presence in a butterfly and ground
beetle; it is most likely that this pathway, if functional, would be
involved in establishing infection in the insect host or host-
symbiont recognition.

A partial NAD biosynthesis pathway is present only in the
Moomin genome. NAD is used as a coenzyme in numerous
reactions as well as a substrate in some synthesis pathways, such
as ADP-Ribosyltransferases which are used in bacterial toxin-
antitoxin systems71,72. NAD pathways have previously found in
two other members of Rickettsiaceae, ‘Ca. Sarmatiella mevalonica’
and Occidentia massiliensis31,73. The most likely explanation for
rare occurrence in Rickettsiaceae is either a lateral transfer event
or remnants from ancestral occurrence.

Designation of ‘Candidatus Tisiphia’. In all analyses, Torix
group consistently clusters away from the rest of Rickettsia as a
sister taxon. Despite the relatively small number of Torix

genomes, its within group diversity is greater than any divergence
between previously described Rickettsia in any other group
(Fig. 1, Supplementary Figs. 3 and 4). Additionally, Torix shares
characteristics with both ‘Ca. Megaira’ and Rickettsia, but with
many of its own unique features (Figs. 3 and 5). The distance of
Torix from other Rickettsia and ‘Ca. Megaira’ is confirmed in
both the phylogenomic and metabolic function analyses to the
extent that Torix should be separated from Rickettsia and
assigned its own genus. This is supported by GTDB-Tk analysis
which places all Torix genomes separate from Rickettsia (Sup-
plementary Data 1) alongside AAI percentage similarity scores
less than 65% in all cases (Fig. 2a). To this end, we propose the
name ‘Candidatus Tisiphia’. This name follows the fury Tisi-
phone, reflecting the genus ‘Ca. Megaira’ being named after her
sister Megaera.

Conclusions
The bioinformatics approach has successfully extracted a sub-
stantial number of Rickettsia and ‘Ca. Megaira’ genomes from
existing SRA data, including genomes for putative Rhyzobius
Rickettsia and several ‘Ca. Tisiphia’ (formerly Torix group Rick-
ettsia). Successful completion of two ‘Ca. Megaira’ and two ‘Ca.
Tisiphia’ genomes provide solid reference points for the evolution
of Rickettsia and its related groups. From this, we can confirm the
presence of a complete Pentose Phosphate Pathway in ‘Ca. Tisi-
phia’ and ‘Ca. Megaira’, suggesting that this pathway was lost
during Rickettsia evolution. We also describe previously unse-
quenced Meloidae and Rhyzobius Rickettsia and show that
Rhyzobius group Rickettsia has the potential to be a nutritional
symbiont due to the presence of a complete biotin pathway. These
genomes provide a much-needed expansion of available data for
symbiotic Rickettsia clades and clarification on the evolution of
Rickettsia from ‘Ca. Megaira’ and ‘Ca. Tisiphia’.

Methods
Genomic data collection and construction. We employed two different work-
flows to assemble genomes for ‘Ca. Megaira’ and Rickettsia symbionts (Fig. 6).
a) Targeted sequencing and assembly of focal ‘Ca. Megaira’ and Torix Rickettsia.

a)

b)

Fig. 6 Workflow diagram for extraction, assembly and analyses performed in this study. Workflows for genome assemble are illustrated for (a) long
read host insect sequences and (b) short read host insect sequences. Purple highlights Torix Rickettsia and orange highlights ‘Ca. Megaira’ and red
highlights Transitional Rickettsia. Sequencing technologies used vary with source and include Illumina short read sequencing, BGI DNBseq, Oxford
Nanopore and PacBio.
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b) Assembly from SRA deposits of ‘Ca. Megaira’ from Mesostigma viride NIES296
and the 29 arthropods identified in Pilgrim et al.13 that potentially harbour Rick-
ettsia. These were analysed alongside previously assembled genomes from the
genus Rickettsia, and the outgroup taxon Orientia tsutsugamushi, a distant relative
of Rickettsia species74.

DNA preparation, sequencing strategies and symbiont assembly methodologies
varied between species and are listed below. The pipeline used to assemble genomes
from Short Read Archive (SRA) data is deposited on Zenodo75.

Sample collection for targeted genome assembly. Cimex lectularius were
acquired from the ‘S1’ isofemale colony maintained at the University of Bayreuth
described in Thongprem et al.26. Culicoides impunctatus females were collected
from a wild population in Kinlochleven, Scotland (56° 42’ 50.7“N 4° 57’ 34.9“W)
on the evenings of the 2nd and 3rd September 2020 by aspiration. Carteria cer-
asiformis strain NIES 425 was obtained from the Microbial Culture Collection at
the National Institute for Environmental Studies, Japan. The Glossinia morsitans
submorsitans specimen Gms8 was collected in Burkina Faso in 2010 and Rickettsia
infection was present alongside other symbionts as described in Doudoumis
et al.76. The assembly itself is a result of later thesis work77.

A Bryobia mite community was sampled from herbaceous vegetation in Turku,
Finland. The Moomin isofemale line was established by isolating a single adult
female and was maintained on detached leaves of Phaseolus vulgaris L. cv Speedy at
25 °C, 60% RH, and a 16:8 light:dark photoperiod. The Moomin spider mite line
was morphologically identified as Bryobia graminum by Prof Eddie A.
Ueckermann (North-West University).

Previously published Rickettsia genomes. A total of 86 published Rickettsia
genomes, and one genome from Orientia tsutsugamushi were retrieved from the
European Nucleotide Archive and assessed with CheckM v1.0.1378. Inclusion
criteria for genomes were high completeness (CheckM > 90%), low contamination
(CheckM < 2%) and low strain heterogeneity (Check M < 50%) except in the case
of Adalia for which there is only one genome (87.6% completeness). Filtering
identified 76 high quality Rickettsia genomes that were used in all subsequent
analyses (Supplementary Data 1).

High molecular weight DNA extraction, assembly, and annotation of complete
genomes for two ‘Ca. Tisiphia’ (==Torix group Rickettsia) from Culicoides
impunctatus and Cimex lectularius. High molecular weight (HMW) genomic
DNA was prepared using four-hundred and eighty whole C. impunctatus and 45 C.
lectularius heads, the latter of which had been symbiont-enriched using a protocol
designed to eliminate host nuclei through filtration79. Culicoides impunctatus
individuals were pooled and homogenised in two 1.5 ml Eppendorf tubes con-
taining 0.9 ml of buffer G2 (Qiagen) using a pestle while the filtrate from the
enriched C. lectularius heads was also split and diluted to the same volumes.
Twenty-five μL of proteinase K (50 mg/ml) was added to each Eppendorf before
incubation at 56 °C for 90 minutes with gentle inversion every 30 min. The
respective lysates were centrifuged at 12,000 x g for 20 minutes before the super-
natants were pooled and diluted to 3 ml with buffer G2. After equilibrating a
Genomic-tip 20/G (Qiagen) with 1 ml QBT buffer, the lysate was gently inverted
before being poured onto the tip membrane. The tip was washed four times with
1 ml of QC buffer (Qiagen) before elution of the DNA using buffer QF (Qiagen).
Using wide-bore pipette tips, 667 µL of the eluate was pipetted into three 1.5 mL
Eppendorf tubes before the addition of 467 µL isopropanol to each tube and mixing
by gentle inversion 10 times. Genomic DNA was pelleted by centrifuging for
20 min at 15,000 x g at 4 °C and washing twice with 70% ethanol before resus-
pending in buffer EB (Qiagen). Quality control of HMW DNA was then confirmed
by running on a gel and assessment by Qubit fluorometric quantitation.

Long-read libraries for Oxford Nanopore sequencing were generated using the
SQK-LSK109 Ligation Sequencing Kit and sequenced on Minion R9.4.1 flow cells
at the Centre for Genomic Research, University of Liverpool, United Kingdom.
Raw Nanopore reads were base called using Guppy version 4.0.15 (Oxford
Nanopore) using the high accuracy model option (-c dna_r9.4.1_450bps_hac.cfg).
All reads which were over 500 bp in length and had an average phred (Q) score of >
10 were filtered using NanoFilt version 2.7.180. These reads were assembled with
Flye version 2.8.181 using default options.

Assembled circular contigs of ~1.5 Mb in length were confirmed for Rickettsia
identity by BLASTing against a Rickettsia genomic database45. High quality short-
read libraries were also generated from the same DNA samples and used to correct
the nanopore assemblies. C. impunctatus paired-end library (2 x 150 bp) was
prepared using a Kapa HyperPrep kit (Roche) and sequenced by BGI Genomics
(Hong Kong) on a DNBseq platform, whereas C. lectularius sequencing was carried
out by BGI Genomics (Hong Kong) on a Hiseq Xten PE150 platform. Data
cleaning and filtering was performed by BGI Genomics’ using SOAPnuke version
2.1.482 removing adapters and any reads with 50% of bases having phred scores
lower than 20.

Remaining reads were assembled with MEGAHIT version 1.2.983 using default
parameters and contigs were binned using MetaBAT 2 version 2.12.184. The
identities of bins were checked with CheckM version 1.1.378 and DNBseq reads
were mapped to contigs from the Rickettsia allocated bin using ‘perfect mode’ in

BBMap version 38.8785 and filtered using SAMtools version 1.1186. Filtered
Rickettsia reads were then used to polish the Flye assembled Rickettsia genomes
using two rounds of polishing with Pilon version 1.2387 and the ‘—bases’ option for
correcting SNPs and small indels. Annotation of the polished genomes was
accomplished using PROKKA version 1.1388 and identification of polyketide and
non-ribosomal peptide synthases was conducted by antiSMASH version 6.089.

Extraction and assembly of a complete ‘Ca. Megaira’ from Mesostigma viride.
‘Ca. Megaira’ genome was extracted from recently published reads of Mesostigma
viride NIES296 (from accession PRJNA509752). Illumina reads were de novo
assembled using MEGAHIT version v1.2.983, reads were mapped back to the
assembled contigs. Contigs were clustered and binned based on nucleotide com-
position and coverage using MetaBAT2 v2:2.1584 and a minimum contig length of
1.5 kb. The quality of ‘Ca. Megaira’ genome bin was inspected using CheckM78.
The PacBio reads were mapped on the Illumina draft assembly and reads of ‘Ca.
Megaira’ origin were extracted. Due to the excessive number of obtained reads a
sub-sample (reads > 10 k and 1/3 of the total) was taken using seqkit90 and used for
subsequent analysis. This sub-sample of PacBio reads was assembled using Canu
version 1.891 under default parameters. The final assembly, consisted of two
contigs, was manually inspected for circularization and trimmed accordingly. The
final and circular assembly was further polished by a combination of PacBio and
Illumina reads using Pilon v1.2287.

Extraction of Transitional Rickettsia, RiTSETSE, from Glossina morsitans
submorsitans. All methods described here for the extraction of G. morsitans
submorsitans originate from a thesis by Frances Blow77.

DNA was extracted immediately using the CTAB (Cetyl trimethylammonium
bromide) method and was stored at −20 °C. Whole Genome Shotgun (WGS)
libraries were prepared with the Illumina TruSeq Nano DNA kit following the
manufacturers’ instructions. Samples were sequenced on two lanes of Illumina
HiSeq with 250 bp paired-end reads. Raw sequencing reads were de-multiplexed
and converted to FASTQ format with CASAVA version 1.8 (Illumina). Cutadapt
version 1.2.192 was used to trim Illumina adapter sequences from FASTQ files.
Reads were trimmed if 3 bp or more of the 3’ end of a read matched the adapter
sequence. Sickle version 1.20093 was used to trim reads based on quality: any reads
with a window quality score of less than 20, or which were less than 10 bp long
after trimming, were discarded.

Metagenomic reads were assembled with DISCOVAR94 and contigs shorter
than 500 bp were removed and mapping with Bowtie295 was used to assess
coverage. Taxonomy was assigned to contigs with BLAST and the GC content of
contigs assessed with the Blobology package96. Contigs were filtered based on GC
content, coverage and taxonomy, and reads were extracted using scripts
implemented in Blobology. Extracted reads were re-assembled with SPAdes version
3.7.197 and mapped to contigs with Bowtie2. Assembly statistics were calculated
with custom perl scripts and Qualimap version 2.298.

DNA extraction of Moomin ‘Ca. Tisiphia’ (== Torix group Rickettsia) from
Bryobia graminum str. moomin. Genomic DNA was extracted from ~1000 adult
females using the Quick-DNA Universal kit (BaseClear, the Netherlands) and was
sequenced by GENEWIZ on an Illumina NovaSeq instrument. Rickettsia sequence
was extracted from illumina reads as described for other MAGs.

DNA extraction of ‘Ca. Megaira’ from Carteria cerasiformis. Symbiont enriched
DNA was extracted from culture using a modified version of the protocol of
Stouthamer et al.79. Specifically, prior to homogenization the Carteria cerasiformis
culture was filtered through a 100um filter/mesh to reduce bacterial contamination.
DNA extraction was performed using the QIAGEN DNAeasy™ Blood & Tissue Kit.
Short read sequencing was carried out by BGI Genomics (Hong Kong) on a Hiseq
Xten PE150 platform. Rickettsia sequences were assembled from Illumina reads as
described for other MAGs.

Assembly, and annotation of Rickettsia genomes from publicly available SRA
data. Pilgrim et al.13 identified 29 SRA deposits containing Rickettsia DNA. We
used these datasets to extract and assemble 22 new high quality draft Rickettsia
genomes. Briefly, short reads from each SRA library were assembled using
MEGAHIT v1.2.983, mapped with Minimap 2 v2.17-r94199 and contigs were
binned based on tetranucleotide frequencies using MetaBAT2 v2:2.1584. Rickettsia
like bins were quality inspected with CheckM v1.0.1378. Bins with a completeness
score of over 50% and contamination below 2% marked as Rickettsiales or Rick-
ettsia were then retained onward for further refinement, annotation, and scrutiny.

To refine MAGs, insect SRA contigs were compared against a local Rickettsia
genome database using Blastn100. Contigs with significant matches to the database
were extracted, non-Rickettsia contigs were identified with blastx against the nr
database and contigs with atypical coverage were discarded. MetaBAT 2 filtered out
reads less than 1.5 kb long for accuracy, but these reads are potentially informative
in small symbiont genomes, so contigs with a length of 1–2.5 kb were manually
examined and added to MetaBAT 2 assembled genomes. Those with improved
CheckM score and no Wolbachia in the original host are used as the final draft
genome for the Rickettsia. The additional genome for the leech Rickettsia, RiTBt,
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was found to contain Cardinium contamination during separate examination.
RiTBt contigs identified as Cardinium using blastx were removed from the genome,
reducing contamination from 9.48% to 0.95%. The final pipeline resulted in 22
MAGs each with completeness >90% and contamination <2%.

Genome content comparison and pangenome construction. Anvi’o 7101 was
used to construct a pangenome. Included in this were the 22 MAGs retrieved from
SRA data, 2 ‘Ca. Megaira’ genomes and 4 targeted Torix Rickettsia genomes, and
one Transitional group Rickettsia genome acquired in this study. To these were
added the 76 published and 1 Orientia described above, giving a total of 104
genomes. Individual Anvi’o genome databases were additionally annotated with
HMMER, KofamKOALA, and NCBI COG profiles102–104. For the pangenome
itself, orthologs were identified with NCBI blast, mcl inflation was set to 2, and
minbit to 0.5. Average nucleotide sequence identity was calculated using pyANI105

within Anvi’o 7 and Average Amino Acid identity was calculated though the
Kostas Lab enveomics online calculator106. Networks of ANI and AAI results were
produced in Gephi 0.9.2107 with Frutcherman Reingold layout and annotated in
Inkscape 0.92108. Exact code and a list of packages used is available on Zenodo75.

KofamKOALA annotation103 in Anvi-o 7 was used to estimate completeness of
metabolic pathways and Pheatmap109 in R 3.4.4110 was then used to produce
heatmaps of metabolic potential. Annotations for function and Rickettsia group
were added post hoc in Inkscape.

The biotin operon found in the genome Rhyzobius Rickettsia, Oopac6, was
identified from metabolic prediction. To confirm Oopac6 carries a complete biotin
pathway that shares ancestry with the existing Rickettsia biotin operon, Oopac6
biotin was compared to biotin pathways from five other related symbionts:
Cardinium, Lawsonia, Buchnera aphidicola, Rickettsia buchneri, and Wolbachia.
Clinker111 with default options was used to compare and visualise the similarity of
genes within the biotin operon region of all 6 bacteria. Clinker by default displays
the highest similarity comparisons based on an all-vs-all similarity matrix.

All generated draft and complete reference genomes were annotated using the
NCBI’s Prokaryotic Genome Annotation Pipeline (PGAP)112. Secondary
metabolite biosynthetic gene clusters were identified using AntiSMASH version
6.089 along with Norine113 which searched for similarities to predicted non-
ribosomal peptides. BLASTp analysis was additionally used to identify the closest
homologues of these biosynthetic gene clusters.

Functional enrichment analyses between the main Rickettsia clade and the
Torix – ‘Ca. Megaira’ clades were performed using the Anvi’o program anvi-get-
enriched-functions-per-pan-group and the “COG_FUNCTION” as annotation
source. A gene cluster presence – absence table was exported using the command
“anvi-export-tables”. This was used to create an UpSet plot using the R package
ComplexUpset114 to visualize unique and shared gene clusters between different
Rickettsia groups. A gene cluster was considered unique to a specified Rickettsia
group when it was present in at least one genome belonging to that group. Gene
cluster accumulation curves were performed for the pan-, core- and unique-
genomes based on the same presence-absence matrix using a custom-made R
script115. In each case the cumulative number of gene clusters were computed
based on randomly sampled genomes using 100 permutations. The analysis was
performed separately for Torix group and the combined remaining Rickettsia.
Curves were plotted using the ggplot2 R package116.

All information on extra genomes can be found in Supplementary Data 1, and
the code pipeline employed can be found on Zenodo75.

Phylogeny, network, and recombination. The single-copy core of all 104 gen-
omes was identified in Anvi’o 7 and is made up of 74 single-copy gene (SCG)
clusters. Protein alignments from SCG were extracted and concatenated using the
command “anvi-get-sequences-for-gene-clusters”. Maximum likelihood phylogeny
was constructed in IQ-TREE v2.1.2117. Additionally, 43 ribosomal proteins were
identified through Anvi’o 7 to test phylogenomic relationships. These gene clusters
were extracted from the pangenome and used for an independent phylogenetic
analysis. The best model according to the Bayesian Information Criterion (BIC)
was selected with Model Finder Plus (MFP)118 as implemented in IQ-TREE; this
was JTTDCMut+F+ R6 for core gene clusters and JTTDCMut+F+ R3 for
ribosomal proteins. Both models were run with Ultrafast Bootstrapping (1000 UF
bootstraps)119 with Orientia tsutsugamushi as the outgroup.

The taxonomic placement of Oopac6, Ppec13 and Dallo3 genomes within the
Rhyzobius, Meloidae and Belli groups respectively were confirmed in a smaller
phylogenetic analysis, performed as detailed in Pilgrim et al.13 using reference
MLST sequences (gltA, 16 S rRNA, 17 kDa OMP, COI) from other previously
identified Rickettsia profiles (Source Data). The selected models used in the
concatenated partition scheme were as follows: 16 S rRNA: TIM3e+ I+G4; 17Kda
OMP: GTR+ F+ I+G4; COI: TPM3u+ F+ I+G4; gltA: K3Pu+ F+ I+G4a.

A nearest neighbour network was produced for core gene sets with default
settings in Splitstree4 to further assess distances and relationships between
Rickettsia, ‘Ca. Megaira’ and Torix clades. All annotation was added post hoc in
Inkscape. Furthermore, recombination signals were examined by applying the
Pairwise Homoplasy Index (PHI) test to the DNA sequence of each core gene
cluster extracted with Anvio-7. DNA sequences were aligned with MUSCLE120 and
PHI scores calculated for each of the 74 core gene cluster with PhiPack121.

The taxonomic identity for genomes was established with GTDB-Tk122 to
support the designation of taxa through phylogenetic comparison of marker genes
against an online reference database.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomes and raw read sets generated in this study have been deposited in the
GenBank database under accession code PRJNA763820. The assemblies produced from
previously published third party data have been deposited in the GenBank database
under accession code PRJNA767332. The genome content data and data for figures
generated in this study are provided in the Source Data and Supplementary Data.
Accessions and metadata for pre-existing genomic data are listed in the Supplementary
Data 1 file.

Code availability
All code and bioinformatics pipelines used to extract and construct bacterial genomes
from SRA data can be found on Zenodo (https://doi.org/10.5281/zenodo.6396821), and
the R script for generating pangenome accumulation curves can be found on GitHub
(https://github.com/SioStef/panplots and here 10.5281/zenodo.6408803). The full
pangenome Anvi’o database is available on Figshare (https://doi.org/10.6084/m9.figshare.
14865576.v3). An interactive html version of Fig. 5 and its associated ‘json’ file is
available on Figshare (https://doi.org/10.6084/m9.figshare.14865567.v5). html of bonzai
module information for Supplementary Fig. 2 is available on Figshare (https://doi.org/10.
6084/m9.figshare.14865570.v4).
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