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Abstract

Background: Accurately identifying single-nucleotide polymorphisms (SNPs) from bacterial sequencing data is an essential

requirement for using genomics to track transmission and predict important phenotypes such as antimicrobial resistance.

However, most previous performance evaluations of SNP calling have been restricted to eukaryotic (human) data.

Additionally, bacterial SNP calling requires choosing an appropriate reference genome to align reads to, which, together

with the bioinformatic pipeline, affects the accuracy and completeness of a set of SNP calls obtained. This study evaluates

the performance of 209 SNP-calling pipelines using a combination of simulated data from 254 strains of 10 clinically

common bacteria and real data from environmentally sourced and genomically diverse isolates within the genera

Citrobacter, Enterobacter, Escherichia, and Klebsiella. Results: We evaluated the performance of 209 SNP-calling pipelines,

aligning reads to genomes of the same or a divergent strain. Irrespective of pipeline, a principal determinant of reliable SNP

calling was reference genome selection. Across multiple taxa, there was a strong inverse relationship between pipeline

sensitivity and precision, and the Mash distance (a proxy for average nucleotide divergence) between reads and reference

genome. The effect was especially pronounced for diverse, recombinogenic bacteria such as Escherichia coli but less

dominant for clonal species such as Mycobacterium tuberculosis. Conclusions: The accuracy of SNP calling for a given species

is compromised by increasing intra-species diversity. When reads were aligned to the same genome from which they were

sequenced, among the highest-performing pipelines was Novoalign/GATK. By contrast, when reads were aligned to

particularly divergent genomes, the highest-performing pipelines often used the aligners NextGenMap or SMALT, and/or

the variant callers LoFreq, mpileup, or Strelka.
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Introduction

Accurately identifying single-nucleotide polymorphisms (SNPs)

from bacterial DNA is essential for monitoring outbreaks (as in

[1, 2]) and predicting phenotypes, such as antimicrobial resis-

tance [3], although the pipeline selected for this task strongly

affects the outcome [4]. Current bacterial sequencing technolo-

gies generate short fragments of DNA sequence (“reads”) from

which the bacterial genome can be reconstructed. Reference-

based mapping approaches use a known reference genome to

guide this process, using a combination of an aligner, which

identi�es the location in the genome from which each read is

likely to have arisen, and a variant caller, which summarizes the

available information at each site to identify variants including

SNPs and indels (see reviews for an overview of alignment [5, 6]

and SNP calling [7] algorithms). This evaluation focuses only on

SNP calling; we did not evaluate indel calling because this can

require different algorithms (see review [8]).

The output from different aligner/caller combinations is of-

ten poorly concordant. For example, up to 5% of SNPs are

uniquely called by 1 of 5 different pipelines [9] with even lower

agreement on structural variants [10].

Although a mature �eld, systematic evaluations of variant-

calling pipelines are often limited to eukaryotic data, usually

human [11–15] but also Caenorhabditis elegans [16] and dairy cat-

tle [17] (see also review [7]). This is because truth sets of known

variants, such as the Illumina Platinum Genomes [18], are rel-

atively few in number and human-centred, being expensive to

create and biased toward the methods that produced them [19].

As such, to date, bacterial SNP calling evaluations are compara-

tively limited in scope (e.g., comparing 4 aligners with 1 caller,

mpileup [20], using Listeria monocytogenes [21]).

Relatively few truth sets exist for bacteria, so the choice of

pipeline for bacterial SNP calling is often informed by perfor-

mance on human data. Many evaluations conclude in favour of

the publicly available BWA-mem [22] or commercial Novoalign

[23] as choices of aligner, and GATK [24, 25] or mpileup as

variant callers, with recommendations for a default choice of

pipeline, independent of speci�c analytic requirements, includ-

ing Novoalign followed by GATK [15], and BWA-mem followed by

either mpileup [14], GATK [12], or VarDict [11].

This study evaluates a range of SNP-calling pipelines across

multiple bacterial species, both when reads are sequenced from

and aligned to the same genome, and when reads are aligned to

a representative genome of that species.

SNP-calling pipelines are typically constructed around a read

aligner (which takes FASTQ as input and produces BAM as out-

put) and a variant caller (which takes BAMas input and produces

VCF as output), oftenwith several pre- and post-processing steps

(e.g., cleaning a raw FASTQ prior to alignment, or �ltering a BAM

prior to variant calling). For the purpose of this study, when

evaluating the 2 core components of aligner and caller, we use

“pipeline” tomean “an aligner/caller combination, with all other

steps in common.”

To cover a broad range of methodologies (see review for

an overview of the different algorithmic approaches [26]), we

assessed the combination of 16 short-read aligners (BBMap

[27], Bowtie2 [28], BWA-mem and BWA-sw [22], Cushaw3 [29],

GASSST [30], GEM [31], HISAT2 [32], minimap2 [33], MOSAIK [34],

NextGenMap [35], Novoalign, SMALT [36], SNAP [37], and Stampy

[38] [both with and without pre-alignment with BWA-aln], and

Yara [39]) used in conjunction with 14 variant callers (16GT [40],

DeepVariant [41], Freebayes [42], GATK HaplotypeCaller [24, 25],

LoFreq [43], mpileup [20], Octopus [44], Pilon [45], Platypus [46],

SolSNP [47], SNVer [48], SNVSniffer [49], Strelka [50], and VarScan

[51]). We also evaluated 3 “all-in-one” variant -alling pipelines,

Snippy [52], SPANDx [53], and SpeedSeq [54], which consolidate

various open-source packages into 1 tool. Reasons for exclud-

ing other programs are detailed in Supplementary Text 1. Where

possible, we applied a common set of pre- or post-processing

steps to each aligner/caller combination, although note that

these could differ from those applied within an “all-in-one” tool

(discussed further in Supplementary Text 1).

Benchmarking evaluations are, however comprehensive,

ephemeral. As programs are being constantly created and up-

dated, it will always be possible to expand the scope of any eval-

uation. To that end, this study originally assessed an initial sub-

set of 41 pipelines, the combination of 4 aligners (BWA-mem,

minimap2, Novoalign, and Stampy) and 10 variant callers (the

aforementioned list, excluding DeepVariant, Octopus, Pilon, and

SolSNP), plus Snippy.

To evaluate each of this initial set of 41 pipelines, we simu-

lated 3 sets of 150 bp and 3 sets of 300 bp reads (characteristic

of the Illumina NextSeq and MiSeq platforms, respectively) at

50-fold depth from 254 strains of 10 clinically common species

(2–36 strains per species), each with fully sequenced (closed)

core genomes: the gram-positive Clostridioides dif�cile (formerly

Clostridium dif�cile [55]), Listeria monocytogenes, Staphylococcus au-

reus, and Streptococcus pneumoniae (all gram-positive), Escherichia

coli, Klebsiella pneumoniae, Neisseria gonorrhoeae, Salmonella enter-

ica, and Shigella dysenteriae (all gram-negative), and Mycobac-

terium tuberculosis. For each strain, we evaluated all pipelines

using 2 different genomes for alignment: one being the same

genome from which the reads were simulated, and one being

the NCBI “reference genome,” a high-quality (but essentially ar-

bitrary) representative of that species, typically chosen on the

basis of assembly and annotation quality, available experimen-

tal support, and/or wide recognition as a community standard

(such as C. dif�cile 630, the �rst sequenced strain for that species

[56]). We added ∼8,000–25,000 SNPs in silico to each genome,

equivalent to 5 SNPs per genic region, or 1 SNP per 60–120 bases.

While simulation studies can offer useful insight, they can

be sensitive to the speci�c details of the simulations. Therefore,

we also evaluated performance on real data to verify our con-

clusions. We used 16 environmentally sourced and genomically

diverse gram-negative species of the genera Citrobacter, Enter-

obacter, Escherichia, and Klebsiella, along with 2 reference strains,

from which closed hybrid de novo assemblies were previously

generated using both Illumina (short) and ONT (long; Oxford

Nanopore Technologies) reads [57]. For this aspect of the study,

we quintupled the scope of the evaluation from the initial set

of 41 pipelines and also present results for a larger set of 209

pipelines.

All pipelines aim to call variants with high speci�city (i.e.,

a high proportion of non-variant sites in the truth set are cor-

rectly identi�ed as the reference allele by the pipeline) and high

sensitivity (i.e., a high proportion of true SNPs are found by the

pipeline). The optimal trade-off between these 2 properties may

vary depending on the application. For example, in transmission

inference, minimizing false-positive SNP calls (i.e., high speci-

�city) is likely to be most important, whereas high sensitivity
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Bush et al. 3

may be more important when identifying variants associated

with antibiotic resistance. We therefore report detailed perfor-

mance metrics for all pipelines, including recall (sensitivity),

precision (positive predictive value, the proportion of SNPs iden-

ti�ed that are true SNPs), and the F-score, the harmonic mean

of precision and recall [11].

Results

Evaluating SNP-calling pipelines when the genome for

alignment is also the source of the reads

The performance of 41 SNP-calling pipelines (Supplementary

Table 1) was �rst evaluated using reads simulated from 254

closed bacterial genomes (Supplementary Table 2), as illustrated

in Fig. 1. In order to exclude biases introduced during other parts

of the work�ow, such as DNA library preparation and sequenc-

ing error, reads were simulated error-free. There was negligible

difference in performance when reads were simulated with se-

quencing errors (see Supplementary Text 1).

This dataset contains 62,484 VCFs (comprising 2 read lengths

[150 and 300 bp] ∗ 3 replicates ∗ 254 genomes ∗ 41 pipelines). The

number of reads simulated from each species and the perfor-

mance statistics for each pipeline—the number of true positives

(TP), false positives (FP), and false negatives (FN), precision, re-

call, F-score, and total number of errors (i.e., FP + FN) per million

sequenced bases—are given in Supplementary Table 3, with the

distribution of F-scores illustrated in Fig. 2A.

Median F-scores were >0.99 for all but 4 aligner/callers, with

small interquartile ranges (∼0.005), although outliers were nev-

ertheless notable (Fig. 2A), suggesting that reference genome can

affect performance of a given pipeline.

Table 1 shows the top-ranked pipelines averaged across all

species’ genomes, based on 7 different performance measures

and on the sum of their ranks (which constitutes an “overall

performance” measure, lower values indicating higher overall

performance). Supplementary Table 4 shows the sum of ranks

for each pipeline per species, with several variant callers con-

sistently found among the highest-performing (Freebayes and

GATK) and lowest-performing pipelines (16GT and SNVSniffer),

irrespective of aligner.

The evaluation of performance across all species showed

that Novoalign/GATK had the highest median F-score (0.994),

lowest sum of ranks (10), the lowest number of errors permillion

sequenced bases (0.944), and the largest absolute number of TP

calls (15,777) (Table 1). However, in this initial simulation, as the

reads are error-free and the reference genome is the same as the

source of the reads, many pipelines avoid FP calls and report a

perfect precision of 1.

Evaluating SNP-calling pipelines when the genome for

alignment diverges from the source of the reads

Owing to the high genomic diversity of some bacterial species,

the appropriate selection of reference genomes is non-trivial. To

assess how pipeline performance is affected by divergence be-

tween the source and reference genomes, SNPs were re-called

after mapping all reads to a single representative genome for

that species (illustrated in Fig. 1). To identify true variants, closed

genomes were aligned against the representative genome using

both nucmer [58] and Parsnp [59], with consensus calls iden-

ti�ed within 1-to-1 alignment blocks (see Methods). Estimates

of the distance between each genome and the representative

genome are given in Supplementary Table 2, with the genomic

diversity of each species summarized in Supplementary Table

5. We quanti�ed genomic distances using the Mash distance,

which re�ects the proportion of k-mers shared between a pair

of genomes as a proxy for average nucleotide divergence [60].

The performance statistics for each pipeline are shown in Sup-

plementary Table 6, with an associated ranked summary in Sup-

plementary Table 7.

In general, aligning reads from 1 strain to a divergent refer-

ence leads to a decrease in median F-score and increase in in-

terquartile range of the F-score distribution, with pipeline per-

formance more negatively affected by choice of aligner than

caller (Fig. 2B).

Although across the full range of genomes, many pipelines

show comparable performance (Fig. 2B), there was a strong neg-

ative correlation between the Mash distance and F-score (Spear-

man ρ = −0.72, P < 10−15; Fig. 3). The negative correlation be-

tween F-score and the total number of SNPs between the strain

and representative genome, i.e., the set of strain-speci�c in sil-

ico SNPs plus inter-strain SNPs, was slightly weaker (ρ = −0.58,

P < 10−15; Supplementary Fig. 1). This overall reduction in per-

formance with increased divergence was more strongly driven

by reductions in recall (i.e., by an increased number of FN calls)

rather than precision because there was a particularly strong

correlation between distance and recall (Spearman ρ = −0.94,

P < 10−15; Supplementary Fig. 2).

Three commonly used pipelines—BWA-mem/Freebayes,

BWA-mem/GATK, and Novoalign/GATK—were among the high-

est performers when the reference genome is also the source of

the reads (Table 1 and Supplementary Table 4). However, when

the reference diverges from the reads, then considering the 2

“overall performance” measures across the set of 10 species,

Snippy instead had both the lowest sum of ranks (20) and the

highest median F-score (0.982), along with the lowest number

of errors per million sequenced bases (2.627) (Table 1).

Performance per species is presented in Table 2, alongside

both the overall sum and range of these ranks per pipeline.

Pipelines featuring Novoalign were, in general, consistently

high-performing across the majority of species (i.e., having

a lower sum of ranks), although they were outperformed by

Snippy, which had both strong and uniform performance across

all species (Table 2). By contrast, pipelines with a larger range

of ranks had more inconsistent performance, such as min-

imap2/SNVer, which for example performed relatively strongly

for N. gonorrhoeae but poorly for S. dysenteriae (Table 2).

Although, in general, the accuracy of SNP calling declined

with increasing genetic distances, some pipelines were more

stable than others. If considering the median difference in F-

score between SNP callsmade using the same versus a represen-

tative genome, Snippy had smaller differences as the distance

between genomes increased (Fig. 4).

The highest-ranked pipelines in Table 2 had small, but prac-

tically unimportant, differences in median F-score and so are

arguably equivalently strong candidates for a “general purpose”

SNP-calling solution. For instance, on the basis of F-score alone

the performance of Novoalign/mpileup was negligibly different

from that of BWA-mem/mpileup (Fig. 5). However, when di-

rectly comparing pipelines, similarity of F-score distributions

(see Fig. 2B) can conceal larger differences in either precision

or recall, categorized using the effect size estimator Cliff delta

[61, 62]. Thus, certain pipelines may be preferred if the aim is

to minimize FP (e.g., for transmission analysis) or maximize TP

(e.g., to identify antimicrobial resistance loci) calls. For instance,

although Snippy (the top-ranked pipeline in Table 2) is negligi-

bly different fromNovoalign/mpileup (the third-ranked pipeline)
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4 Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines

Figure 1: Overview of SNP-calling evaluation. SNPs were introduced in silico into 254 closed bacterial genomes (Supplementary Table 2) using Simulome. Reads were

then simulated from these genomes. A total of 41 SNP-calling pipelines (Supplementary Table 1) were evaluated using 2 different genomes for read alignment: the

original genome from which the reads were simulated and a divergent genome, the species-representative NCBI “reference genome.” In the latter case, it will not be

possible to recover all of the original in silico SNPs because some will be found only within genes unique to the original genome. Accordingly, to evaluate SNP calls, the

coordinates of the original genome need to be converted to those of the representative genome. To do so, whole-genome alignments were made using both nucmer

and Parsnp, with consensus calls identi�ed within 1-to-1 alignment blocks. Inter-strain SNPs (those not introduced in silico) are excluded. The remaining subset of in

silico calls comprise the truth set for evaluation. There is a strong correlation between the total number of SNPs introduced in silico into the original genome and the

total number of nucmer/Parsnp consensus SNPs in the divergent genome (Supplementary Figure 3).

Table 1: Summary of pipeline performance across all species’ genomes

Performance measure

Top-ranked pipeline(s)

When the reference genome is
the same as the source of the

reads
When the reference genome is

divergent from the reads
Averaged across all

simulations

F-score bwa-mem with freebayes/gatk,

minimap2 with freebayes/gatk,

novoalign/gatk, stampy/gatk

(0.994)

snippy (0.982)∗ novoalign with

lofreq/mpileup, snippy

(0.986)

Precision (speci�city) snippy, bwa-

mem/minimap2/novoalign/stampy

with

16GT/freebayes/gatk/lofreq/mpileup/

platypus/snver/strelka/varscan

(1)

novoalign/snvsniffer (0.971) novoalign/snvsniffer (0.986)

Recall (sensitivity) bwa-mem/novoalign/stampy

with gatk (0.989)

bwa-mem with 16GT/freebayes,

stampy/freebayes (0.997)

bwa-

mem/minimap2/stampy

with freebayes (0.992)

No. of TP calls novoalign/gatk (15,777) bwa-mem/freebayes (13,829) bwa-mem/freebayes (14,791)

No. of FP calls stampy with mpileup/platypus

(0)

novoalign/snvsniffer (1.825) novoalign/snvsniffer (0.913)

No. of FN calls novoalign/gatk (0.941) bwa-mem/freebayes (0.188) bwa-mem/freebayes (0.641)

Total no. of errors (FP + FN

calls) per million sequenced

bases

novoalign/gatk (0.944) snippy (2.627)∗ snippy (2.125)

Sum of ranks for all previous

measures

novoalign/gatk (10) snippy (20)∗ novoalign/mpileup (42)

Numbers in parentheses refer to the median value, across all simulations, for each performance measure.

∗Snippy is based on a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the

reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors

per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98. FN: false negative; FP: false positive; TP: true positive.

in terms of F-score and precision, the former is more sensitive

(Fig. 5).

Comparable accuracy of SNP-calling pipelines using

real rather than simulated sequencing data

We used real sequencing data from a previous study compris-

ing 16 environmentally sourced gram-negative isolates (all Enter-

obacteriaceae), derived from livestock farms, sewage, and rivers,

and cultures of 2 reference strains (K. pneumoniae subsp. pneu-

moniae MGH 78,578 and E. coli CFT073), for which closed hybrid

de novo assemblies were generated using both Illumina paired-

end short reads and Nanopore long reads [63]. Source locations

for each sample, species predictions, and NCBI accession num-

bers are detailed in Supplementary Table 8. The performance

statistics for each pipeline are provided in Supplementary Ta-

ble 9, with an associated ranked summary in Supplementary

Table 10.
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Bush et al. 5

Figure 2: Median F-score per pipeline when the reference genome for alignment is (A) the same as the source of the reads and (B) a representative genome for that

species. Panels show the median F-score of 41 different pipelines when SNPs are called using error-free 150- and 300-bp reads simulated from 254 genomes (of 10

species) at 50-fold coverage. Boxes represent the interquartile range of F-score, with midlines representing themedian. Upper and lower whiskers extend, respectively,

to the largest and smallest values no further than 1.5x the interquartile range. Data beyond the ends of each whisker are outliers and plotted individually. Pipelines

are ordered according to median F-score and coloured according to either the variant caller (A) or aligner (B) in each pipeline. Note that because F-scores are uniformly

>0.9 when the reference genome for alignment is the same as the source of the reads, the vertical axes on each panel have different scales. Genomes are detailed in

Supplementary Table 2, summary statistics for each pipeline in Supplementary Tables 3 and 6, and performance ranks in Supplementary Tables 4 and 7, for alignments

to the same or to a representative genome, respectively.
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Bush et al. 7

Figure 3: Reduced performance of SNP-calling pipelines with increasing genetic distance between the reads and the reference genome. The median F-score across

the complete set of 41 pipelines, per strain, decreases as the distance between the strain and the reference genome increases (assayed as the Mash distance, which is

based on the proportion of k-mers shared between genomes). Each point indicates the median F-score, across all pipelines, for the genome of 1 strain per species (n =

254 strains). Points are coloured by the species of each strain (n = 10 species). Summary statistics for each pipeline are shown in Supplementary Table 6, performance

ranks in Supplementary Table 7, and the genetic distance between strains in Supplementary Table 2. Quantitatively similar results are seen if assaying distance as the

total number of SNPs between the strain and representative genome, i.e., the set of strain-speci�c in silico SNPs plus inter-strain SNPs (Supplementary Figure 1).

Lower performance was anticipated for all pipelines, par-

ticularly for Citrobacter and Enterobacter isolates, which had

comparatively high Mash distances (>0.08) between the reads

and the representative genome (Supplementary Table 8), far

greater than those in the simulations (241 of the 254 simulated

genomes had a Mash distance to the representative genome

of <0.04; Supplementary Table 2). Consistent with the simu-

lations (Fig. 3A), there was a strong negative correlation be-

tweenMashdistance and themedian F-score across all pipelines

(Spearman ρ = −0.83, P = 3.36 × 10−5; Fig. 6A), after excluding 1

prominent outlier (E. coli isolate RHB11-C04; see Supplementary

Table 8).

Notably, the median precision of each pipeline, if calculated

across the divergent set of simulated genomes, strongly cor-

related with the median precision calculated across the set of

real genomes (Spearman ρ = 0.83, P = 2.81 × 10−11; Fig. 6B).

While a weaker correlation was seen between simulated and

real datasets on the basis of recall (Spearman ρ = .41, P = 0.007),

this is consistent with the high diversity of Enterobacteriaceae,

and the accordingly greater number of FN calls with increased

divergence (Supplementary Fig. 2).

Overall, this suggests that the accuracy of a given pipeline on

simulated data is a reasonable proxy for its performance on real

data. While the pipelines that performed more poorly on sim-

ulated data similarly performed more poorly on real data, the

top-ranked pipelines differed, predominantly featuring BWA-

mem, rather than Novoalign, as an aligner (Supplementary Ta-

ble 10). In both cases, however, among the consistently highest-

performing pipelines was Snippy.

Quantitatively similar results were found when quintupling

the scope of this evaluation to include 209 pipelines (Fig. 7).

With this gram-negative dataset, the most consistently highly-

performing pipelines had little variation in F-score, irrespec-

tive of the 10-fold difference in Mash distances between reads

and representative genome (Supplementary Table 8). Particu-

larly highly-performing pipelines in the expanded dataset used

the aligners NextGenMap or SMALT, and/or the variant callers

LoFreq, mpileup, or Strelka (Fig. 7).
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8 Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines

Figure 4: Stability of pipeline performance, in terms of F-score, with increasing genetic distance between the reads and the reference genome. The performance of an

SNP-calling pipeline decreases with increasing distance between the genome from which reads are sequenced and the reference genome to which they are aligned.

Each point shows the median difference in F-score for a pipeline that calls SNPs when the reference genome is the same as the source of the reads, and when it is

instead a representative genome for that species. Points are coloured according to the variant caller in each pipeline, with those towards the top of the �gure less

affected by distance. Lines �tted using LOESS smoothing, with the grey band representing the 0.95 con�dence interval.

Discussion

Reference genome selection strongly affects

SNP-calling performance

Here we initially evaluated 41 SNP-calling pipelines, the com-

bination of 4 aligners with 10 callers, plus 1 “all-in-one” tool,

Snippy, using reads simulated from10 clinically relevant species.

These reads were �rst aligned back to their source genome and

SNPs called. As expected under these conditions, the majority

of SNP-calling pipelines showed high precision and sensitivity,

although between-species variation was prominent.

We next expanded the scope of the evaluation to 209

pipelines (representing the addition of 12 aligners, 4 callers,

and 2 “all-in-one” pipelines, SpeedSeq and SPANDx) and intro-

duced a degree of divergence between the reference genome

and the reads, analogous to having an accurate species-level

classi�cation of the reads but no speci�c knowledge of the

strain. For the purposes of this study, we assumed that refer-

ence genome selection was essentially arbitrary, equivalent to

a community standard representative genome. Such a genome

can differ signi�cantly from the sequenced strain, which com-

plicates SNP calling by introducing inter-speci�c variation be-

tween the sequenced reads and the reference. Importantly,

all pipelines in this study are expected to perform well if

evaluated with human data, i.e., when there is a negligible

Mash distance between the reads and the reference. For ex-

ample, the mean Mash distance between human assembly

GRCh38.p12 and the 3 Ashkenazi assemblies of the Genome

In A Bottle dataset (deep sequencing of a mother, father, and

son trio [64–66], available under European Nucleotide Archive

study accession PRJNA200694 andGenBank assembly accessions

GCA 001549595.1, GCA 001549605.1, and GCA 001542345.1, re-

spectively) is 0.001 (i.e., consistent with previous �ndings that

the majority of the human genome has ∼0.1% sequence di-

vergence [67]). Notably, the highest-performing pipeline when

reads were aligned to the same genome from which they were

simulated, Novoalign/GATK, was also that used by the Genome

In A Bottle consortium to align human reads to the reference

[64].

While tools initially benchmarked on human data, such as

SNVSniffer [49], can in principle also be used on bacterial data,

this study shows that in practice many perform poorly. For

example, the representative C. dif�cile strain, 630, has a mo-

saic genome, ∼11% of which comprises mobile genetic ele-

ments [56]. With the exception of reads simulated from C. dif-

�cile genomes that are erythromycin-sensitive derivatives of 630
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Bush et al. 9

Figure 5: Head-to-head performance comparison of 3 pipelines using simulated data, on the basis of precision, recall, and F-score. This �gure directly compares the

performance of 3 pipelines using simulated data: Snippy, Novoalign/mpileup, and BWA/mpileup. Each point indicates the median F-score, precision, or recall, for the

genome of 1 strain per species (n = 254 strains). Raw data for this �gure are given in Supplementary Table 6. Text in the top left of each �gure is an interpretation

of the difference between each pair of distributions, obtained using the R package “effsize,” which applies the non-parametric effect size estimator Cliff delta to the

results of a Mann-Whitney U test. The line y = x is shown in solid red. The lines y+0.02 = x and y-0.02 = x are shown in dotted red. An expanded version of this �gure,

comparing 40 pipelines relative to Snippy, is given as Supplementary Figure 4.

(strains 630Derm and 630deltaerm; see [68]), aligning reads to

630 compromises accurate SNP calling, resulting in a lower me-

dian F-score across all pipelines (Fig. 3). We also observed sim-

ilar decreases in F-score for more recombinogenic species such

as N. gonorrhoeae, which has a phase-variable gene repertoire

[69] and has been used to illustrate the “fuzzy species” concept,

that recombinogenic bacteria do not form clear and distinct iso-

late clusters as assayed by phylogenies of common housekeep-

ing loci [70, 71]. By contrast, for clonal species, such as those

within the M. tuberculosis complex [72], the choice of reference

genome has negligible in�uence on the phylogenetic relation-

ships inferred from SNP calls [73] and, indeed, minimal effect

on F-score.

In general, more diverse species have a broader range of

Mash distances on Fig. 2A (particularly notable for E. coli), as do

those forming distinct phylogroups, such as the 2 clusters of L.

monocytogenes, consistent with the division of this species into

multiple primary genetic lineages [74–76].

Therefore, 1major �nding of this study is that, irrespective of

the core components within an SNP-calling pipeline, the selec-

tion of reference genome has a critical effect on output, particu-

larly for more recombinogenic species. This can to some extent

be mitigated by using variant callers that are more robust to in-

creased distances between the reads and the reference, such as

Freebayes (used by Snippy and SpeedSeq).

A suboptimal choice of reference genome has previously

been shown to result in mapping errors, leading to biases in

allelic proportions [77]. Heterologous reference genomes are in

general suboptimal for read mapping, even when there is strict

correspondence between orthologous regions, with short reads

particularly vulnerable to FP alignments [78]. There is also an

inverse relationship between TP SNP calls and genetic distance,

with a greater number of FP calls when the reads diverge from

the reference genome [21].

Study limitations

The experimental designmade several simplifying assumptions

regarding pipeline usage. Most notably, when evaluating SNP

calling when the reference genome diverges from the source of

the reads, we needed to convert the coordinates of one genome

to those of another, doing so by whole-genome alignment. We

took a similar approach to that used to evaluate Pilon, an all-

in-one tool for correcting draft assemblies and variant calling

[45], which made whole-genome alignments of the M. tuberculo-

sis F11 and H37Rv genomes and used the resulting set of inter-
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10 Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines

Figure 6: Similarity of performance for pipelines evaluated using both simulated and real sequencing data. Panel A shows that pipelines evaluated using real sequencing

data show reduced performance with increasing Mash distances between the reads and the reference genome, similar to that observed with simulated data (see

Figure 3A). Each point indicates the median F-score, across all pipelines, for the genome of an environmentally sourced/reference isolate (detailed in Supplementary

Table 8). Panel B shows that pipelines evaluated using real and simulated sequencing data have comparable accuracy. Each point shows the median precision of each

of 41 pipelines, calculated across both a divergent set of 254 simulated genomes (2–36 strains from 10 clinically common species) and 18 real genomes (isolates of

Citrobacter, Enterobacter, Escherichia, and Klebsiella). The outlier pipeline, with lowest precision on both real and simulated data, is Stampy/Freebayes. Raw data for this

�gure are available in Supplementary Tables 6 (simulated genomes) and 9 (real genomes).

Figure 7:Median F-score per pipeline using real sequencing data, and when the reference genome for alignment can diverge considerably from the source of the reads.

This �gure shows the F-score distribution of 209 pipelines evaluated using real sequencing data sourced from the REHAB project and detailed in [63]. This dataset

comprises 16 environmentally sourced gram-negative isolates (all Enterobacteriaceae), and cultures of 2 reference strains (K. pneumoniae subsp. pneumoniae MGH 78,578

and E. coli CFT073). For this �gure, data from 1 outlier, E. coli isolate RHB11-C04, were excluded. Raw data for this �gure are available as Supplementary Table 9, with

summary statistics for each pipeline detailed in Supplementary Table 10. Genomes are detailed in Supplementary Table 8. Boxes represent the interquartile range of

F-score, withmidlines representing themedian. Upper and lower whiskers extend, respectively, to the largest and smallest values no further than 1.5x the interquartile

range. Data beyond the ends of each whisker are outliers and plotted individually.
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strain variants as a truth set for benchmarking (a method we

also used when evaluating each pipeline on real data). While

this approach assumes a high degree of contiguity for thewhole-

genome alignment, there are nevertheless signi�cant breaks in

synteny between F11 and H37Rv, with 2 regions deemed partic-

ularly hypervariable, in which no variant could be con�dently

called [45]. For the strain–to–representative genome alignments

in this study, we considered SNP calls only within 1-to-1 align-

ment blocks and cannot exclude the possibility that repetitive

or highly mutable regions within these blocks have been mis-

aligned. However, we did not seek to identify and exclude SNPs

from these regions because, even if they were present, this

would have a systematic negative effect on the performance of

each pipeline. To demonstrate this, we recalculated each per-

formance metric for the 209 pipelines evaluated using real se-

quencing data after identifying, and masking, repetitive regions

of the reference genome with self-self BLASTn (as in [79]). As

we already required reference bases within each 1-to-1 align-

ment block to be supported by both nucmer and Parsnp calls

(i.e., implicitlymasking ambiguous bases), we found that repeat-

masking the reference genome had negligible effect on overall F-

score although marginally improved precision (see Supplemen-

tary Text 1). However, it is important to note that the parameters

used for repeat-masking will determine which paralogues will

be successfully masked. For the purpose of this study, we used

reasonably conservative parameters (detailed in Supplementary

Text 1) and so expect to have primarily masked more simi-

lar paralogues. The likelihood of mis-mapping (and thereby FP

SNP calling) would increase among more divergent paralogues,

although optimizing parameters to detect these is non-trivial.

More lenient repeat-masking parameters, in masking more di-

vergent positions, would also reduce the number of true SNPs it

is possible to call.

Furthermore, when aligning reads from 1 genome to a dif-

ferent genome, it is not possible to recover all possible SNPs in-

troduced with respect to the former because some will be found

only within genes unique to the original genome (of which there

can be many because bacterial species have considerable ge-

nomic diversity; see Supplementary Table 5). Nevertheless, there

is a strong relationship between the total number of SNPs intro-

duced in silico into 1 genome and the maximum number of SNPs

it is possible to call should reads instead be aligned to a divergent

genome (Supplementary Fig. 3). In any case, this does not affect

the evaluation metrics used for pipeline evaluation, such as F-

score, because these are based on proportional relationships of

TP, FP, and FN calls at variant sites. However, we did not count

true-negative calls (and thereby assess pipeline speci�city) be-

cause these can only be made at reference sites, a far greater

number of which do not exist when aligning between divergent

genomes.

While the programs chosen for this study are in common

use and the �ndings generalizable, it is also important to note

that they are a subset of the tools available (see Supplemen-

tary Text 1). It is also increasingly common to construct more

complex pipelines that call SNPs with 1 tool and structural vari-

ants with another (e.g., in [80]). Here, our evaluation concerned

only accurate SNP calling, irrespective of the presence of struc-

tural variants introduced by suboptimal reference genome se-

lection (i.e., by aligning the reads to a divergent genome) and so

does not test dedicated indel-calling algorithms. Previous indel-

speci�c variant-calling evaluations, using human data, have rec-

ommended Platypus [8] or, for calling large indels at low read

depths, Pindel [81].

Many of the �ndings in this evaluation are also based on

simulated error-free data for which there was no clear need

for pre-processing quality control. While adapter removal and

quality-trimming reads are recommended precautionary steps

prior to analysing non-simulated data, previous studies differ

as to whether pre-processing increases the accuracy of SNP calls

[82], has minimal effect upon them [83], or whether bene�ts in-

stead depend upon the aligner and reference genome used [21].

Whilemore realistic datasets would be subject to sequencing er-

ror, we also expect this to be minimal: Illumina platforms have

a per-base error rate <0.01% [84]. Accordingly, when comparing

pipelines taking either error-free or error-containing reads as in-

put, sequencing error had negligible effect on performance (see

Supplementary Text 1).

We have also assumed that given the small genome sizes

of bacteria, a consistently high depth of coverage is expected

in non-simulated datasets, and so have not evaluated pipeline

performance on this basis (discussed further in Supplementary

Text 1). In any case, a previous study found that with simulated

NextSeq reads, variant-calling sensitivity was largely unaffected

by increases in coverage [11]. It has also been reported that ran-

dom polymerase errors have minimal effect on variant calls for

sequencing depths >20-fold and that these are primarily of con-

cern only when calling minor variants [77].

Finally, so as to approximate “out of the box” use conditions,

we made a minimal-effort application of each program with

no attempt at species-speci�c optimization. Had we optimized

the individual components of an analytic pipeline (which, al-

though often structured around, are not limited to 1 aligner and

1 caller), we could conceivably reduce the high variance in F-

score when SNP calling from real data which, in this study, was

notably divergent (see Fig. 7). For instance, DeepVariant [41], a

TensorFlow machine-learning–based variant caller, had highly

variable performance on real data but required as input a train-

ing model made using a deep neural network. At the time of

use, there was currently no production-grade DeepVariant train-

ing pipeline (the default training model supplied with DeepVari-

ant, and used in this study, was based on human data), nor were

there a large enough number of non-simulated, bacterial truth

sets on which to train it. As such, we expect the performance

of DeepVariant to have been under-estimated in this evaluation.

Most notably, NextGenMap/DeepVariant was themost precise of

the 209 pipelines evaluated on (divergent) real data (mean pre-

cision = 0.9715), although this pipeline had comparatively low

recall and an accordingly poor F-score (Supplementary Table 10).

In this study we sought to use all aligners and callers uni-

formly, with equivalent quality control steps applied to all reads.

To that end, while direct comparisons of any aligner/caller

pipeline with “all-in-one” tools (such as Snippy, SPANDx, and

SpeedSeq) are possible, the results should be interpreted with

caution. This is because it is in principle possible to improve

the performance of the former through additional quality con-

trol steps—i.e., compared to an “all-in-one” tool, it is not neces-

sarily the aligner or caller alone to which any difference in per-

formance may be attributed. For instance, although Snippy and

SpeedSeq use BWA-mem and Freebayes, both tools are distinct

from the BWA-mem/Freebayes pipeline used in this study (Fig. 7

and Supplementary Table 10). This is because they implement

additional steps between the BWA and Freebayes components,

as well as altering the default parameters relative to standalone

use. Snippy, for example, uses samclip [85] to post-process the

BAM �le produced by BWA-mem, removing clipped alignments

in order to reduce FP SNPs near structural variants.
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12 Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines

Recommendations for bacterial SNP calling

Our results emphasize that one of the principal dif�culties of

alignment-based bacterial SNP calling is not pipeline selection

per se but optimal reference genome selection (or, alternatively,

its de novo creation, not discussed further). If assuming all input

reads are from a single, unknown, origin, then in principle a ref-

erence genome could be predicted using a metagenomic classi-

�er such as Centrifuge [86], CLARK [87], Kaiju [88], or Kraken [89].

However, correctly identifying the source genome from even a

set of single-origin reads is not necessarily simple, with the per-

formance of read classi�ers depending in large part on the se-

quence database they query (such as, e.g., EMBL proGenomes

[90] or NCBI RefSeq [91]), which can vary widely in scope, re-

dundancy, and degree of curation (see performance evaluations

[92, 93]). This is particularly evident among the Citrobacter sam-

ples in the real dataset, with 3 methods each making differ-

ent predictions (Supplementary Table 8). Specialist classi�cation

tools such as Mykrobe [94] use customized, tightly curated allele

databases and perform highly for certain species (in this case,

M. tuberculosis and S. aureus) although by de�nition do not have

wider utility. An additional complication would also arise from

taxonomic disputes such as, for example, Shigella spp. being es-

sentially indistinct from E. coli [95].

One recommendation, which is quick and simple to apply,

would be to test which of a set of candidate reference genomes is

most suitable by estimating the distance between each genome

and the reads. This can be accomplished using Mash [60], which

creates “sketches” of sequence sets (compressed representa-

tions of their k-mer distributions) and then estimates the Jac-

card index (that is, the fraction of shared k-mers) between each

pair of sequences. Mash distances are a proxy both for average

nucleotide identity [60] and measures of genetic distance de-

rived from the whole-genome alignment of genome pairs (Sup-

plementary Table 2), correlating strongly with the total num-

ber of SNPs between the strain genome and the representative

genome (Spearman ρ = 0.97, P < 10−15), and to a reasonable de-

gree with the proportion of bases unique to the strain genome

(Spearman ρ = = 0.48, P < 10−15). More closely related genomes

would have lower Mash distances and so be more suitable as

reference genomes for SNP calling. This would be particularly

appropriate if, for example, studying transmission events as a

closely related reference would increase speci�city, irrespective

of the aligner or caller used. For larger studies that require mul-

tiple samples to be processed using a common reference, the

choice of reference genome could be one that “triangulates” be-

tween the set of samples—i.e., has on average a similar distance

to each sample, rather than being closer to some and more dis-

tant from others.

Using a highly divergent genome (such as the representa-

tive Enterobacter genomes in the real dataset, each of which dif-

fers from the reads by a Mash distance >0.1; Supplementary

Table 8) is analogous to variant calling in a highly polymor-

phic region, such as the human leukocyte antigen, which shows

>10% sequence divergence between haplotypes [67] (i.e., even

for pipelines optimized for human data—the majority in this

study—this would represent an anomalous use case).

Prior to using Mash (or other sketch-based distance estima-

tors, such as Dashing [96] or FastANI [97]), broad-spectrum clas-

si�cation tools such as Kraken could be used to narrow down

the scope of the search space to a set of fully sequenced can-

didate genomes, i.e., those genomes of the taxonomic rank to

which the highest proportion of reads could be assigned with

con�dence. This approach is similar to that implemented by the

Python package PlentyOfBugs [98], which, assuming the species

or genus is already known, automates the process of download-

ing and sketching candidate genomes to create a database for

querying with Mash.

In the future, reads from long-read sequencing platforms,

such as Oxford Nanopore and Paci�c Biosciences, are less likely

to be ambiguously mapped within a genomic database and so in

principle are simpler to classify (sequencing error rate notwith-

standing),making it easier to select a suitable reference genome.

However, long-read platforms can also, in principle if not yet

routinely, generate complete de novo bacterial genomes [99] for

downstream SNP calling, possibly removing the need to choose

a reference entirely. Similarly, using a reference pan-genome in-

stead of a singular representative genome could also maximize

the number of SNP calls by reducing the number of genes not

present in the reference [100]. A popular means of representing

the pan-genome, as used by tools such as Roary [101], is as a col-

lection of individual consensus sequences, ostensibly genes but

more speci�cally open reading frames with protein-coding po-

tential. This use of consensus sequences could also reduce the

number of nucleotide differences between a set of sequenced

reads (which may be from a highly divergent strain) and the

(consensus) reference.

An alternative approach to reducing errors introduced when

using a single reference genome could be to merge results from

multiple reference genomes (the approach taken by REALPHY to

reconstruct phylogenies from bacterial SNPs [102]) or from mul-

tiple aligners and/or callers, obtaining consensus calls across

a set of methods. This is the approach taken by the NASP

pipeline [103], which can integrate data from any combination

of the aligners Bowtie2, BWA-mem, Novoalign, and SNAP, and

the callers GATK, mpileup, SolSNP, and VarScan (ensemble ap-

proaches have similarly been used for somatic variant calling,

e.g., by SomaticSeq [104]).

If considering the overall performance of a pipeline as the

sum of the 7 different ranks for the different metrics consid-

ered, then averaged across the full set of species’ genomes,

the highest-performing pipelines are, with simulated data,

Snippy and those using Novoalign in conjunction with LoFreq or

mpileup (Table 2), and with real (more divergent) data, those us-

ing NextGenMap or SMALT in conjunctionwith LoFreq,mpileup,

or Strelka (Supplementary Table 10).

Some of the higher-performing tools apply error correction

models that also appear suited to bacterial datasets with high

SNP density, despite their original primary use case being in dif-

ferent circumstances. For instance, SNVer (which, in conjunc-

tion with BWA-mem, ranks second to Snippy for N. gonorrhoeae;

see Table 2) implements a statistical model for calling SNPs from

pooled DNA samples, where variant allele frequencies are not

expected to be either 0, 0.5, or 1 [48]. SNP calling from het-

erogeneous bacterial populations with high mutation rates, in

which only a proportion of cells may contain a given mutation,

is also conceptually similar to somatic variant calling in hu-

man tumours, where considerable noise is expected [77]. This

is a recommended use case for Strelka, which performed highly

on real (and particularly divergent) data, being among the top-

performing pipelines when paired with many aligners (Fig. 7).

Irrespective of pipeline used, increasing Mash distances be-

tween the reads and the reference increases the number of FN

calls (Supplementary Fig. 2). Nevertheless, Snippy, which uses

Freebayes, is particularly robust to this, being among the most

sensitive pipelines when evaluated using simulated data (Fig. 5

and Supplementary Fig. 4). Notably, Freebayes is haplotype-

based, calling variants based on the literal sequence of reads
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Bush et al. 13

aligned to a particular location, so avoiding the problemof 1 read

havingmultiple possible alignments (increasingly likely with in-

creasing genomic diversity) but only being assigned to 1 of them.

However, as distance increases further, it is likely that reads will

cease being misaligned (which would otherwise increase the

number of FP calls), but rather they will not be aligned at all,

being too dissimilar to the reference genome.

With an appropriate selection of reference genome, many

of these higher-performing pipelines could be optimized to

converge on similar results by tuning parameters and post-

processing VCFs with speci�c �ltering criteria, another routine

task for which there are many different choices of application

[105–108]. In this respect, the results of this study should be in-

terpreted as a range-�nding exercise, drawing attention to those

SNP-calling pipelines that, under default conditions, are gener-

ally higher-performing and that may be most straightforwardly

optimized to meet user requirements.

Conclusions

We have performed a comparison of SNP-calling pipelines

across both simulated and real data inmultiple bacterial species,

allowing us to benchmark their performance for this speci�c

use. We �nd that all pipelines show extensive species-speci�c

variation in performance, which has not been apparent from

the majority of existing, human-centred, benchmarking stud-

ies.While aligning to a single representative genome is common

practice in eukaryotic SNP calling, in bacteria the sequence of

this genomemay diverge considerably from the sequence of the

reads. A critical factor affecting the accuracy of SNP calling is

thus the selection of a reference genome for alignment. This is

complicated by ambiguity as to the strain of origin for a given

set of reads, which is perhaps inevitable for many recombino-

genic species, a consequence of the absence (or impossibility)

of a universal species concept for bacteria (but see [109]). For

many clinically common species, excepting M. tuberculosis, the

use of standard “representative” reference genomes can com-

promise accurate SNP calling by disregarding genomic diversity.

By �rst considering the Mash distance between the reads and a

candidate set of reference genomes, a genomewithminimal dis-

tancemay be chosen that, in conjunctionwith one of the higher-

performing pipelines, canmaximize the number of true variants

called.

Materials and Methods

Simulating truth sets of SNPs for pipeline evaluation

A total of 264 genomes, representing a range of strains from

10 bacterial species, and their associated annotations, were ob-

tained from the NCBI Genome database [110] ([111], accessed 16

August 2018), as detailed in Supplementary Table 2. One genome

per species is considered to be a representative genome (criteria

detailed at [112], accessed 16 August 2018), indicated in Supple-

mentary Table 2. Strains with incomplete genomes (i.e., assem-

bled only to the contig or scaffold level) or incomplete annota-

tions (i.e., with no associated GFF, necessary to obtain gene co-

ordinates) were excluded, as were those with multiple available

genomes (i.e., the strain name was not unique). After these �l-

ters were applied, all species were represented by ∼30 complete

genomes (28 C. dif�cile, 29 M. tuberculosis, and 36 S. pneumoniae),

with the exceptions ofN. gonorrhoeae (n = 15) and S. dysenteriae (n

= 2). For the 5 remaining species (E. coli, K. pneumoniae, L. monocy-

togenes, S. aureus, and S. enterica), there are >100 usable genomes

each. Because it was not computationally tractable to test every

genome, we chose a subset of isolates based on strati�ed selec-

tion by population structure. We created all-against-all distance

matrices using the “triangle” component of Mash v2.1 [60], then

constructed dendrograms (Supplementary Figs 5–9) from each

matrix using the neighbour-joining method, as implemented in

MEGA v7.0.14 (MEGA Software, RRID:SCR 000667) [113]. By man-

ually reviewing the topology, 30 isolates were chosen per species

to create a representative sample of its diversity.

For each genome used in this study, we excluded, if present,

any non-chromosomal (i.e., circular plasmid) sequence. A simu-

lated version of each core genome, with exactly 5 randomly gen-

erated SNPs per genic region, was created using Simulome v1.2

[114] with parameters –whole genome = TRUE –snp = TRUE –

num snp = 5. Because the coordinates of some genes overlap,

not all genes will contain simulated SNPs. The number of SNPs

introduced into each genome (from∼8000 to 25,000) and theme-

dian distance between SNPs (from ∼60 to 120 bases) is detailed

in Supplementary Table 2.

The coordinates of each SNP inserted into a given genome

are, by de�nition, genome- (that is, strain-) speci�c. As such, it

is straightforward to evaluate pipeline performance when reads

from 1 genome are aligned to the same reference. However, to

evaluate pipeline performance when reads from 1 genome are

aligned to the genome of a divergent strain (i.e., the represen-

tative genome of that species), the coordinates of each strain’s

genome need to be converted to representative genome coor-

dinates. To do so, we made whole-genome (core) alignments

of the representative genome to both versions of the strain

genome (1 with and 1 without SNPs introduced in silico) using

nucmer and dnadiff, components of MUMmer v4.0.0beta2 [58],

with default parameters (illustrated in Fig. 1). For 1-to-1 align-

ment blocks, differences between each pair of genomes were

identi�ed using MUMmer show-snps with parameters -Clr -x

1, with the tabular output of this program converted to VCF

by the script MUMmerSNPs2VCF.py [115]. The 2 resulting VCFs

contain the location of all SNPs relative to the representative

genome (i.e., inclusive of those introduced in silico), and all inter-

strain variants, respectively. We excluded from further analy-

sis 2 strains with poor-quality strain–to–representative whole-

genome alignments, both calling <10% of the strain-speci�c in

silico SNPs (Supplementary Table 11). The proportion of in sil-

ico SNPs recovered by whole-genome alignment is detailed in

Supplementary Table 11 and is, in general, high: of the 254

whole-genome alignments of non-representative to represen-

tative strains across the 10 species, 222 detect >80% of the in

silico SNPs and 83 detect >90%. For the purposes of evaluating

SNP-calling pipelines when the reference genome differs from

the reads, we are concerned only with calling the truth set of

in silico SNPs and so discard inter-strain variants (see below).

More formally, when using each pipeline to align reads to a di-

vergent genome, we are assessing the concordance of its set of

SNP calls with the set of nucmer calls. However, it is possible

that for a given call, 1 or more of the pipelines are correct and

nucmer is incorrect. To reduce this possibility, a parallel set of

whole-genome alignments were made using Parsnp v1.2 with

default parameters [59], with the exported SNPs contrasted with

the nucmer VCF.

Thus, when aligning to a divergent genome, the truth set of

in silico SNPs (for which each pipeline is scored for TP calls) are

those calls independently identi�ed by both nucmer and Parsnp.

Similarly, the set of inter-strain positions are those callsmade by

1 or both of nucmer and Parsnp. Because we are not concerned

with the correctness of these calls, the lack of agreement be-
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tween the 2 tools is not considered further; rather, this estab-

lishes a set of ambiguous positions, which are discarded when

VCFs are parsed.

Simulated SNP-containing genomes, sets of strain–to–

representative genome SNP calls (made by both nucmer and

Parsnp), and the �nal truth sets of SNPs are available in Sup-

plementary Dataset 1 (hosted online via the Oxford Research

Archive [116]).

Evaluating SNP-calling pipelines using simulated data

From each of 254 SNP-containing genomes, 3 sets of 150-bp and

3 sets of 300-bp paired-end data were simulated using wgsim, a

component of SAMtools v1.7 (SAMTOOLS, RRID:SCR 002105) [20].

This requires an estimate of average insert size (the length of

DNA between the adapter sequences), which in real data is of-

ten variable, being sensitive to the concentration of DNA used

[117]. For read length x, we assumed an insert size of 2.2x; i.e.,

for 300-bp reads, the insert size is 660 bp (Illumina paired-end

reads typically have an insert longer than the combined length

of both reads [117]). The number of reads simulated from each

genome is detailed in Supplementary Table 3 and is equiva-

lent to a mean 50-fold base-level coverage, i.e., (50 × genome

length)/read length.

Perfect (error-free) reads were simulated from each SNP-

containing genome using wgsim parameters -e 0 -r 0 -R 0 -X 0

-A 0 (respectively, the sequencing error rate, mutation rate, frac-

tion of indels, probability an indel is extended, and the fraction

of ambiguous bases allowed).

Each set of reads was then aligned both to the genome of the

same strain and to the representative genome of that species

(from which the strain will diverge), with SNPs called using 41

different SNP-calling pipelines (10 callers each paired with 4

aligners, plus the self-contained Snippy). The programs used,

including version numbers and sources, are detailed in Supple-

mentary Table 1, with associated command lines in Supplemen-

tary Text 1. All pipelines were run using a high-performance

cluster employing the Open Grid Scheduler batch system on Sci-

enti�c Linux 7. No formal assessment was made of pipeline run

time or memory usage. This was because given the number of

simulations it was not tractable to benchmark run time using,

for instance, a single core. Themajority of programs in this study

permit multithreading (all except the callers 16GT, GATK, Platy-

pus, SNVer, and SNVSniffer) and so are in principle capable of

running very rapidly. We did not seek to optimize each tool for

any given species and so made only a minimum-effort appli-

cation of each pipeline, using default parameters and minimal

VCF �ltering (see below). This is so that we obtain themaximum

possible number of TP calls from each pipeline under reasonable

use conditions.

While each pipeline comprises 1 aligner and 1 caller, there

are several ancillary steps common in all cases. After aligning

reads to each reference genome, all BAM �les were cleaned,

sorted, had duplicate reads marked, and were indexed using Pi-

card Tools v2.17.11 (Picard, RRID:SCR 006525), [118] CleanSam,

SortSam, MarkDuplicates, and BuildBamIndex, respectively. We

did not add a post-processing step of local indel realignment

(common in older evaluations, e.g., [12]) because this had a negli-

gible effect on pipeline performance, with many variant callers

(including GATK HaplotypeCaller [25] [GATK, RRID:SCR 001876]

and Freebayes [FreeBayes, RRID:SCR 010761]) already incorpo-

rating a method of haplotype assembly (see Supplementary

Text 1).

Each pipeline produces a VCF as its �nal output. As with a

previous evaluation [15], all VCFs were regularized using the vc-

fallelicprimitives module of vc�ib v1.0.0-rc2 [119], so that dif-

ferent representations of the same indel or complex variant

were not counted separately (these variants can otherwise be

presented correctly in multiple ways). This module splits ad-

jacent SNPs into individual SNPs, left-aligns indels, and regu-

larizes the representation of complex variants. The set of non-

regularized VCFs cannot bemeaningfully compared (see Supple-

mentary Text 1).

Different variant callers populate their output VCFs with

different contextual information. Before evaluating the perfor-

mance of each pipeline, all regularized VCFs were subject to

minimal parsing to retain only high-con�dence variants. This

is because many tools record variant sites even if they have a

low probability of variation, under the reasonable expectation

of parsing. Some tools (including Snippy and SNVer) apply their

own internal set of VCF �ltering criteria, giving the user the op-

tion of a “raw” or “�ltered” VCF; in such cases, we retain the �l-

tered VCF as the default recommendation. Where possible, (ad-

ditional) �lter criteria were applied as previously used by, and

empirically selected for, COMPASS [120], an analytic pipeline

employing Stampy and mpileup for base-calling non-repetitive

core genome sites (outlined in Supplementary Text 1 with �l-

ter criteria described in [121] and broadly similar to those rec-

ommended by a previous study for maximizing SNP validation

rate [122]). No set of generic VCF hard �lters can be uniformly

applied because each caller quanti�es different metrics (such as

the number of forward and reverse reads supporting a given call)

and/or reports the outcome of a different set of statistical tests,

making �ltering suggestions on this basis. For instance, in par-

ticular circumstances, GATK suggests �ltering on the basis of the

�elds “FS,” “MQRankSum,” and “ReadPosRankSum,” which are

unique to it (detailed at [123]). Where the relevant information

was included in the VCF, SNPs were required to have (i) a min-

imum Phred score of 20, (ii) ≥5 reads mapped at that position,

(iii) ≥1 read in each direction in support of the variant, and (iv)

≥75% of reads supporting the alternative allele. These criteria

were implemented with the “�lter” module of BCFtools v1.7 [20]

using parameters detailed in Supplementary Table 12.

From these �ltered VCFs, evaluation metrics were calculated

as detailed below.

Evaluating SNP-calling pipelines using real sequencing

data

Parallel sets of 150-bp Illumina HiSeq 4000 paired-end short

reads and ONT long reads were obtained from 16 environmen-

tally sourced samples from the REHAB project (“the environ-

mental REsistome: con�uence of Human and Animal Biota in

antibiotic resistance spread” [124]), as detailed in [63]: 4 En-

terobacter spp., 4 Klebsiella spp., 4 Citrobacter spp., and 4 Es-

cherichia coli, with species identi�ed using matrix-assisted laser

desorption ionization (MALDI) time-of-�ight mass spectrome-

try, plus subcultures of stocks of 2 reference strains, K. pneumo-

niae subsp. pneumoniaeMGH 78,578 and E. coli CFT073. Additional

predictions were made using both the protein- and nucleotide-

level classi�cation tools Kaiju v1.6.1 [88] and Kraken2 v2.0.7

(Kraken, RRID:SCR 005484) [125], respectively. Kaiju was used

with 2 databases, 1 broad and 1 deep, both created on 5 Febru-

ary 2019: “P” ([126]; >20 million bacterial and archaeal genomes

from the compact, manually curated, EMBL proGenomes [127],

supplemented by∼10,000 viral genomes fromNCBI RefSeq [128])

and “E” ([129]; >100 million bacterial, archaeal, viral, and fungal
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genomes from NCBI nr, alongside various microbial eukaryotic

taxa). Kaiju was run with parameters -e 5 and -E 0.05, which,

respectively, allow 5 mismatches per read and �lter results on

the basis of an E-value threshold of 0.05. The read classi�cations

from both databases were integrated using the Kaiju “merge-

Outputs” module, which adjudicates on the basis of the lowest

taxonomic rank of each pair of classi�cations, provided they are

within the same lineage, or else reclassi�es the read at the low-

est common taxonomic rank ancestral to the two. Kraken2 was

run with default parameters using the MiniKraken2 v1 database

([130], created 12 October 2018), which was built from the com-

plete set of NCBI RefSeq bacterial, archaeal, and viral genomes.

Hybrid assemblies were produced using methods detailed

in [63] and brie�y recapitulated here. Illumina reads were pro-

cessed using COMPASS (see above). ONT reads were adapter-

trimmed using Porechop v0.2.2 [131] with default parameters,

and then error-corrected and subsampled (preferentially se-

lecting the longest reads) to 30–40× coverage using Canu v1.5

(Canu, RRID:SCR 015880) [132] with default parameters. Finally,

Illumina-ONT hybrid assemblies for each genome were gener-

ated using Unicycler v0.4.0 [57] with default parameters. The

original study found high agreement between these assemblies

and those produced using hybrid assembly with PacBio long

reads rather than ONT, giving us high con�dence in their robust-

ness.

In the simulated datasets, SNPs are introduced in silico into a

genome, with reads containing these SNPs then simulated from

it. With this dataset, however, there are no SNPs within each

genome:wehave only the short reads (i.e., real output froman Il-

lumina sequencer) and the genome assembled from them (with

which there is an expectation of near-perfect read mapping).

To evaluate pipeline performancewhen the reads are aligned

to a divergent genome, reference genomes were selected as rep-

resentative of the predicted species, with distances between the

2 calculated using Mash v2.1 [60] and spanning approximately

equal intervals from 0.01 to 0.12 (representative genomes and

Mash distances are detailed in Supplementary Table 8). The

truth set of SNPs between the representative genome and each

hybrid assembly was the intersection of nucmer and Parsnp

calls, as above.

Samples, source locations, MALDI ID scores, and associated

species predictions are detailed in Supplementary Table 8. Raw

sequencing data have been deposited with the NCBI under Bio-

Project accession PRJNA422511 [133], with the associated hybrid

assemblies available via FigShare [134].

To allow both the replication and expansion of this evalua-

tion using real sequencing data, a complete archive is available

as Supplementary Dataset 2 (hosted online via the Oxford Re-

search Archive [135]) comprising reads, assemblies, indexed ref-

erence genomes, the associated SNP call truth sets, VCFs, and a

suite of Perl scripts.

Evaluation metrics

For each pipeline, we calculated the absolute number of TP (the

variant is in the simulated genome and correctly called by the

pipeline), FP (the pipeline calls a variant that is not in the simu-

lated genome), and FN SNP calls (the variant is in the simulated

genome but the pipeline does not call it). We did not calculate

true-negative calls for 2 reasons. First, to do so requires a VCF

containing calls for all sites, a function offered by some vari-

ant callers (such as mpileup) but not all. Second, when aligning

reads to a divergent genome, a disproportionately large number

of reference sites will be excluded, particularly in more diverse

species (e.g., gene numbers in N. gonorrhoeae differ by up to one-

third; see Supplementary Table 5).

We then calculated the precision (positive predictive value)

of each pipeline as TP/(TP + FP), recall (sensitivity) as TP/(TP +

FN), miss rate as FN/(TP + FN), and total number of errors (FP +

FN) permillion sequenced bases.We did not calculate speci�city

because this depends on true-negative calls. We also calculated

the F-score (as in [11]), which considers precision and recall with

equal weight: F = 2 ∗ [(precision ∗ recall)/(precision + recall)].

The F-score evaluates each pipeline as a single value bounded

between 0 and 1 (perfect precision and recall). We also ranked

each pipeline on the basis of eachmetric so that—for example—

the pipeline with the highest F-score, and the pipeline with the

lowest number of FPs, would be rank 1 in their respective dis-

tributions. As an additional “overall performance” measure, we

calculated the sumof ranks for the 7 core evaluationmetrics (the

absolute numbers of TP, FP, and FN calls, and the proportion-

based precision, recall, F-score, and total error rate per million

sequenced bases). Pipelines with a lower sum of ranks would, in

general, have higher overall performance.

We note that when SNPs are called after aligning reads from

1 strain to that of a divergent strain, the SNP-calling pipeline

will call positions for both the truth set of strain-speci�c in silico

SNPs and any inter-strain variants. To allow a comparable eval-

uation of pipelines in this circumstance, inter-strain calls (ob-

tained using nucmer and Parsnp; see above) are discarded and

not explicitly considered either TP, FP, or FN. While the set of

true SNPs when aligning to a divergent strain will be smaller

than that when aligned to the same strain (because all SNPs are

simulated in genic regions but not all genes are shared between

strains), thiswill not affect proportion-based evaluationmetrics,

such as F-score.

Effect size of differences in the F-score distribution

between pipelines

Differences between distributions are assessed by Mann-

Whitney U tests, with results interpreted using the non-

parametric effect size estimator Cliff delta [61, 62], estimated

at a con�dence level of 95% using the R package effsize v0.7.1

[136]. The Cliff delta employs the concept of dominance (which

refers to the degree of overlap between distributions) and so is

more robust when distributions are skewed. Estimates of delta

are bound in the interval (−1, 1), with extreme values indicat-

ing a lack of overlap between groups (respectively, set 1 ≪ set 2

and set 1 ≫ set 2). Distributions with |delta| < 0.147 are negligi-

bly different, as in [137]. Conversely, distributions with |delta| ≥

0.60 are considered to have large differences.

Availability of Supporting Data and Materials

All data analysed during this study are included in this pub-

lished article and its supplementary information �les. The sim-

ulated datasets generated during this study—comprising the

SNP-containing genomes, log �les of the SNPs introduced into

each genome, and VCFs of strain–to–representative genome SNP

calls—are available in Supplementary Dataset 1 (hosted online

via the Oxford Research Archive at http://dx.doi.org/10.5287/bod

leian:AmNXrjYN8).

Raw sequencing data and assemblies from the REHAB

project, described in [63], are available in the NCBI under BioPro-

ject accession PRJNA42251 (https://www.ncbi.nlm.nih.gov/biopr

oject/PRJNA422511), with associated hybrid assemblies available

via FigShare [134].
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A complete archive to facilitate both the replication and ex-

pansion of this evaluation using the real (REHAB project) se-

quencing data is available as Supplementary Dataset 2 (hosted

online via the Oxford Research Archive at https://tinyurl.com/v4

p6vol). This archive comprises 18 sets of paired-end reads and

assemblies, the associated indexed reference genomes, SNP call

truth sets, VCFs, and a suite of Perl scripts. These scripts are

also available via https://github.com/oxfordmmm/GenomicDive

rsityPaper. Snapshots of these data and code are also available

from the GigaScience GigaDB repository [138].

Availability of Supporting Source Code and
Requirements

Project name: Genomic diversity affects the accuracy of bacterial

SNP calling pipelines

Project home page: https://github.com/oxfordmmm/GenomicDi

versityPaper

Operating system(s): Platform-independent

Programming language: Perl (v5.22.1)

Other requirements: Third-party software prerequisites are de-

tailed in documentation provided with Supplementary Dataset

2 (https://tinyurl.com/v4p6vol)

License: GNU GPL

Additional Files

Supplementary Table 1. Sources of software

Supplementary Table 2. Genomes into which SNPs were intro-

duced in silico, and various measures of distance between each

strain’s genome and the representative genome of that species

Supplementary Table 3. Summary statistics of SNP-calling

pipelines after aligning simulated reads to the same reference

genome as their origin

Supplementary Table 4. Ranked performance of SNP-calling

pipelines after aligning simulated reads to the same reference

genome as their origin

Supplementary Table 5. Genome size diversity within 5 clini-

cally common bacterial species

Supplementary Table 6. Summary statistics of SNP-calling

pipelines after aligning simulated reads to a reference genome

differing from their origin

Supplementary Table 7. Ranked performance of SNP-calling

pipelines after aligning simulated reads to reference genomedif-

fering from their origin

Supplementary Table 8. Environmentally sourced/reference

gram-negative isolates and associated representative genomes.

Supplementary Table 9. Summary statistics of SNP-calling

pipelines after aligning real reads to a reference genome differ-

ing from their origin

Supplementary Table 10. Ranked performance of SNP-calling

pipelines after aligning real reads to reference genome differing

from their origin

Supplementary Table 11. Proportion of strain-speci�c in silico

SNPs detected in whole-genome alignments between the strain

genome and a representative genome

Supplementary Table 12. VCF �ltering parameters, as used by

BCFtools

Supplementary Table 13. Summary statistics of SNP-calling

pipelines after aligning both simulated error-free and error-

containing reads to the same reference genome as their origin

Supplementary Table 14. Summary statistics of SNP-calling

pipelines after aligning both simulated error-free and error-

containing reads to a reference genome differing from their ori-

gin

Supplementary Table 15. Summary statistics of SNP-calling

pipelines after aligning simulated error-free reads to a reference

genome differing from their origin, both with and without local

indel realignment

Supplementary Table 16. Summary statistics of E. coli SNP-

calling pipelines after aligning simulated error-free reads to a

reference genome differing from their origin, both with and

without VCF regularization

Supplementary Table 17. Summary statistics of E. coli SNP-

calling pipelines after aligning simulated error-free reads to a

reference genome differing from their origin, at 5-, 10-, 25- and

50-fold depths of coverage

Supplementary Figure 1. Reduced performance of SNP-calling

pipelines with increasing genetic distance between the reads

and the reference genome (assayed as total number of SNPs).

The median F-score across a set of 41 pipelines, per strain, de-

creases as the distance between the strain and the reference

genome increases (assayed as the total number of SNPs between

the strain and representative genome, i.e., the set of strain-

speci�c in silico SNPs plus inter-strain SNPs). Each point indicates

the genome of 1 strain per species (n = 254 strains). Points are

coloured by the species of each strain (n = 10 species). Summary

statistics for each pipeline are given in Supplementary Table 6,

performance ranks in Supplementary Table 7, and the genetic

distance between strains in Supplementary Table 2. Quantita-

tively similar results are seen if assaying distance as the Mash

distance, which is based on the proportion of k-mers shared be-

tween genomes (Fig. 3).

Supplementary Figure 2. Decreasing sensitivity (i.e., an in-

creased number of false-negative calls) with increasing genetic

distance between the reads and the reference genome (assayed

as Mash distance). The median sensitivity (recall) across a set of

41 pipelines, per strain, increases as the distance between the

strain and the reference genome increases (assayed as the Mash

distance, which is based on the proportion of shared k-mers be-

tween genomes). Each point indicates the genome of 1 strain per

species (n = 254 strains). Points are coloured by the species of

each strain (n= 10 species). Summary statistics for each pipeline

are given in Supplementary Table 6, performance ranks in Sup-

plementary Table 7, and the genetic distance between strains in

Supplementary Table 2.

Supplementary Figure 3. Total number of SNPs it is possible

to call should reads from 1 strain be aligned to a representa-

tive genome of that species. Strong correlation between the to-

tal number of SNPs introduced in silico into 1 genome and the

maximum number of SNPs it is possible to call assuming reads

from the former are aligned to a representative genome of that

species (which will not necessarily contain the same comple-

ment of genes). Each point represents the genome of 1 strain,

with genomes detailed in Supplementary Table 2. The line y = x

is shown in red.

Supplementary Figure 4. Head-to-head performance compari-

son of all pipelines relative to Snippy, on the basis of F-score,

using simulated data. This �gure directly compares the perfor-

mance, using simulated data, of 40 pipelines relative to Snippy.

Each point indicates the median F-score for the genome of 1

strain per species (n = 254 strains). Data for Snippy are plot-

ted on the x-axis, and for the named pipeline on the y-axis.

Raw data for this �gure are given in Supplementary Table 6.

Text in the top left of each panel is an interpretation of the

difference between each pair of distributions, obtained using

the R package “effsize,” which applies the non-parametric ef-
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fect size estimator Cliff delta to the results of a Mann-Whitney

U test.

Supplementary Figure 5. Selection of E. coli isolates by man-

ual review of dendrogram topology. There are numerous usable

complete genomes for E. coli. For the SNP-calling evaluation, a

subset of isolates was selected (indicated in red boxes) so as

to maximize the diversity of clades represented. To do so, an

all-against-all distance matrix for each genome was created us-

ing the “triangle” component of Mash v2.1, with a dendrogram

constructed using the neighbour-joining method implemented

in MEGA v7.0.14. Sources for the selected genomes are given in

Supplementary Table 2.

Supplementary Figure 6. Selection of K. pneumoniae isolates by

manual review of dendrogram topology. There are numerous us-

able complete genomes for K. pneumoniae. For the SNP-calling

evaluation, a subset of isolates was selected (indicated in red

boxes) so as to maximize the diversity of clades represented. To

do so, an all-against-all distance matrix for each genome was

created using the “triangle” component ofMash v2.1, with a den-

drogram constructed using the neighbour-joining method im-

plemented in MEGA v7.0.14. Sources for the selected genomes

are given in Supplementary Table 2.

Supplementary Figure 7. Selection of L. monocytogenes isolates by

manual review of dendrogram topology. There are numerous us-

able complete genomes for L. monocytogenes. For the SNP-calling

evaluation, a subset of isolates was selected (indicated in red

boxes) so as to maximize the diversity of clades represented. To

do so, an all-against-all distance matrix for each genome was

created using the “triangle” component ofMash v2.1, with a den-

drogram constructed using the neighbour-joining method im-

plemented in MEGA v7.0.14. Sources for the selected genomes

are given in Supplementary Table 2.

Supplementary Figure 8. Selection of S. enterica isolates by man-

ual review of dendrogram topology. There are numerous usable

complete genomes for S. enterica. For the SNP-calling evaluation,

a subset of isolates was selected (indicated in red boxes) so as

to maximize the diversity of clades represented. To do so, an

all-against-all distance matrix for each genome was created us-

ing the “triangle” component of Mash v2.1, with a dendrogram

constructed using the neighbour-joining method implemented

in MEGA v7.0.14. Sources for the selected genomes are given in

Supplementary Table 2.

Supplementary Figure 9. Selection of S. aureus isolates by man-

ual review of dendrogram topology. There are numerous usable

complete genomes for S. aureus. For the SNP-calling evaluation,

a subset of isolates was selected (indicated in red boxes) so as

to maximize the diversity of clades represented. To do so, an

all-against-all distance matrix for each genome was created us-

ing the “triangle” component of Mash v2.1, with a dendrogram

constructed using the neighbour-joining method implemented

in MEGA v7.0.14. Sources for the selected genomes are given in

Supplementary Table 2.

Supplementary Dataset 1. Simulated datasets for evaluating

bacterial SNP-calling pipelines. This archive contains the set of

254 SNP-containing genomes, VCFs containing the nucmer and

Parsnp strain–to–representative genome SNP calls, and the �nal

truth sets of SNPs used for evaluation.

Supplementary Dataset 2. Real sequencing datasets for evalu-

ating bacterial SNP-calling pipelines. This is a complete archive

to facilitate both the replication and expansion of this evalua-

tion using real (REHAB project) sequencing data. It comprises 18

sets of paired-end reads and assemblies, the associated indexed

reference genomes, SNP call truth sets, VCFs, and a suite of Perl

scripts.
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