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Abstract

The geographic origins of breeds and genetic basis of variation within the widely distributed and

phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We

generated a rock pigeon reference genome and additional genome sequences representing

domestic and feral populations. We find evidence for the origins of major breed groups in the

Middle East, and contributions from a racing breed to North American feral populations. We

identify EphB2 as a strong candidate for the derived head crest phenotype shared by numerous

breeds, an important trait in mate selection in many avian species. We also find evidence that this

trait evolved just once and spread throughout the species, and that the crest originates early in

development by the localized molecular reversal of feather bud polarity.

Since the initial domestication of the rock pigeon in Neolithic times (1), breeders have

selected striking differences in behavior, vocalizations, skeletal morphology, feather

ornaments, colors, and color patterns to establish over 350 breeds (2). In many cases, the

number and magnitude of differences among breeds are more characteristic of

macroevolutionary changes than of changes within a single species (2, 3). Indeed, Charles

Darwin was so fascinated by domestic pigeons that he repeatedly called attention to this
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dramatic example of diversity within a species to communicate his ideas about natural

selection (3, 4).

The genetic architecture for many derived traits in pigeons is probably relatively simple (5,

6), likely more so than interspecific trait variation among many wild species, as breeders

often focus on qualitative rather than quantitative variation; this increases the chance of

identifying genes responsible for differences among breeds. Additionally, several

morphological traits show similar patterns of variation in different breeds, making it possible

to test whether the same or different genes underlie similar phenotypes. Despite these

advantages, the pigeon is underused as a model for the molecular genetic basis of avian

variation due to the paucity of genetic and genomic resources for this bird.

We examined genomic diversity, genetic structure, and phylogenetic relationships among

domestic breeds and feral populations (free-living birds descended from escaped domestics)

of the rock pigeon. The pigeon reference genome was sequenced from a male Danish

tumbler with the Illumina HiSeq2000 platform, and we also resequenced 40 additional C.

livia genomes to 8-to 26-fold coverage (38 individuals from 36 domestic breeds and two

feral pigeons) (7). Genome-wide nucleotide diversity in the rock pigeon (π=3.6×10−3) and

the mutation rate estimate in the pigeon lineage (1.42×10−9 substitutions site−1 year−1 ±

2.60×10−12 SE) are comparable to other avian species (8, 9). Observed heterozygosity

indicates a large effective population size for the rock pigeon of Ne≈521,000; demographic

inferences based on the allele frequency spectrum indicate that, aside from a very recent

bottleneck, Ne has been remarkably stable over the past 1.5 million generations (7).

Patterns of linkage disequilibrium (LD) are indicative of haplotype sizes and genome-wide

recombination rates, and inform decisions about genetic mapping strategies. Using genotype

data from the 40 resequenced C. livia genomes, we found that mean “useful LD” (10)

(r2>0.3) decays in 2.2 kb (Fig. S10J). This suggests that we should expect little LD between

typical pairs of genes in an analysis across breeds; thus, the pigeon is well suited for

association-mapping strategies.

We leveraged our whole-genome data to determine breed relationships using 1.48 million

variable loci. A neighbor-joining tree rooted on C. rupestris, the sister species of C. livia

(11), yielded several well-supported groups (Figs. 1, S16). Notably, the two feral pigeons

grouped with the wattle and homer breeds (Fig. 1, pink branches), supporting the idea that

escaped racing homers are probably major contributors to feral populations (12). As with

many domesticated species, pigeon evolution is probably not exclusively linear or

hierarchical (12). We therefore examined genetic structure among breeds by analyzing 3,950

loci with ADMIXTURE (13), and found a best model fit at K=1 (a single population, where

K is the number of assumed ancestral populations). However, higher values of K can also be

biologically informative (Figs. S17–S20). Our analysis includes some of the oldest lineages

of domestic pigeons and breeds that were not exported from the Middle East until the late

nineteenth or early twentieth centuries (14), providing information about likely geographic

origins of breeds and their exchange along ancient trade routes (7).

Derived traits in domesticated birds tend to evolve along a predictable temporal trajectory,

with color variation appearing in the earliest stages of domestication, followed by plumage

and structural (skeletal and soft tissue) variation, and finally behavioral differences (2). One

of the genetically simplest derived traits of pigeons is the head crest. Head crests are

common ornaments in many bird species (2) and are important display structures in mate

selection (15). In pigeons, head crests consist of neck and occipital feathers with reversed

growth polarity, such that the feathers grow toward the top of the head instead of down the

neck. Crests can be as small and simple as a peak of feathers, or as elaborate as the hood of
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the Jacobin that envelops the head (Fig. 2A). Remarkably, classical genetics experiments

suggest that the head crest segregates as a simple Mendelian recessive trait (6, 14).

Moreover, previous studies suggest that the same locus controls the presence of a crest in

numerous breeds, either with alternative alleles at this locus or additional modifier loci

controlling the extent of crest development (6, 14).

We resequenced 8 individuals with head crests to directly test if the same mutation controls

crest development in different breeds. We sorted genomic variants from birds with and

without head crests into separate bins, and calculated allele frequency differentiation (FST)

across the genome (Fig. 2B). We identified a region of high differentiation between crested

and uncrested birds in the pigeon ortholog of Ephrin receptor B2 (EphB2; FST=0.94, top hit

genome wide; Fig. S22A) (Fig. 2D). The role of EphB2 in feather growth is not known, but

it plays important roles in tissue patterning and morphogenesis, and is a member of a

receptor tyrosine kinase family that mediates development of the feather cytoskeleton (16,

17). All 8 crested birds were homozygous for a T nucleotide at scaffold 612, position

596613 (hereafter, “cr” allele), while uncrested birds were heterozygous (n=3) or

homozygous (n=30, including the uncrested outgroup C. rupestris) for the putatively

ancestral C nucleotide (“+” allele). These results were consistent with the known simple

recessive architecture of the trait, and implicated a common polymorphism associated with

head crest development in multiple breeds with different genetic histories (Fig. 1). This

trend extended well beyond our resequencing panel: we genotyped an additional 61 crested

birds from 22 breeds, and 69 uncrested birds from 57 breeds, and found a perfect association

between cr/cr genotype and the crest phenotype (Fig. 2F). By treating the genomes of

crested and uncrested birds as separate populations, we also found suggestive evidence for

positive selection around the cr allele using cross-population extended haplotype

homozygosity analysis (Figs. 2D, S21,S22B).

We then used the Variant Annotation, Analysis, and Search Tool (VAAST (18)) to

interrogate the pigeon genomes for additional coding changes associated with the head crest

phenotype. This identified one gene with genome-wide significance: EphB2, and

specifically the cr SNP (Pgenome = 2.0×10−8) (Fig. 2C,D). The cr allele has a predicted

charge-changing arginine (basic) to cysteine (polar uncharged) transition in the catalytic

loop of the intracellular tyrosine kinase domain of EphB2 (Fig. 2E). This amino acid

position is invariant among other vertebrates suggesting strong purifying selection for

conserved protein function. Notably, the same DLAARN to DLAACN motif change we

observe in EphB2 is sufficient to abrogate kinase activity in human and mouse orthologs of

the protein tyrosine kinase ZAP-70, and in both mammals and pigeons the mutant

phenotypes are inherited recessively (19). Hence, the pigeon cr mutation probably abrogates

kinase activity in EphB2 and disrupts downstream signal propagation, consistent with the

high VAAST score for this gene. EphB2 is therefore a convincing candidate for the cr locus

of classical pigeon genetics (5–7, 14).

In several wild and domesticated species, the repeated evolution of a derived trait has

occurred by selection on the same gene, possibly due to the repeated selection on the same

allele or haplotype (20–22). Similarly, the cr SNP is part of a 27.4-kb haplotype that is

shared by all crested pigeons, suggesting that the mutation occurred just once and spread to

multiple breeds by introgression among domestic breeds, or was selected repeatedly from a

standing variant in wild rock pigeons (Figs. 2G, S23; the core haplotype containing the cr

mutation is reduced to 11 kb with the inclusion of uncrested heterozygotes). The only gene

present in the shared cr haplotype is EphB2 (Fig. 2D, green bar), although at this time we

cannot rule out the presence of regulatory variants that might alter the expression of another

gene. Crested members of the toy, fantail, Iranian, Jacobin, and owl breed groups are not

more closely related to each other than to uncrested breeds (Fig. 1). Nevertheless, members
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of these groups had head crests hundreds of years ago (14), so some of these introgression

events must have occurred in the distant past. Breeds with a wide variety of crest phenotypes

share the same derived allele; therefore, allelic variation at the cr locus alone does not

control all aspects of crest development (14). Other genetic and developmental factors

beyond this locus must contribute to variation in crest morphology, akin to the presumed

complex genetic architecture of species-level divergence in feather ornaments (2).

In crested pigeons, feather placode polarity and bud outgrowth are inverted during

embryogenesis (Fig. 3). Expression of EphB2 is not polarized in early placodes (Fig. S26),

so the effects of the cr mutation on feather polarity are probably exerted earlier in

development. Why might the crest phenotype be limited to the head and neck? In Naked

neck chicken mutants, regionalized production of retinoic acid allows uniform upregulation

of Bmp7 expression to change skin phenotypes in the neck but not the body (23). Similarly,

the head crests of several chicken breeds, in which feathers are elongated but do not have a

reversed growth trajectory as in pigeons, are localized to the top of the head probably due to

ectopic expression of Hox positional cues (24). Together, these examples provide evidence

for regionalization of the developing head and neck skin in the chicken. We propose that

analogous mechanisms might underlie skin regionalization in the pigeon and allow cr to

change feather polarity in the occiput and neck, but not elsewhere.

Our study of domestic rock pigeons illustrates how combining comparative genomics and

population-based analyses forwards our understanding of genetic relationships and the

genomic basis of traits. Many of the traits that vary among pigeon breeds also vary among

wild species of birds and other animals (2, 25); thus, pigeons represent a model for

identifying the genetic basis of variation in traits of general interest. Moreover, variation in

many traits in domestic pigeons, including the head crest phenotype described here, is

constructive rather than regressive: breeds derived from the ancestral rock pigeon possess

traits that the ancestor does not have. While adaptive regressive traits are important, the

genetic basis of constructive traits in vertebrates remains comparatively poorly understood.

The domestic pigeon is thus a promising model to explore the genetic architecture of

derived, constructive phenotypes in a bird that is amenable to genetic, genomic, and

developmental investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Relationships among rock pigeons and the hill pigeon Columba rupestris. Consensus

neighbor-joining tree based on 1.48 million genomic SNPs and 1000 bootstrap replicates

(see Fig. S16 for bootstrap support). Branches are colored by traditional breed group (12)

and/or geographic affinities: orange, toy breeds; brown, pouters and utility breeds; light

blue, Indian and Iranian breeds; green, tumblers and highflyers; pink, homers and wattle

breeds; red, Mediterranean and owl breeds; black, voice characteristics (14). Bold, red

lettering indicates breeds with the head crest phenotype. Scale bar, Euclidean distance.

Photo credits: T. Hellmann (domestic breeds) and M.V. Shreeram (C. rupestris).
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Fig. 2.
EphB2 is associated with the derived head crest phenotype. (A) Head crests are variable

among breeds (left to right: Indian fantail, Old German owl, Old Dutch capuchin, Jacobin).

(B) FST between crested and uncrested pigeons, maximum value for individual SNPs plotted

for non-overlapping 100-kb windows across the genome. Red star, window with the highest

score. Dashed red line, top 1% of scores. (C) Genome-wide VAAST scan. Each dot

represents a single gene. Red star, gene with the highest score. Dashed red line, genome-

wide significance cutoff. (D) Magnification of scaffold 612 in shaded region of (B–C).

Black trace, maximum FST between crested and uncrested birds over a 300-SNP window.
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Red trace, unstandardized cross-population extended haplotype homozygosity (XP-EHH);

higher values are evidence of selection (see Fig. S21, genome-wide plot). Dashed vertical

line, position of the lone genome-wide significant VAAST hit. Green bar, 27.4-kb haplotype

shared by all crested birds, includes only the EphB2 gene. Blue bars, gene predictions on +

and − DNA strands. (E) The cr mutation induces a charge-changing amino acid substitution;

black bar, highly conserved DLAARN motif of catalytic loop. (F) Genotypes of 159 birds

from 79 breeds at the cr locus are perfectly associated with the crest phenotype under a

recessive model. (G) Network diagram of the minimal 11-kb haplotype shared by all

resequenced rock pigeons with the cr mutation (also see Fig. S23). Many haplotypes contain

the + allele (blue), but only one contains the cr SNP (red). Sizes of circles are proportional to

the number of chromosomes containing a haplotype. Line segments represent single

nucleotide differences. Jacobin photo credit: T. Hellmann.
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Fig. 3.
Feather bud polarity is reversed in the cr mutant. (A,B) Expression of the feather structural

gene Ctnnb1 reveals the direction of outgrowth of early feather buds. (A) Neck and occipital

head expression of Ctnnb1 in an embryo of the uncrested racing homer. Feather buds point

downward along the contour of the head and neck (arrowheads). (B) Occipital feathers buds

point upward in the equivalent region of the crested English trumpeter, indicating

morphological reversal of feather orientation. (C,D) Expression of the polarity marker

EphA4 was assayed at an earlier developmental stage to test if feather placodes, the

ectodermal thickenings that give rise to feather buds, are also reversed. (C) Polarity marker

EphA4 is expressed posteriorly (arrowheads) in feather placodes of the racing homer. (D)
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Polarity of placodes is reversed in the English trumpeter. Expression of EphB2 in the skin is

weak and unpolarized at this stage in both morphs (Fig. S26).
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