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ABSTRACT

A fundamental problem in DNA microarray analysis
is the lack of a common standard to compare the
expression levels of different samples. Several
normalization protocols have been proposed to
overcome variables inherent in this technology. As
yet, there are no satisfactory methods to exchange
gene expression data among different research
groups or to compare gene expression values
under different stimulus±response pro®les. We
have tested a normalization procedure based on
comparing gene expression levels to the signals
generated from hybridizing genomic DNA (genomic
normalization). This procedure was applied to
DNA microarrays of Mycobacterium tuberculosis
using RNA extracted from cultures growing to the
logarithmic and stationary phases. The applied
normalization procedure generated reproducible
measurements of expression level for 98% of the
putative mycobacterial ORFs, among which 5.2%
were signi®cantly changed comparing the logarith-
mic to stationary growth phase. Additionally, analy-
sis of expression levels of a subset of genes by real
time PCR technology revealed an agreement in
expression of 90% of the examined genes when
genomic DNA normalization was applied instead of
29±68% agreement when RNA normalization was
used to measure the expression levels in the same
set of RNA samples. Further examination of micro-
array expression levels displayed clusters of genes
differentially expressed between the logarithmic,
early stationary and late stationary growth phases.
We conclude that genomic DNA standards offer
advantages over conventional RNA normalization
procedures and can be adapted for the investigation
of microbial genomes.

INTRODUCTION

DNA microarray technology (oligo and spotted microarrays)
has become widely accepted for gene expression pro®ling
(1,2). There is a growing interest in applying such technolo-
gies to investigate the transcription pro®les of infectious
agents on a genome-wide level to develop new vaccines and
drugs to combat infectious disease. A leading candidate for
this approach is Mycobacterium tuberculosis, the causative
agent of human tuberculosis, responsible for 3 million annual
mortalities (3). However, microarray analysis has a number of
problems, including spotting ef®ciency, sample labeling
ef®ciency, transcript representation and hybridization repro-
ducibility (4), which are ampli®ed with the analysis of mixed
RNA samples from infected tissues. We propose an alternative
procedure for array hybridization that may circumvent some
problems resulting from variables associated with DNA
microarrays.

Microarrays consist of in situ/pre-synthesized oligonucleo-
tides or spotted cDNA representing all or a portion of
expressed genes in an organism arrayed onto chemically
treated glass slides or any other solid surface (5). Typically,
transcripts from a variety of states are labeled with one of two
dyes and pair-wise comparisons of relative changes in gene
expression are estimated after co-hybridization to the same set
of spotted arrays. There are a number of methods used to
normalize these pair-wise comparisons. Current protocols for
microarray data normalization use a `control' RNA sample
from a particular tissue or time point (RNA normalization), a
pool of `grouped' RNA samples from different tissues or
different time points (6,7), or a subset of control `reference'
genes (8) of known transcription pro®le. There are several
problems with these approaches. For example, only genes with
hybridization signals from both RNA samples can be used to
generate relative expression levels. Signals observed from
only one RNA sample are discarded. Under some growth
conditions, the transcription levels of some genes will be
undetectable (or very low), resulting in unmeasurable relative
expression levels. Furthermore, for microbial systems, the
`grouped RNA normalization' procedure may require pooling
RNA from 20 or 30 experimental conditions at different
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growth phases. Comparisons of results to any new experi-
mental condition would require a new control pool or a new
set of hybridizations. Alternatively, using `control genes' for
microarray data normalization is subject to the problem of
choosing the right control genes, especially when even
`housekeeping genes' can ¯uctuate under some experimental
conditions (9). Even when a set of reference genes or an RNA
pool is agreed upon for array analysis, the production of such
control samples may vary from one experiment to another and
from one laboratory to another.

In response to these problems, we have explored an
alternative procedure for array hybridization. In this pro-
cedure, hybridization signals from cDNA (prepared from total
RNA) are normalized to signals generated from genomic DNA
(gDNA) from the same organism. The proposed normalization
protocol was applied to cultures of M.tuberculosis grown to
either logarithmic or stationary phase. We found that a higher
reproducibility and wider dynamic range are achievable using
genomic normalization compared to an RNA normalization
protocol.

MATERIALS AND METHODS

Construction of DNA microarrays

We designed DNA microarrays by arraying an oligonucleotide
set purchased from Operon Technologies (Alameda, CA),
representing the whole genome of M.tuberculosis. The
oligonucleotides were chosen using a proprietary algorithm
(Operon Technologies) for selecting unique 70mers for each
open reading frame (ORF) predicted in the published sequence
of M.tuberculosis strain H37Rv (10) with an optimized
melting temperature of 79°C (65°C). All oligonucleotides
were resuspended in 33 SSC at a concentration of 40 mM
using the liquid handling station Biomek 2000 (Beckman
Coulter, Fullerton, CA). Resuspended oligonucleotides were
spotted onto poly-L-lysine-coated glass slides (11) using a
custom-built robotic arrayer (Magna Arrayer) assembled at
the University of Texas Southwestern Medical Center
(http://microarray.swmed.edu/technology.htm) that generates
microarrays with a DNA spot size of 150±200 mm in
diameter.

Sample preparation and slide hybridizations

Mycobacterium tuberculosis H37Rv (ATCC no. 25618) was
obtained from American Type Cell Culture. Logarithmic and
stationary phase cultures for preparing RNA samples were
grown in 7H9 medium supplemented with 10% OADC, at
37°C, and harvested at 14, 28 and 50 days. Total RNA was
extracted from mycobacterial cultures in TRI reagent
(Molecular Research Center, Cincinnati, OH) using 0.1 mm
silica/zirconium beads in a BioSpec Mini-Beadbeater. RNA
pellets were washed with cold 75% ethanol, air dried, and then
resuspended in 50 ml of H2O pretreated with diethyl
pyrocarbonate. RNA samples (7 mg each) (12) were labeled
using a FairPlay Microarray labeling kit (Stratagene,
La Jolla, CA) and Cy3 or Cy5 monofunctional dye
(Amersham Pharmacia Biotech, Arlington Hights, IL) accord-
ing to the manufacturer's protocol. The M.tuberculosis
cDNA was labeled using a minimal set of 37 mycobacterial
genome-directed primers (mtGDP, 250 ng/ml) designed

speci®cally to prime all ORFs in the sequenced
M.tuberculosis genome (13).

To label the gDNA, three methods were compared. In the
®rst, a standard nick translation reaction was used to generate
randomly labeled DNA fragments (2 mg DNA of ~500 bp)
with Cy5 ¯uorescent dye according to the manufacturer's
protocol (Promega, Madison, WI). In the second method,
mycobacterial gDNA (2 mg/reaction) was labeled using Taq
polymerase (Promega) and mtGDP in the presence of Cy3-
dCTP nucleotide and 200 nM dNTP (®nal concentration). We
allowed only 15 cycles of denaturation at 94°C for 1 min,
annealing at 45°C for 1 min and extension at 72°C for 2 min.
The same amount of gDNA (2 mg) was used in the third
labeling protocol where the Klenow fragment of DNA
polymerase (Gibco BRL, Gaithersburg, MD) and random
primers (or mtGDP) were used as previously reported (14).
After the labeling reactions were completed, unincorporated
nucleotides were removed from the labeled samples by
passage over a gel ®ltration spin column (CentriFlex gel
®ltration cartridge; Edge Biosystem, Gaithersburg, MD) or
centricon concentrators (Amicon, Beverly, MA) according to
the manufacturer's recommendations.

Equal volumes of the Cy3- and Cy5-labeled analytes (20 ml
each) were adjusted to a ®nal concentration of 43 SSC, 0.1%
SDS and co-hybridized to the microarray glass slides
overnight at 67°C using specialized hybridization chambers
(Telechem Inc., Sunnyvale, CA). The slides were washed for
5 min at room temperature in low stringency buffer (13 SSC,
0.1% SDS) followed by a 5 min wash in a high stringency
buffer (0.13 SSC) and drying by centrifugation at 1000 r.p.m.
for 5 min.

Hybridization signal acquisition and data ®ltration

After hybridization, the microarray slides were scanned using
a commercial laser scanner (GenePix4000; Axon Instruments
Inc., Foster City, CA) with independent excitation of the
¯uorophores Cy3 and Cy5. The signal and background
¯uorescence intensities were calculated for each DNA spot
using image analysis software (GenPixPro 3.0; Axon
Instruments) by averaging the intensities of every pixel inside
the target region (segmentation method). The signal intensity
for each spot is the difference between the average signal
intensity and the average local background intensity. All of the
hybridizations were repeated at least four times and the data
used for analysis were from two different cultures from the
same growth phase employing the same RNA extraction and
labeling protocols. For each of the hybridizations, signals
below the threshold level (the mean background level of the
whole experiment + SD) in the gDNA channel or from ¯agged
spots (bad or undetectable spots) were rejected for further
analysis (for the genomic normalization protocol). However,
signals below the threshold level in the cDNA channel (for
genomic or RNA normalizations) were set to the threshold
level to avoid spurious expression ratios as suggested earlier
(15,16). The data were then ®ltered by rejecting any genes that
did not still have at least two spots in either logarithmic or
stationary phase samples. The same `®lters' applied to the
ratios (cDNAtest/gDNA) generated by genomic normalization
were applied to the ratios (cDNAtest/cDNAcontrol) generated by
the RNA normalization procedure.
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Statistical analysis of gene expression levels

Following data ®ltration and signal ratio calculations, per
chip normalizations were performed using the 50th percentile
of all measurements for different hybridizations to make
comparisons between different experiments valid. Addition-
ally, each gene was normalized to itself by making a synthetic
positive control for that gene and dividing all measurements
for that gene by this positive control. This synthetic control
was the median of the gene's expression values over all
sample replicates. All data normalization and statistical
analysis were performed using GeneSpring v.4.1 (Silicon
Genetics, Redwood City, CA). A Kruskal±Wallis (non-
parametric) test for testing of genes with signi®cant expression
levels at P < 0.01 was chosen to compare expression levels
between both logarithmic and stationary phase samples.

Finally, hierarchical cluster analysis (17) was performed on
Z scores calculated for each gene from the simple ratios of the
hybridization signals (cDNA/gDNA). Z-score conversion was
necessary to `center' all expression levels around mean = 0 to
obtain the `standard gene expression levels' that are amenable
to comparison between different samples. This approach is
similar to the Z-score modeling approach suggested by
Thomas et al. (18). The following formula was used to
calculate the Z scores (19):

Z = (j1 ± jÅ)/s 1

where Z is the Z score for gene j1, jÅ is the mean ratios for all j
genes and s is the standard deviation from the mean.

Real time, quantitative PCR

To verify the fold change in gene expression estimated using
microarray analysis, we used an ampli®cation-based strategy,
quantitative real time PCR (20). For each ampli®cation run,
the calculated threshold cycle (Ct) for each gene ampli®cation
was normalized to Ct of the 16S rRNA gene ampli®ed from
the corresponding sample before calculating the fold change
from logarithmic to stationary phase using the following
formula:

fold change = 2±DDCt

2

where DDCt for gene j = (Ct,j ± Ct,16S rRNA)logarithmic phase ±
(Ct,j ± Ct,16S rRNA)stationary phase.

RESULTS

Evaluation of M.tuberculosis oligonucleotides arrays

There is a growing interest in using whole-genome analysis for
studying microbial expression pro®les in vitro (21) and in vivo
(13) to provide a better understanding of their molecular
pathogenesis. We constructed M.tuberculosis oligonucleotide
arrays representing 100% of the predicted ORFs of the
sequenced genome of M.tuberculosis strain H37Rv (http://
genolist.pasteur.fr/TubercuList). Onto each glass slide, the
whole genome was printed twice in two different locations
on the slide (primary and secondary spots) to check for
hybridization consistency and increase the number of experi-
mental replicates. Since using spotted (pre-synthesized)
oligonucleotide arrays is relatively new for microbial
genomes, we examined the hybridization signal quality and
reproducibility of hybridizations using mycobacterial nucleic
acids. To test for any biased incorporation of either
¯uorophores used for labeling M.tuberculosis RNA or
gDNA, we labeled equal amounts of the same batch of total
RNA or gDNA with either Cy3 or Cy5 ¯uorophores. Analytes
(labeled samples) from the same starting materials (RNA or
gDNA) but with different labeling ¯uorophores were hybrid-
ized to the same arrays. Signal intensities from analytes
labeled with either Cy3 or Cy5 ¯uorophores were very similar
with a correlation coef®cient (r) >0.9 (Fig. 1A). The high r
value demonstrates the unbiased incorporation of either
¯uorophore (Cy3 or Cy5) into M.tuberculosis RNA or
gDNA when used to hybridize to the M.tuberculosis arrays.
Additional analysis of the signal ratios generated from the
hybridization signals of both replicates of the DNA spots
revealed reproducible signals above the background levels,
with r > 0.9 (Fig. 1B) indicating homogeneous sample
hybridization to the DNA microarrays.

In almost all genes, signals generated from RNA samples
were higher than signals generated from genomic DNA
samples because of the presence of multiple transcripts/genes
in RNA samples in contrast to the mainly single copies of
genes available with gDNA labeling. However, in all of the

Figure 1. Linear regression analysis of signals from different hybridizations to oligonucleotides microarrays. The scatter plots show true signals (signals
above background) generated from the labeled cDNA (A) with either Cy3 or Cy5 ¯uorophores. Similar results were obtained for genomic DNA hybridizations
(r = 0.93) (data not shown). (B) Scatter plot represents the correlation of signal ratios generated from duplicate spots (primary and secondary) of the
oligonucleotides co-hybridized to genomic DNA and logarithmic phase RNA analytes. Pearson's correlation coef®cients (r) are indicated in each panel.
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hybridizations, the labeled gDNA analytes generated true
signals (above background) in 85 to >99% of the mycobac-
terial predicted ORFs (depending on the labeling protocol and
the amount of labeled analytes; see below), while only
45±70% of predicted ORFs showed true signals using the
cDNA analytes, depending on the source of the RNA sample
used for hybridization.

Genomic normalization for expression pro®ling

For the traditional RNA normalizaton protocol used in most
spotted-microarray analyses, the expression levels detected
for `test' RNA sample are compared to another `control' RNA
sample to calculate relative expression levels. Additional
¯uorophore switching (color switching) experiments are
required for each pair of samples to verify the expression
levels. The method we have developed uses signals generated
from hybridizing labeled gDNA as the `control' sample to
measure relative gene expression for the `test' RNA sample.
To test for optimum labeling protocols of mycobacterial
gDNA (the control sample for genomic normalization), three
different protocols were compared for labeling the same batch
of mycobacterial gDNA and the whole experiment was
repeated twice. The signals of Cy3-labeled gDNA with either
Klenow or Taq polymerases were compared to the signals of
Cy5-labeled gDNA with nick translation protocol after co-
hybridization to the same oligonucleotide arrays. Using the
same amount of gDNA (2 mg/reaction), the nick translation
labeling protocol was superior to either the Klenow fragment
or Taq DNA polymerase labeling protocols in both the
generated signal intensity and the number of spots detected on
the array (Fig. 2A). Additionally, we modi®ed the Klenow
fragment DNA polymerase procedure (14) to include mtGDP
(13) instead of random primers (Klenow fragment plus).
However, this modi®cation had no signi®cant effect on
the percentage of genome coverage. The overall signal
intensity generated by nick translation-labeled gDNA was
nearly 2.5-fold higher than the signal generated by labeled
gDNA produced using the other two techniques. In all
subsequent experiments, we used the nick translation

protocol to label gDNA with the Cy5 ¯uorophore and
co-hybridize with Cy3-labeled cDNA generated from
different RNA samples.

In a co-hybridization protocol for spotted microarrays, both
analytes compete to hybridize to the same DNA target
(oligonucleotide spots). Consequently, increasing the amount
of one sample can reduce the chance of hybridization for the
second sample. To determine the optimal amounts of gDNA to
be co-hybridized with the cDNA, decreasing amounts of
labeled gDNA (prepared in one nick translation reaction) were
co-hybridized with ®xed amounts of labeled cDNA which was
prepared from 7 mg total RNA (the same amount used for a
typical RNA normalization protocol). The cDNA was gener-
ated from a mix of total RNA from logarithmic and stationary
phase cultures, so most of the genes would be expressed and
represented in the cDNA sample. As is evident in Figure 2B,
an increasing number of genes were detected as less gDNA
was used for normalization. Approximately 22% of the genes
were detected using 4 mg of gDNA compared to 92% with
0.5 mg of gDNA. There was no signi®cant difference between
using 0.5 and 0.1 mg gDNA, however, ~67% of the spots were
at the threshold level of signal detection using 0.1 mg of gDNA
compared to only ~10% when 0.5 mg of gDNA was used. It is
possible that the signals generated from gDNA hybridization
may saturate the oligonucleotide sites competing for the
labeled cDNA. Therefore, it may be necessary to empirically
determine the optimal amount of gDNA used to hybridize
each investigated genome.

To test for the hybridization reproducibility when gDNA is
used as a normalizer, gDNA analytes labeled with a Cy5
¯uorophore and Cy3-labeled cDNA synthesized from either
logarithmic or stationary phase RNA were co-hybridized to
the M.tuberculosis oligonucleotide arrays. Comparing the raw
signal ratios (before normalization) of labeled analytes (Cy3/
Cy5) generated from two different bacterial cultures, a high
correlation level was obtained (r > 0.8) regardless of the
source of the RNA sample (logarithmic or stationary phase
cultures). In keeping with these results, we used 0.5 mg of nick
translation-labeled gDNA for normalizing the expression
levels of genes in subsequent experiments.

Figure 2. Optimum labeling/hybridization protocol for genomic normalization. (A) A histogram representing the percentage of genes with signi®cant
hybridization signals generated from different labeling protocols using equal amounts of mycobacterial genomic DNA. Short bars represent 6 1 SD. (B) A
histogram showing the percentage of the mycobacterial transcriptome detected using varying concentrations of the labeled gDNA co-hybridized with the same
amounts of labeled cDNA (a mix synthesized from logarithmic and stationary phase RNAs, equivalent to 7 mg of starting total RNA). Only genes with signals
above the threshold level (true signals) in the cDNA channel were compared to the true signals in the gDNA channel.
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Comparing different protocols for expression data
normalization

Once we established a protocol for genomic normalization to
measure gene expression, this protocol was compared to the
conventional one of co-hybridizing two cDNA samples. For
this comparison we used RNA extracted from M.tuberculosis
cultures growing in a synthetic medium (Middlebrook 7H9)
from the mid-logarithmic to late stationary growth phases. The
same RNA samples used to evaluate the genomic normal-
ization protocol were also used for the RNA normalization
protocol. For genomic normalization, the ratios of logarithmic
to stationary phase cDNAs were estimated after dividing the
primary ratios of the logarithmic phase samples (relative to
gDNA) by the primary ratios of the stationary phase samples.
For RNA normalization, we used logarithmic phase RNA as
the `control' sample (labeled with Cy3) while the stationary
phase RNA was treated as the `test' sample (labeled with Cy5)
and vice versa (color-switching experiment).

As detailed in Table 1, the percentage of detectable gene
expression levels varied according to the normalization

procedure used, with the highest detection level (98%)
obtained when the genomic normalization protocol was
applied. When RNA normalization procedures were applied,
the total percentages of expressed genes dropped to 67% even
after the color reversal experiments. Additionally, a low
correlation level was obtained (r = 0.25) between fold changes
calculated from the color-switching experiments. Taniguchi
et al. (22) also experienced a low correlation between
expression level in several mouse genes when color reversal
experiments were conducted on the cDNA microarrays.
Interestingly, when coef®cient of variance (CV) was used to
evaluate the reproducibility of gene expression levels (23,24)
for RNA-normalized samples, genes with low expression
ratios gave the highest CV values (Fig. 3A). In contrast, the
CV values remained unchanged when the genomic normal-
ization protocol was applied (Fig. 3B).

As proposed earlier (25) we used a t-test-based approach to
identify genes that signi®cantly changed their expression
levels in different samples. With the genomic normalization,
among the 98% of genes with detectable expression levels,

Table 1. The expression pro®le of M.tuberculosis growing to either logarithmic or stationary phase using
different normalization procedures

Genomic
normalization

Stationary
normalization

Logarithmic
normalization

Expressed genesa 3847 (98.0%) 2637 (67.2%) 2622 (66.8%)
Signi®cant changes (P < 0.01)b 207 (5.2%) 123 (3.1%) 115 (2.9%)
Logarithmic phase (>2-fold) 123 (3.1%) 46 (1.1%) 316 (8.0%)
Stationary phase (>2-fold) 38 (0.9) 315 (8.0%) 199 (5.0%)
RT±PCR agreement (%) 28/31 (90.3%) 9/31 (29.0%) 20/31 (64.5%)

aExpressed genes, genes with at least two measurable hybridization signals above the threshold level.
bSigni®cant change at P < 0.01 using the Wilcoxon±Mann±Whitney test.

Figure 3. Reproducibility of expression levels of logarithmic phase RNA samples generated by RNA and genomic normalizations. (A) Scatter plot analysis
of genes expression levels generated by stationary phase RNA normalization and their corresponding CV values (CV = ratio of the standard deviation relative
to the mean hybridization intensities). The signal intensity ratios were sorted from the highest to the lowest (n = 3). (B) Scatter plot analysis of gene expres-
sion levels generated by genomic normalization and their corresponding CV values. The signal intensity ratios were sorted from the highest to the lowest
(n = 3). Note the number of genes detected by each normalization procedure. Similar results were obtained when the expression levels were measured in the
stationary phase RNA samples.
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5.2% (207 genes) showed a signi®cant change in their
expression levels in either logarithmic or stationary phases
(Table 1 and Supplementary Material). However, only 3% of
the genes were signi®cantly changed based on either RNA
normalization procedures. Only 30 genes were shared between
both groups of signi®cantly changed genes when gDNA and
RNA samples were used for normalization. A smaller number
of genes (21 genes) were shared between both groups of
signi®cantly changed genes when logarithmic and stationary
phase RNAs were used for normalization. Overall, genomic
normalization identi®ed a higher percentage of expressed
genes with more genes of signi®cant change in their
expression levels than RNA normalization protocols.

Real time, quantitative PCR analysis

To further evaluate the performance of each normalization
procedure (genomic or RNA) for microarray analysis we
compared the microarray expression levels to real time,
quantitative PCR. For this comparison, we considered that a
normalization protocol is in agreement if gene expression
levels were closely matched in the magnitude and direction
(up- or down-regulation). Generally, ampli®cation-based
protocols gave higher estimates of gene expression levels.
Nonetheless, in ~90% of the genes examined (28/31) there
was an agreement in expression fold change whether the
expression level was estimated using genomic normalization
or real time PCR (Fig. 4). However, this agreement dropped to
29±68% when stationary or logarithmic RNA samples were
used as the normalizer, respectively (Table 1). Additionally,
several key genes known to be highly regulated in the
logarithmic and stationary phases [e.g. hspX (heat shock
protein family), fdhF (molybdopetrin-containing oxidoreduc-
tase), glcB (malate synthase) and ppdK (pyruvate phosphate
dikinase)], as reported previously for M.tuberculosis and
Mycobacterium bovis BCG cultures (26,27), were correctly
identi®ed by the genomic normalization procedure and not
detected or incorrectly identi®ed using the RNA normalization
procedures. However, a fewer number of genes [e.g. sigF,
fprA and fprB (ferredoxin reductase)] had expression levels
measured by microarray genomic normalization that are
different from those previously reported (27,28). None of
these genes was identi®ed correctly with RNA normalization
protocols. The disparity in the expression levels of these genes
using microarray analysis and northern blot analysis used in
the previous studies can be attributed to the differences in
culture conditions and the mycobacterial strains used for
conducting the analysis. Based on this set of analyses and the
¯exibility offered by genomic normalization protocols, we
concluded that gDNA is the most suitable alternative for
normalizing the gene expression levels and proceeded to
further analysis of the expression data generated with genomic
normalization.

Expression pro®les during different growth phases

For some applications (such as vaccine development) (29), the
magnitude of gene expression levels and the abundance of a
particular transcript relative to others in a given sample is the
most desired information as opposed to relative expression
levels in two different samples. Several investigators working
in the microarray ®eld (25,30) now recognize the need to
develop new protocols for microarray data handling to reliably

estimate gene expression independent of using fold change as
the deciding criterion for real expression change or transcrip-
tion co-determination. In our analysis of gDNA normalization,
we applied the Z-score statistics on the data generated by
genomic normalization to estimate `standard' gene expression

Figure 4. Comparison between microarray analysis and real time PCR for
gene expression pro®ling. Fold change of genes expressed during
M.tuberculosis growth from logarithmic to stationary phases based on the
normalized microarray analysis versus real time PCR for a randomly
selected set of genes (n = 31). Stars denote genes with disagreement
between microarray data and real time PCR.
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levels within any given sample given that the expression levels
were following a Gaussian distribution (Fig. 5). The Z-scores

system is usually applied to computing student performance in
different tests with different scoring scales (19); a task similar
to assigning expression levels for genes from cultures growing
to different growth phases. In our case, the use of Z-scores
conversion `centered' the expression levels estimated for each
sample around a central `0 value' to enable valid comparison
of expression levels (18,21) (Fig. 5C). To demonstrate the
usefulness of the Z scores in identifying differently expressed
genes, we used a hierarchical cluster analysis algorithm (17) to
cluster Z scores generated from different replicate hybridiza-
tions of the logarithmic phase or stationary phase samples. We
also `spiked' the stationary phase data with a data set where
RNA was extracted from 28-day-old cultures (early stationary
phase) instead of the regular 50-day-old cultures (late
stationary phase) used throughout this study. As expected,
all replicates were clustered according to the source of RNA
samples used for hybridization either from logarithmic or
stationary phase samples (Fig. 6), indicating a high level of
hybridization reproducibility. In some instances, for example
with bioB (biotin synthetase enzyme) and mmpS5 (myco-
bacterial membrane protein), the gene expression levels were
high (red color) in all four replicates of the logarithmic phase
as well as in three out of four replicates of stationary phase,
indicating a low level of expression (blue color) in only one
replicate (Fig. 6A). Interestingly, in another subset of the
cluster (Fig. 6B) a group of 40 genes from one replicate of the
early stationary phase hybridizations (28 days) was highly
expressed in contrast to the rest of the late stationary phase
replicates (50 days), indicating the ability of the proposed
protocol to differentiate between samples collected at different
time points.

Overall, the hierarchical cluster analysis of Z scores
identi®ed a set of 183 genes with high expression activity in
most of the hybridization replicates whether the logarithmic or
stationary phase samples were investigated (see Supple-
mentary Material). Genes involved in transcription regulation
(Rv0302, sigF, sig K and ATP-dependent helicase), cell wall
synthensis (pbp4), ribosomal proteins (rpsC and rpmE) as well
as metabolic activity genes (aceA, Rv2850c and Rv3729) were
represented in this cluster, indicating their importance during
growth of mycobacterial cultures in either logarithmic or
stationary phase. The hierarchical clustering algorithm also
identi®ed genes (826 genes) with low levels of expression in
almost all replicates of the logarithmic and stationary phase
hybridizations. Currently, we are examining the contribution
of the identi®ed sets of genes to the transition from logarithmic
to stationary phases. An earlier report (31) screened 600
mutants of Mycobacterium smegmatis and identi®ed only six
genes that could be involved in transition to the stationary
phase. Clearly, the microarray expression pro®ling provides a
more complete and dynamic view of gene expression changes
during different growth phases.

DISCUSSION

DNA microarrays is a promising technology for estimating
gene expression levels on a genome-wide level. However, the
hybridization reproducibility and expression data normal-
ization are some of the problems that need further investiga-
tion to maximize the utility of such analysis. In this report, we
have tested a protocol based on normalizing all expression

Figure 5. Distribution of gene expression ratios. (A) A histogram represent-
ing the range of ratios of signals generated from the RNA normalization
protocol where signals from logarithmic phase cultures were normalized to
signals from stationary phase cultures (cDNA/cDNA). (B) A histogram
representing the hybridization ratios from a single experiment where signals
derived from labeled cDNA (from cultures growing to logarithmic phase)
were normalized to signals derived from gDNA hybridization (cDNA/
gDNA). Similar results were obtained from the rest of the logarithmic and
stationary phase samples. (C) A histogram representing the Z-score
transformation of the expression ratios presented in (B).
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levels to the hybridization signals generated from the gDNA
source for the RNA under investigation. Unlike an RNA
normalization procedure, the genomic normalization pro-
cedure provided reproducible hybridization signals for 98% of
the predicted mycobacterial ORFs. Evaluation of expression
levels by real time, quantitative PCR revealed a higher
percentage of agreement (90%) with the genomic normal-
ization protocol for microarray analysis compared to RNA
normalization (29±68%). The tested genomic normalization
protocols recognized signi®cant change in 5.2% of the

expressed genes when mycobacterial cultures were grown to
logarithmic or stationary phase. Comparison of four protocols
for labeling gDNA for normalization demonstrated that a nick
translation protocol is superior to the ampli®cation-based
protocols.

Genomic normalization procedures may provide a simple
alternative for gene expression pro®ling. Tao et al. (16) and
others (4,32) reported on several problems associated with
microarray analysis (e.g. DNA spotting failures, biased
incorporation of ¯uorophores during sample labeling, unequal
distribution of the hybridizing analytes to the whole slide and
different exposure times for each hybridization) that could be
easily tracked and avoided by the genomic normalization
protocol. For example, absence of the hybridization signals
from the genomic DNA sample could be attributed to a failure
in DNA deposition onto glass slides while absence of a
hybridization signal from an RNA sample could be attributed
to a failure in DNA deposition or inadequate representation of
transcripts in the examined RNA samples. Although genomic
normalization required two slide hybridizations to investigate
a pair of RNA samples, using a designated ¯uorophore
for normalization across different experimental conditions
eliminates the need for `color-reversal' experiments, which as
we and others (22) have shown are quite variable. Moreover,
time-course studies of microorganisms growing under differ-
ent conditions can be easily compared using the hybridization
signals generated from the gDNA (a relatively stable form of
genetic information) as a common denominator. However,
because of the complexity of the mammalian genomes
(presence of exons and large numbers of repetitive sequences),
the use of genomic normalization in such systems remains to
be evaluated.

Another potential advantage of genomic normalization is
that it may facilitate comparison of expression data between
different groups. In our hands, the genomic normalization
protocol allowed comparison of different samples across
multiple conditions with high reproducibility and statistical
con®dence. Currently, we are applying genomic normalization
to investigate the molecular pathogenesis of tuberculosis
in vivo (unpublished data) as well as Borrelia burgdorferi
(33). Such a system could be adapted to investigate any
microbial genome.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Methods Online.
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Figure 6. Hierarchical cluster analysis of four repeats of hybridizations
(from different RNA extractions) with either logarithmic or stationary phase
RNA-based analytes. The bottom color bar represents different Z-score
values corresponding to each gene present in each panel. Gene names are
shown to the right of the colored image while the corresponding source of
the analyte is shown at the top. Log and Stat denote the source of the
cDNA samples extracted from logarithmic or stationary phases cultures,
respectively. R1±R4 denote the replicate number. (A) A subset of the whole
cluster of 1337 genes (with Z scores >60.5) displaying differential expres-
sion levels between the logarithmic and stationary phases is shown.
(B) Another subset of genes displaying up-regulation in 28- but not 50-day
cultures is represented by red bars in the Stat R4 replicate.
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