
 Open access  Posted Content  DOI:10.1101/667121

Genomic Environments and Their Influence on Transposable Element Communities
— Source link 

Brent Saylor, Stefan C. Kremer, T. Ryan Gregory, Karl Cottenie

Institutions: University of Guelph

Published on: 11 Jun 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Genome

Related papers:

 Gigantic Genomes Can Provide Empirical Tests of TE Dynamics Models -- An Example from Amphibians

 The Genomic Ecosystem of Transposable Elements in Maize

 CHAPTER 3 – Transposable Elements

 Transposable elements: all mobile, all different, some stress responsive, some adaptive?

 Network-based visualisation reveals new insights into transposable element diversity.

Share this paper:    

View more about this paper here: https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-
5doyy3x1xr

https://typeset.io/
https://www.doi.org/10.1101/667121
https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-5doyy3x1xr
https://typeset.io/authors/brent-saylor-1dl4encmt3
https://typeset.io/authors/stefan-c-kremer-5e8bswuup5
https://typeset.io/authors/t-ryan-gregory-2m9vabui3v
https://typeset.io/authors/karl-cottenie-2czgibwxus
https://typeset.io/institutions/university-of-guelph-29v7yitb
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/genome-1ezdrtwk
https://typeset.io/papers/gigantic-genomes-can-provide-empirical-tests-of-te-dynamics-1qr34yy7es
https://typeset.io/papers/the-genomic-ecosystem-of-transposable-elements-in-maize-12n2c4t90y
https://typeset.io/papers/chapter-3-transposable-elements-brcofejgsa
https://typeset.io/papers/transposable-elements-all-mobile-all-different-some-stress-czs9i6iy4a
https://typeset.io/papers/network-based-visualisation-reveals-new-insights-into-12i04lji6p
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-5doyy3x1xr
https://twitter.com/intent/tweet?text=Genomic%20Environments%20and%20Their%20Influence%20on%20Transposable%20Element%20Communities&url=https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-5doyy3x1xr
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-5doyy3x1xr
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-5doyy3x1xr
https://typeset.io/papers/genomic-environments-and-their-influence-on-transposable-5doyy3x1xr


 

 

1 

 

Genomic Environments and Their Influence on Transposable 

Element Communities 

 

by 

 

Brent Saylor1, Stefan C. Kremer2, T. Ryan Gregory1, and Karl Cottenie1,* 

 

1 Department of Integrative Biology, University of Guelph, 50 Stone Rd. E., Guelph, Ontario 

N1G 2W1 Canada 

2 School of Computer Science, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 

2W1 Canada 

 

 

* Correspondence: 

E-mail: cottenie@uoguelph.ca 

Phone: 1-519-824-4120, x52554 

Fax: 1-519-767-1656 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/667121doi: bioRxiv preprint 

mailto:cottenie@uoguelph.ca
https://doi.org/10.1101/667121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 

 

Abstract 

Background 

Despite decades of research the factors that cause differences in transposable element (TE) 

distribution and abundance within and between genomes are still unclear. Transposon Ecology is 

a new field of TE research that promises to aid our understanding of this often-large part of the 

genome by treating TEs as species within their genomic environment, allowing the use of 

methods from ecology on genomic TE data. Community ecology methods are particularly well 

suited for application to TEs as they commonly ask questions about how diversity and abundance 

of a community of species is determined by the local environment of that community.  

Results 

Using a redundancy analysis, we found that ~ 50% of the TEs within a diverse set of genomes 

are distributed in a predictable pattern along the chromosome, and the specific TE superfamilies 

that show these patterns are relate to the phylogeny of the host taxa. In a more focused analysis, 

we found that ~60% of the variation in the TE community within the human genome is explained 

by its location along the chromosome, and of that variation two thirds (~40% total) was 

explained by the 3D location of that TE community within the genome (i.e. what other strands of 

DNA physically close in the nucleus). Of the variation explained by 3D location half (20% total) 

was explained by the type of regulatory environment (sub compartment) that TE community was 

located in. Using an analysis to find indicator species, we found that some TEs could be used as 

predictors of the environment (sub compartment type) in which they were found; however, this 

relationship did not hold across different chromosomes.  

Conclusions 

These analyses demonstrated that TEs are non-randomly distributed across many diverse 

genomes and were able to identify the specific TE superfamilies that were non-randomly 

distributed in each genome. Furthermore, going beyond the one-dimensional representation of 
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the genome as a linear sequence was important to understand TE patterns within the genome. 

Additionally, we extended the utility of traditional community ecology methods in analyzing 

patterns of TE diversity.  

Keywords: Transposon Ecology, Genome Ecology, Transposable Element, Genomic Ecosystem, 

Community Ecology, Spatial Patterns, Multivariate Analysis 
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Background 

Transposable Elements in the Genome 

Transposable elements (TEs) are mobile genetic elements that comprise a large portion of 

most eukaryotic genomes. The human genome, for example, contains more than 3 million copies 

of various types of TEs, making up between half and two thirds of the total quantity of DNA [1].  

The diversity and abundance of TEs in the genome is influenced by coevolution with the host, 

and the interaction between properties of the genome and properties of the TEs. For example, 

some TEs persist because they have been co-opted for important regulatory or structural 

functions [2–4], whereas others are known as disease-causing mutagens [5–7] that remain 

abundant as a result of their ability to make copies of themselves, despite their detrimental 

effects on the host genome [8,9]. In this regard, the relationship between TEs and their host 

genomes may be considered along an ecological continuum from mutualism at one extreme, 

through commensalism, to strict parasitism at the other end of the spectrum [10]. 

Beneficial TE insertions can be preserved by natural selection acting at the host level 

[11,12], and others may accumulate via mutation pressure (e.g., if net insertions outweigh TE 

deletions) or genetic drift (especially in small populations) if they simply do not exert a 

significant negative impact on host fitness [13–15]. However, TEs that impose fitness costs on 

the host, either as deleterious mutagens or simply as extra genetic baggage, can persist in the 

long term only if they are able to evade inactivation by the host. This can be done by a 

combination of replicating more rapidly than they are silenced by host defenses [16–18] and/or 

spreading more quickly than they are removed from the population via host-level purifying 

selection [19,20].   

These process result in substantial variability in the diversity and abundance of TEs 

within and among genomes. Within individual genomes, TE diversity can be seen in the large 
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number of TEs and TE superfamilies (1355 and 37 respectively in humans [21]). The variation in 

TEs between genomes is even more evident, with the number of TE superfamilies ranging from 

1 in Dirofilaria immitis (dog heartworm) to 39 in Branchiostoma floridae (lancelet), Bombyx 

mori (silkworm moth), and Hydra magnipapillata (freshwater hydra) [22], and abundance of 

individual TEs varying widely, even among individuals of the same species [23,24].  

Types of Transposable Elements 

In addition to varying in abundance and distribution, TEs are mobile within the genome, 

and are grouped into two broad classes based on how the move/transpose. Class I TEs, or 

retrotransposons, move within the genome using a copy-and-paste mechanism.  Copy-and-paste 

transposition involves transcription of TE DNA into an RNA intermediate, with the element 

itself remaining in its original location and serving as a template. The RNA intermediate then 

exits the nucleus where it is reverse transcribed into DNA, which then re-enters the nucleus and 

inserts into a new location [25–28].  Most Class II elements transpose using a cut-and-paste 

mechanism without an RNA intermediate. Cut-and-paste transposition involves excising the TE 

itself from its location in the genome for reinsertion into a new location without leaving the 

nucleus. Increased copy number in cut-and-paste transposons is accomplished by the repair 

mechanisms of the host genome responding to the breaks left behind by the TEs excisions, which 

fills in the missing DNA from the complementary strand. Heletron and Maverick elements are 

Class II elements that use a form of cut-and-paste transposition with no RNA intermediate [29].  

Evolution, Ecology, and the TE Perspective 

These factors – TE effects on host fitness, suppression by the host genome, TE 

accumulation and dispersal within (and between, see for instance horizontal migration [30]) 

genomes, and the evolutionary relationships between the different TE families [31] – are all 

important in shaping TE abundances in different genomes. Some of these factors, such as the 

phylogenetic relationships between the TE families and the coevolution between TEs and host 

mechanisms for suppressing TE replication, are explicitly evolutionary from the perspective of 
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the TE. Other processes, such as the dispersal of TEs to other parts of the genome, are explicitly 

ecological from the perspective of the TE. According to Linquist et al. [32], an explanation is 

ecological if it focuses on changes in composition of the community of TEs and how TEs 

interact with the host genome and other elements in it, whereas evolutionary explanations relate 

to changes in the TE sequences themselves over generations, including co-evolution with the 

host genome. This distinction becomes important when the mechanisms responsible for shaping 

TE distribution or abundance can be either evolutionary or ecological. For instance, an 

ecological explanation for the accumulation of TEs in a specific area of the genome could be that 

that area is available and the nearby TEs are able to disperse there. However, if a specific group 

of TEs changed in a way that let them exploit that same area, that would be an evolutionary 

explanation for that same observation.  

The notion of “genome ecology” has been invoked numerous times in the TE literature, 

however, many of the purported examples actually relate to TE evolution, and conflating TE 

ecology and TE evolution can result in asking the wrong questions and using the wrong tools 

[32]. In a recent study, we applied an explicitly ecological approach to the analysis of patterns of 

TE distribution and abundance within the genome of the cow, Bos taurus [33]. Specifically, TE 

distribution was assessed using a well-established method derived from community ecology, 

akin to assessing community composition along an environmental gradient (e.g., how 

communities might vary along a mountain range; see e.g., Whittaker [34]).  Our genomic version 

of this analysis examined how communities of TE superfamilies varied along each chromosome.  

To implement this community ecology approach in the study of TE distribution, each 

chromosome in the cow genome was divided evenly into discrete windows. The abundance and 

diversity of the TE superfamilies in each window was then assessed. Combining the superfamily 

counts in each window resulted in a TE community for each window. Various properties of the 

genome could then be examined as potential correlates of variation in local TE community 

composition.  In Saylor et al.[33], we considered the location of the window along the 

chromosome and local gene density as predictors, and these were used to test if the TE 
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communities of each chromosomes changed in predictable ways from one window to the next. 

The results in Bos taurus found that 50% of the within-chromosome variation in TE community 

composition was explained by examining physical position along that chromosome [33]. Our 

analysis demonstrated the power of this ecological approach, but it was largely a proof-of-

concept and examined only one genome.  Moreover, we implemented the most straightforward 

way to measure the location of any genetic element: the location of their sequence along the 

chromosome.  

TEs in a 3D Environment 

The above approach is the most intuitive way to represent loci on a chromosome. Most 

chromosome maps (physical, genetic, and karyotype) are linear in nature; however, this is an 

oversimplification of the actual distance between two loci on a linear chromosome. These 

idealized maps are representative of the phases of the cell cycle associated with replication, 

which make up a relatively short part of the cell’s life cycle [35]. During interphase, which 

makes up the majority of the cell’s lifecycle, chromosomes are found uncondensed within the 

nucleus, where they are arranged into chromosome territories (CT) [36–39]. Each CT contains 

one chromosome, with interaction between chromosomes occurring at the borders between 

territories. CTs can be further divided into genomic compartments and subcompartments [40]. 

Genomic compartments are made up of alternating segments of heterochromatin (tightly-bound, 

less accessible DNA) and euchromatin (loosely bound, more accessible DNA) [39].  Genomic 

subcompartments are areas within a genomic compartment that physically interact more often 

with each other than one would expect by chance. Although the specific reasons these 

subcompartments form is not clear, each of the six subcompatments identified by Rao et al. 

(2014) has a distinct histone modification pattern and interaction profile, indicating that they are 

regulated in similar ways. 

This physical 3D structure of a chromosome within a cell has important implications for 

how genes are expressed, how they interact with regulatory elements, and how accessible the 

DNA is to proteins [41–43]. Like genes, TEs also need to be accessed by regulatory elements, 
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transposases, and polymerases to function.  It is thus likely that it will also influence the TE 

distribution along the chromosome. This, however, has never been studied.  If physical structure 

does have an influence on TE community dynamics, we would expect sub-compartments that are 

physically close to each other will be more similar than predicted based on chromosome location 

alone. This is consistent with findings by Sanyal et al. [44], who found only 7% of looping 

interactions are with the closest gene, and a strong correlation between long range promoter- 

enhancer interaction and gene expression. If genomic subcompartments are acting as different 

genomic environments, we would also expect heterochromatic regions (subcompartments B1-

B4) and euchromatic regions (subcompartments A1-A2) to have different TE community 

compositions. If these chromosome structural properties are important determinants of TE 

location, we would expect strong relationships between these properties and TE locations along 

the chromosome, similarly to the analysis of the B.taurus genome [33].  

 While this relationship between functional chromosome structure and TE chromosomal 

distribution is the primary focus of this study, we will also study the generality of these TE 

spatial patterns. Chromosome subcompartment data were only available for the human genome, 

as it is the only chromosome interaction analysis with a sufficiently high resolution to detect 

subcompartments [40]. To confirm our results in other genomes, we will also explore the 

generality of spatial findings across a suite of species with genomes with high sequencing depth, 

scaffolds assembled into full chromosomes, and well-annotated TEs. There are 11 species that fit 

these criteria available from Genbank.  

Chromosome structure within genomes appears to be a universal genome property, from 

chromosome territories at the coarsest level of organization [45], to chromosome looping which 

has been found in a wide variety of prokaryotes and eukaryotes [46]. If the TE spatial 

distribution is (partially) determined by these universal chromosome structural properties, then 

we predict that the spatial patterns in TE distributions would be detected across a wide variety of 

genomes.  
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 To replicate the spatial analysis across multiple species, one methodological issue must 

be solved first. In the primary analysis of Saylor et al. [33], the window sizes were determined 

independently for each chromosome so that each window contained an average of 100 TEs. This 

ensured that a TE community would be examined within each window, no matter the size of the 

chromosome. However, it had the less-desirable effect of normalizing TE density as a 

chromosome property, possibly obscuring TE density itself as an explanatory factor of the 

importance of spatial location. Using a systematic approach with evenly distributed fixed 

window sizes should make it possible to identify the effect of window size on this analysis. The 

Saylor et al. [33] study used a fixed window size across the entire genome.  The fixed window 

method produced very similar results to the dynamic window approach when the fixed window 

size was similar to the average size of the dynamic windows, with the added benefit that 

windows on any chromosome, in any genome, were directly comparable. However, since the 

window size affects the number of communities on each chromosome, the average size of each 

individual community of TEs, and in turn the computational resources required to conduct the 

analysis, were very different. How to choose an appropriate window size for the analysis of a 

given genome was not fully explored.  Additionally, it remains to be determined whether similar 

window sizes can be used across widely different genomes in such a way that the results can be 

compared. 

 The present study investigates the importance of a chromosome’s 3D spatial 

structure (the “genomic environment”) on the distribution of the TEs on each of the 

chromosomes in the human genome and assesses the usefulness of using TEs as indicators of 

specific genomic environments. Additionally, we investigate 11 genomes from diverse 

eukaryotic organisms to investigate if variation in the TE community can be explained by where 

it is in the genome is a general property of TE communities. To accomplish this, we also assess 

the impact of window size on the detecting the spatial structure of the TE community within each 

of our 11 study genomes.     
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Methods 

Study Species and Genome Data 

Of the available whole genome sequences, only those that were assembled into 

chromosomes were considered. Eleven eukaryote genome species – including representative 

vertebrates, invertebrates, plants, and fungi – were included in the present study, on the basis of 

genome size, chromosome number, and phylogenetic diversity. These are summarized in Table 

0.1. Where available, the reference assembly was used. If not, the representative assembly was 

used where possible. If neither one of those was available, the most recent assembly was used. 

The output of RepeatMasker searches of each genome were downloaded from the Genbank FTP 

site. These files contain the names and locations of any region in each genome that matched TEs 

in the RepBase TE database.  

Table 0.1 Summary of the 11 species included in the present analysis, including information on genome size, 

chromosome number, and source sequence accession.

 Species Common name Genome size(bp) Chromosome 

number (n) 

Assembly 

accession 

Homo sapiens  Human 3088269832 23 GCF_00000140

5.28 

Bos taurus Cow 2670123310 30 GCF_00000305

5.6 

Mus musculus Mouse 2730855475 21 GCF_00000163

5.23 

Drosophila 

melanogaster 

Vinegar fly 143706478 7 GCF_00000121

5.4 

Takifugu rubripes Puffer fish 391484725 22 GCF_00018061

5.1 

Danio rerio Zebra fish 1371702787 25 GCF_00000203

5.5 

Anopheles gambiae Mosquito 265011681 5 GCF_00000557

5.2 

Caenorhabditis 

elegans 

Roundworm 100272607 6 GCF_00000298

5.6 

Arabidopsis 

thaliana 

Mustard weed 11914634 6 GCF_00000173

5.3 
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Oryza sativa Rice 382150945 12 GCF_00000542

5.2 

Zea mays Maize 2059701728 20 GCF_00000500

5.1 

 

Transposable Element Categorization 

The bins used to categorize the TEs within each genome are based on the output from the 

Genbank run of RepeatMasker on each genome. Our analysis used the superfamily level 

classification of TEs as it is the most well-defined classification below the more general TE 

Class. It is also the most commonly reported, which increases the degree to which data can be 

compared across these different genomes. Modifications to the RepBase classification were 

carried out to reflect updates to TE superfamilies subsequent to the record submission to Repbase 

[47–49]. Several groups of LINEs, SINEs, LTR retrotransposons, and DNA transposons could 

still not be identified to the superfamily level in their original publications. These will be referred 

to as superfamilies for simplicity, however, they reflect less well-defined groupings.  

Quantifying Within-Chromosome Spatial Community Structure 

To detect the relative impact of within-chromosome community structure for all of the 

spatial analyses, we used redundancy analysis (RDA) as implemented by the vegan package in R 

[50]. This performs a multivariate multiple regression with the counts for the number of TEs in 

each window as the dependent variable, and the properties of the genomic/chromosomal 

environment as the independent variable. This results in an R2 value for each chromosome which 

represents how well the TE community in each window can be predicted based on the 

environmental variable used. The spatial environmental was modelled with the principal 

components of neighbouring matrices (PCNM) [51,52] procedure. The input for the PCNM for 

the analyses that use linear spatial structure was a dissimilarity matrix representing the distances 

between each window, and the input for the 3D analysis was a dissimilarity matrix based on the 
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interaction frequencies from the HiC data of each chromosome. For more details, see Saylor et 

al. [33]. 

Window Size Analysis 

This analysis used RDAs of TE abundances across windows as a function of spatial 

location of the window to explain TE communities within each chromosome as above and in 

Saylor et al. [33]. This was done for each chromosome in each of the 11 genomes at each of 20 

different window sizes ranging between 10x the size of the largest Bos taurus TE (14,753bp) at 

minimum to the size of the smallest Bos taurus chromosome at a maximum (4,404,134bp). This 

resulted in windows ranging from 14,753bp to 4,404,134bp by increments of 219,469bp.  

Genomic and Chromosomal Properties 

In in addition to assessing the impact of window size on the detection of spatial patterns 

in TE community composition along the chromosome, we also assessed the impact of changing 

the window size on chromosomes with different environmental properties. we selected one 

“large” (790,718bp) and one “small” (144,808bp) window size because they represented 

extremes of window sizes while avoiding sizes small enough to cause statistical issues (see 

Discussion). The genomic properties investigated with these two window sizes were: 1) The total 

length of the available genome sequence; 2) The C-value, an independent genome size estimate 

of physical size for that species taken from the Animal Genome Size Database [53] or Plant 

DNA C-values Database [54]; 3) the difference between the genome size estimate and the 

available sequence length, which serves as a measure of how complete the sequence is; and 4) 

the number of chromosomes. The chromosomal properties, downloaded from the Genbank 

entries for each genome (Supplementary table 1), were: 1) Genome, which consisted of which 

genome the chromosome was from and was used in the phylogenetic independent contrast to 

account for non-independence of the data; 2) Chromosome length, which consisted of the length 

of the sequence for that chromosome and was used to measure the amount of space for the TEs 

to insert; 3) GC%, the percentage of the sequence made of guanine-cytosine basepairs, which is 
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highly variable, easily calculated from the sequence, and has been correlated with the presence of 

some TE families and other genomic features (see Eyre-walker & Hurst, 2001 for review); 4) 

Number of genes, which directly measures the number of genes on the chromosome; and 5) 

Number of proteins, which measures the number of those genes with known or putative protein 

products. Each of the genomic properties was compared to average R2
adj for all of the 

chromosomes in that genome and each of the chromosomal parameters were compared to the 

R2
adj for each chromosome across genomes.   

The phylogenetic distances between the 11 host species were downloaded from the 

sequenced tree of life webpage [56].  The resulting phylogeny was used to run a phylogenetically 

independent contrast (PIC) analysis on the R2
adj from the RDA for each chromosome, and on the 

genomic and chromosomal properties. In the chromosome property analysis, polytomies were 

added to the tips with each chromosome in each genome being equally related to each other. The 

contrasts of the average R2
adj values were then compared to the contrasts of the genomic 

properties as above. 

TEs in a 3D Environment 

10kb resolution interaction frequency data with MAPQ scores above 30 generated by Rao 

et al. (2014) were downloaded from the Gene Expression Omnibus (GEO) database (GEO 

accession GSE63525). These frequency data were KR normalized to adjust for methodological 

artifacts according to the instructions downloaded with the data. The genomic compartment 

locations were calculated by taking the first principal component of the normalized interaction 

matrix [57], using the cmdscale function in the stats package of R.  

The genomic subcompartment data were also downloaded from the Rao et al. dataset 

hosted in the GEO database. The subcompartment data consisted of start and end positions for 

each subcompartment along the sequence of each human chromosome, and which of the 7 

subcompartments types (A1, … NA) that section is classified as. We then associated that 

structural information to our TE distribution data. For each window in our chromosome spatial 
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analysis, we calculated the proportion of the window made up of each subcompartment. This 

resulted in 7 variables consisting of the proportion for each window made up of that 

subcompartments.   

Finally, we repeated the spatial RDA for the human chromosomes (see Quantifying 

within-chromosome spatial community structure section above), but this time in addition to the 

spatial patterns obtained with PCNMs, we used spatial patterns generated by PCNMs of the 

frequency data, the 7 additional explanatory variables from the subcompartments, the first 

principal component of the interaction frequency matrix, and the number of genes in each 

window.  

Indicator Species Analysis  

The usefulness of each TE, and each pair of TEs as an indicator of genomic 

subcompartment in the human genome was determined using the multipatt function found in the 

indicspecies package for R [58–60]. This analysis computes two types of an indicator entity: 

Indval, which evaluates the strength of using each TE as an indicator of a specific environment; 

and Phi, which is a measure of correlation between the species presence/absence matrix, and the 

genomic subcompartment.  Each of these statistics was measured for each TE in each genome.  

IndVal scores range from 0 to 1, with 1 indicating a TE always occurs in a given 

environment, and never occurs in other environments, and 0 indicating a given TE never occurs 

in a given environment and is always found in other environments. Within each chromosome 

IndVal scores were generated for each TE for each subcompartment / pair of subcompartments. 

The significance of each score was assessed using a permutation test, and significant scores, 

where p < 0.05 were reported. 

Phi scores were also produced for each of the 22 human chromosomes. Phi scores also 

range from 0 to 1, with 1 being perfect correlation between two binary vectors and 0 being no 
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correlation between binary vectors. The significance of each score was assessed using a 

permutation test, and scores where p < 0.05 were reported.  

Results 

In this study we used tools from community ecology to look for spatial structure in the 

TE communities of 11 genomes. we found that ~ 60% of the variation in TE communities can be 

explained by spatial patterns. Furthermore, in the human genome 40% of the variation in the TE 

community was explained by the 3D structure of the genome, and half of that was explained by 

the chromosomal environment (genomic subcompartment).  

Window Size 

The results of this window size analysis are shown in Figure 1. Spatial patterns were 

significant predictors of TE community composition in 131 of the 149 chromosomes analyzed at 

all window sizes (p < 0.05). Of the 18 other chromosomes, the 16 Saccharomyces cerevisiae 

chromosomes were only significant at the smallest windows size, 14,753bp at the p < 0.05 level. 

The other two chromosomes that were not significant at all window sizes were the X and Y 

chromosomes in the D. melanogaster genome. Both of those chromosomes were significant at 

the p < 0.05 for window sizes below 100,917pb. The X chromosome was not significant at any 

larger window size, and the Y chromosome was also significant at the 144,808bp window size 

but not at any window sizes above this size.  

Among the TE communities of the chromosomes that had a significant spatial component 

an average of ~50% of the variation can be explained by spatial patterns alone, with the highest 

mean R2
adj of 60% found in Danio rerio and the lowest mean R2 of 37% found in Mus musculus 

(Figure 1).  
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Figure 1: R2
adj of 11 genomes at multiple window sizes. This figure shows the R2

adj of for each of the 11 analyzed 

genomes at each of 20 different window sizes. Each coloured line represents one chromosome and each pane is a 

different genome. The genomes lacking results for some of the larger window sizes do so because at those sizes the 

smaller chromosomes in that genome would have been made up of less than three windows.    

Genomic and Chromosomal Properties 

The relationship between the average amount of variation in TE communities explained 

for each genome (R2
adj) and whole genome properties is shown in Figure 2. None of the whole 

genome properties, Chromosome number, Cvalue, Sequenced length, or the difference between 

Cvalue and sequence length, showed a significant relationship with average R2
adj

 (all p values > 

0.05).  
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This remained true after accounting for differences based on phylogeny using 

phylogenetic independent contrast. After correcting phylogeny with PIC, R2
adj and GC% were 

positively correlated (p < 0.05), while the other chromosome properties showed no significant 

correlations with R2
adj.  
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Figure 2: Genome properties versus the R2
adj across 11 genomes. a) shows the correlation between R2adj and 4 

properties of the genome: Chromosome number, Cvalue, sequenced length, and the difference between Cvalue and 

sequence length. A) Show the raw results, while b) shows the results after PIC analysis. In both cases none of the 

correlations were significant.  

 

b)
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Figure 3: TE presence and abundance in 11 genomes. This figure shows the evolutionary distance between each of 

the genomes, alongside a table showing which TE superfamilies are present in each genome. The size of each square 

represents the log of the abundance of each TE family. Black squares represent superfamilies that have at least some 

of their between-community variation explained by spatial patterns and white squares show superfamilies where no 

spatial pattern was found. In a) the squares are scaled so that the largest square with each superfamily is the same 

size. This allows the for the comparisons of superfamilies that have different higher or lower average numbers 
across genomes. In b) the squares are normalized so that the largest square in each genome are the same size to 

allow for comparisons across genomes with vastly different numbers of TEs. 

a) 

b) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/667121doi: bioRxiv preprint 

https://doi.org/10.1101/667121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20 

 

Spatial Importance of 3D Spatial Structure 

The 3D spatial structure measured by the HiC interaction frequency explained on average 

43%±12% of the TE community distribution within each human chromosome. This was always a 

subset of the variation explained by our initial analysis in which distances were generated using 

the PCNM procedure (R2
adj 69%±7%).  

Of the variation explained by HiC data, nearly half of that variation (a total of 22%±12%) 

is explained by chromosome subcompartments. An additional 7%±4% is explained by the type 

of subcompartment, but not by HiC data. Gene location data was also analyzed, however it only 

explained a total 2%±3% of the variation in TE community (Figure 4). 
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Figure 4: Amount of Variation in TE community composition explained by each environmental factor in the human 

genome. This figure shows a breakdown of the R2
adj for the TE communities of each chromosome in the human 

genome by what environmental factor explains that variation. In this case R2
adj indicates the amount of variation in 

the TE community explained by each variable. The R2
adj for the TE communities of each chromosome are 

partitioned into those explained by 3 explanatory variables. 1) Number of Genes in each window. 2) Which 
subcompartments the window was made up of and 3) How close the windows were, as measured by HiC interaction 

frequency. Each boxplot in the bottom panel represents one of the sections in Venn diagram above the above. The 

Gene, HiC and SubC boxplots represent the whole circle in the Venn diagram, while the remaining boxplots 

represent the 7 subsections. 

Indicator Species Analysis  

Indicator value (IndVal) scores were produced for each TE within each of 22 human 

chromosomes. The mean Indval score across all chromes was .55, with the scores ranging from 

HiC 

SubC Gene 
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the highest DNA/hAT-Tip100 and LINE/RTE (IndVal= .95 and .89 as indicators for 

subcompartment B2 or NA on chromosome 22), to the lowest, satellite/centromere (IndVal = .35 

for subcompartment NA on chromosome 16) (Figure 5a and Table S1).  

Phi scores were also produced for each of the 22 human chromosomes. This resulted in 

93 significant potential indicator TEs among the 22 chromosomes. The mean Phi score across all 

chromes was .38, with the scores ranging from the highest DNA/hAT-blackjack (IndVal= .82 for 

subcompartment A2 on chromosome 21), to the lowest, rRNA (Phi = .23 for subcompartment B1 

on chromosome 14)(Figure 5 b and Table S2). 

Overall, the consistency of indicator scores between chromosomes was low, as shown in 

the lower panels of Figure 5 a and b. The majority of TEs were not significant indicators on more 

than 1-2 different chromosomes, and those that were indicators on multiple chromosomes were 

rarely indicators of the same environment type (Figure 5a and b, lower panel). The exceptions to 

this were found in the Phi scores of Alu and scores for satellite DNA. The Phi scores of Alu 

showed a significant correlation with an environment on 8 chromosomes, with 4 of those 

correlations associated with the A1 subcompartment and a fifth being with the A1+NA 

subcompartment pair.  The various categories of satellite DNA showed a more consistent pattern. 

When the Phi/IndVal score was significant, Satellite DNA was always an indicator of the NA 

subcompartment. For centromeric satellite DNA, this relationship was detected in 5 

chromosomes by the Phi score and 3 chromosomes by the IndVal score.   
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Figure 5: Results of indicator analysis produced by multipatt function from R package vegan. a) Shows the IndVal 

scores resulting from then analysis. b) Shows the Phi scores resulting from the analysis. For both a) and b) the top 

boxplot shows the distribution of IndVal/Phi scores, while the lower stacked bar plot shows how often TEs are 

indicators of a given environment. Blue colors are scores for single environments while reds are environment pairs. 

Conclusions 

The underlying spatial structure that present in these linear TE communities, like the 

underlying spatial structure of communities consisting of organisms, can only be explained by a 

complex mix of both evolutionary and ecological factors. In TE communities, these patterns are 

further complicated by selection pressures occurring at both the level of the host and the level of 

the TE, which can work to either reinforce or counteract each other. This complexity necessitates 

careful consideration of both evolutionary and ecological processes, and the scale at which they 

are acting, before making conclusions about TE communities. At the host level, ecology focuses 

on interaction between different species, which rarely if ever involves TEs. Evolutionary 

processes at the host level can involve TEs, but mainly as sources of mutation, as they cause 

changes in the focal entity, the host, or by host level processes affecting TEs, such as drift fixing 

TE insertions in small populations. TE evolutionary processes are those in which the TEs 

themselves are changing. This is the focus of most TE research. This analysis focused on the 

ecology at the level of the TE, by examining the relationships between various types of TEs and 

their environment. Although TE ecology is often discussed, the boundaries between these levels 

and processes are often not considered before designing experiments or making conclusions, 

violating many of the assumptions for those processes [32,61].  

The analysis presented by Saylor et al. [33] focused on explicitly ecological methods 

adapted from community ecology. That study demonstrated the utility of such an approach in 

principle and in practice. In this paper, we continued that analysis by extending this proof-of-

concept in four major ways: 1) By examining the impact of window size selection in the 

implementation of the method; 2) by applying the approach to 11 genomes of varying sizes and 

compositions; 3) by considering additional genomic and chromosomal factors that may influence 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/667121doi: bioRxiv preprint 

https://doi.org/10.1101/667121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

26 

 

TE abundance and distribution; and 4) by examining the role of how physically close areas of the 

genome are in predicting TE community. 

Consistency of Results Across Genomes and Window Sizes 

Importantly, the results obtained using various window sizes and multiple genomes were 

remarkably consistent, suggesting that this approach will be broadly applicable in analyzing TE 

abundances and distributions across a wide range of taxa. In particular, the present analyses 

demonstrated that a large amount of the spatial variation in the TE community of each genome 

was explained by accounting for the spatial distribution location of those TEs. In other words, a 

large proportion of the TEs likely to be found in a section (window) of any chromosome can be 

predicted based on the relative location of that window along the chromosome.  

Care must be taken when adapting any set of tools for a new use. The analysis of TE 

communities using methods from community ecology appears promising, as the spatial location 

of TEs was correlated to the composition of the TE community in all 193 chromosomes analyzed 

across all 11 genomes. Although the spatial distribution of TEs was significant on each 

chromosome, the amount of the TE community in each window that could be explained in this 

way was not, and the TE superfamilies that were spatially structured were not consistent across 

chromosomes. One would expect that decreasing the window size would increase the 

explanatory power of spatial patterns as it would allow finer-scale spatial patterns to be detected. 

However, reducing the window size too much results in a steep drop-off in explanatory power, 

which is most evident in the smaller genomes (Figure 1). This fact highlights one notable 

limitation of the method when applied to genomes vs. ecological communities. Ecological 

communities typically have less complete sampling, and the statistical methods used on this 

ecology data are designed with this in mind. In the context of analyzing whole genome 

sequences, there is a risk of creating statistical overpower as the degrees of freedom are 

extremely high, which can cause the model to falsely identify patterns as significant. 
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This was a known issue in the original ecological application of the PCNM method, and 

the solution was to use R2
adj instead of the raw R2 value (Equation 1).  This R2

adj value reduces 

the R2 based on the inflated statistical power; however, the hundreds of thousands of 

observations typical of a whole genome analysis are too extreme for even the R2
adj calculation, 

and R2
adj plummets as the difference between the number of windows and the number of 

potential spatial patterns generated from the PCNM procedure increases (Figure 6). This brings 

up an importation point raised by Linquist et al. [32], namely that the assumptions and limits of 

any model need to be carefully considered before being applied to a different type of data. In this 

case without considering the assumptions and function of the model, one might assume that all 

TE interactions happen at a very large scale, as R2
adj is lower in analyses with small window 

sizes. This may be true in some cases, fine scale patterns in TE distribution may also be obscured 

by lack of statistical power.  

Equation 1: 

𝑅(𝑌|𝑋)𝑎𝑑𝑗2 = 1− 𝑛 − 1𝑛 − 𝑝 − 1 (1 − 𝑅(𝑌|𝑋)2  

Where n is # of observations (windows) and p is # parameters (Potential PCNMs graphs) 
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Figure 6: Adjusted degrees of freedom verses window size in RDAs of the Bos taurus genome 

Despite this limitation, the analysis of 11 genomes differing in size and chromosome 

number revealed some interesting patterns. Notably, similar TE families were implicated in 

accounting for spatial variation of the TE community in each individual genome, regardless of 

the window size used. Moreover, the only TE families were significant at larger window sizes 

and became non-significant at smaller windows sizes appeared to be eliminated due to the larger 

adjustment to the R2
adj value. Thus, results of the spatial analysis are relatively robust to window 

size even across very different genome sizes or numbers of chromosomes. By the time window 

size becomes sufficiently small to engender computational limitations, the majority of the TE 

families identified as spatially relevant continue to be identified as such on each chromosome. 

By contrast, those TEs that are not considered significant in terms of spatial structure at certain 

window sizes are typically the ones that had the lowest explanatory power initially. This 
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robustness notwithstanding, it would still be advisable to implement the analysis multiple times 

with different window sizes when dealing with previously unstudied genomes as a matter of best 

practice. 

Patterns of Transposable Element Distribution 

The results of the present analyses indicated that spatial patterns explain ~50% of the 

variation between TE communities in each of 11 distantly related genomes, and that larger 

chromosomes exhibit more spatially structured TE communities. This consistency suggests that 

there are some common factors influencing the locations of TEs within a given genome. The 

cause(s) of the observed spatial patterns is still not completely clear, however our evidence 

suggests that the genomic environment itself may play some role. This is shown by TEs with 

similar abundances in different genomes being spatially structured in one genome, but not in 

another (Figure 3a). These differences in amount of spatial structure in different genomes may 

indicate that the same TEs in different genomes may be found in different patterns of differing 

strengths based on the different environment – in this case the genome. Although a genome’s 

properties were not related to the amount of spatial organization of that genome’s TE 

community, it was related to the composition of the TE community. This is shown in the 

difference between the number and identity of the TE superfamilies organized by a spatial 

pattern in different genomes. For example, organisms that are closely related phylogenetically 

have similar groups of TEs that are spatially structured. The TE superfamilies found in plants 

were almost all spatially structured, while in mammals only about half of the superfamilies were 

shown to have some degree of spatial structure (Figure 3).  

This large-scale difference among taxa could be explained in several different ways, 

including: 1) a shared history of TE insertions among similar closely related genomes, 2) 

interactions between TEs and their genomic environment, which are more similar in more 

closely related species; or 3) some properties of the TEs themselves, with the types of elements 

differing among taxa. It seems likely that options 1 and 2 are connected, as more closely related 

species are more likely to have more similar genomic environments than more distantly related 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/667121doi: bioRxiv preprint 

https://doi.org/10.1101/667121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

30 

 

species. For example, plants and animals have similar but distinct systems to suppress genome 

activity [62]. As a result of these differences, plants and animals have unique patterns in 

methylation. In plants, methylation is preferentially found in repetitive areas of the genomes 

[63], including TEs, the methylation occurs on cytosines irrespective of the sequence 

surrounding them [64]. In mammals, methylation is found primarily on CG dinucleotides, and 

rarely in any other context. This methylation is found throughout the genome and is estimated to 

be found on ~70-80% of mammalian CG sites [65]. These differences could affect how and 

when individual TEs are suppressed, potentially contributing to particular spatial distributions. 

TE distribution can also be caused by TE-specific properties, such as insertion site preference. 

These preferences range from TEs that are enriched in specific regions, to those with very 

specific target sites. TEs that display insertion preference for specific regions include MITEs in 

genic regions [24,66], Ty5 elements in heterochromatic regions of Saccharomyces 

[67,68],Ty3/gypsy elements in the centromeres of plants [69], and the non-LTR elements that 

maintain chromosome ends in Drosophila [3,70,71]. TEs with very specific target sites are often 

found in various RNA genes, such as Pokey and R2 elements 28s RNA genes, and Dada DNA 

element family, some of which target U6 and U1 snRNA, and various tRNA genes [72]. In that 

regard, spatial structure in TE distributions could reflect the spatial patterns of different insertion 

sites in different genomes. 

3D Analysis and Indicator Species Analysis 

 By incorporating frequency of interaction data from high res HiC data we were able to 

explain 2/3 of the variation in TE community explained by our more complete PCNM model. 

The variation explained by the HiC data is a subset of the PCNM which generates artificial 

community abundances in such a way that any spatial pattern between the windows along a 

chromosome is accounted for. The HiC analysis is a specific subset of these based on the 

frequencies at which the windows along the chromosome interact. The HiC dataset explaining 

2/3 of the variation means that a large part of the variation in the TE community is explained by 

the physical closeness of the sections of the chromosome when they are uncondensed in the 
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nucleus. Additionally, half of the community data explained by the HiC data is also explained by 

genomic subcompartments. Areas of the chromosome that have been classified as the same 

compartments have been shown to have consistent epigenetic marks, which play a role in how 

accessible these areas are to specific TEs [68,73,74]. Based on the banding patterns of the HiC 

analysis, they also form clusters of chromosome loops, the borders of which are physically 

bound together with CTCF anchor protein (Figure 7).  
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Figure 7: Subcompartment diagram. Shows how subcompartments are made up of chromosome loops, the 

boundaries of which are bound together with CTCF anchor proteins. Reproduced from [40] Figure 1d. 
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 Knowing that genomic subcompartments were able to explain a large amount of the 

variation in TE communities, we examined the predictive power of this environmental variable 

on the TE community. Figure 5 shows far fewer significant IndVal scores than Phi scores, and 

that neither of these scores were as high as one would want to see for use as a traditional 

indicator used in something like biomonitoring. The differences in the number of significant 

scores is likely that the TEs tend not to be found exclusively in one environment. The IndVal 

score weights this specificity more heavily than the Phi score, which is a measure of correlation 

[60]. Thus, our results show TE superfamilies that are found in greater abundance in some 

subcompartments than others. For example, Figure 5b shows that Alu elements are found most 

often in A1 or A1+NA subcompartments on five different chromosomes. 

 Overall, with the exception of Alu, and the NA compartment, which seems to be 

associated with satellite DNA, the TE superfamilies identified by the IndVal and Phi analysis 

were not consistent across chromosomes (Figure 5). This inconsistency indicates that the 

ecological patterns structuring TE communities does not extend to the chromosome level. This 

indicates that transposon ecology may need to think of TE communities at a more local scale 

than that of the genome, which is currently the standard (e.g. see[75–78]). Instead the TE 

communities may be structured at a smaller scale, with the TEs of a whole chromosome, or a 

whole genome, being more analogous to a metacommunity, with dispersal occurring between 

more local communities, or from the metacommunity (the TE population of the 

chromosome/genome) at large [79].  

Final Remarks and Future Directions  

By taking an ecological approach to TEs and drawing inspiration from existing ecological 

methods, we found that the distribution of ~50% of the TEs, within a diverse set of genomes, is 

distributed along the chromosome in a detectable pattern. Across these genomes, the TE 

superfamilies in which these patterns are detectable are correlated with the phylogeny of the host 

taxa. In a more focused analysis of the impact of 3D spatial relationships on TE community, we 

found that a large part of TE community composition was structured by physical distance 
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between the communities, and the genomic subcompartment the community was found in. From 

those results, we suggest that, along with producing and examining more high resolution 

genomic HiC data, in order to more explicitly define the scale of TE communities, those 

interested in the ecology of the genome should continue to look at community ecology, and 

perhaps more specifically metacommunity theory, to better understand the distribution of TEs 

within and between genomes.  
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Supplementary Tables  

Table S1: Significant IndVal scores for each TE on each produced by the indicator species analysis 

Chromosome IndVal p value TE SubCompartment 
1 0.421272 0.047 DNA/TcMar NA 
1 0.538299 0.023 SINE? NA 
2 0.544331 0.001 LTR? B1 
3 0.412272 0.024 LTR/ERV A1 
3 0.444923 0.042 SINE? A1+B2 
3 0.660182 0.004 srpRNA A1 
4 0.59728 0.002 DNA/hAT? NA 
6 0.41502 0.005 Satellite NA 
7 0.396417 0.015 Satellite NA 
7 0.628799 0.001 Satellite/centr NA 
8 0.638628 0.005 SINE/tRNA A1+B2 

11 0.607026 0.002 Satellite/centr NA 
12 0.615626 0.026 Satellite/centr NA 
13 0.482719 0.041 scRNA A1 
14 0.433492 0.004 DNA/TcMar B1 
16 0.350686 0.026 Satellite/centr NA 
18 0.675529 0.007 srpRNA NA 
19 0.423761 0.004 Satellite/centr NA 
19 0.426401 0.006 Satellite/telo NA 
20 0.667816 0.026 SINE A2+B1 
20 0.515964 0.034 srpRNA B1 
21 0.951528 0.013 DNA/hAT-

Tip100 
B2+NA 

21 0.892915 0.037 LINE/RTE B2+NA 
22 0.495763 0.039 DNA/hAT? B1 

Table S2: Significant Phi scores for each TE on each produced by the indicator species analysis 

Chromosome Phi p value TE SubCompartment 
1 0.390022 0.042 DNA/TcMar NA 
1 0.468183 0.01 SINE NA 
1 0.438437 0.018 SINE? NA 
2 0.386531 0.006 DNA B2 
2 0.390029 0.005 DNA/hAT-Charlie A1+A2 
2 0.301511 0.05 DNA/TcMar-Pogo B1 
2 0.31944 0.043 LINE/CR1 A1 
2 0.318877 0.046 LINE/L1 B1 
2 0.490398 0.001 LTR? B1 
2 0.446805 0.003 Other A1+A2 
2 0.531889 0.001 SINE/Alu A1+A2 
3 0.289144 0.008 DNA/hAT-Charlie A2+B3 
3 0.240699 0.033 DNA/TcMar-Tigger A1+A2 
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3 0.374202 0.001 LINE/CR1 A1+B1 
3 0.256213 0.026 LTR/ERV A1 
3 0.391048 0.001 LTR/ERVL-MaLR A2+B3 
3 0.307281 0.003 Other A1+A2 
3 0.521076 0.001 SINE/Alu A1 
3 0.270362 0.009 SINE/Deu A1 
3 0.295915 0.007 SINE/MIR B1 
3 0.45817 0.001 srpRNA A1 
4 0.43726 0.001 DNA/hAT? NA 
4 0.487134 0.001 DNA/hAT-Charlie A2+B2 
4 0.328546 0.026 DNA/TcMar-Mariner A2 
4 0.415051 0.001 LINE/CR1 A2+B2 
4 0.314412 0.033 LINE/L1 A1+NA 
4 0.379171 0.004 LTR/ERVK B1 
4 0.44484 0.001 SINE/Alu A1 
5 0.411097 0.022 DNA/TcMar? A1 
5 0.421954 0.007 LTR A1 
5 0.475392 0.005 LTR/Gypsy? A1 
6 0.272772 0.036 DNA/hAT-Blackjack B1 
6 0.376929 0.006 Satellite NA 
6 0.281919 0.019 scRNA A1 
6 0.405552 0.002 SINE/Alu A1+A2 
6 0.327294 0.014 SINE/MIR A1+B1 
7 0.277798 0.026 DNA/hAT-Tip100? A2+B3 
7 0.274149 0.029 DNA/TcMar-Tigger A2+B1 
7 0.285805 0.015 LTR/ERV1 B2 
7 0.280151 0.02 LTR/Gypsy A2+B3 
7 0.334762 0.008 Satellite NA 
7 0.470311 0.001 Satellite/centr NA 
7 0.257107 0.046 SINE/tRNA A2 
7 0.251641 0.033 tRNA B2 
8 0.38914 0.02 DNA/hAT-Charlie A1 
8 0.360321 0.049 LINE/CR1 B1 
8 0.344584 0.05 LTR/ERVL? A1+B3 
8 0.441672 0.017 LTR/Gypsy? A1 
8 0.389586 0.028 SINE/Alu A1 
8 0.460133 0.008 SINE/tRNA A1 
9 0.364473 0.037 DNA/hAT? A1+B1 
9 0.560383 0.001 LINE/CR1 A1+B2 
9 0.567816 0.001 LINE/L2 A1 
9 0.393198 0.022 LTR/ERVL? A1+B2 
9 0.438822 0.007 LTR/Gypsy A2+B1 
9 0.38801 0.027 scRNA A1+NA 
9 0.414296 0.018 SINE B2 
9 0.506475 0.001 SINE/Alu A1+NA 
9 0.489273 0.001 SINE/MIR A1 
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9 0.432523 0.006 snRNA B1 
10 0.593752 0.05 DNA/TcMar-Tc2 A1 
10 0.758431 0.017 LINE/L1 A1 
11 0.275413 0.042 LTR? NA 
11 0.429624 0.002 LTR/ERVL-MaLR B3 
11 0.360884 0.009 Satellite/centr NA 
11 0.585723 0.001 SINE/Alu A1 
11 0.30542 0.018 srpRNA A1+B2 
13 0.360202 0.04 LTR/ERVK A1 
13 0.388481 0.032 scRNA A1 
14 0.256536 0.034 DNA? B1 
14 0.34768 0.004 DNA/TcMar B1 
14 0.338939 0.005 LINE/CR1 A2+B2 
14 0.26431 0.034 LINE/RTE A1+B2 
14 0.248342 0.047 LTR/ERVL A1+B1 
14 0.25564 0.027 LTR/ERVL? B1 
14 0.280897 0.024 LTR/ERVL-MaLR A1 
14 0.230319 0.05 rRNA B1 
14 0.265871 0.021 Unknown B1 
15 0.308691 0.018 DNA/PiggyBac A2 
15 0.26474 0.039 LTR/ERVK A2+NA 
15 0.376674 0.005 SINE/Alu A2+NA 
16 0.262042 0.027 DNA/hAT-Blackjack A2 
16 0.23774 0.022 Satellite NA 
18 0.535679 0.005 srpRNA NA 
19 0.375373 0.007 Satellite/centr NA 
19 0.346194 0.009 Satellite/telo NA 
20 0.534522 0.049 SINE? A2 
21 0.825999 0.048 DNA/hAT-Blackjack A2 
22 0.376163 0.019 DNA? A1+B1 
22 0.349662 0.027 DNA/hAT? B1 
22 0.383177 0.038 DNA/hAT-Blackjack B1 
22 0.378181 0.017 LTR/ERVK A1+NA 
22 0.388074 0.02 snRNA B2 
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