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ABSTRACT Replacement of the average numerator relationship matrix derived from the pedigree with the
realized genomic relationship matrix based on DNA markers might be an attractive strategy in forest tree
breeding for predictions of genetic merit. We used genotypes from 3461 single-nucleotide polymorphism
loci to estimate genomic relationships for a population of 165 loblolly pine (Pinus taeda L.) individuals.
Phenotypes of the 165 individuals were obtained from clonally replicated field trials and were used to
estimate breeding values for growth (stem volume). Two alternative methods, based on allele frequencies
or regression, were used to generate the genomic relationship matrices. The accuracies of genomic esti-
mated breeding values based on the genomic relationship matrices and breeding values estimated based
on the average numerator relationship matrix were compared. On average, the accuracy of predictions
based on genomic relationships ranged between 0.37 and 0.74 depending on the validation method. We
did not detect differences in the accuracy of predictions based on genomic relationship matrices estimated
by two different methods. Using genomic relationship matrices allowed modeling of Mendelian segregation
within full-sib families, an important advantage over a traditional genetic evaluation system based on
pedigree. We conclude that estimation of genomic relationships could be a powerful tool in forest tree
breeding because it accurately accounts both for genetic relationships among individuals and for nuisance
effects such as location and replicate effects, and makes more accurate selection possible within full-sib crosses.
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The expected additive genetic relationships (genetic covariances) de-
rived from a pedigree are based on probabilities that gene pairs are
identical by descent (IBD) (Lynch and Walsh 1998). For example, the
expected average genetic covariance between full-sibs is 0.5 because
two individuals with the same parents are expected to share 50% of
their alleles IBD. Pedigree-based additive genetic relationships have
been widely used to estimate genetic covariances and genetic merit of

individuals in animal- and plant-improvement programs (Henderson
1975). However, genetic relationships derived from pedigrees ignore
the random sampling of the two possible alleles from each parent at
each locus during meiosis; this variation is defined as the Mendelian
sampling term (Avendano et al. 2005). Traditional genetic evaluations
based on pedigree do not trace individual alleles (VanRaden 2008).

van Arendonk et al. (1994) suggested that large numbers of DNA
markers covering the genome could measure genetic similarity more
accurately than a pedigree-based relationship matrix because the real-
ized genetic covariances would be based on the actual proportion of the
genome that is IBD between any two individuals. DNA markers can
trace alleles that are IBD as well as alleles that are identical in state
(VanRaden 2008). Genomic covariances are based on the fraction of
total DNA that two individuals share (Stranden and Garrick 2009). In
the classic “infinitesimal model” of quantitative genetics, genetic merit is
considered to be the sum of thousands of allelic effects. In real genomes,
those alleles are physically located at individual locations on the genome
whose transmission can be traced through genetic markers. Dense
markers can be used to trace IBD at each locus, and these IBD
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probabilities can then be used to construct relationship matrices
(Forni et al. 2011).

With advancement in high-throughput genotyping technologies,
realized genomic relationships are being used in cattle-breeding
programs to increase selection efficiency (Goddard and Hayes 2007).
Selection based on realized genomic relationships can produce more
accurate predictions than the pedigree-based method because genomic
selection can exploit variation created by Mendelian segregation dur-
ing gamete formation. In simulation studies, the accuracy of predic-
tion of net merit for young bulls was 63% compared with 32% when
traditional pedigree-based relationships were used (VanRaden 2008).
In another simulation by Villanueva et al. (2005), accuracies of pre-
dictions based on a realized genomic relationship matrix were greater
than accuracies of predictions based on pedigree and phenotype. Such
methods do not require known location of markers in the genome or
estimation of relative effects of individual QTL on the trait.

Forest tree breeding programs are logistically difficult and expensive
to carry out. It takes many years (typically 15 years or more for
conifers) to complete a breeding cycle. For example, one loblolly pine
(Pinus taeda L.) breeding program in the southern United States
has completed its third cycle of breeding in 55 years (McKeand and
Bridgwater 1998). One of the challenges tree breeding has experienced
is tracking pedigrees created via controlled pollination, due to the cost
of making large numbers of single-pair matings to maximize the
likelihood of crossing high-value individuals to each other. Pollinating
a group of female trees with mixed pollen and then constructing full
pedigrees using DNA markers was suggested as an alternative way to
reduce the cost but also track full pedigrees (Lambeth et al. 2001). El-
Kassaby and Lstiburek (2009) extended the idea as a low-cost breeding
option. Paternal parents of offspring were delineated for a Larix occi-
dentalis population to reconstruct full pedigree information using SSR
markers (El-Kassaby et al. 2011). However, fingerprinting and parent-
age analysis using DNA markers is conceptually not different from
using a numerator relationship matrix generated from a known ped-
igree. The genetic relations between relatives are still categorical, not
continuous, as are the expected additive genetic covariances derived
from the reconstructed pedigree. Using DNA markers to construct
realized genomic relationships for genetic evaluations in conifers is
conceptually different. The major difference between realized genomic
relationships and relationships based on pedigree reconstruction is
that the realized genomic relationships predict the actual fraction of
total DNA that two individuals share and utilize this information in
predictions of genetic merit of individuals without phenotype.

In this study, using a small empirical data set, we tested the utility
of genetic evaluation using genomic relationship matrices in a small
population of loblolly pine and compared the reliability of estimates of
the genetic merit of cloned pine individuals with those obtained by
traditional pedigree-based genetic evaluation. The objectives of this
study were to test two specific hypotheses: (1) the use of genomic
relationships based on single-nucleotide polymorphism (SNP) markers
to predict genetic merit is as efficient as traditional pedigree-based and
phenotype genetic evaluation; and (2) genomic relationship matrices
calculated by two different methods, the allele frequency and regression
approaches suggested by Forni et al. (2011), do not differ in accuracies
of predictions.

MATERIALS AND METHODS

Phenotypic and genotypic data
Thirteen loblolly pine parents were used as females and males to
generate nine full-sib families (hereafter family). The majority of full-

sib families were obtained by single-pair mating design. Several full-sib
families were genetically related by a common male or female parent
(Zapata-Valenzuela et al. 2012). The number of progeny per family
ranged from 3 to 37, and they were cloned via somatic embryogenesis
(Bettinger et al. 2009). A total of 165 cloned full-sib progeny from
nine crosses were field tested on 16 sites planted between 2000 and
2002. An alpha-lattice incomplete block design with single tree plots
was used as the field layout. The test sites were located across varying
edaphic conditions and productivity classes in the Coastal Plains of
South Carolina, Georgia, and in the Gulf Coast of Mississippi in the
southern United States. A total of 6253 pine trees were measured
5 years after they were planted. Height and diameter at 1.4 m above
ground were assessed and used to calculate volume of trees according
to Goebel and Warner (1966).

For the genotypic information, SNP markers based on 7535
resequenced amplicons were developed for loblolly pine by the
Conifer Translational Genomics Network by integrating the results
of the Allele Discovery of Economic Pine Traits project (Eckert et al.
2010). For marker analysis, we collected needles from 165 pine clones
during the growing season in 2008. Samples were dried and shipped to
University of California Davis for DNA extraction. Genotypes were
obtained for a total of 5379 SNP markers using an Infinium SNP
array, through a service provided by Illumina. We carried out explor-
atory data analysis on SNP markers using the ALLELE procedure of
SAS GENETICS software (SAS Institute Inc. 2010). Of 5379 SNP
markers analyzed, 1700 SNP markers were monomorphic (homozy-
gous in all individuals), and 218 contained missing genotypes for
more than 15% of the clones. Thus, a total of 3461 SNP markers were
informative and used for calculations of realized genomic relation-
ships. Phenotypic and genotypic data are provided in Supporting In-
formation, File S1 and File S2.

Imputation of missing genotypes
Matrix-based analytical methods require datasets with no missing
values, but genotypes were missing for 1.2% of the total data points
in a 165 pine trees by 3461 genotypes data matrix. We tested the
effect of different imputation approaches by comparing the
accuracy of breeding value predictions based on datasets with
missing values imputed by different methods. Imputation methods
were (1) allele frequencies, (2) replacing missing genotype by the
major homozygote of the loci, and (3) using allele content as
suggested by Gengler et al. (2007). The allele frequency method is
a stochastic approach that imputes a categorical genotype (0, 1, or
2 copies of the minor allele), based on the frequency of all geno-
types observed at the same locus, across all families. Across all
missing values and loci, this approach should on average impute
values that do not change the genotype frequencies observed in the
nonmissing data. The method of Gengler et al. (2007) for imputa-
tion of missing genotypes is based on the idea that the covariance
between genotypes is proportional to the additive genetic relation-
ship between individuals. Genetic covariance (covariance of genetic
values) arises because two related individuals have alleles that are
IBD. The solutions of mixed model equations are predicted SNP
genotypes for individuals. The solutions were continuous numeric
values, centered on 1, because the gene content number could be 0,
1, or 2. Gene content for a biallelic locus cannot be less than 0 or
greater than 2, so we scaled the values, adjusted by mean and SE,
and truncated data to a range between 0 and 2 to keep gene content
predictions in a realistic range of values. For the comparison of im-
putation methods, the accuracy (r) of the genomic estimated breeding
value (GEBV) was calculated as:
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rGEBV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

SE2

ð1þ f Þ s2
a

s
(1)

where SE is the standard error reported with the predicted breeding
value of a clone. The term s2

a is the estimated genetic variance, f is
the inbreeding level, and 1+f is derived from the diagonal of numer-
ator relationship matrix. For simplicity, the inbreeding coefficient
was assumed to be zero for unrelated individuals.

Traditional genetic evaluation using pedigree
(best linear unbiased prediction based on
pedigree, or ABLUP)
Traditional genetic evaluation relies on the inverse of genetic relation-
ship matrix (A21) derived from pedigree and phenotype. The model in
matrix form is as follows

Y ¼ Xbþ Zuþ e (2)

where y is the vector of observations representing the trait of interest
(dependent variable), X and Z are the design or incidence matrices
for the vectors of parameters b and u, respectively, which are the
fixed covariates (e.g., location effect) and random effects (tree) to be
estimated, respectively. The term u is the vector of breeding values of
trees with Var (u) = As2

a, where A is the numerator relationship
matrix and s2

a is the additive genetic variance. The variance-
covariance matrix of random effects (trees) in the linear mixed model
is replaced by the A matrix to predict breeding values. The term e is
the residual component or vector of residuals with Var (e) = Is2

e =
R, where I is the identity matrix and s2

e is the error variance (Lynch
and Walsh 1998; Mrode 2005). The predicted breeding values for all
165 cloned pine trees, using all available phenotypic data in the
model, were denoted as estimated breeding value 1 (EBV1). The
estimated breeding values for the cloned pine trees used in cross-
validation, estimated without using the corresponding phenotypic
data, were denoted as EBV2, following the same model of Eq. 2.

Estimation of realized genomic relationships
We used the allele frequency and the regression methods to obtain
genomic relationship matrices, as described by Legarra et al. (2009)
and Forni et al. (2011). For all genotyped trees, in the allele frequency
method we first standardized the variance of u as Var (u) = ZZT s2

m =
(ZZT/ [2 Sipi (12 pi)]) s2

a = Gs2
a, where the expression [2 Sipi (12

pi)] is twice the sum of heterozygosity of the markers, pi is allele
frequency at locus i, ZZT represents the number of shared SNP alleles
among two individuals, ZT is the transpose of the Z matrix, s2

m is the
variance explained by markers, and s2

a is the additive genetic variance.
The division of ZZT by 2Sipi (1 2 pi) scales G to be analogous to the
A matrix, which enables computation of the genomic relationships
(VanRaden 2008). The genomic inbreeding coefficient for individual
j is simply Gjj 2 1, and genomic relationships between individuals
j and k are obtained by dividing elements Gjk by square roots of
diagonals Gjj and Gkk (VanRaden 2007, 2008).

The regression method does not require allele frequencies to
obtain G, the realized genomic relationship matrix. The G matrix was
produced by adjustment of mean homozygosity by regressingMMT as
a dependent variable on A as an independent variable to obtain G, as
MMT = go11T + g1A + e, where go is the intercept, g1 is the slope of
the regression model, and e includes differences between the true
value and the expected fraction of alleles shared in common. Thus,
the expected value of G would be the numerator relationship matrix
derived from pedigree (A) plus a constant matrix (E (G) = A +

constant). It is simpler to do an extension of single marker association
analysis to multiple marker regression to account for all genes
(markers) simultaneously (Stranden and Garrick 2009). The re-
gression system was written with summation notations, as in VanRaden
(2008):

n2
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k
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Ajk
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In general, this method did not give singularities because the number
of markers m was much larger than n, the number of individuals,
which was required to obtain G-1. The G matrix may be singular, for
example, if the number of markers m does not exceed the number of
n individuals genotyped (VanRaden 2008).

Genomic estimated breeding values (genomic
best linear unbiased prediction, or GBLUP)
Genomic estimated breeding values were obtained using the following
mixed model and substituting the A matrix by the two G matrices
estimated using the alternative methods.

y ¼ Xbþ Zaþ e (4)

where Z is the incidence matrix of markers, a is the vector of marker
effects, and X, b, and e are as explained in Eq. 2. The expected
variance of vector a is Var(a) = Is2

m, where s2
m is the variance

explained by markers, and I is the identity matrix. The important
difference from model 1 is that we let the sum Za across all marker
loci (m) to be equal to the vector of breeding values. In other words,
u = Za. The A matrix was replaced by the genomic relationship
matrix G derived from allele frequencies as suggested by VanRaden
(2008). The selection index equations were used to predict genetic
merit u as follows:

GEBVðûÞ ¼ G ½G þ Rl�-1 ðy   �   Xb̂Þ (5)

where l = s2
e /s2

a, the shrinkage factor in BLUP. The predicted
value of u is the sum Za over all alleles that the individual inherited.
We denoted the genomic estimated breeding values based on allele
frequency method as GEBVa.

Using the G matrix derived from markers by the regression
method, the estimated genetic merits of trees were obtained as:

GEBVðûÞ ¼ ½R-1þG-1l�-1 R-1ðy   �   Xb̂Þ (6)

We denoted the genomic estimated breeding values using this
method as GEBVb. This method was more efficient than the method
given in Eq. 5 because G could be inverted and R could be processed
by iteration.

Cross-validation methods used for predictions
of breeding values
We tested two different cross-validation scenarios, as follows: 165
cloned trees were divided into a training data set and a validation data
set. In the first scenario, approximately 90% of the cloned trees (148)
were sampled for the training set, either within each of the nine
families or at random from the whole population without consider-
ation of family origin. The remaining cloned trees were used for the
validation (17 clones). In the second scenario, approximately 50% of
cloned trees (84) were sampled either within family or randomly from
the whole population for training, and the remaining cloned trees
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were used for validation (81 clones). For each scenario, six in-
dependent samples were analyzed. All the analyses were conducted
with ASReml software (Gilmour et al. 2009). The SEs of breeding
value predictions for each type of relationship matrix were averaged
across the six independent validation samples for purposes of com-
paring the accuracy of predictions.

We examined the correlation between predicted breeding values of
165 clones (EBV1) from the ABLUP and GBLUP regression methods.
To avoid bias in the EBV1 for the cloned trees, the pedigree data were
omitted, and EBV1 were calculated based only on the phenotypes of
the 16 to 50 ramets (genetically identical copies) of each cloned tree.
We report the accuracy of a prediction as the correlation between
the predicted genetic values (GEBV) from the cross-validation and
the nonpedigree-based estimated breeding value (EBV1), which will
determine the potential gain using markers (Meuwissen and Goddard
2010). We produced scatter plots and product-moment correlation
coefficients between GEBVb and EBV1 values for all the validation
populations (50% and 10% of cloned trees sampled within family).
Also, to compare the predictive power of GBLUP and ABLUP on the
validation sets, the correlation and scatter plots between GEBV and
EBV2 values for the same replicates were produced.

RESULTS AND DISCUSSION
We used different methods to impute missing genotypes for cal-
culation of genomic relationships among trees to use in genomic
estimated breeding values. The results suggest that different methods
of imputing missing genotypes did not have a noticeable effect on the
accuracy of predictions in this study (Table 1). All four methods of
imputing missing genotypes produced similar (0.71) accuracy values.

We compared predictions (EBV1) based on all the phenotypic data
without the pedigree with GEBVs for all 165 cloned trees, using
marker data to model realized relationships (Figure 1). The correlation
between EBV1 and GEBV was almost perfect (0.997). This result
indicates that family relationships are not affecting the estimates of
breeding value, in contrast to the result reported for unbalanced data-
sets with little or no clonal replication of progeny genotypes (Garrick
et al. 2009). The EBV1 values were therefore used as the true breeding
values, the standard against which other estimated breeding values
from the cross-validation studies were compared.

Validation
Efficiency of markers in general is evaluated by a correlation between
true and estimated breeding values (Meuwissen et al. 2001, Daetwyler
et al. 2011). When 50% of individuals within family were sampled for
validation, the correlations between the true breeding values coming
from all the 165 clones (EBV1) and GEBV were 0.37 and 0.38 for
allele frequency or regression method, respectively (Table 2). How-
ever, when a larger number of individuals (sampling 90% of trees
within family) were used for training, we observed greater correlations
of GEBV with the EBV1; i.e., 0.5220.55. The last two rows in Table 2
represent the correlations between EBV2 and GEBV. The EBV2 are

predictions obtained for the validation set (no phenotypic data) from
a traditional BLUP approach using the numerator relationship matrix.
The correlation between GEBVa and estimated breeding values com-
ing from only the cloned trees included in the validation set (EBV2)
was 0.74 for 10% of sampled clones, and 0.69 for 50% of sampled
clones. Similar high correlations were obtained between regression-
based GBLUP (GEBVb) and EBV2 (Table 2). After comparing the
four cross-validation methods used in this study, we found that pre-
dicting on 10% of the clones either sampled within family or at
random was more accurate than predictions on 50% of the clones
sampled for validation. This result could be due to a larger training
model, where more trees were included to estimate the relationships
between individuals.

Breeding values based on realized genomic relationships obtained
from SNP markers were as accurate as predictions based on the
traditional pedigree-based genetic evaluation, based on comparison of
SE estimates. The average SE for all 165 cloned trees using traditional
genetic evaluation based on pedigree was 1.14, whereas the average SE
for breeding values estimated using genomic relationships was about
0.71. This finding suggests that the marker genotypes used in con-
struction of genomic relationship matrices, by either the allele-
frequency method or the regression method, effectively reconstruct
the family relationships in this structured population. The accuracy
of prediction is higher for cross-validation scenarios that use larger
training populations (90% of clones used for training vs. 50%), sug-
gesting that a much larger training population (perhaps 150022000
trees) would result in even more accurate predictions of breeding
value. Muir (2007) reported that the accuracy of GEBV for traits of
low heritability can exceed that of the traditional BLUP approach if
the training population is large enough.

Mendelian sampling effect
Scatter plots between GEBVa and EBV2 demonstrate the ability of
markers (GBLUP) to capture Mendelian segregation within
families (Figure 2). In the figure, we see full-sibs grouped for nine
crosses. The traditional pedigree-based method for prediction of
genetic merit of full-sibs with no phenotype (EBV2) produces the
same prediction for every offspring within a full-sib family, the
mid-parent breeding value (Falconer and Mackay 1996). In other
words, when prediction is not based on phenotypic data, all full-
sibs coming from a single cross have the same mid-parent breeding
value, because Mendelian segregation is not modeled by the A
matrix. However, when marker-derived genomic relationships
are used for predictions, Mendelian segregation within full-sib
families is modeled (Figure 2). Capturing the Mendelian sampling
effect will have a significant impact on the accuracy of forward
selection in tree breeding programs. Seedling genetic tests with
a single observation per progeny genotype have been more com-
mon in conifer breeding programs than clonally replicated trials,
and forward selection based on phenotypes of low heritability is
a significant challenge. The use of a realized genomic relationship

n Table 1 Accuracy of genomic estimated breeding values based on different imputation methods

Method of Imputation Accuracy of GEBV (by Eq. 1)

Stochastic, based on allele frequencies 0.70
Missing genotypes converted to zero 0.71
Continuous gene content, scaled 0.71
Continuous gene content, truncated 0.71

The different methods of imputing missing genotypes did not affect the prediction accuracies. GEBV, genomic estimated breeding value.
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matrix could prove to be a powerful combination for identification
of the individual with the best breeding value within each full-sib
family.

A vs. G matrices
When pedigree-based expected additive genetic covariances are used
as in traditional genetic evaluation, the model assumes constant and
categorical covariances between relatives. For example, full-sibs are
expected to share 50% of alleles that are IBD, and thus the additive
genetic covariance between full-sibs is assumed to always be 0.5
(Falconer and Mackay 1996). On the other hand, the realized genomic
relationships among the same full-sibs can vary around a mean of 0.5.
In this study the range of genetic covariance between full-sibs coming
from one single full-sib family was 0.4420.65. The realized relation-
ship matrix indicates the specific relationship between each pair of
individuals, estimated by marker tracking of the alleles they share that
are IBD. Genomic relationships estimated from marker data provide
more accurate estimates of genetic covariance between relatives, which
in turn leads to more accurate predictions. We presume that the more
accurate genetic covariances among relatives are essentially modeling
which allele at a QTL was transmitted from the parent to the off-
spring, even though QTL are not explicitly modeled.

Our results are in agreement with the suggestions of Habier et al.
(2007), in that we find molecular markers can capture additive genetic
relationships even when linkage disequilibrium (LD) is low, and can
generate GEBV with accuracy different from zero. Using simulations,
they demonstrated that with a significant level of LD in the popula-
tion, the accuracy would be expected to be greater than with low levels
of LD. Furthermore, they showed that the simulated accuracies over
generations declined as the LD decays with additional recombination.
LD has been reported to be low in pine populations (Brown et al.

2004), suggesting that any LD contributing to the accuracy of GBLUP
in our analysis is likely to have arisen due to sampling effects related to
the small number of founding parents of our experimental population
(Grattapaglia and Resende 2011). This finding suggests that the po-
tential advantage of GEBV needs to be estimated for each breeding
population based on the contribution from LD to the accuracy of the
predictions, and that phenotypic measurements and genotyping to
model the genetic control of phenotypic variation may be required
in every generation to maintain the predictive accuracy of genomic
breeding models. Use of GBLUP methods to select individuals from
the same generation as the training population, as modeled by our
cross-validation studies, is likely to be more accurate than using
GBLUP to predict the value of progeny of the training population.
If LD arises through the sampling effect of small founding population
size, recombination will decrease the LD from one generation to the
next.

G matrices from regression vs. allele frequency
We used two methods for calculating genomic relationships (allele
frequencies and regression). In general, they were comparable in
the accuracy of the predicted genomic breeding values. The main
advantage of the method based on allele frequencies is that the
observed minor allele frequencies were included to scale the G
matrix, with no consideration of inbreeding or selection. The
markers used in this study represent a very small fraction of the
genome, and probably explained a very small fraction of pheno-
typic variation. It would be possible to use the average allele fre-
quencies from the base population, as provided by a larger set of
families and parents included in previous mating designs. The
genomic relationships should be estimated using the allele fre-
quencies from the unselected base population. The regression

Figure 1 Scatter plot between predicted breeding values from ABLUP
and GBLUP (regression method) for all 165 cloned trees. Predictions
based on genomic relationships are highly correlated (r = 0.997) with
the predictions based on nonpedigree-based analysis. Phenotypic data
for all the genotyped trees (165) were included in both analyses (no
subsampling for training and validation).

n Table 2 Results of cross-validation

Correlation 10% Within-Family Sampling for Validation 50% Within-Family Sampling for Validation

rGEBVa-EBV1 0.55 0.37
rGEBVb-EBV1 0.52 0.38
rGEBVa-EBV2 0.74 0.69
rGEBVb-EBV2 0.71 0.70

The first two rows show correlation coefficients of genomic estimated breeding values (GEBV) with estimates based only on phenotype (no
pedigree, EBV1) for the whole population. The last two rows represent the correlations between GEBV and estimates from the validation set
(pedigree is used without phenotypes, EBV2).
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based method employs the marker effects as dependent variable,
and the mean homozygosity is adjusted by regressing the markers
on A (dependent variable). This method was efficient for control
of bias in the predictions, because it includes a matrix of residuals
of the differences between true and expected fraction of alleles
shared in common, as well as a measurement residual to account
for the fact that the genotyped markers represent only a subset of
the entire individual tree genome. When allele frequencies in the
base population are different from 0.5, rare alleles contribute more
to the genetic resemblance between individuals than common
alleles (Forni et al. 2011). Those authors compared different
methods to calculate G matrices and reported similar high corre-
lations (~0.98) between methods, and small differences in the
ranking of livestock individuals with different genomic matrices.
They suggested that modifications to the G matrix could be im-
portant for different species or different populations. For example,
the G matrix can be normalized to have average diagonal coeffi-
cients equal to 1 to assure compatibility with an A matrix, when
either the average inbreeding or the number of generations are
low, as is the case in most forest tree breeding populations.

Based on minor allele frequency, a subset of markers can be
explored to estimate the realized genomic relationship matrix. For
example, marker loci should be chosen so that all parents are
heterozygous for at least a few rare minor alleles. Selecting loci
with low minor allele frequency can create problems with sin-
gularities in the genotype matrix, if there are many homozygous
genotypes across the individuals. Forni et al. (2011) gave a possible
solution, using weighting of the genomic relationship matrix by
the A matrix to eliminate singular matrices, if the number of loci
is limited or two individuals have identical genotypes across all
markers.

If markers are assumed to contribute differently to the genetic
variance, an alternative approach is the use of non-linear methods for
prediction of marker effects (Meuwissen et al. 2001; Habier et al. 2007;
VanRaden 2008). Bayesian methods are a common alternative, due to
the fact that small estimated effects can be regressed toward zero;
larger estimated effects can be regressed less, to account for a non-
normal prior distribution. The different methods for generating G
matrices, compared with Bayesian methods to estimate marker effects,
resulted in a slightly greater accuracy of nonlinear models in some
simulations (VanRaden 2008). Other authors (e.g., Habier et al. 2007)
have reported that accuracies from Bayesian methods were compara-
ble with the accuracy of Ridge regression if many different loci con-
tribute equally to the simulated phenotypes, while Bayesian methods

give better performance if a few loci account for much of the pheno-
typic variation.

Application of GBLUP in forest tree breeding
Genomic BLUP has some advantages over genome-wide predictions
of breeding values using specialty software such as GS3, developed by
Legarra and Misztal (2008). The GBLUP procedure simply requires
replacing the numerator relationship matrix with the realized genomic
relationship matrix, so it is straightforward to model complex vari-
ance-covariance structures, such as genotype by environment inter-
actions in plant breeding. There are established procedures and
software, such as ASReml (Gilmour et al. 2009), to run such models.
Genomic BLUP is simply an analog of traditional genetic evaluation
based on pedigree and phenotype with possibly a few additional fac-
tors in mixed models, and is simpler than solving large numbers of
equations to model marker additive and dominance effects simulta-
neously (Zapata-Valenzuela et al. 2012).

Another advantage of using a genomic relationship matrix over
fitting thousands of markers simultaneously to estimate breeding
values is that GBLUP requires a much smaller number of markers to
construct realized genomic relationships. Grattapaglia and Resende
(2011) suggested that for forest trees a density of 10220 markers
per centimorgan would be necessary for genomic selection, depending
on the degree of LD in the training and selection populations. Given
the large genome size and relatively low population-wide LD of most
forest trees, particularly conifers such as loblolly pine, hundreds of
thousands of markers might be needed to produce accuracies similar
to those obtained from classical evaluation. High density genotyping
would require cost effective, repeatable genotyping platforms for rou-
tine application of genomic selection in forest trees. GBLUP is an
appealing approach for forest trees to overcome high-density genotyp-
ing costs, and is an alternative to pedigree construction as suggested
by El-Kassaby et al. (2011).

GBLUP is expected to play a major role in forest trees compared
with pedigree reconstruction or genomic selection because it allows
modeling the Mendelian segregation effect, it allows straightforward
modeling of experimental design factors, and it requires a fraction of
the number of markers required for genomic selection. The compu-
tation required is simple to implement. Predictions are less biased
than those based on average relationship matrices (Legarra and Misztal
2008). It is also a way to generalize to complex models such as random
regression or multi-trait analyses.

To our knowledge there are no studies in forest trees on using
genomic relationship matrices for predictions. The accuracy of

Figure 2 Scatter plots of GEBVa vs. EBV2 of individuals from different
full-sib families used for cross-validation. The vertical axis is the geno-
mic estimated breeding values based on allele frequency (GEBVa), and
the horizontal axis is the breeding values based on pedigree derived A
matrix (EBV2). As expected, without phenotype, the predicted breeding
values (EBV2) of full-sibs are the same (mid-parent values). On the other
hand we see segregation of full-sibs when GBLUP is used.
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genomic estimated breeding values based on genomic relationship
matrices would be lower in cases of strong genotype by environ-
ment interactions, but the same would be true of pedigree-based
BLUP also. Forest trees are typically progeny tested across diverse
environments. The linkage phase of markers and beneficial alleles
at trait loci could be different in environments with contrasting
climatic and edaphic conditions, and prediction models developed
in one environment might not have the same predictive power in
a different environment. Resende et al. (2012) suggested that a pre-
diction model based on a training population grown in one envi-
ronment had considerably lower accuracy in other environments,
for a cloned loblolly pine experimental population.

Two hypotheses were tested in this experiment: (1) using
genomic relationships derived from SNP marker genotypes could
be an efficient approach to increase the reliability of breeding
value predictions of forest trees, and (2) two different methods of
estimating realized genomic relationships from marker genotypes
yield equivalent accuracy of breeding value predictions. We found
that the predictions based on genomic relationships derived from
markers (GBLUP) were as accurate as traditional genetic evaluation
based on an average relationship matrix derived from the pedigree.
Second, our results showed that genomic relationships generated
either by the allele frequency method or the regression method did
not differ in the accuracy of genomic estimated breeding values.
Realized genomic relationships captured Mendelian segregation among
full-sib individuals, even in the absence of phenotypic data, which was
not the case with the traditional genetic evaluation. In practical terms,
using a genomic relationship matrix is no more difficult than using
the traditional numerator relationship matrix derived from a pedi-
gree. The GBLUP model could use raw measurement data rather
than deregressed breeding values as phenotypes; it incorporates fixed
effects of common environments and genotype by environment (G·E)
interactions; and it allows spatial analysis and other more complex
variance2covariance structures. These characteristics will allow easy
implementation of future applications of GBLUP using standard soft-
ware available for linear mixed model analyses.
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