# Genomic Imprinting and X Chromosome Dosage Compensation in Domestic Ruminants 

Jingyue Duan<br>jingyue.duan@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

[^0]
# Genomic Imprinting and X Chromosome Dosage Compensation in Domestic Ruminants 

Jingyue (Ellie) Duan, Ph.D.

University of Connecticut, 2018


#### Abstract

In diploid cells, genes are presumed to be expressed from both alleles to maintain gene dosage for normal development. However, a small number of genes reach haplosufficiency even with only one functional allele per cell. Most of these genes are regulated through genomic imprinting and X chromosome inactivation (XCI). DNA methylation is an essential epigenetic regulation for developmental programming in embryogenesis and play crucial roles in genomic imprinting and XCI. This dissertation presents 1) effects of maternal diets on genome imprinting in fetal sheep (Chapter Two), 2) dosage compensation of the X chromosomes in bovine germline, embryos and somatic tissues (Chapter Three), 3) Whole genome DNA methylation in bovine in vivo preimplantation development (Chapter Four). In chapter two, we report the first throughput study of genomic imprinting in sheep and report the identification of 13 new imprinted genes as well as demonstrating that maternal diets affect expression of imprinted genes in fetuses. Our results determine maternal diets influence imprinted gene expression while the parental-of-origin expression pattern was not affected, further suggesting that gene expression levels and imprinted patterns may be regulated through different epigenetic mechanisms. In chapter three, we reported the up-regulation of X chromosome in bovine germline, embryos and somatic tissues, supporting a balanced expression between a single active X and autosome pairs. However, deviating from Ohno's theory, dosage compensation to rescue X haploinsufficiency appears to be an incomplete process for expressed genes but a complete process for "dosage-sensitive" genes. In chapter four, we adopted the scWGBS-seq method to comprehensive profile $5-\mathrm{MeC}$ in single-cytosine


Jingyue (Ellie) Duan - University of Connecticut, 2018
resolution in bovine sperm, immature oocyte, in vivo/vitro mature single oocyte, and in vivo developed 2-, 4-, 8-, 16-cell single embryos. We observed global demethylation during bovine embryo cleavage up to 8 -cell stage and de novo methylation at 16-cell stage. Our results refined the current knowledge on bovine embryo DNA methylation dynamics and provide valuable resources for future studies.

## Title Page

Genomic Imprinting and X Chromosome Dosage Compensation in Domestic Ruminants

Jingyue (Ellie) Duan

B.S., Sichuan University, P.R. China, 2014
M.S., University of Connecticut, U.S.A, 2017

A Dissertation<br>Submitted in Partial Fulfillment of the<br>Requirements for the Degree of<br>Doctor of Philosophy<br>at the<br>University of Connecticut

2018

Copyright by
Jingyue (Ellie) Duan

## Approval Page

## Doctor of Philosophy Dissertation

## Genomic Imprinting and X Chromosome Dosage Compensation in Domestic Ruminants

Presented by<br>Jingyue (Ellie) Duan, B.S., M.S.

Major Advisor
Dr. Xiuchun (Cindy) Tian

Associate Advisor
Dr. Ion Mandoiu

Associate Advisor
Dr. Lynn Kuo

Associate Advisor
Dr. Michael O'Neill

University of Connecticut
2018

## DEDICATION

This dissertation is dedicated to my first biology teachers in the middle school, late Mr. Liewen Yang, who asked me what is cloning.

## ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my major advisor Dr. Xiuchun (Cindy) Tian for your instruction, encourage and support. Thank you for believe in me and motivate me to overcome challenges over the past four years. Your patient guidance helps me become a skilled and independent scientist. You are not only an advisor of my research but also a mentor of my life. Through you, I see the life of a creative, ingenuity, intelligent female scientist, and I see an independent, strong, caring, supportive mother. You are a person inspired me the most in my life, what I have learned from you are invaluable. Thank you.

I would like to thank my committee members Dr. Ion Mandoiu, Dr. Lynn Kuo, and Dr. Michael O'Neill, for your help, support and insight. Thank you for your instruction in data analysis, statistical analysis and biological knowledge. Thank you for your valuable feedback and comments that made my dissertation thesis possible.

I would like to thank all my collaborators in my projects, for your help in making these projects possible. Dr. Nathaniel Jue, Dr. Rachel O’Neill, Wei Shi, Dr. Sahar Seesi, Fahad AlQahtani, Dr. Sadie Marjani, Dr. Isabelle Hue, Dr. Amanda Jones, Dr. Sambhu Pillai, Dr. Maria Hoffman, Dr. Sarah A Reed, Dr. Kristen Govoni, Dr. Steve Zinn. Thank you for your help and expert advice in statistical analysis, computational approaches, experimental design and providing the valuable samples used in the experiment. I would like to thank the Animal science department main office, graduate students, and faculty for your kindness and support.

To my current and previous fellow graduate students, post-doc and visiting scholars, Lang Sun, Liqi An, Dr. Zongliang Jiang, Linkai Zhu, Kaleigh Flock, Ling Wang, Dr. Kanokwan Srirattana, Elizabeth Johnson, Shyann Williams, Lindsay Bavone, Taiye Adakole, Dr. Rashid Ali, Dr. Chuanjie Zhang, Chang Huang, Jacob Ricker, Cabrera Juan, Qian Du, Dr. Delun Huang, Dr.

Mingyuan Zhang, Dr. Limin Wang, Dr. Huan Yang, Dr. Junhe Hu, and Dr. Junli Zhu. Thank you for sharing your expertise with me in the lab, and for your support, help and friendship in my life. A special thanks to Dr. Zongliang Jiang, Kaleigh Flock, Dr. Mingyuan Zhang, Elizabeth Johnson for your collaboration and lab experiment expertise in two projects present in my dissertation, without your help, I couldn't achieve this much.

I would like to thank my previous advisor Dr. Qun Sun, Life Science College vice dean Dr. Yun Zhao in Sichuan University (SCU) and CAHNR dean Dr. Cameron Faustman. Thank you for initiating the $3+1$ exchange program between SCU and UCONN. I would like to thank Dr. Robert Milvae, Dr. Kumar Venkitanarayanan, Dr. Hedley Freake for recruiting me in this exchange program. This was a life-changing experience in my undergrad senior year. I got more opportunities to learn and to see the world.

Lastly, I would also like to thank my family and friends for your love and support. Shanglong, thank you for loving me, taking care of me, understanding me, and supporting me through every challenge. Mom and Dad, thank you for always encouraging me to pursue my dream and believing in me. Dear friends, Suiyuan, Qianyue, Ruixuan, Manqian, and Xiaogang, thank you for being my friends. I have been friends with some of you since primary school, it means so much to me that we support each other achieve our goals and follow our dreams. Thank you for being there for me through this journey.

## Table of contents

Abstract ..... i
Title Page .....  i
Approval Page ..... iii
DEDICATION ..... iv
ACKNOWLEDGMENTS ..... V
Table of contents ..... vii
List of Common Abbreviations ..... X
List of Tables and Figures ..... xi
List of Tables ..... xi
List of Figures ..... xii
List of Supplementary Tables ..... xiii
List of Supplementary Figures ..... XV
Chapter One ..... 1
Introduction ..... 1
1.1. Epigenetics ..... 2
1.2. Preimplantation embryonic development ..... 4
1.3. DNA methylation ..... 6
1.4. Genomic imprinting ..... 9
1.5. X chromosome dosage compensation ..... 11
1.6. Effect of maternal nutrition on fetal epigenetics and development ..... 14
Chapter Two ..... 16
Effects of Maternal Nutrition on the Expression of Genomic Imprinted Genes in Ovine Fetuses16
2.1. Abstract ..... 17
2.2. Introduction ..... 18
2.3. Materials and Methods ..... 20
2.3.1. Tissue sample collection ..... 20
2.3.2. Whole genome DNA- and RNA-sequencing ..... 20
2.3.3. SNP calling from DNA- and RNA-seq data ..... 21
2.3.4. Identification of informative SNPs ..... 22
2.3.5. Differential allele-specific gene expression and statistical analysis ..... 23
2.3.6. Mammalian imprinted gene lists ..... 23
2.3.7. Differential gene expression analysis across maternal diets ..... 24
2.3.8. Sanger sequencing ..... 24
2.3.9. Data access ..... 25
2.4. Results. ..... 26
2.4.1. High throughput identification of informative single nucleotide polymorphisms ..... 26
2.4.2. Allele-specific gene expression ..... 26
2.4.3. Validation of the putative imprinted genes ..... 28
2.4.4. A novel imprinted cluster in sheep ..... 28
2.4.5. Tissue-specific Expression of imprinted genes in fetal organs ..... 29
2.4.6. Effects of maternal nutrition on expression of imprinted genes in ovine fetuses ..... 30
2.5. Discussion ..... 31
2.5.1. Imprinted domains ..... 31
2.5.2. Effects of maternal diets on expression of imprinted gene ..... 34
2.5.3. Recommendations for future throughput imprinting studies ..... 35
2.6. Supplementary information ..... 46
Chapter Three ..... 57
Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos and Somatic Tissues ..... 57
3.1. Abstract ..... 58
3.2. Introduction ..... 59
3.3. Materials and Methods ..... 62
3.3.1. Paralog analysis ..... 62
3.3.2. RNA-seq datasets and read trimming ..... 62
3.3.3. Mapping and transcript assembly ..... 63
3.3.4. RNA-seq dataset overview ..... 64
3.3.5. GO analysis ..... 64
3.3.6. X : A ratio calculation ..... 64
3.4. Results ..... 66
3.4.1. Overview of the RNA-seq datasets and paralog analysis ..... 66
3.4.2. Ranges of gene expression of all chromosomes ..... 67
3.4.3. X chromosome up-regulation in adult somatic tissues ..... 68
3.4.4. X chromosome up-regulation in immature and mature oocytes ..... 69
3.4.5. X chromosome up-regulation in pre-implantation embryos ..... 70
3.4.6. Effect of PAR and putative XCI-escaping genes on X upregulation ..... 71
3.5. Discussion ..... 73
3.6. Supplementary information ..... 83
Chapter Four ..... 104
Methylome Dynamics of Bovine Gametes and In Vivo Early Embryos ..... 104
4.1. Abstract ..... 105
4.2. Introduction ..... 106
4.3. Methods. ..... 108
4.3.1. Collection of bovine single gametes and embryos ..... 108
4.3.2. Preparation of WBGS libraries ..... 109
4.3.3. Reads filtering and mapping ..... 110
4.3.4. Quantification of methylation level and CpG density ..... 110
4.3.6. Pairwise comparison of methylation changes and gamete-specific DMRs ..... 111
4.3.7. Genomic feature annotation ..... 112
4.3.8. Gene Ontology (GO) analysis ..... 112
4.3.9. Gene expression analysis ..... 112
4.4. Results and Discussion ..... 114
4.4.1. Profiles of the WGBS libraries of bovine gametes and embryos ..... 114
4.4.2. Unique features of methylome dynamics in bovine gametes and pre-implantation embryos ..... 115
4.4.3. Potential mechanisms for the methylome dynamics ..... 116
4.4.4. Genomic regions of dynamic methylation changes ..... 117
4.4.5. CpG density and methylome dynamics ..... 118
4.4.6. Correlation between dynamics of transcriptomes and methylomes ..... 119
4.4.7. Commonly and uniquely methylated regions ..... 120
4.4.8. Pairwise comparisons of methylomes at consecutive stages of development ..... 122
4.4.9. Characteristics of DMRs between different types of gametes ..... 122
4.4.10. Methylation of the X chromosomes and imprinted genes ..... 125
4.5. Supplementary information ..... 133
Chapter Five ..... 219
Conclusions ..... 219
Reference ..... 221

## List of Common Abbreviations

5caC: 5-carboxylcytosine
5fC: 5-formylcytosine
5hmC: 5-hydroxymethylcytosine
5mC: 5-methylcytosine
cDNA: complementary deoxyribonucleic acid
CTCF: CCCTC binding factor
DNA: deoxyribonucleic acid
DNA-seq: DNA sequencing
DNMT: DNA methyltransferase
EGA: embryonic genome activation
FPKM: fragments per kilobase of exon per million fragments mapped
GEO: gene expression omnibus
GO: gene ontology
ICM: inner cell mass
ICR: imprinting control region
IVF: in vitro fertilization
LOS: large offspring syndrome
mRNA: messenger ribonucleic acid
MZT: maternal to zygotic genome transition
NGS: next generation sequencing
PCR: polymerase chain reaction
PGC: primordial germ cell
RNA: ribonucleic acid
RNA-seq: RNA sequencing
RRBS: reduced representation bisulfite sequencing
SNPs: single nucleotide polymorphisms
TAB-seq: ten-eleven-translocation -assisted bisulfite sequencing
TE: trophectoderm
TET: ten-eleven-translocation
TPM: transcripts per million
WGBS: whole genome bisulfite sequencing
XCI: X chromosome inactivation
Xi: inactivate X chromosome
Xic: X-inactivation center

## List of Tables and Figures

## List of Tables

## Chapter 2

Table 1. Summary of the confirmed/putative imprinted genes in sheep ..... 37
Table 2. Levels of differentially expressed imprinted genes in tissues of fetal sheep from mothersof different nutrition.38

## Chapter 3

Table 1. The enrichment of paralogs on each autosome compare to that on X chromosome ...... 77
Table 2. The raw FASTQ files generated by us and downloaded from NCBI GEO database ..... 78

## List of Figures

## Chapter 2

Figure 1. Data analysis pipeline used in this study ..... 39
Figure 2. Correction of the RNA-seq alignment bias in the genome ..... 40
Figure 3. Validation of putative imprinted genes (maternally expressed) using ram and fetal DNA as well as fetal cDNA: CASD1, COPG2, PPP1R9A, and SLC22A18 ..... 41
Figure 4. Validation of putative imprinted genes (paternally expressed) using ram and fetal DNA as well as fetal cDNA: DIRAS3, INPP5F, and PLAGL1 ..... 42
Figure 5. Visualization of the 11 known sheep imprinted genes in the ovine genome Oar_v4.0 annotation (orange) ..... 43
Figure 6. Genes and their parental expression patterns in the four imprinted clusters in sheep. ..... 44
Figure 7. Expression levels (Transcripts Per Million, TPM $\pm$ SD) of sheep imprinted genes in the brain, kidney, and lung tissue of day 135 ovine fetuses from ewes fed a control diet ..... 45
Chapter 3
Figure 1 Expression ranges of genes on the X and autosome pairs in the bovine. ..... 79Figure 2 Median X:A ratios with $95 \%$ confidence intervals of bovine female (A, B) and male (C)
D) somatic tissues ..... 80
Figure 3 Median X:A ratios with $95 \%$ confidence intervals of bovine in vivo (A, B) and in vitro (C, D) produced oocytes and pre- and post-implantation embryos ..... 81
Figure 4 Boxplot of the X:A medians for all datasets. ..... 82
Chapter 4
Figure 1. Methylome dynamics during bovine pre-implantation embryonic development ..... 128
Figure 2. CpG density and the methylome dynamics of bovine gametes and pre-implantation embryos ..... 129
Figure 3. Commonly and uniquely methylated regions in bovine gametes and pre-implantation embryos. ..... 130
Figure 4. Pairwise comparisons of methylomes between consecutive development stagesand DMRs in gametes. ..... 131
Figure 5. Methylation of the X chromosome and imprinted genes in bovine gametes and pre- implantation embryos ..... 132

## List of Supplementary Tables

## Chapter 2

Table S1.1. Summary of the 80 monoallelically expressed genes in sheep ..... 46
Table S1.2. The iSNPs and the percentages of their paterntal allele expression in the 80 monoallelically expressed genes in each animal/tissue sample ..... 47
Table S2. Summary of imprinted genes in the sheep (21), mouse (186), human (112), cow (49), pig (25) and all 263 imprinted genes combined from five species ..... 47
Table S3. The iSNPs and the percentages of their paternal allele expression for the 18 putative imprinted genes in each animal/tissue samples ..... 48
Table S4. Expression levels mean of known and putative imprinted genes in in sheep tissues of maternal nutrition groups ..... 49
Table S5. RNA integrity number in each sample ..... 50
Table S6. RNA sequencing and DNA sequencing mapping rate for unique aligned reads in two genomes ..... 51
Table S7. RNA Sequencing mapping rates for multiple aligned reads ..... 52
Table S8.1.DEG of monoallellically expressed genes in sheep fetal tissues of maternal nutrition ..... 53
Table S8.2. DEG of known mammlian imprinted genes in sheep fetal tissues of maternal nutrition. Red genes are imprinted genes in sheep ..... 53
Table S9. Primers used for PCR and Sanger sequencing ..... 54
Chapter 3
Table S1. The numbers of reads after trimming and the percentages of multiple-mapped reads for each sample ..... 83
Table S2. The numbers of lowly expressed genes (TPM $\leq 1$ ) on the $X$ chromosome and autosomes in each sample ..... 87
Table S3. TPM distribution of X and autosomes expression difference in each sample. ..... 92
Table S4. TPM distribution of X chromosome difference of common tissues between males and females ..... 93
Table S5.1. X-linked genes in PAR ..... 93
Table S5.2. Candidate XCI escapee genes ..... 94
Chapter 4
Table S1. Summary of WGBS library mapping and data processing ..... 133
Table S2. Gene Ontology (GO) terms for genes with commonly methylated introns among all samples ..... 134
Table S3.1. Gene Ontology (GO) terms for hypermethylated genes in sperm ..... 134
Table S3.2. Gene Ontology (GO) terms for hypermethylated genes in GV ..... 135
Table S3.3. Gene Ontology (GO) terms for hypermethylated genes in in vivo MII ..... 136
Table S3.4. Gene Ontology (GO) terms for hypermethylated genes in in vitro MII ..... 138
Table S3.5. Function for hypermethylated genes in 2-cell stage ..... 138
Table S3.6. Gene Ontology (GO) terms for hypermethylated genes in 4-cell stage ..... 139
Table S3.7. Function for hypermethylated genes in 8 -cell stage ..... 139
Table S3.8. Gene Ontology (GO) terms for hypermethylated genes in 16-cell stage ..... 139
Table S4.1. GO terms for DMRs between the 8- and 16-cell embryos that are hypermethylated inthe 8-cell embryos140
Table S4.2. GO terms of DMRs between 8 vs. 16-cell that hypermethylated in 16-cell ..... 141
Table S5. Differentially expressed genes between 8- and 16- cell stage with DMRs ..... 142
Table S6.1. GO terms for DMRs between sperm and GV oocytes ..... 143
Table S6.2 GO terms for DMRs between sperm vs. in vivo MII. ..... 144
Table S6.3 GO terms for DMRs between sperm vs. in vitro MII. ..... 145
Table S6.4 GO terms for DMRs between GV vs. in vivo MII. ..... 147
Table S6.5 GO terms for DMRs between GV vs. in vitro MII ..... 148
Table S6.6 GO terms for DMRs between in vivo MII vs. in vitro MII ..... 150
Table S7.1 Gene expression for DMRs between sperm and GV oocytes ..... 151
Table S7.2 Gene expression for DMRs between sperm vs. in vivo MII ..... 169
Table S7.3 Gene expression for DMRs between sperm vs. in vitro MII ..... 180
Table S7.4 Gene expression for DMRs between GV vs. in vivo MII. ..... 204
Table S7.5 Gene expression for DMRs between GV vs. in vitro MII ..... 207
Table S6.6 Gene expression for DMRs between in vivo MII vs. in vitro MII ..... 211

## List of Supplementary Figures

## Chapter 2

Figure S1. Identification of informative SNPs (iSNPs) ..... 55
Figure S2. Expression levels (TPM mean) of sheep imprinted genes in the brain, kidney, and lung tissue of day 135 fetal sheep from ewes fed a control diet. ..... 56
Chapter 3
Figure S1. Correlation plots and unsupervised hierarchical clustering of RNA-seq datasets for somatic (A) and embryo tissues (B) ..... 95
Figure S2. Gene ontology enrichment analysis of ubiquitously expressed genes in somatic tissue datasets ..... 99
Figure S3. Gene ontology enrichment analysis of ubiquitously expressed genes in embryo datasets ..... 101
Figure S4. Common ubiquitously expressed genes between somatics and embryonic tissues ..... 103
Chapter 4
Figure S1. Methylome profiles of bovine gametes and in vivo developed embryos ..... 214
Figure S2. Relationship between transcriptomes and methylomes of bovine gametes and in vivo developed embryos ..... 215
Figure S3. Commonly and uniquely methylated regions in bovine gametes and in vivo developed embryos ..... 216
Figure S4. DMRs between different types of gametes and their GO term representatives ..... 217
Figure S5. Visualization of gene body methylation of XIST gene. GV: germinal vesicle oocytesMII: matured oocytes218

## Chapter One

Introduction

### 1.1. Epigenetics

The term 'epigenetics' was first coined by Waddington, who defined epigenetics as a bridge that connects between genotype and phenotype (Waddington, 1942). In a broad view, epigenetics phenomenon is the transmittable changes governed by modifications on the chromatin rather than the alterations of the DNA sequences (Goldberg et al., 2007). These changes include DNA methylation, post-translational modification of histone tails (methylation, acetylation, phosphorylation, etc.), chromatin remodeling and noncoding RNAs (Kaikkonen et al., 2011; De Majo and Calore, 2018). Within all cells of the body, the DNA sequences are almost identical, while the epigenetic modifications are very different in different cell types (Canovas and Ross, 2016). Epigenetics modifications are not only mitotically transmitted, but also may affect several generations (Rakyan et al., 2003; Dolinoy et al., 2007). They mainly exerts their effects via regulation of gene expression (O'Neill, 2015). During development and cell differentiation, epigenetic markers reinforce cell-fate and form barriers that keep the cell specification in an irreversible process (Shi and Wu, 2009). However, robust and genome-wide epigenetic erasure, known as epigenetic reprogramming, occurs at two stages of mammalian development: post-fertilization pre-implantation embryogenesis and primordial germ cell specification (Gao et al., 2017). During these events, the epigenetic information is reset to the ground state, from which differentiation of more advanced cell linage occurs with new epigenetic markers (Seisenberger et al., 2012; Hackett and Surani, 2013).

Epigenetics modifications regulate many cellular process, such as proliferation, differentiation, cell cycle (Guo et al., 2015), cancer development (Sharma et al., 2010; Jansson and Lund, 2012), chromatin architecture (Choy et al., 2010; Siddiqi et al., 2010), genomic imprinting and X chromosome inactivation (Lyon, 1993; Ohlsson et al., 2001; Lee, 2003), all
through regulations of gene expression (Handy et al., 2011). Epigenetic marks vary by genome locations, different types of epigenetics modifications and chromatin accessibility associate with different states of transcription (Cao et al., 2018). For example, methylation of the fifth carbon of cytosine ( 5 mC ) within CpG island in a gene promoter reduces gene expression by recruiting repressors or inhibiting the binding of transcription factors (Siegfried et al., 1999; Moore et al., 2013), whereas DNA methylation in gene body is associated to gene active transcription (Suzuki and Bird, 2008; Yang et al., 2014). Enrichment of histone lysine methylation can correlate to either chromatin silencing (H3K9me3, H3K27me3 and H4K20me3) or transcription activation (H3K4me3, H3K36me3 and H3K79me3) (Vakoc et al., 2006; Black et al., 2012; Hyun et al., 2017). Acetylation modification of histone tails, such as H3K27ac and H4K16ac, is generally associated with open chromatin favoring gene expression (Morales and Richard-Foy, 2000; Clayton et al., 2006).

High throughput next generation sequencing (NGS) has provided detailed and comprehensive views of epigenetics modifications, such as DNA methylation, histone modification and chromatin architectures, on a genome scale (Meaburn and Schulz, 2012; Shen et al., 2014). To study DNA methylation, Whole Genome Bisulfite Sequencing (WGBS) is the gold standard method (Li et al., 2010a). It could detect the methylated CpG and calculate DNA methylation level in a high throughput manner (Lister et al., 2009; Li et al., 2010a, 2010b). Sodium bisulfite treatment changes unmethylated cytosines to thymines without altering the methylated cytosines, and NGS allows quantification of changes at the single cytosine level (Li et al., 2010a). Other methods to detect and quantify DNA methylation levels include Reduced Representation Bisulfite Sequencing (RRBS) (Smith et al., 2009), MethylC-sequencing (MethylC-seq) (Urich et al., 2015) and Methylated DNA Immunoprecipitation Sequencing
(MeDIP-seq) (Bock et al., 2010). Tet-assisted Bisulfite Sequencing (TAB-seq) has been developed for mapping and quantifying 5-hydroxylmethylcytosinces (5hmC), a Ten-eleventranslocation (TET) oxidation derivative of 5 mC , at a single-base resolution on a genome-wide scale (Yu et al., 2012). Moreover, Chromatin Immunoprecipitation-Sequencing (ChIP-seq) combines ChIP and NGS for genome-wide DNA-protein interaction (Terrenoire et al., 2010). ChIP-seq generates high-resolution profiles of histone modifications in the genome (O'Geen et al., 2011). To determine the higher order spatial organization of the genomes and chromatin, a robust technology Chromosome Conformation Capture (3C) technology is developed (Wit and Laat, 2012). The 3C method studies the 'one-to-one' interaction between selected pairs of sequences (Denker and Laat, 2016). Several variations of the 3C technology have been developed, such as 'one-to-all' 4C (circularized 3C) (Dekker, 2006), 'many-to-many' 5C (3C carbon copy) (Dostie and Dekker, 2007), and 'all-to-all' Hi-C technology (Belton et al., 2012). Additionally, Chromatin Interaction Analysis with Paired-End-Tag (ChIA-PET) technology combines the 3C technology with ChIP-seq, and enables the enrichment and observation of rare specific interactions mediated by specific chromatin factors (Fullwood et al., 2009).

### 1.2. Preimplantation embryonic development

Preimplantation embryonic development starts with fertilization, undergoes cell cleavage, morula formation, blastulation, and ends with implantation (Shi and Wu, 2009). Fertilization takes place in the ampulla of the oviduct, and is followed by rapid cell proliferation in one cell embryo - zygote (Niakan et al., 2012). While the embryo travels down the oviduct to the uterus, three rounds of cleavages occur and produce the totipotent blastomeres (8-cell stage), which hold the potential to form all cell types in embryo and extra-embryonic membranes ( $\mathrm{O}^{\prime} \mathrm{Neill}, 2015$ ). When the embryo enters the uterine environment, compaction begins. Embryonic compaction is
the first critical morphological event during embryogenesis and forms the morula stage embryo (White et al., 2016). The blastomeres in the morula develop the axis of polarity, they relocate to form inner and outer cells and start to express differential cell fate markers (Johnson and Ziomek, 1981). The first cellular differentiation occurs at the blastulation stage and cells specify into two populations: the inner cell mass (ICM) and the trophectoderm (TE) (Marikawa and Alarcón, 2009). The ICM consists of pluripotent cells that can develop to all cell types of the embryo, while TE cells have restricted developmental potentiality that could only form the extraembryonic membranes (De Paepe et al., 2014). At the late blastocyst stage, the embryo matures and hatches from the outer membrane (zona pellucidae), and gains the implantation capability (Wang and Dey, 2006).

A unique feature of preimplantation embryonic development is that the early embryos almost entirely dependent on the maternal subcellular organelles and maternally stored mRNAs and proteins (Li et al., 2010c). These maternal components are loaded into a matured oocyte during the oogenesis, directing the first mitotic divisions and specifying cell fate and patterning (Tadros and Lipshitz, 2009). When the maternal mRNAs are gradually degraded while the robust activation of the embryonic genome (EGA) initiate, the maternal to zygotic genome transition (MZT) starts (Lee et al., 2014). The timing of EGA has been described as species specific: this happens at the 2 -cell stage in mice and 8 - to 16 -cell stage in humans and domestic species, including cattle, sheep, pigs, rabbits (Telford et al., 1990). Recent whole transcriptome analysis indicated that the EGA in bovine in vivo produced embryos at the 4- to 8-cell stage (Kues et al., 2008; Jiang et al., 2014). The activation of the genome is accompanied by the alteration of chromatin structure and a drastic initiation of gene expression (Vastenhouw et al., 2010; Funaya and Aoki, 2017).

### 1.3. DNA methylation

In mammals, methylation of DNA is an essential epigenetic regulation with a key role during embryo development and germline differentiation (Canovas et al., 2017). It is essential in chromatin compaction (Choy et al., 2010), heterochromatin formation (Rountree and Selker, 2010), gene silencing (Curradi et al., 2002), transposon element repression (Slotkin and Martienssen, 2007), genomic imprinting (Li et al., 1993), and X chromosome inactivation (in females) (Sharp et al., 2011).

Stable inheritance of tissue-specific DNA methylation patterns during DNA replication and cell division are maintained by DNA methyltransferase 1 (DNMT1) (Hata et al., 2002) and its cofactor UHRF1 (Bostick et al., 2007). Mutation of DNMT1 results in the global loss of methylation and embryonic lethality (Li et al., 1992). Another form of DNMT1 is DNMT1o, which has similar function to DNMT1, it is specific to oocyte and preimplantation embryos (Ko et al., 2013). Members of the DNMT3 protein family (DNMT3A, DNMT3B, and DNMT3L) are primarily responsible for the DNA de novo methylation in pre-implantation embryos (Chédin, 2011). DNMT3A and DNMT3B are the active enzymes for DNA de novo methylation. DNMT3L interacts with DNMT3A or DNMT3B, is required for the establishment of methylation on imprinted genes in germ cell development, and lacks enzymatic activity (Hata et al., 2002). Moreover, expression data indicates that $D N M T 3 A$ and $D N M T 3 B$ are highly expressed during germ cell development and blastocyst stage, and $D N M T 3 L$ is highly expressed in embryonic stem cells (Chédin, 2011).

The DNA demethylation process can be either active or passive (Kohli and Zhang, 2013). Active DNA demethylation is a cell replication independent process (Hahn et al., 2014). This process is catalyzed by Ten-eleven-translocation enzymes (TET1, TET2, TET3) mediated 5-
methylcytosine ( 5 mC ) oxidation. The product of this active demethylation is 5hydroxymethylcytosine ( 5 hmC ), which is a prominent intermediate epigenetic marker in the cytosine demethylation (Auclair and Weber, 2012). TETs can further oxidize 5hmC to 5formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Ito et al., 2011). TET3-dependent oxidation of 5 mC has been found in demethylation of both the paternal and maternal genomes after fertilization (Canovas et al., 2017). On the other hand, the presence of a strong inhibitor of DNMT1 catalyzation, 5 hmC , results in passive DNA demethylation over subsequent cell replication cycles (Valinluck and Sowers, 2007; Bhutani et al., 2011).

There are two major developmental dynamic reprogramming events of DNA demethylation (Gao et al., 2017). One in primordial germ cells (PGCs) specification and another in pre-implantation embryo stage development (Canovas et al., 2017). In mice, PGCs lineages originate from the epiblast of the embryo and commit to germline at embryonic day 6.5 (E6.5). Therefore, they have to erase the somatic fate epigenetic marks (Hayashi et al., 2007; Seisenberger et al., 2013). Around E10.5 to E11.5, the fetal gonadal sex is determined (Leitch et al., 2013) and PGCs are migrating into the developing genital ridge (Bao and Bedford, 2016). At the genital ridge, PGCs undergo virtually complete genomic DNA demethylation (Hanna et al., 2018), and establish the sex-specific epigenetic signatures and transcription profiles, which further enable the meiotic maturation process of male and female germ cells and then gametes (Smallwood and Kelsey, 2012). In sperms, the paternal genome DNA is highly methylated and exchanged most of its histone protein to protein protamine, which allows DNA to be compactly packaged into sperm head (Balhorn et al., 2000). In contrary, most of DNA methylation sites in oocyte are distinctly located over the intragenetic region of active genes (Kobayashi et al., 2012; Tomizawa et al., 2011; Veselovska et al., 2015). The reprograming of both male and female

PGCs is mediated by DNA demethylases and methyltransferases with remodeling of histone marks, the parent-specific-imprints are added as a results of reprograming (Hanna and Kelsey, 2014).

After oocyte fertilized by sperm, another drastic reprogramming occurs in the zygote stage (Messerschmidt et al., 2014). A distinct asymmetric DNA demethylation occurs on paternal and maternal pronucleus in the same cytoplasm (Iqbal et al., 2011). Paternal genome undergoes a rapid and active remodeling, starting with replacing the protamine to acetylated histones (Reik et al., 2001), following by global DNA demethylation, which actively catalyze the 5 mC to 5 hmC by Ten-eleven-translocation (TET) dioxygenase (Gu et al., 2011; Iqbal et al., 2011). Previous study demonstrated that the maternal genome demethylation is mainly passive replication-dependent dilution of 5 mC , in the absence of DNMT1 (Rougier et al., 1998; Oswald et al., 2000). However, recent genome wide methylation profiles the presence of 5 hmC in the female pronuclei (Bakhtari and P. J. Ross, 2014; Wang et al., 2014), indicating the active demethylation also onset. Additionally, some genes, such as imprinted genes, their germline differentially methylated regions (gDMRs) are resistant to the demethylation process in a parent-of-origin specific manner (Sanz et al., 2010; Stewart et al., 2016). At blastocyst stage, DNA methylation reaches the basal level and starts to establish de novo methylation, while the first cell differentiation occurs (Smallwood and Kelsey, 2012).

DNA methylation status is more dynamic in embryos and germlines than in somatic cells (Smith et al., 2012). Classical studies by immunofluorescence analysis of 5mC, H3K4me3 and H3K9me2 modifications have revealed a conserved genome DNA demethylation in embryo among many species, including mouse, rat, rabbit, pig, human, and cow (Lepikhov et al., 2008).

Recent studies used more precise techniques, such as RRBS, WGBS, or TAB-seq, are able to profile 5 mC and 5 hmC in high resolution (Canovas et al., 2017).

### 1.4. Genomic imprinting

Mammals are diploid organisms which have two matched sets of chromosomes inherited from both parents (Barlow and Bartolomei, 2014). Diploidy has many genetic beneficial such as protection organisms from somatic mutation and heterozygous advantage (Otto and Gerstein, 2008). Most of genes have the same potential for their parental copies to be active, while a few hundred of the total $\sim 25,000$ genes are expressed in a parent-of-origin-specific manner. These genes only have one single parental allele expressed, they are termed "imprinted" (Bartolomei and Ferguson-Smith, 2011). However, although only small number of genes have been categorized as imprinted genes, they have very dramatic effects in the phenotype (Ishida and Moore, 2013).

Genomic imprinting is an epigenetic regulatory phenomenon that have been first described in 1980s by the Solter and Surani laboratories (Surani and Barton, 1983; Surani et al., 1984). Their uniparental embryo experiments revealed that both parental genome are required for a normal mammalian development (Lyon, 1993). In maternal uniparental embryos (gynogenotes or pathogenotes), embryonic tissues develop normally, but the extraembryonic tissue fail to grow, whereas paternal uniparental embryos (androgenotes) develop dominantly extraembryonic lineages. These results suggested that there might be conflicts between parentally inherited genes influence the embryo development (Moore and Haig, 1991). This pioneer study formed the basis for the notion that the paternal genome is non-equivalent and non-interchangeable (Piedrahita, 2011).

Since monoallelic expression increased vulnerability to recessive mutations, the evolution of genomic imprinting is still an mystery (Tian, 2012). The co-presence of genomic imprinting and placenta indicates its function in controls nutrition flow from mother to fetuses (Piedrahita, 2011). Numerous hypotheses have attempted to explain the evolutionary origin and the meaning of genomic imprinting (Morison et al., 2005). Currently, there are four plausible evolutionary theories, including 1) kinship or parental genetic conflict hypothesis (Haig and Graham, 1991; Moore and Haig, 1991), 2) ovarian time bomb hypothesis (Varmuza and Mann, 1994; Weisstein et al., 2002), 3) X-linked sex-specific selection hypothesis (Iwasa and Pomiankowski, 2001; Van Cleve and Feldman, 2007), and 4) sexually antagonistic selection hypothesis (Wolf and Hager, 2006; Fairbairn et al., 2007). Among these theories, the most popular one is kinship or parental genetic conflict hypothesis, which considers the genetic imprinting is a selective advantage by which paternally expressed genes involved in resource extraction (more resources flow from mother to enhance fetal growth), while maternally expressed genes in conserve resources (restrain the maternal resources flow to fetus) (Haig, 1992). For instances, paternal genes (i.e. IGF2, PEG1, PEG3, RASGRF1, DLK1, DIO3, MAGEL2, HYMAL, and PLAG11) are tend to promote fetal growth, whereas maternal genes play as growth inhibitor (i.e. $I G F 2 R, G N A S$, CDKN1C, H19, GRB10, and PHLDA2) to increase mother's chance for future offspring (Barlow and Bartolomei, 2014). Despite the essential fetal growth and development regulation functions, imprinted genes also involved in behavior after birth, such as nurturing behaviors (PEG1 and PEG3), milk ejection, caring of newborns (Piedrahita, 2011). However, with increasing number of imprinted genes have been identified recently, all hypotheses were challenged of fitting in all imprinted gene functions (Morison et al., 2005). Moreover, recent study generated the tissuespecific map for genomic imprinted genes and found that near all genes that imprinted in early
embryonic development were either retain or totally lost their parent-of-origin expression in adults (Babak et al., 2015).

One intriguing characteristic of imprinted genes are they tend to locate in one megabase clusters. 163 (Blake et al., 2010) mouse imprinted genes have been mapped to 17 chromosomes and in 16 clusters that contain two or more genes (Wan and Bartolomei, 2008). All clusters contain imprinting control regions (ICRs) that regulate the entire domain through differentially methylated CpG islands between two parental chromosomes (Wutz et al., 1997) or at least one long noncoding RNA (ncRNA) that mediates chromatin repression (Pauler et al., 2007). Another mechanisms for imprinted gene regulation are through histone markers such as H3K27me3, or by CCCTC binding factor (CTCF) binds insulator to block the shared enhancer element (Engel and Bartolomei, 2003).

To date, there are 255 imprinted genes in mammals have been identified or predicted, mostly in humans (114) (Morison et al., 2001) and mice (163), very fewer were in farm animals. However, only 51 imprinted genes are common between humans and mice. The high level of discordance between these two species indicate the need for more comparative data (Morison et al., 2005). Therefore, identification of the full catalog of imprinted genes in non-model mammalian species will greatly facilitate the understanding of the evolutionary roles of genomic imprinting (Wang and Clark, 2014).

## 1.5. $X$ chromosome dosage compensation

In diploid mammals, maintenance of the correct gene dosage is essential for normal cellular function and development (Graves and Disteche, 2007). Aneuploidies were responsible for $46.3 \%$ of spontaneous abortions in humans (Jia et al., 2015). Few ( $\sim 0.3 \%$ ) live-born babies with aneuploidies on one of the four gene-poor chromosomes Y ( 577 genes), 21 ( 756 genes), 18
(988 genes), or 13 ( 1,381 genes), or on the relatively large X chromosomes (2,158 genes) (Hassold and Hunt, 2001) (gene counts including coding and non-coding gens are from human current genome assembly GRCh38.p11:
https://www.ncbi.nlm.nih.gov/genome/51?genome_assembly_id=322645.) Live born babies with milder phenotypes effects of X chromosome aneuploidies were found in Turner syndrome (XO females, 1/2,500) or Klinefelter syndrome (XXY males, $1 / 660$ ) than mortal autosomal aneuploidies (Payer and Lee, 2008). What made X chromosome aneuploidies are more tolerant than other chromosomes?

From book Sex Chromosomes and Sex-Linked Genes (Ohno, 1966).
"During the course of evolution, an ancestor to the placental mammals must have escaped a peril resulting from the hemizygous existence of all the $X$-linked genes in the male by doubling the rate of product output of each X-linked gene. Once this step was accomplished, the female no longer needed two $X$ 's in her somatic cells. Hence, the dosage compensation mechanisms by random inactivation of one or the other $X$ evolved."

Dr. Susumu Ohno hypothesized that to solved the dosage imbalance of X-linked genes in males, upregulation of X-linked genes in the heterogametic sex would be necessary to return its gene expression to the levels from the normal diploid autosomes. X upregulation in female is counteracted by inactivation of a single X chromosome in every cell, to balances gene dosage between males and females as well as X and autosome (Ohno, 1966). Both X chromosome expression upregulation and X chromosome inactivation (XCI) are necessary components of the dosage compensation mechanism in mammals. Which one was developed first, or coevolved, is still unknown (Payer and Lee, 2008).

X-chromosome inactivation, the process by which one of two X chromosomes in mammalian female somatic cells is transcriptional inactivated (Lyon, 1961), equalizing the X chromosome dosage to the mammalian XY males (Erwin and Lee, 2008). Although, this chromosome-wide silencing has been studied for six decades, the underlying mechanisms still remain poorly understood (Augui et al., 2011). There are two forms of XCI: imprinted and random (Jeon et al., 2012). Imprinted XCI refer to the inactivation of the paternal X chromosome during early female embryo cleavage stage (Okamoto and Heard, 2006). The imprinted X chromosome was proposed to inherit from the paternal germ line and transmitted to the zygote (Huynh and Lee, 2003). After the first differentiation in blastocyst, the imprinted XCI is maintained in the outer trophectoderm (TE) cells, which developed to extra-embryonic tissues, while the inner cell mess (ICM), where the fetus come from, the XCI erased and then reestablished at a random manner (Payer et al., 2011). Random XCI is achieved by a series of events, including: counting, choice, initiation, spreading and maintenance (Avner and Heard, 2001). The region that cis-regulate the XCI on the inactivate $\mathrm{X}(\mathrm{Xi})$ is called ' X -inactivation center' (Xic) (Van Bemmel et al., 2016). This 1 Mb region contains several key noncoding (nc) genes that regulate XCI, including Xist, Tsix, Xite, RepA, DXPas34 and Jpx/Enox (Tian et al., 2010). Xist encodes a 17 kb noncoding RNA exclusively from the Xi and initiate the chromosome-wide silencing (Lee, 2009). Tsix is a 40-kb Xist antisense ncRNA that transcribe on active $\mathrm{X}(\mathrm{Xa})$, preventing the Xist transcribe and coating on that chromosome (Lee and Lu, 1999). These two pairs of sense-antisense ncRNA predominate the regulation of long-range chromatin on X chromosome (Lee, 2009).

Unlike XCI, which has been actively studied for over a half century, the testing for X chromosome upregulation only achievable in recent decades when the transcriptome wide
analysis become available (Nguyen and Disteche, 2006). Various tests have been performed in a number of species, results were more or less support for Ohno's hypothesis (Prothero et al., 2009). Supporters for this hypothesis was testing only a subset of genes, such as actively expressed genes (Deng et al., 2011), large protein-coding genes (Pessia et al., 2012), or ubiquitously expressed house-keeping genes (Sangrithi et al., 2017). Hyperactive of these genes reached an X:Autosome expression ratio close to or higher than 1 in somatic cells. Therefore, they were considered as "dosage-sensitive" genes that could subject to doubling the expression (Pessia et al., 2014). However, there are also studies refute Ohno's theory. Lin et al (2012). argued that due to the unavailability of the ancestral proto- $\mathrm{X}(\underline{\mathrm{X}})$ and proto autosomes $(\underline{\mathrm{A}})$, most of current tests were indirectly compared between the present-day $\mathrm{X}(\mathrm{X})$ and present-day autosome (A) and were thus inconclusive. They claimed that by directly comparing human X with $\underline{X}$ orthologs identified from chicken, the expression of X -linked genes is roughly half. Additionally, proteomics studies in mammals also provided conflicting results for testing the Ohno's hypothesis. The mice proteomics data had X:A ratio of 1 (Deng et al., 2011), whereas humans data had 0.5 (Lin et al., 2012).

The debate of Ohno's hypothesis is still going on, mostly in humans, mice, drosophila or other model species. Testing for dosage compensation in non-model organisms, such as bovine and sheep, could provide more general conclusions and help with develop new hypotheses (Chandler Christopher H., 2017).

### 1.6. Effect of maternal nutrition on fetal epigenetics and development

Fetal developmental programming is largely influenced by intrauterine environmental factors, including stress, disease, uterine capacity, and maternal nutrition (Hoffman et al., 2017). Among them, maternal nutrition is the major factor that can induce permanent changes with
lifelong consequences (Godfrey and Barker, 2001). Poor maternal nutrition can be caused by excess or reduced nutrients during gestation (Pillai et al., 2016). For examples, management practices such as flushing can lead to over-nutrition, whereas inadequate feeding due to seasonal variations can cause nutrition restriction (Wu et al., 2006).

It has been found that poor maternal nutrition during gestation can influence fetal body size (Reynolds et al., 2010), muscle and adipose tissue gene expression (Peñagaricano et al., 2014), as well as skeletal muscles fiber composition and development (Reed et al., 2014) in offspring. Moreover, epigenetic modifications, including DNA methylation, histone modification, and microRNA, were also changed in the fetal tissues (Vickers, 2014). Similarly, human metastable epialleles, which are variably expressed in genetically identical individuals, have also been persistently changed in epigenetic by maternal nutritional status in early pregnancy (Dominguez-Salas et al., 2014). Therefore, more and more evidences for associations between maternal nutrition and transcriptomic/epigenomic alterations of fetal genome (Lan et al., 2013).

## Chapter Two

Effects of Maternal Nutrition on the Expression of Genomic Imprinted Genes in Ovine Fetuses

Published in Epigenetics, 2018, DOI: 10.1080/15592294.2018.1503489
(Duan J.E., Zhang M., Flock K., Al Seesi S., Mandoiu I., Jones A.K., Johnson E., Pillai S.M., Hoffman M.L., McFadden K., Jiang H., Reed S.A., Govoni K.E., Zinn S.A., Jiang Z. \& Tian X.C.)

### 2.1. Abstract

Genomic imprinting is an epigenetic phenomenon of differential allelic expression based on parental origin. To date, 263 imprinted genes have been identified among all investigated mammalian species. However, only 21 have been described in sheep of which 11 are annotated in the current ovine genome. Here we aim to 1 ) use DNA/RNA high throughput sequencing to identify new monoallelically expressed and imprinted genes in day 135 ovine fetuses, and 2) determine whether maternal diet $(100 \%, 60 \%$, or $140 \%$ of National Research Council Total Digestible Nutrients) influences expression of imprinted genes. We also reported strategies to solve technical challenges in the data analysis pipeline. We identified 80 monoallelically expressed, 13 new putative imprinted genes, and five known imprinted genes in sheep using the 263 genes stated above as a guide. Sanger sequencing confirmed allelic expression of seven genes, CASD1, COPG2, DIRAS3, INPP5F, PLAGL1, PPP1R9A and SLC22A18. Among the 13 putative imprinted genes, five were localized in the known sheep imprinting domains of MEST on chromosome 4, DLK1/GTL2 on chromosome 18 and KCNQ1 on chromosome 21, and three were in a novel sheep imprinted cluster on chromosome 4 known in other species as PEG10/SGCE. The expression of DIRAS3, IGF2, PHLDA2, and SLC22A18 was altered by maternal diet, albeit without allelic expression reversal. Together, our results expanded the list of sheep imprinted genes to 34 and demonstrated that while the expression levels of four imprinted gene were changed by maternal diet, the allelic expression patterns were un-changed for all imprinted genes studied.

Keywords: Genomic imprinting; Allelic-specific gene expression; Maternal nutrition; Ovine

### 2.2. Introduction

Genomic imprinting refers to the epigenetic phenomenon that certain genes are expressed in a parent-of-origin-specific manner and play critical roles in fetal growth as well as post-natal development and metabolism (Bartolomei and Ferguson-Smith, 2011). The imprinted alleles are silenced or reduced in expression compared to the non-imprinted and expressed alleles (O'Doherty et al., 2015a). Imprinted genes tend to be located in clusters. Those in the same cluster are usually regulated by the same imprinting control region (ICR) (Koerner et al., 2009). Several mechanisms are involved in the control of allelic expression, including DNA allelic methylation, non-coding RNA and/or histone modifications (Delaval and Feil, 2004). Genomic imprinting is an evolutionary puzzle because monoallelic expression can expose deleterious recessive mutations, which are normally protected by diploidy (Wilkins and Haig, 2003). However, imprinting may have a selective advantage because it has been maintained throughout mammalian evolution (Tian, 2012). The identification of the full catalog of imprinted genes in different mammalian species will greatly facilitate the understanding of the evolutionary roles of genomic imprinting (Wang and Clark, 2014).

To date, 186 (Andergassen et al., 2017; Blake et al., 2010) and 112 (Morison et al., 2001) (http://www.geneimprint.com/site/genes-by-species) imprinted genes have been identified in mice and humans, respectively. However, only 49, 25, and 21 have been reported in cattle (Chen et al., 2016), pigs (Bischoff et al., 2009) and sheep (O’Doherty et al., 2015a; Wei et al., 2014), respectively. Although the general properties and regulations of imprinting are conserved across species (Hanna and Kelsey, 2014), the identities of imprinted genes often are not. For example, only 51 imprinted genes are common between humans and mice. Therefore, it is imperative to identify imprinted genes in each specific species.

Next generation sequencing (NGS) technologies, including genome-wide DNA sequencing (DNA-seq) and transcriptome-wide RNA sequencing (RNA-seq), have been increasingly utilized for in-depth analysis and detection of novel imprinted genes in both humans and mice (Barbaux et al., 2012; Luedi et al., 2007; Wang et al., 2011). While high throughput, such studies require completion of genome sequencing and annotation, intensive bioinformatics and careful independent validation (e.g. Sanger sequencing) to reduce false positives (Chen et al., 2016; DeVeale et al., 2012; Wang and Clark, 2014). The recent completion of the sheep genome and improved annotation abilities provide a great opportunity to identify new imprinted genes in this understudied species.

Poor maternal nutrition, either over- or restricted feeding during pregnancy (Hoffman et al., 2017), has been shown to cause abnormal DNA methylation and expression of a few imprinted genes such as IGF2R and H19 in ovine fetuses (Lan et al., 2013). NGS, however, has the power to simultaneously determine expression changes of all known imprinted genes, which has yet to be conducted in sheep. The objectives of this study were to identify new sheep imprinted genes and to investigate the impact of maternal diets on the expression of all ovine imprinted genes by fetal organs at days 135 of gestation, when the fetuses undergo rapid growth and ample fetal samples can be collected.

### 2.3. Materials and Methods

### 2.3.1. Tissue sample collection

All animal protocols (Jones et al., 2016; Pillai et al., 2017) were reviewed and approved by the University of Connecticut Institutional Animal Care and Use Committee. Animal breeding, feeding and sample collection were described in Pillai et al., 2017. Briefly, Western white-faced ewes ( $\mathrm{n}=12$ ) were mated with Dorset rams ( $\mathrm{n}=4$ ). Ewes were individually housed beginning 20 days after mating. Pregnancy was confirmed by ultrasound at day $28.5 \pm 0.4$ of gestation (Jones et al., 2016) if a ewe was not re-marked by a ram; day 0 represents the initial marking of the ewe by the ram. On day 30 of gestation, pregnant ewes were randomly assigned to control $100 \%$ (Con), restricted $60 \%$ (Res) or overfed $140 \%$ (Over) based on the National Research Council (NRC) total digestible nutrients (TDN) for ewes pregnant with twins. Ewes were euthanized at day 135 of gestation ( $n=4$ per diet), and 15 fetuses were used (Con: $n=7$, including 3 sets of twins; Res: $\mathrm{n}=4$; Over: $\mathrm{n}=4$ ). Brain, kidney and lung samples were collected from all fetuses. Whole blood samples were obtained from the four rams. Tissues were flash frozen in liquid nitrogen and were stored at $-80^{\circ} \mathrm{C}$ until RNA extraction.

### 2.3.2. Whole genome DNA- and RNA-sequencing

Genomic DNA of ram whole blood samples and fetal tissues were isolated using Qiagen DNeasy Blood \& Tissue Kits (Qiagen, 69504). The ram DNA was sent to Novogene (Novogene Co., Ltd) for library preparation and sequencing. In brief, the DNA-seq library was prepared using the Illumina Truseq Nano DNA HT sample preparation kit (Illumina, FC-121-4003) with a 350 bp target insert size. Libraries were sequenced with $2 \times 150 \mathrm{bp}$ paired-end reads on HiSeq 2000 platform (Illumina). On average, 186.7 million raw read pairs were obtained for genotyping from each ram.

Total RNA was extracted from day 135 fetal brain, lung and kidney, using Trizol and RNAeasy kit (Qiagen, 74104) with three quality controls: NanoDrop (Thermo Fisher Scientific), agarose gel electrophoresis and Qubit 2.0 (Thermo Fisher). Library preparation was carried out using TruSeq RNA library prep kit (Illumina, RS-122-2001, RS-122-2002), which selected mRNA using Oligo $d(T)$ with magnetic beads and built $2 \times 75 \mathrm{bp}$ paired-end cDNA libraries. The libraries were quantified using real-time PCR. Agilent 2100 Bioanalyzer (Agilent) was used to assess the size distribution and to determine the RNA integrity number (RIN) in each sample (Table S5). All RNA samples for sequencing had the RIN value greater or equal to 7. Overall, we obtained 2,149 million raw sequencing reads that passed filtering from three sequencing runs of 45 fetal tissue samples. A total of $1,160,576$ and 413 million raw sequencing reads that passed filtering were obtained for sequencing runs 1, 2 and 3, respectively. An average of 23.8 million read pairs per sample was generated on a NextSeq 500 System (Illumina).

### 2.3.3. SNP calling from DNA- and RNA-seq data

We adapted the computational pipeline from the SNPiR (single nucleotide polymorphisms (SNPs) in RNA-seq data) (Chen et al., 2016; Piskol et al., 2013) to solve several technical challenges in the identification of monoallelically expressed genes from RNA-seq data. Among those challenges are alignment bias of RNA-seq reads and filtering potential false positive SNPs. Heterozygosity can increase mapping bias because a read from the non-reference allele is considered a mismatch, resulting in a low mapping rate (Wang and Clark, 2014). To minimize such alignment bias to the reference allele in the genome, we artificially built a pseudo-genome (named "alternative genome") by flipping the reference/alternative alleles in all SNP sites based on known sheep dbSNP (sheep 9940). Raw genomic DNA-seq reads were trimmed by Trimmomatic (version 0.33) (Bolger et al., 2014) to remove the universal sequencing
adaptors of Illumina with a minimum Phred score of 20 and minimal length of 30 bp . We then mapped the filtered DNA-seq reads using Hisat2 aligner (version 2.0.5) (Pertea et al., 2016) to both sheep reference genome Oar_v4.0 and the alternative genome. Only uniquely aligned reads were kept. The mapped reads and mapping rates of rams and fetuses in the two genomes were summarized in Table S6. The Picard Tool Mark Duplicates (2.12.0) ([CSL STYLE ERROR: reference with no printed form.]) was used to remove the PCR duplicates. SNVQ (NGS Tools version 2.0.0) (Duitama et al., 2012) was used to accurately detect the SNPs in the ram genome. To reduce potential false positive calls, the following parameters were used for SNP filtering (Figure 1): 1) a minimum quality score of 50 at the SNP position, 2) a minimum of three reads aligned at the SNP using both the reference and alternative genomes, 3) reversed genotypes of called SNP when reference/alternative genomes were switched (e.g., A/G in reference genome; while G/A in alternative genome), 4) SNP present and consistent with that in the sheep dbSNP (sheep 9940) database, and 5) SNP located in an exon.

Methods similar to the DNA-seq analysis for trimming, mapping and duplication removal were used for the RNA-seq data. The SNPs in fetuses were called at the individual fetus level, i.e., RNA-seq reads in the three tissue samples (brain, kidney and lung) of the same fetus were pooled to increase read coverage at each SNP site. The same SNP filtering criteria were applied as in the ram DNA-seq data.

### 2.3.4. Identification of informative SNPs

After genotyping SNPs of both the rams and their fetuses, we designated SNPs that were homozygous in the rams but heterozygous in their respective fetuses as informative SNPs (SNP1
in Figure S1). We then assigned the reads to the two parental alleles using Samtools mpileup
(version 1.4$)(\mathrm{Li}, 2011)$ and averaged the allele-specific read counts using the reference/alternative genomes.

### 2.3.5. Differential allele-specific gene expression and statistical analysis

When calculating the allele-specific gene expression (Figure 1), we only used informative SNPs that had total read counts of 20 or greater from each of the two parental alleles. This is because low read coverage may have a large variance in differential allelic expression estimation, potentially generating false positive differences (Wang and Clark, 2014). We then identified the expressed parental allele of all SNPs in the same gene and removed genes which contained discordant parental allele expression (i.e., a mixture of maternally and paternally expressed informative SNPs in the same gene). Next we aggregated the allele-specific reads for all informative SNPs in each gene to increase the sensitivity of imprinted gene prediction, as previously suggested (Chen et al., 2016), and pooled allelic expression of the same gene in biological replicates. The Fisher's exact test was used to examine if an allele was expressed by more than $70 \%$ of total read counts from both alleles combined with a false discovery rate (FDR) $\leq 0.05$.

### 2.3.6. Mammalian imprinted gene lists

The known mammalian (human, mouse, bovine, sheep and pig) imprinted genes were obtained from three well-defined databases, including Imprinted Gene Database, (http://www.geneimprint.com/site/genes-by-species). Catalogue of Parent of Origin Effects (http://igc.otago.ac.nz/Search.html) and Mouse Book database (http://www.mousebook.org/imprinting-gene-list). Additionally, we incorporated 18 novel imprinted genes identified recently in mice (Andergassen et al., 2017) and 23 in bovine (Chen et
al., 2016) to create a more current and comprehensive list of imprinted genes (Table S2). This list was used to limit the number of imprinted genes found in the sheep.

### 2.3.7. Differential gene expression analysis across maternal diets

RNA-seq reads from 15 fetuses (Con: $n=7$; Res: $n=4$; Over: $n=4$ ) were trimmed and aligned to Oar_v4.0 using Hisat2 version 2.0.5 aligner (Pertea et al., 2016). The percentages of mapped reads for all samples are summarized in Table S7 and the average multiple aligned rate is $90.3 \%$. IsoEM version 1.1.5 (Nicolae et al., 2011a) was used to quantify levels of gene expression to transcripts per kilobase million (TPM) using default parameters. TPM normalizes for gene length first and then for sequencing depth. This unit was preferred to RPKM because it normalizes transcriptome sizes. When comparing levels of gene expression across different samples, TPM allows more appropriate comparisons (Soneson et al., 2015). Differentially expressed genes (DEGs) between Con and Over or Con and Res were determined using IsoDE version 2 (Al Seesi et al., 2014). The test was preformed separately in brain, kidney and lung. In each comparison, genes were deemed differentially expressed if they showed a P-value $<0.05$ and Confident $\log 2$ fold change $(\mathrm{FC})>1$. DEGs that are in the lists of sheep known/putative imprinted genes (Table 2), the 80 monoallelically expressed genes (Table S8.1), and the mammalian known imprinted genes (Table S8.2) were subsequently pulled from the total DEG list.

### 2.3.8. Sanger sequencing

The DNA of fetuses and their respective rams and the cDNA of the specific fetal tissue in which the gene was expressed monoallelically were all amplified by PCR. All primers used are in Table S9. The PCR products were sent to Eton Bioscience for Sanger sequencing.

### 2.3.9. Data access

The raw read FASTQ files for DNA/RNA-seq reads and informative SNP averaged read count files are available at Gene Expression Omnibus (GEO https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE111306.

### 2.4. Results

### 2.4.1. High throughput identification of informative single nucleotide polymorphisms

Using single nucleotide polymorphisms (SNPs), the parental origin of an allele in the fetus can be assigned. Informative SNPs are those 1) present in mRNAs (expressed), 2) homozygous in ram and heterozygous in fetuses, and 3) expressed at read counts of 20 or greater. They are essential in determining the origin of a parental allele of genes. However, mapping at SNP locations can introduce alignment bias towards the reference alleles because the reads of the alternative alleles may be treated as mismatches and discarded by the mapping tool (Wang and Clark, 2014). To minimize such bias, we artificially built a pseudo-genome (named "alternative genome") by flipping the reference/alternative alleles at all SNP sites from the dbSNP database (sheep 9940) of the sheep reference genome. DNA-seq reads of rams and RNA-seq reads of their respective fetuses were aligned to both the reference and alternative genomes for SNP calling (Figure 1). By comparing the homozygous SNPs in each ram to the heterozygous SNPs in his fetuses, we identified a total of 146,487 unique informative SNPs (represented by SNP1 in Figure S1). These informative SNP were annotated to 15,298 genes, yielding on average of 9.6 informative SNPs per gene. The parental origins of these informative SNPs were determined using the rams' genotypes as shown in Figure S1. To further reduce alignment bias, we used Samtools mpileup (version 1.4) (Li, 2011) to calculate the allele-specific read counts for each informative SNP which were then averaged between the two genomes. Using this approach, we successfully reduced the mapping bias at informative SNP locations to $<1 \%$ (Figure 2).

### 2.4.2. Allele-specific gene expression

Fisher's exact test was programmed to identify genes with allelic expression bias of $\geq 70 \%$ which also had a read coverage $\geq 20$ at each informative SNPs in at least one tissue type. We
identified 4,537 such allelic-differentially expressed genes with a q-value $<0.05$. Eighty of these genes had significant allelically biased expression of the same parental alleles in all examined tissues (brain, kidney and lung) and were thus classified as monoallelically expressed (Table S1). Among these, 19 and 61 preferentially expressed the paternal and maternal alleles, respectively. To decrease potential false positives, we conservatively used previously identified imprinted gene as a guide. By combining all imprinted genes in the human, mouse, cow, pig and sheep we obtained a total of 263 unique imprinted genes, 119 of which have been annotated in the sheep genome (Table S2). Between these 119 and the 4,537 allelic differentially expressed genes, 18 were common and eight and ten were paternally and maternally expressed, respectively (Table 1). Five of the 18 were known to be imprinted in sheep, the other 13 were known to be imprinted in other species and were here designated as putatively imprinted (Table 1). Although there are 21 previously reported imprinted genes in sheep, only 11 of them are annotated in Oar_v4.0. Therefore 5 out of $11(45.6 \%)$ of imprinted genes were verified using just three tissues at one developmental stage. Each of the 18 genes were individually inspected using the Integrative Genomics Viewer (IGV) (Robinson et al., 2011) to confirm their correct alignments. Read counts from parental alleles of informative SNPs within the genes in each tissue were summarized in Table S3. Nine of these-COPG2, GATM, GRB10, IGF2R, INPP5F, PEG3, PON3, PPPIR9A and WARS-had more than three informative SNPs that showed significant differential allelic expression in multiple tissues and animals, firmly demonstrating their consistent parent-of-origin specific expression status, and therefore mostly likely imprinted.

The rest of the 80 monoallelically expressed genes may include genes that are only imprinted in sheep. Using the list of known imprinted genes as a guide, however does not allow
us to make such determination. Yet this conservative approach avoids any potential false positives while expanding ovine imprinting information.

### 2.4.3. Validation of the putative imprinted genes

To confirm the 13 putative imprinted genes identified above, we quantified their allelic expression using an independent method-Sanger sequencing. PCR products of seven genes: maternally expressed CASD1, COPG2, PPP1R9A and SLC22A18 (Figure 3) and paternally expressed DIRAS3, INPP5F and PLAGLI (Figure 4) were successfully generated and their allelic expression patterns were verified. The other six genes could not be independently verified by this alternative approach because of the close proximity of informative SNPs to the edge of exons and difficulty in primer design.

### 2.4.4. A novel imprinted cluster in sheep

Most of imprinted genes were found to reside in clusters of approximately one megabase (Bartolomei and Ferguson-Smith, 2011), therefore, discovery of novel imprinted genes often uses the already established clusters as a guide (Chen et al., 2016). We generated a genome visualization of the known ovine imprinted, monoallelically expressed and putative imprinted genes identified in our analysis (Figure 5). The 80 monoallelically expressed genes were mostly distributed sporadically throughout the genome. Due to the limited information on imprinted clusters in sheep, we do not exclude the possibility that some of the 80 monoallelically expressed genes may be located in imprinted clusters yet to be identified.

Among the 13 putative imprinted genes, maternally expressed genes CASD1, PPP1R9A and paternally expressed PON3 formed a novel sheep imprinted cluster located close to but not in the sheep known maternally expressed domain MEG1/GRB10 (Figure 6). This novel large imprinted cluster had been characterized as PEG10/SGCE in the mouse (Ono et al., 2003) and
human (Monk et al., 2008), indicating it is conserved and likely important in development (Nakabayashi et al., 2004). Moreover, COPG2 and WARS are located in the MEST domain and DLK1/GTL2 domain on chromosomes 4 and 18 (which also contains five other known imprinted genes; Figure 6), respectively. PHLDA2, SLC22A18 and KCNQ1 are located in KCNQ1 domain, next to IGF2/H19 domain on chromosome 21, known to be imprinted in sheep (Figure 6). The remaining five genes are located sporadically throughout the sheep genome and their associations with imprinted clusters, if any, are yet to be defined.

### 2.4.5. Tissue-specific Expression of imprinted genes in fetal organs

Imprinted genes have unique tissue- and developmental stage-specific expression patterns. Nearly all are established during fetal development (Babak et al., 2015) (Thurston et al., 2008). Day 135 of gestation in sheep corresponds to the maximal fetal growth which allows ample tissue quantities (Peñagaricano et al., 2014). To be conservative and avoid false positives, we did not intend to identify genes imprinted in some but not in other tissues in this study. We did, however, determine the tissue-specific expression levels of imprinted genes in control (Con) fetuses (Figure 7), overfed (Over) and restricted (Res) fetuses (Figure S2, Table S4.2).

Expression levels (Transcripts Per Million (TPM); Table S4) of sheep known (Figure 7) and putative coding imprinted (Figure 7) genes in the brain, kidney, and lung of fetuses from mothers of control diet exhibited tissue-specificity. The fetal mitogen IGF2, for example, was expressed at the highest level in the lung and kidney among all imprinted genes. The genes DLK1 and GATM in the kidney, DIRAS3, INPP5F and BLCAP in the brain were also among the highest expressed. While the tissue-specific expression of imprinted genes (Baran et al., 2015) have been reported previously in various species, they were mostly conducted using real time PCR which only gives relative values, while TPM from RNA-seq provides a close estimate to
the absolute expression values after correcting for transcriptome size and gene length, allowing the visualization of expression differences among different genes across samples.

### 2.4.6. Effects of maternal nutrition on expression of imprinted genes in ovine fetuses

We compared the allelic expression of the 18 imprinted genes in fetal organs from the three maternal nutrition groups (Table 1). Although not all 18 had informative SNPs or expression values in all groups, no allelic expression reversal was observed in any fetal organ under any nutrition status. However, maternal nutrition did affect the levels of expression of the imprinted genes DIRAS3, IGF2, PHLDA2, and SLC22A18, in fetal organs (Table 2 \& Figure S2). Specifically, the paternally expressed IGF2 gene, which promotes fetal growth (Reik et al., 2000), was down-regulated in the brain of fetuses from mothers of restricted diet (Res) compared to controls (Con). The maternally expressed PHLDA2 was also down-regulated in fetal brains but up-regulated in fetal lungs of both Res and overfed (Over) groups compared to Con. This gene has been shown to be involved in placental growth (Frost and Moore, 2010) and its overexpression led to low birth weight in humans (Lewis et al., 2012). The paternally expressed DIRAS3 and maternally expressed SLC22A18 are inhibitors for cell proliferation and growth (Huang et al., 2009c; Zhang et al., 2015), and were both down-regulated in lungs of the Res group and kidneys of the Over group compared to controls, respectively. Interestingly, three of the four affected genes-PHLDA2, SLC22A18, and IGF2- are located near the imprinted cluster of KCNQ1 and IGF2/H19 on chromosome 21, indicating this domain is highly responsive to maternal diet changes.

### 2.5. Discussion

Genomic imprinting in sheep is an under-developed area of research, despite the importance of the sheep in agriculture in many regions of the world and its frequent use as a model for human pregnancy and fetal development (Barry and Anthony, 2008). Our study is the first to employ NGS and bioinformatics to identify sheep imprinted genes and the effects of maternal diets on fetal imprinting. We identified 80 genes that consistently monoallelically expressed the same parental allele more than the other in all fetal tissues from all treatment groups. These 80 contain potential candidate imprinted genes in the sheep for future studies. Recent NGS studies identified more than 1,300 imprinted loci in mouse brain (Gregg et al., 2010a, 2010b), however, most were due to false positives (DeVeale et al., 2012). To avoid such problems, we used the combined list of imprinted genes from all studied species to conservatively guide our data-mining. This approach, however, does not permit us to discover genes that are only imprinted in the ovine. Nonetheless, the list is the most comprehensive by combining information from five species and the conservative method generated five sheep known and 13 new putative imprinted genes, increasing the prior list of 21 by as much as $62 \%$. Our results demonstrate the power of bioinformatics in genomic imprinting studies.

### 2.5.1. Imprinted domains

A unique feature of genomic imprinting is that imprinted genes tend to cluster as a result of long-range regulation by the imprinting control regions (Bartolomei and Ferguson-Smith, 2011). In sheep, the previously identified 21 imprinted genes are mostly clustered on chromosomes 18 and 21. From the 13 new putative imprinted genes, we identified a new sheep imprinted cluster on chromosome 4 (Figure 6), known as the PEG10/SGCE domain in humans (Kainz et al., 2007), mice (Wiley et al., 2008) and bovine (Chen et al., 2016). Unfortunately, we
did not have informative SNPs to study the expression of the two core genes, PEG10/SGCE, in this domain. Putative new imprinted genes CASD1, PPP1R9A and PON3 were located in this large imprinting domain. The imprinted status of these three genes was supported by many informative SNPs from multiple tissues and animals in our data, strong evidence for their parental expression bias. All three are maternally expressed in mice (Babak et al., 2008) and located adjacent to the paternally expressed $S G C E$ and PEG10 (Ono et al., 2003). CASD1, like other maternally expressed genes in this domain such as CALAR, is highly expressed in the brain and encodes for a glycosyl transferase (Babak et al., 2008). However, in humans, CASD1 and PON3 are biallelically expressed (Monk et al., 2008), and PPP1R9A is imprinted in skeletal muscle but not in the brain (Nakabayashi et al., 2004). The data in sheep are more similar to those in the mouse (Babak et al., 2008). Although CASD1 was expressed in all three tissues studied (Figure 7), only the kidney had sufficient read counts at this informative SNP for the determination of maternal allele expression. This pattern of expression was also confirmed by Sanger sequencing. PPP1R9A is important for early development of extraembryonic tissues (Nakabayashi et al., 2004) and is similarly expressed in all tissues examined (Figure 7). PON3 belongs to an enzyme family associated with high-density lipoprotein that is believed to protect against the onset of atherogenesis (Ono et al., 2003). Although it was nearly negligible in the brain and kidney, it was highly expressed in the lung in ovine fetuses (Figure 7). Such expression was also observed in human tissues (Fagerberg et al., 2014).

COPG2 was located in the MEST cluster on chromosome 4 (Figure 6), which was previously known as the $M E S T / C O P G 2$ imprinted domain in humans and mice (Lee et al., 2000). The maternal allele of $C O P G 2$ gene is expressed in mice but the human $C O P G 2$ escapes genome imprinting although it is adjacent to the MEST gene (Yamasaki et al., 2000). In bovine, COPG2
was found to biallelically express in fetal tissues (Khatib, 2005). However, in our analysis of ovine fetuses, $C O P G 2$ showed preferential expression from the maternal allele in both brain and lung. Such lack of conservation of genomic imprinting in closely related species may lead to challenges and modification of the currently most plausible imprinting hypothesis - "the parental conflict hypothesis" (Khatib, 2005) because not all imprinted genes fit in this model.

Our analysis placed the gene WARS near the DLK1/GTL2 imprinting domain on chromosome 18 (Figure 6), which also contains the widely-studied sheep Callipyge (CLPG) locus (Jiang and Yang, 2009), expressed from the dominant paternal allele (Freking et al., 2002). Six other imprinted genes have been identified in this region: paternally expressed $D L K 1, D A T$, and RTL1 (also known as PEG11), and maternally expressed GTL2 (also known as MEG3), PEG11AS and MEG8. Another paternally expressed gene BEGAIN, albeit located 138kb proximally from the imprinted $D L K 1$ gene, is not controlled by the ICR of the $D L K 1 / G T L 2$ domain (Smit et al., 2005). Paternally expressed WARS is located 150kb downstream of BEGAIN in sheep and encodes for a protein linking amino acids with nucleotide triplets in tRNA. It is believed to be one of the first proteins that appeared in evolution [provided by RefSeq, Jul 2008]. In the mouse WARS is also paternally expressed (DeVeale et al., 2012). However, it may not be controlled by the DLK1/GTL2 LRCE in the sheep due to its relative location to the gene BEGAIN (Figure 6).

Three other putative imprinted genes, $S C L 22 A 18$, PHLDA2 and KCNQ1, are located on chromosome 21 (Figure 6) in the KCNQ1 domain, which contains several maternally expressed genes (Lewis et al., 2006; Umlauf et al., 2004). In our analysis, these three ovine genes also showed preferential expression from the maternal allele. The region is highly involved in fetal growth regulation (Reik et al., 2000) and was found to be affected by maternal diet in our study.

Although members of this cluster are subjected to regulation by the same ICR, their expression levels varied dramatically. For example, PHLDA2 situates close to the $K C N Q 1$ gene, yet they had the highest and lowest expression levels, respectively, in the kidney among all imprinted genes (Figure 7). This may suggest that allelic expression pattern and overall gene expression levels are regulated by different mechanisms.

### 2.5.2. Effects of maternal diets on expression of imprinted gene

Maternal stressors induce changes in expression of the fetal genome which can permanently alter the offspring's physiology, development, metabolism and growth (Wu et al., 2006) as reported in mice and rats (Cooney et al., 2002; Waterland et al., 2008). Understanding the effect of poor maternal nutrition in ovine fetal development is not only relevant to agriculture (Begum et al., 2012), but also to modeling for human pregnancy and fetal development. Restricted and over-feeding of pregnant ewes were found to alter gene expression (Peñagaricano et al., 2014). As seasonal breeders, ewes enter pregnancy in late fall or early winter, and usually have sufficient food in both quantity and quality. During late gestation when fetal growth is the most rapid, however, food becomes scarce, leading to nutrition restriction. Alternatively, the practice of flushing before and during the breeding season can result in overfeeding (Wu et al., 2006). Such nutrient imbalance has been shown to severely impair fetal and placental development (Wu et al., 2006). Interestingly, we found most of the disturbed gene expression were located in the KCNQ1 and IGF2/H19 clusters, consistent with the role of IGF2 as a major fetal growth regulator (Demetriou et al., 2014). Diets of pregnant ewes containing different starch/fiber/protein portions have been shown to change the CpG methylation levels of specific imprinted genes such as IGF2R and H19 (Lan et al., 2013). Our data also showed that despite the dramatic maternal diet changes, the allelic expression pattern was not affected, further suggesting
that gene expression levels and imprinted patterns may be regulated through different epigenetic mechanisms.

### 2.5.3. Recommendations for future throughput imprinting studies

First, to avoid false positives raised by potential allelic drop-outs during amplificationbased RNA-seq library preparation (Jennings et al., 2017), we conservatively removed heterozygous SNPs between nucleotides that were not complementary even though parents were homozygous for the nucleotides (e.g., GG in fetus and TT in ram, SNP2 in Figure S1). This filtering reduced the numbers of informative SNP per gene. It is suggested that a nonamplification based hybrid capture NGS may circumvent this issue in library preparation (Jennings et al., 2017). Moreover, a number of informative SNPs were located too close to the edge of exons, making it difficult to design PCR primers. Consequently, validating them by Sanger sequencing proved difficult. Under this circumstance, new animals with different informative SNPs can be used. Allelic drop-outs may also affect PCR of Sanger sequencing. Digital Droplet PCR for absolute quantification of target informative SNPs may avoid this problem (Gutiérrez-Aguirre et al., 2015).

Second, a number of SNPs that were heterozygous in fetuses were also heterozygous in the parents (e.g., CA in fetus and CA in ram, SNP3 in Figure S1). These SNPs were not informative which reduced the number of informative SNPs and partially caused the lack of confirmation of the 6 known imprinted genes in the sheep genome. Alleviating this problem requires more animals with different genetic background, as well as a better version of sheep genome annotation.

Thirdly, most studies for the discovery of imprinted genes employ reciprocal crosses between two closely related strains/breeds/species. While this design generates high frequencies
of informative SNPs, parental allelic expression may be caused by species differences, not just imprinting. To overcome this problem, increasing the number of crosses from animals of the same species is the most relevant and preferred design.

Fourthly, cis-expression quantitative trait loci (eQTL) confers monoallelic expression in all crosses. Even using known mammalian imprinted genes as a guide, we cannot rule out that the putative imprinted genes may contain eQTL. On the other hand, the list of 80 monoallelically expressed genes likely contain more imprinted genes in addition to eQTL because they consistently expressed the same parental allele among several different crosses. Nonetheless, reciprocal crosses are necessary to firmly distinguish these two types of monoallelic expression.

Lastly, in the original experimental design, we included the fetal cotyledons because many genes are only imprinted in the placenta. However, cotyledon samples are mostly contaminated with caruncles (Bridger et al., 2007). We also found similar cross contaminations in our samples and were not able to include them in our study. Therefore, other strategies such as microdissection or single-cell RNA-seq have to be used in order to reliably study placental imprinting.

Table 1. Summary of the confirmed/putative imprinted genes in sheep

| Treatment | Control group |  |  | Overfed group |  |  | Restricted group |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tissues | Brain | Kidney | Lung | Brain | Kidney | Lung | Brain | Kidney | Lung |
| BEGAIN | ND | 91\% | 100\% | - | - | - | - | - | - |
| BLCAP | - | - | - | 79\% | 80\% | 85\% | - | - | - |
| DIRAS3 | - | - | - | - | - | - | 80\% | 87\% | ND |
| INPP5F | 97\% | ND | 70\% | 98\% | ND | ND | 97\% | ND | ND |
| PEG3 | 86\% | 85\% | 86\% | 88\% | 87\% | 86\% | 84\% | 86\% | 88\% |
| PLAGL1 | ND | 100\% | 86\% | - | - | - | - | - | - |
| PON3 | ND | 73\% | ND | ND | ND | 75\% | ND | 78\% | 76\% |
| WARS | 74\% | 72\% | ND | ND | 74\% | 70\% | 78\% | 73\% | ND |
| CASD1 | - | - | - | ND | 30\% | ND | ND | 29\% | ND |
| COPG2 | 11\% | 27\% | ND | 17\% | 21\% | ND | 20\% | 29\% | 29\% |
| GATM | 29\% | 30\% | 29\% | 19\% | 25\% | ND | ND | 28\% | ND |
| GRB10 | ND | 19\% | 25\% | 29\% | 23\% | 22\% | ND | 26\% | 18\% |
| GTL2 | - | - | - | 0 | 0 | 24\% | - | - | - |
| IGF2R | ND | 4\% | 16\% | ND | 9\% | 10\% | ND | 8\% | 7\% |
| KCNQ1 | - | - | - | ND | ND | 19\% | ND | 20\% | ND |
| PPP1R9A | ND | ND | 24\% | ND | 23\% | ND | 28\% | 21\% | 23\% |
| SLC22A18 | ND | ND | 18\% | ND | 30\% | ND | - | - | - |
| PHLDA2 | - | - | - | - | - | - | ND | 27\% | ND |

'-': no informative SNPs in this animal at this gene. 'ND': expression of the informative SNP is Not Detectable (read counts lower than 20; not reliable for allelic expression determination).
Pink or blue: exclusively/predominately expressing the maternal or the paternal allele. Numbers: \% of paternal allele expression [paternal allele reads/(paternal allele reads+ maternal allele reads)]. Genes in bold: previously known sheep imprinted genes.

Table 2. Levels of differentially expressed imprinted genes in tissues of fetal sheep from mothers of different nutrition

| Tissue | Genes | Control (TPM) | Overfed (TPM) | Log $_{2} \mathbf{F C}^{*}$ | Restricted (TPM) | Log $_{2} \mathbf{F C}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brain | PHLDA2 | 19.36 | 0.44 | -1.71 | 0.47 | -6.32 |
| Brain | IGF2 | 23.61 | 38.3 | 0.69 | 5.22 | -2.07 |
| Kidney | SLC22A18 | 16.40 | 9.55 | -1.24 | 10.56 | -0.64 |
| Lung | PHLDA2 | 0.19 | 8.28 | 6.58 | 1.31 | 2.23 |
| Lung | DIRAS3 | 3.06 | 2.37 | -0.37 | 1.28 | -1.11 |

$\mathrm{FC}^{*}$ : fold change over the expression levels in controls. $\log _{2} \mathrm{FC}$ : calculated by using bootstrapping and considered significant if greater than 1.

Figure 1. Data analysis pipeline used in this study


Left panels are the bioinformatics pipeline for SNP calling and informative SNPs identification. Right panels show the determination of monoallelically expressed genes in ovine fetuses and validation of putative imprinted genes. Details are presented in sections of Materials and Methods: SNP calling from DNA- and RNA-seq data, Identification of informative SNPs, and Differential allele-specific gene expression and statistical analysis. SNP: single nucleotide polymorphism; ref: reference genome; alt: alternative genome; B: Brain; K: Kidney; L: Lung; dup: duplication; M: maternally expressed; P: paternally expressed. Blue and red boxes: genomic DNA and exons; blue lines with blue boxes: RNA sequence reads; dash lines: mapped gaps in RNA-seq reads; Hisat2: Alignment software; SNVQ: SNP calling software; Samtools mpileup: software to assign read counts to alleles.

Figure 2. Correction of the RNA-seq alignment bias in the genome


Density plot of the percentage of reference allele's read counts in the reference genome (blue), alternative genome (red), and after alignment bias correction (green).

Figure 3. Validation of putative imprinted genes (maternally expressed) using ram and fetal DNA as well as fetal cDNA: CASD1, COPG2, PPP1R9A, and SLC22A18


Red arrows: locations of the informative SNPs. All SNPs were confirmed homozygous in rams and heterozygous in fetuses. Gene expression in cDNA of fetal tissues were allelically biased.

Figure 4. Validation of putative imprinted genes (paternally expressed) using ram and fetal DNA as well as fetal cDNA: DIRAS3, INPP5F, and PLAGL1


Red arrows: locations of the informative SNPs. All SNPs were confirmed homozygous in rams and heterozygous in fetuses. Allelic expression was determined using cDNA from fetal tissues.

Figure 5. Visualization of the 11 known sheep imprinted genes in the ovine genome Oar_v4.0 annotation (orange)

_ 11 Known sheep imprinted genes in Oar_v4.0 annotation ( 5 identified in our study)

- 13 Putative imprinted genes
- 80 Monoallelically expressed genes


The five genes verified in our study (orange mark, blue text), the 13 putative imprinted genes identified here (red mark), the 80 monoallelically expressed genes (purple lines, some are overlapped), and the four imprinted clusters (blue boxes).

Figure 6. Genes and their parental expression patterns in the four imprinted clusters in sheep

| 11764090 | Chromosome 4: PEG10/SGCE2 |  |  |  |  | 12487031 - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\xrightarrow[\text { CASD1 }]{ }$ | $\stackrel{\text { SGCE* }}{ }$ | $\overrightarrow{\text { PEG10 }} *$ | PPP1R9A | $\stackrel{\leftarrow}{\stackrel{4}{4} 3}$ |  |



Pink: maternally expressed; blue: paternally expressed. Arrow indicates the gene expression direction. *known imprinted in humans/mice.

Figure 7. Expression levels (Transcripts Per Million, TPM $\pm$ SD) of sheep imprinted genes in the brain, kidney, and lung tissue of day $\mathbf{1 3 5}$ ovine fetuses from ewes fed a control diet


10 coding and previously known imprinted genes in the sheep genome. B. The 13 putative imprinted genes identified in our study.

### 2.6. Supplementary information

Table S1.1. Summary of the $\mathbf{8 0}$ monoallelically expressed genes in sheep

| Treatment | Control group |  |  | Overfed group |  |  | Restrict group |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tissuetype | Brain | Kidney | Lung | Brain | Kidney | Lung | Brain | Kidney | Lung |
| ACOT13 | 84\% | 85\% | 88\% | 83\% | 79\% | 84\% | 88\% | 81\% | 82\% |
| C2H9orf3 | 77\% | 75\% | 76\% | 73\% | 85\% | 75\% | 75\% | 76\% | 74\% |
| CCBL1 | 96\% | 83\% | 90\% | 85\% | 91\% | 85\% | 86\% | 89\% | 87\% |
| CHMP2A | 93\% | 92\% | 92\% | 94\% | 91\% | 94\% | 89\% | 95\% | 94\% |
| EIF2S3 | 88\% | 91\% | 83\% | 89\% | 90\% | 91\% | 90\% | 87\% | 89\% |
| EIF4G1 | 88\% | 92\% | 84\% | 91\% | 90\% | 87\% | 93\% | 92\% | 84\% |
| GNAQ | 76\% | 79\% | 81\% | 77\% | 77\% | 77\% | 78\% | 78\% | 77\% |
| ITGB5 | 83\% | 80\% | 82\% | 100\% | 91\% | 79\% | 86\% | 84\% | 80\% |
| LOC101108797 | 86\% | 84\% | 85\% | 84\% | 81\% | 86\% | 79\% | 86\% | 85\% |
| LOC105602948 | 84\% | 89\% | 92\% | 84\% | 90\% | 94\% | 89\% | 90\% | 94\% |
| LOC106991149 | 81\% | 92\% | 94\% | 89\% | 88\% | 93\% | 85\% | 92\% | 91\% |
| NES | 77\% | 72\% | 75\% | 79\% | 74\% | 78\% | 79\% | 79\% | 83\% |
| PARG | 91\% | 83\% | 81\% | 82\% | 78\% | 80\% | 76\% | 78\% | 80\% |
| PEG3 | 86\% | 85\% | 86\% | 88\% | 87\% | 86\% | 84\% | 86\% | 88\% |
| PPP2R1A | 91\% | 94\% | 89\% | 92\% | 94\% | 90\% | 92\% | 89\% | 93\% |
| RWDD1 | 76\% | 76\% | 78\% | 79\% | 77\% | 79\% | 81\% | 83\% | 82\% |
| SAFB | 81\% | 77\% | 77\% | 81\% | 75\% | 74\% | 81\% | 81\% | 83\% |
| SON | 79\% | 76\% | 78\% | 83\% | 78\% | 74\% | 82\% | 79\% | 79\% |
| UBB | 87\% | 85\% | 85\% | 87\% | 85\% | 85\% | 86\% | 81\% | 83\% |
| ABHD16A | 18\% | 23\% | 12\% | 17\% | 21\% | 26\% | 22\% | 30\% | 27\% |
| ALDH2 | 18\% | 28\% | 27\% | 15\% | 25\% | 29\% | 23\% | 26\% | 27\% |
| APOE | 13\% | 20\% | 14\% | 11\% | 8\% | 25\% | 16\% | 9\% | 19\% |
| ARCN1 | 9\% | 19\% | 13\% | 7\% | 4\% | 19\% | 17\% | 11\% | 13\% |
| ARFGEF1 | 14\% | 22\% | 20\% | 11\% | 25\% | 29\% | 8\% | 20\% | 21\% |
| ARL2BP | 22\% | 16\% | 14\% | 20\% | 7\% | 10\% | 22\% | 13\% | 22\% |
| ATP5G1 | 13\% | 20\% | 18\% | 10\% | 16\% | 22\% | 12\% | 17\% | 26\% |
| AUP1 | 13\% | 20\% | 18\% | 16\% | 17\% | 21\% | 15\% | 16\% | 19\% |
| BBS4 | 19\% | 24\% | 17\% | 10\% | 18\% | 25\% | 14\% | 23\% | 23\% |
| CFAP20 | 4\% | 22\% | 23\% | 10\% | 10\% | 16\% | 22\% | 8\% | 19\% |
| CLK1 | 21\% | 21\% | 21\% | 22\% | 19\% | 23\% | 16\% | 19\% | 20\% |
| CNBP | 11\% | 23\% | 19\% | 14\% | 16\% | 22\% | 17\% | 18\% | 19\% |
| CPSF3L | 16\% | 21\% | 18\% | 15\% | 12\% | 21\% | 18\% | 15\% | 19\% |
| CRELD1 | 19\% | 14\% | 18\% | 18\% | 16\% | 14\% | 21\% | 15\% | 18\% |
| CSNK2B | 18\% | 13\% | 13\% | 5\% | 9\% | 16\% | 9\% | 11\% | 20\% |
| CUL7 | 15\% | 27\% | 28\% | 20\% | 25\% | 20\% | 19\% | 24\% | 30\% |
| DBN1 | 14\% | 24\% | 20\% | 16\% | 19\% | 27\% | 16\% | 21\% | 28\% |
| DCTN1 | 12\% | 18\% | 21\% | 13\% | 12\% | 23\% | 18\% | 20\% | 19\% |
| DNAJC11 | 8\% | 15\% | 24\% | 10\% | 9\% | 24\% | 17\% | 27\% | 7\% |
| DNAJC7 | 8\% | 19\% | 15\% | 8\% | 11\% | 18\% | 7\% | 17\% | 23\% |
| DPF2 | 24\% | 21\% | 19\% | 17\% | 19\% | 19\% | 14\% | 22\% | 15\% |
| EMC1 | 9\% | 12\% | 10\% | 8\% | 15\% | 24\% | 13\% | 14\% | 12\% |


| FBXO9 | 9\% | 24\% | 18\% | 15\% | 13\% | 16\% | 10\% | 21\% | 22\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FERMT2 | 12\% | 17\% | 15\% | 16\% | 17\% | 19\% | 11\% | 19\% | 17\% |
| FIBP | 21\% | 24\% | 20\% | 22\% | 24\% | 21\% | 27\% | 20\% | 28\% |
| GGNBP2 | 13\% | 21\% | 24\% | 19\% | 21\% | 21\% | 10\% | 18\% | 19\% |
| GIT1 | 17\% | 17\% | 14\% | 8\% | 23\% | 26\% | 12\% | 15\% | 21\% |
| GPAA1 | 18\% | 18\% | 22\% | 13\% | 16\% | 23\% | 16\% | 21\% | 15\% |
| GPI | 6\% | 18\% | 18\% | 8\% | 21\% | 19\% | 6\% | 17\% | 14\% |
| HNRNPM | 16\% | 24\% | 23\% | 16\% | 22\% | 24\% | 16\% | 23\% | 24\% |
| HNRNPU | 22\% | 16\% | 21\% | 23\% | 15\% | 19\% | 19\% | 21\% | 13\% |
| ILF2 | 14\% | 20\% | 20\% | 12\% | 24\% | 20\% | 5\% | 18\% | 19\% |
| KPNB1 | 17\% | 14\% | 17\% | 16\% | 11\% | 18\% | 18\% | 18\% | 15\% |
| LOC101109495 | 14\% | 21\% | 23\% | 20\% | 17\% | 21\% | 21\% | 23\% | 18\% |
| LOC101112480 | 25\% | 22\% | 19\% | 25\% | 22\% | 21\% | 25\% | 20\% | 18\% |
| LPCAT4 | 12\% | 14\% | 15\% | 18\% | 15\% | 18\% | 19\% | 11\% | 20\% |
| MAP4K4 | 14\% | 25\% | 23\% | 18\% | 28\% | 28\% | 14\% | 12\% | 27\% |
| MAT2A | 12\% | 16\% | 10\% | 13\% | 10\% | 18\% | 14\% | 11\% | 15\% |
| MPRIP | 23\% | 14\% | 13\% | 27\% | 19\% | 12\% | 24\% | 16\% | 13\% |
| MTCH1 | 7\% | 22\% | 20\% | 4\% | 23\% | 23\% | 8\% | 21\% | 24\% |
| NCOA4 | 16\% | 19\% | 20\% | 3\% | 13\% | 24\% | 14\% | 24\% | 20\% |
| NDUFA2 | 16\% | 14\% | 15\% | 16\% | 13\% | 11\% | 12\% | 19\% | 14\% |
| PAM | 21\% | 28\% | 25\% | 22\% | 27\% | 27\% | 23\% | 27\% | 25\% |
| PRKCSH | 17\% | 15\% | 16\% | 19\% | 18\% | 22\% | 22\% | 20\% | 16\% |
| PSMA4 | 16\% | 20\% | 18\% | 15\% | 18\% | 23\% | 24\% | 14\% | 16\% |
| PSMD2 | 14\% | 20\% | 14\% | 5\% | 20\% | 18\% | 7\% | 17\% | 19\% |
| PTOV1 | 11\% | 19\% | 23\% | 15\% | 21\% | 20\% | 14\% | 20\% | 21\% |
| RAF1 | 20\% | 23\% | 21\% | 7\% | 22\% | 23\% | 14\% | 17\% | 20\% |
| RBM5 | 13\% | 16\% | 16\% | 11\% | 18\% | 20\% | 16\% | 17\% | 15\% |
| RFXANK | 16\% | 20\% | 19\% | 23\% | 12\% | 24\% | 13\% | 18\% | 18\% |
| RPN1 | 18\% | 18\% | 27\% | 29\% | 25\% | 25\% | 21\% | 17\% | 21\% |
| SGK1 | 19\% | 17\% | 22\% | 21\% | 21\% | 18\% | 18\% | 21\% | 16\% |
| SLC25A3 | 9\% | 21\% | 21\% | 12\% | 20\% | 24\% | 16\% | 19\% | 25\% |
| SNF8 | 17\% | 26\% | 22\% | 20\% | 17\% | 22\% | 21\% | 20\% | 23\% |
| SORT1 | 15\% | 22\% | 22\% | 19\% | 14\% | 29\% | 19\% | 24\% | 18\% |
| TBCB | 11\% | 25\% | 24\% | 11\% | 24\% | 23\% | 13\% | 23\% | 26\% |
| TERF2 | 16\% | 24\% | 18\% | 27\% | 20\% | 19\% | 18\% | 20\% | 16\% |
| TMX2 | 12\% | 21\% | 26\% | 9\% | 23\% | 23\% | 10\% | 24\% | 26\% |
| TRMT2A | 18\% | 24\% | 15\% | 14\% | 9\% | 24\% | 14\% | 13\% | 21\% |
| UAP1 | 10\% | 15\% | 17\% | 7\% | 16\% | 19\% | 17\% | 15\% | 20\% |
| VPS52 | 10\% | 20\% | 10\% | 12\% | 12\% | 19\% | 14\% | 11\% | 18\% |

Pink and blue: maternally and paternally expressed, respectively. Numbers: \% of paternal allele expression [paternal allele reads/(paternal allele reads+ maternal allele reads)]. Genes in bold: known sheep imprinted genes.

Table S1.2. The iSNPs and the percentages of their paterntal allele expression in the $\mathbf{8 0}$ monoallelically expressed genes in each animal/tissue sample
https://www.tandfonline.com/doi/suppl/10.1080/15592294.2018.1503489?scroll=top
Table S2. Summary of imprinted genes in the sheep (21), mouse (186), human (112), cow (49), pig (25) and all 263 imprinted genes combined from five species

Among the 263, 119 genes are present in sheep genome Oar_v4.0. https://www.tandfonline.com/doi/suppl/10.1080/15592294.2018.1503489?scroll=top

Table S3. The iSNPs and the percentages of their paternal allele expression for the 18 putative imprinted genes in each animal/tissue samples
https://www.tandfonline.com/doi/suppl/10.1080/15592294.2018.1503489?scroll=top

Table S4. Expression levels mean of known and putative imprinted genes in in sheep tissues of maternal nutrition groups

| Maternal nutrition group | Known imprinted genes | Brain | Kidney | Lung | Putative imprinted genes | Brain | Kidney | Lung |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Control | BEGAIN | 86.41 | 16.76 | 8.08 | COPG2 | 58.51 | 28.74 | 29.49 |
|  | CDKN1C | 9.77 | 123.68 | 40.19 | GATM | 158.17 | 363.23 | 34.52 |
|  | DIO3 | 1.83 | 2.41 | 0.06 | DIRAS3 | 520.62 | 21.31 | 3.06 |
|  | DLK1 | 1.13 | 756.23 | 59.13 | SLC22A18 | 1.07 | 16.40 | 0.38 |
|  | GRB10 | 12.22 | 36.49 | 29.98 | PHLDA2 | 19.36 | 253.60 | 0.19 |
|  | IGF2 | 23.61 | 1907.47 | 3404.81 | BLCAP | 305.11 | 93.72 | 89.84 |
|  | IGF2R | 23.75 | 299.86 | 235.25 | WARS | 113.19 | 67.29 | 113.22 |
|  | MEST | 32.11 | 111.10 | 74.17 | PLAGL1 | 20.74 | 208.89 | 111.97 |
|  | PEG3 | 29.69 | 174.60 | 47.25 | PPP1R9A | 47.27 | 42.20 | 46.67 |
|  | RTL1 | 0.49 | 31.27 | 0.74 | KCNQ1 | 2.08 | 11.39 | 5.45 |
|  |  |  |  |  | CASD1 | 22.98 | 20.28 | 14.05 |
|  |  |  |  |  | PON3 | 0.54 | 11.89 | 157.89 |
|  |  |  |  |  | INPP5F | 419.06 | 19.75 | 31.61 |
| Overfed | BEGAIN | 93.49 | 14.61 | 10.41 | COPG2 | 59.67 | 27.07 | 26.82 |
|  | CDKN1C | 7.06 | 139.19 | 42.01 | GATM | 147.21 | 506.73 | 30.74 |
|  | DIO3 | 1.41 | 3.76 | 0.29 | DIRAS3 | 412.49 | 21.35 | 2.37 |
|  | DLK1 | 0.12 | 721.70 | 94.27 | SLC22A18 | 1.15 | 9.55 | 0.72 |
|  | GRB10 | 12.14 | 30.95 | 28.23 | PHLDA2 | 0.44 | 130.65 | 8.28 |
|  | IGF2 | 38.26 | 2096.00 | 3074.34 | BLCAP | 308.53 | 88.44 | 89.03 |
|  | IGF2R | 23.64 | 405.87 | 205.58 | WARS | 121.30 | 75.56 | 124.26 |
|  | MEST | 27.94 | 136.66 | 86.21 | PLAGL1 | 19.86 | 216.79 | 103.98 |
|  | PEG3 | 28.62 | 224.42 | 35.94 | PPP1R9A | 45.46 | 49.64 | 35.04 |
|  | RTL1 | 0.24 | 20.37 | 1.42 | KCNQ1 | 2.51 | 11.02 | 4.80 |
|  |  |  |  |  | CASD1 | 22.11 | 20.79 | 12.91 |
|  |  |  |  |  | PON3 | 0.68 | 12.19 | 105.34 |
|  |  |  |  |  | INPP5F | 334.57 | 19.57 | 30.29 |
| Restricted | BEGAIN | 54.53 | 19.67 | 9.59 | COPG2 | 62.56 | 27.42 | 30.70 |
|  | CDKN1C | 15.27 | 131.04 | 43.48 | GATM | 193.92 | 421.41 | 30.54 |
|  | DIO3 | 1.24 | 1.91 | 0.04 | DIRAS3 | 407.41 | 32.33 | 1.28 |
|  | DLK1 | 0.43 | 750.71 | 55.69 | SLC22A18 | 0.53 | 10.56 | 0.17 |
|  | GRB10 | 11.69 | 35.42 | 31.79 | PHLDA2 | 0.47 | 206.26 | 1.31 |
|  | IGF2 | 5.22 | 1965.73 | 3054.94 | BLCAP | 265.86 | 94.72 | 92.80 |
|  | IGF2R | 15.78 | 371.21 | 222.87 | WARS | 102.75 | 72.70 | 127.45 |
|  | MEST | 30.87 | 110.79 | 80.57 | PLAGL1 | 19.73 | 216.57 | 109.18 |
|  | PEG3 | 22.48 | 252.27 | 44.18 | PPP1R9A | 42.57 | 51.06 | 43.89 |
|  | RTL1 | 0.36 | 21.90 | 0.69 | KCNQ1 | 1.76 | 9.86 | 4.08 |
|  |  |  |  |  | CASD1 | 19.60 | 21.08 | 14.46 |
|  |  |  |  |  | PON3 | 0.50 | 11.19 | 111.54 |
|  |  |  |  |  | INPP5F | 299.25 | 20.70 | 33.22 |

TPM $<1$ is used as a cut-off for gene expression.
Genes highlighted are lowly expressed.

Table S5. RNA integrity number in each sample

| Tissue | Treatment | Sample ID | RIN | 260/280 | Qubit RNA concentration (ng/ul) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Brain | Control | 1 | 8.3 | 2.2 | 1176 |
|  |  | 2 | 8.7 | 2.15 | 230 |
|  |  | 3 | 7 | 2.23 | 85.8 |
|  |  | 4 | 8.1 | 2.22 | 472 |
|  |  | 5 | 8.8 | 2.14 | 1170 |
|  |  | 6 | 7 | 2.14 | 576 |
|  |  | 7 | 8 | 2.14 | 1158 |
|  | Restricted | 1 | 8.3 | 2.19 | 724 |
|  |  | 2 | 7.5 | 2.14 | 252 |
|  |  | 3 | 8.4 | 2.13 | 103 |
|  |  | 4 | 8.1 | 2.16 | 858 |
|  | Overfed | 1 | 8.2 | 2.18 | 720 |
|  |  | 2 | 7.4 | 2.19 | 220 |
|  |  | 3 | 8.5 | 2.19 | 468 |
|  |  | 4 | 9 | 2.18 | 1266 |
| Lung | Control | 1 | 9.5 | 2.18 | 796 |
|  |  | 2 | 9.4 | 2.14 | 396 |
|  |  | 3 | 9.4 | 2.18 | 510 |
|  |  | 4 | 9 | 2.17 | 464 |
|  |  | 5 | 10 | 2.14 | 573 |
|  |  | 6 | 9.7 | 2.14 | 1860 |
|  |  | 7 | 9.9 | 2.14 | 1920 |
|  | Restricted | 1 | 8.2 | 2.16 | 1448 |
|  |  | 2 | 8.9 | 2.14 | 422 |
|  |  | 3 | 8.8 | 2.13 | 384 |
|  |  | 4 | 9.4 | 2.12 | 342 |
|  | Overfed | 1 | 9 | 2.17 | 988 |
|  |  | 2 | 9.1 | 2.18 | 540 |
|  |  | 3 | 9.3 | 2.19 | 488 |
|  |  | 4 | 9.1 | 2.18 | 684 |
| Kidney | Control | 1 | 8.9 | 2.12 | 450 |
|  |  | 2 | 7.3 | 2.15 | 1264 |
|  |  | 3 | 9.3 | 2.08 | 736 |
|  |  | 4 | 7.8 | 2.11 | 1160 |
|  |  | 5 | 9.1 | 2.14 | 1470 |
|  |  | 6 | 7.3 | 2.14 | 1092 |
|  |  | 7 | 8.3 | 2.14 | 2226 |
|  | Restricted | 1 | 8.8 | 2.04 | 2412 |
|  |  | 2 | 9.1 | 2.1 | 1996 |
|  |  | 3 | 7.5 | 2.18 | 1280 |
|  |  | 4 | 9.3 | 2.16 | 330 |
|  | Overfed | 1 | 9.2 | 2.1 | 494 |
|  |  | 2 | 8.4 | 2.1 | 524 |
|  |  | 3 | 8.9 | 2.15 | 648 |
|  |  | 4 | 7.8 | 2.2 | 1224 |

Table S6. RNA sequencing and DNA sequencing mapping rate for unique aligned reads in two genomes

|  | Mapping_rate |  |  |
| :---: | :---: | :---: | :---: |
| Sample name | Input reads | Reference_genome | Alternative_genome |
| RNA sequencing |  |  |  |
| Brain_Con1 | 19,338,492 | 87.65\% | 87.55\% |
| Brain_Con2 | 7,403,965 | 87.87\% | 87.91\% |
| Brain_Con3 | 16,659,394 | 88.73\% | 88.74\% |
| Brain_Con4 | 10,877,799 | 89.29\% | 89.41\% |
| Brain_Con5 | 44,248,481 | 88.58\% | 88.69\% |
| Brain_Con6 | 27,184,026 | 88.24\% | 88.33\% |
| Brain_Con7 | 22,361,399 | 88.07\% | 88.15\% |
| Brain_Over1 | 24,241,471 | 88.45\% | 88.55\% |
| Brain_Over2 | 12,234,121 | 89.03\% | 89.05\% |
| Brain_Over3 | 13,845,220 | 88.87\% | 88.96\% |
| Brain_Over4 | 30,882,144 | 88.67\% | 88.78\% |
| Brain_Res1 | 16,265,786 | 89.46\% | 89.52\% |
| Brain_Res2 | 16,451,888 | 89.51\% | 89.53\% |
| Brain_Res3 | 12,068,236 | 88.79\% | 88.86\% |
| Brain_Res4 | 19,787,096 | 88.72\% | 88.81\% |
| Kidney_Con1 | 5,309,507 | 88.85\% | 89.00\% |
| Kidney_Con2 | 19,799,155 | 88.45\% | 88.50\% |
| Kidney_Con3 | 22,380,911 | 88.85\% | 89.05\% |
| Kidney_Con4 | 26,838,096 | 88.56\% | 88.66\% |
| Kidney_Con5 | 27,727,956 | 88.54\% | 88.72\% |
| Kidney_Con6 | 19,647,949 | 88.18\% | 88.26\% |
| Kidney_Con7 | 22,924,014 | 88.14\% | 88.27\% |
| Kidney_Over1 | 8,348,235 | 88.67\% | 88.84\% |
| Kidney_Over2 | 23,979,270 | 88.55\% | 88.73\% |
| Kidney_Over3 | 7,705,718 | 88.89\% | 89.06\% |
| Kidney_Over4 | 19,777,286 | 88.60\% | 88.72\% |
| Kidney_Res1 | 22,860,452 | 88.61\% | 88.77\% |
| Kidney_Res2 | 20,851,640 | 88.32\% | 88.43\% |
| Kidney_Res3 | 26,710,129 | 88.16\% | 88.34\% |
| Kidney_Res4 | 5,475,073 | 88.95\% | 89.10\% |
| Lung_Con1 | 18,685,815 | 88.06\% | 88.30\% |
| Lung_Con2 | 22,413,568 | 87.68\% | 87.90\% |
| Lung_Con3 | 20,516,820 | 87.74\% | 87.97\% |
| Lung_Con4 | 26,061,352 | 87.92\% | 88.11\% |
| Lung_Con5 | 29,341,237 | 87.68\% | 87.90\% |
| Lung_Con6 | 33,475,352 | 87.16\% | 87.27\% |
| Lung_Con7 | 27,083,308 | 87.76\% | 87.94\% |
| Lung_Over1 | 67,688,330 | 87.19\% | 87.38\% |
| Lung_Over2 | 24,310,426 | 88.87\% | 89.14\% |
| Lung_Over3 | 15,834,344 | 88.24\% | 88.47\% |
| Lung_Over4 | 33,703,648 | 87.30\% | 87.53\% |
| Lung_Res1 | 28,273,422 | 87.79\% | 88.04\% |
| Lung_Res2 | 37,304,508 | 87.51\% | 87.69\% |
| Lung_Res3 | 14,983,923 | 88.03\% | 88.20\% |
| Lung_Res4 | 15,457,570 | 88.02\% | 88.20\% |
| DNA sequencing |  |  |  |
| Ram_1 | 521,179,196 | 85.29\% | 85.14\% |
| Ram_2 | 164,576,169 | 85.30\% | 85.17\% |
| Ram_3 | 357,811,435 | 85.77\% | 85.68\% |
| Ram_4 | 289,304,114 | 85.92\% | 85.83\% |

Table S7. RNA Sequencing mapping rates for multiple aligned reads

| Fetus ID | Input reads | \% Mapped Reads | Number of Mapped Reads |
| :---: | :---: | :---: | :---: |
| Brain_Con1 | 19,338,492 | 89\% | 17,261,538 |
| Brain_Con2 | 7,403,965 | 90\% | 6,629,510 |
| Brain_Con3 | 16,659,394 | 90\% | 15,055,094 |
| Brain_Con4 | 10,877,799 | 91\% | 9,932,518 |
| Brain_Con5 | 44,248,481 | 90\% | 40,040,450 |
| Brain_Con6 | 27,184,026 | 90\% | 24,500,963 |
| Brain_Con7 | 22,361,399 | 90\% | 20,089,481 |
| Brain_Over1 | 24,241,471 | 91\% | 14,836,023 |
| Brain_Over2 | 12,234,121 | 91\% | 14,979,444 |
| Brain_Over3 | 13,845,220 | 91\% | 10,926,581 |
| Brain_Over4 | 30,882,144 | 91\% | 17,921,173 |
| Brain_Res1 | 16,265,786 | 90\% | 21,904,593 |
| Brain_Res2 | 16,451,888 | 91\% | 11,086,560 |
| Brain_Res3 | 12,068,236 | 91\% | 12,564,537 |
| Brain_Res4 | 19,787,096 | 91\% | 27,966,870 |
| Kidney_Con1 | 5,309,507 | 90\% | 16,897,583 |
| Kidney_Con2 | 19,799,155 | 90\% | 20,199,107 |
| Kidney_Con3 | 22,380,911 | 90\% | 18,491,810 |
| Kidney_Con4 | 26,838,096 | 90\% | 23,499,521 |
| Kidney_Con5 | 27,727,956 | 90\% | 26,421,784 |
| Kidney_Con6 | 19,647,949 | 89\% | 29,926,965 |
| Kidney_Con7 | 22,924,014 | 90\% | 24,366,852 |
| Kidney_Over1 | 8,348,235 | 90\% | 25,508,281 |
| Kidney_Over2 | 23,979,270 | 90\% | 33,525,561 |
| Kidney_Over3 | 7,705,718 | 90\% | 13,539,473 |
| Kidney_Over4 | 19,777,286 | 90\% | 13,964,369 |
| Kidney_Res1 | 22,860,452 | 89\% | 60,526,905 |
| Kidney_Res2 | 20,851,640 | 91\% | 22,129,781 |
| Kidney_Res3 | 26,710,129 | 91\% | 14,345,916 |
| Kidney_Res4 | 5,475,073 | 90\% | 30,242,283 |
| Lung_Con1 | 18,685,815 | 91\% | 4,836,961 |
| Lung_Con2 | 22,413,568 | 90\% | 17,858,838 |
| Lung_Con3 | 20,516,820 | 91\% | 20,386,772 |
| Lung_Con4 | 26,061,352 | 90\% | 24,242,852 |
| Lung_Con5 | 29,341,237 | 91\% | 25,146,483 |
| Lung_Con6 | 33,475,352 | 90\% | 17,692,978 |
| Lung_Con7 | 27,083,308 | 90\% | 20,656,829 |
| Lung_Over1 | 67,688,330 | 91\% | 7,591,885 |
| Lung_Over2 | 24,310,426 | 91\% | 21,765,983 |
| Lung_Over3 | 15,834,344 | 91\% | 7,026,844 |
| Lung_Over4 | 33,703,648 | 91\% | 17,920,199 |
| Lung_Res1 | 28,273,422 | 91\% | 20,732,144 |
| Lung_Res2 | 37,304,508 | 90\% | 18,835,286 |
| Lung_Res3 | 14,983,923 | 90\% | 24,124,589 |
| Lung_Res4 | 15,457,570 | 91\% | 4,992,172 |

Table S8.1.DEG of monoallellically expressed genes in sheep fetal tissues of maternal nutrition

| Comparisons | Tissue | Genes | Condition1 <br> (TPM) | Condition2 <br> (TPM) | Single Log2 FC | Confident Log2 FC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Con vs. Res | Brain | LOC101112480 | 12.241 | 21.36 | 0.80 | 1.23 |

Table S8.2. DEG of known mammlian imprinted genes in sheep fetal tissues of maternal nutrition. Red genes are imprinted genes in sheep

| Comparisons | Tissue | Genes | Condition1 (TPM) | Condition2 (TPM) | Single Log2 FC | Confident Log2 FC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Con vs. Over | Brain | KRT7 | 4.35 | 1.58 | -1.46 | -1.39 |
|  |  | PHLDA2 | 19.36 | 0.44 | -5.46 | -1.71 |
|  | Kidney | ADAM23 | 2.10 | 5.83 | 1.48 | 2.69 |
|  |  | AOX1 | 13.25 | 3.10 | -2.10 | -1.39 |
|  |  | RBP5 | 18.10 | 13.30 | -0.44 | -1.08 |
|  |  | SGK2 | 17.48 | 13.63 | -0.36 | -1.04 |
|  |  | SLC22A18 | 16.40 | 9.63 | -0.77 | -1.24 |
|  | Lung | PHLDA2 | 0.21 | 8.22 | 5.29 | 6.58 |
|  |  | WT1 | 0.12 | 2.08 | 4.11 | 3.38 |
| Con vs. Res | Brain | AOX1 | 2.82 | 0.71 | -1.98 | -1.82 |
|  |  | GALNT6 | 5.00 | 39.82 | 2.99 | 1.97 |
|  |  | GLIS3 | 10.16 | 4.48 | -1.18 | -1.04 |
|  |  | IGF2 | 16.45 | 5.19 | -1.67 | -2.07 |
|  |  | PHLDA2 | 19.36 | 0.47 | -5.36 | -6.32 |
|  |  | SGK2 | 4.52 | 36.38 | 3.01 | 1.47 |
|  |  | SLC22A2 | 1.14 | 0.23 | -2.33 | -2.28 |
|  |  | SMOC2 | 3.15 | 1.37 | -1.20 | -1.10 |
|  |  | TP73 | 2.66 | 0.39 | -2.76 | -2.63 |
|  |  | TSPAN32 | 1.16 | 2.25 | 0.96 | 1.02 |
|  | Kidney | AOX1 | 13.25 | 3.45 | -1.94 | -1.39 |
|  | Lung | DIRAS3 | 3.06 | 1.29 | -1.24 | -1.11 |
|  |  | PHLDA2 | 0.21 | 1.29 | 2.61 | 2.23 |

Red genes are imprinted genes in sheep

Table S9. Primers used for PCR and Sanger sequencing

| Gene <br> Name | Forward primer | Product <br> length | TM |  |
| :--- | :--- | :--- | :---: | :---: |
| CASD1 | TGGCAGCAGACACAAGGGGTATCTT | TGCACTCTGCTTCAGTTTTCTTCAGT | 449 | $55^{\circ}$ |
| C |  |  |  |  |

Figure S1. Identification of informative SNPs (iSNPs).


Four different types of SNP combination were observed and only SNP1 was considered informative because it is heterozygous in the fetus and homozygous in the ram. Others are either discordant or uninformative in the allele's parental origin.

Figure S2. Expression levels (TPM mean) of sheep imprinted genes in the brain, kidney, and lung tissue of day $\mathbf{1 3 5}$ fetal sheep from ewes fed a control diet.


A-B.The 10 coding and previously known imprinted genes in the sheep genome. C. The 13 putative imprinted genes identified in our study. Blue: brain, orange: kidney, grey: lung. (*) Indicates genes are differentially expressed that present in Table2.

## Chapter Three

Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos and Somatic Tissues
(Under revision, Genome Biology and Evolution)
Duan J.E., Shi W., Jue N.K., Jiang Z., Kuo L., O’Neill R., Wolf E., Dong H., Zheng X., Chen J. \& Tian X.C.

### 3.1. Abstract

Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to the doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) vs. male (XY) and between a single active X vs. autosome pairs (A). Expression ratio of Xand A-linked genes has been relatively well-studied in humans and mice, despite controversial results over the existence of up-regulation of X-linked genes. Here we report the first comprehensive test of Ohno's hypothesis in bovine pre-attachment embryos, germline and somatic tissues. Overall an incomplete dosage compensation $(0.5<\mathrm{X}: \mathrm{A}<1)$ of expressed genes and an excess X dosage compensation ( $\mathrm{X}: \mathrm{A}>1$ ) of ubiquitously expressed "dosage-sensitive" genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno's hypothesis. Interestingly, pre-implantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X -linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8 -cell stage to the compact morula stage. The X dosage peaked at the 16 cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno's hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and "dosage-sensitive" genes, respectively.

Keywords Ohno's hypothesis; X dosage compensation; Pre-attachment embryos; Bovine

### 3.2. Introduction

Gene dosage is the number of copies of a given gene in cells of an organism and can be manifested by the amount of its products (Ercan, 2015). Maintenance of proper gene dosage is essential in functional cellular networks such as in embryogenesis, and fetus development. Aneuploidy such as monosomy or trisomy is an abnormal change in the dosage of chromosomes and is generally detrimental to the organism (Holtzman et al., 1992). For example, aneuploidy accounts for $46.3 \%$ of spontaneous abortions in humans (Hassold et al., 1980). Small changes in dosage of single genes can lead to many diseases (Hurles et al., 2008) and the onset of tumorigenesis (Gordon et al., 2012). However, monosomy of the X chromosome in mammalian males is well-tolerated, although over a thousand genes important for both sexes are located on X (Ercan, 2015). Susumu Ohno hypothesized that to prevent the deleterious effects of haploinsufficiency in males, a compensatory mechanism involving the doubling expression of Xlinked genes must occur (Ohno et al., 1959). This, however, at the same time could cause a quadruple dosage of X in females. By transcriptionally silencing one of the two X chromosomes in females the dosage of the X chromosome between males and females is balanced (Veitia and Potier, 2015). Meanwhile, this also balances the gene dosage between sex chromosome and autosome pairs (A) in both sexes (Ohno, 1966).

Although X chromosome inactivation (XCI) has been observed in all mammalian species studied to date (Heard et al., 1997; Lyon, 1961; Ohno et al., 1959), dosage compensation by doubling the expression of X-linked genes has only been studied in very few species and is still heavily debated (Deng et al., 2011; He et al., 2011; Kharchenko et al., 2011; Nguyen and Disteche, 2006; Xiong et al., 2010). Dosage compensation is determined by calculating the ratio of averaged expression value of X -linked genes to that of the autosomes (X:A ratio). The ratio
$\mathrm{X}: \mathrm{A}=1$ indicates the doubling of X gene expression, while $\mathrm{X}: \mathrm{A}$ of 0.5 rejects Ohno's hypothesis. Two previous microarray studies fully supported dosage compensation in both humans and mice (Gupta et al., 2006; Nguyen and Disteche, 2006). However, the first RNA sequencing (RNA-seq) study of humans and mice (Xiong et al., 2010) claimed that microarraybased expression was not suitable for comparing expression levels of different genes, and reported X:A of approximately 0.5 i.e. a lack of dosage compensation. Subsequently, the same RNA-seq data were re-analyzed with all low and non-expressed genes removed because such genes are enriched on X chromosomes and thus could skew the comparison. Results from such filtering verified the hypothesis (Deng et al., 2011; Kharchenko et al., 2011). Since then, Ohno's hypothesis has been tested with many different analysis approaches including comparing the ratio between the modern X to the proto $\underline{\mathrm{XX}}$ using 1:1 orthologs between humans and chickens (Lin et al., 2012) or comparing only genes coding for large proteins as the "dosage-sensitive housekeeping genes" (Pessia et al., 2014). It has been found that different experimental platforms, analysis methods, and cutoff values all influenced the dosage compensation results. Thus, more questions than answers are presented on the evolution of dosage compensation of sex chromosomes (He and Zhang, 2016).

While debates persist over dosage compensation, XCI has been observed in all mammalian species studied to date (Okamoto et al., 2011). In the bovine, XCI was proposed by De La Fuente et al. (1999), and confirmed by Xue et al. (2002). In early bovine embryos imprinted XCI was observed at the morula stage (Ferreira et al. 2010) and random XCI occurred between the blastocyst and elongation stages (Bermejo-Alvarez et al., 2011). Although a recent study reported incomplete X dosage compensation in bovine fat, liver, muscle, and pituitary gland (Ka et al., 2016), further studies are needed for bovine early embryos and germ cells.

Here we report the first comprehensive test of Ohno's hypothesis in the compensatory upregulation of the X chromosome in bovine embryos, germline and a vast array of somatic tissues using seven RNA-seq datasets (three from bovine pre-attachment embryos and four from somatic tissues), including immature and mature oocytes, in vivo and in vitro embryos up to the blastocyst stage (days 1-7; day $0=$ standing estrus), conceptuses (embryos and associated extraembryonic membranes) from day 7 to day 19 , two adult female-specific tissues, eight adult female and male somatic tissues. Using median expression of the X : A ratio with its $95 \%$ bootstrap confidence intervals, we report incomplete compensatory up-regulation of expressed X-linked genes and complete dosage compensation of "dosage-sensitive" genes. Our data thus fully support Ohno's hypothesis in that the compensatory upregulation of X chromosome expression affects "dosage-sensitive" genes in bovine developing embryos, germline cells and female/male tissues.

### 3.3. Materials and Methods

### 3.3.1. Paralog analysis

To determine the unique or non-unique mapping strategy, we first calculated paralog enrichment on each bovine chromosome. Paralogs were identified on BioMart (Ensembl genome browser: http://useast.ensembl.org/biomart/; ensemble genes 85) and defined as genes with greater than $70 \%$ amino acid identity. This minimal cutoff for paralogs was a result of our pervious study, which determined that $70 \%$ was the best match of the BioMart search algorithm for the identification of X-linked multi-gene families (Jue et al., 2013). The total number of genes on each chromosome was calculated using bovine genome reference annotation UMD3.1 (http://useast.ensembl.org/Bos_taurus/Info/Annotation?redirect=no). Enrichment of paralogs gene number for each autosome was calculated by Fisher's exact test compare to that on X chromosome (Table 1).

### 3.3.2. RNA-seq datasets and read trimming

Raw FASTQ files were obtained from NCBI GEO database (Table 2). A total of seven datasets including 1) in vivo developed matured oocytes and 2-cell to blastocyst stage preimplantation embryos (Jiang et al., 2014), 2) immature oocyte, in vitro developed matured oocytes, 4-cell, 8-cell, 16-cell, and blastocyst embryos (Graf et al., 2014), 3) conceptuses at days 7, 10, 13, 16, and 19 (embryos and associated extra-embryonic membranes) (Mamo et al., 2012), 4) female endometria and corpora lutea (CL) (Moore et al., 2016), 5) female somatic tissues of brain, liver, muscle and kidney (Chen et al., 2015), 6) male somatic tissues of fat, muscle, hypothalamus, duodenum, liver, lung and kidney (PRJEB6377), 7) female and male somatic tissues of fat, liver, muscle, and pituitary gland (Seo et al., 2016).

All RNA-seq raw reads were downloaded from NCBI using sratoolkit (version 2.5.0;
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc\&f=std\#s-2). The sequence read archive (sra) format files were converted to fastq format by fastq-dump (version 2.5.0; http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc\&f=fastq-dump). Qualitytrimming and control were conducted as follows before mapping to the reference genome. Firstly, Trimmomatic (version 0.33; http://www.usadellab.org/cms/?page=trimmomatic ) was applied to removing the universal sequencing adaptors of SOLiD and Illumina in respective datasets with a minimum Phred score of 20 and minimal length of 30 bp . Subsequently, read quality was examined using FastQC (version 0.11.3;
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The summary of the numbers of reads in each sample after trimming is presented in supplementary table S 1 . The average number of read input for mapping across all samples is $22,814,027$.

### 3.3.3. Mapping and transcript assembly

RNA-seq read mapping and transcript assembly were preformed based on the following pipeline. Trimmed RNA-seq reads were aligned to Ensemble bovine reference genome assembly UMD3.1.1 using Hisat2 version 2.0.5 aligner (Pertea et al., 2016). Transcript splice site detection was used and both unique and non-uniquely mapped reads were kept for the subsequent analysis. The percentages of non-uniquely mapped reads for each sample are summarized in supplementary table S 1 and the averaged overall mapping rate was $83.5 \%$. IsoEM version 1.1.5 (Nicolae et al., 2011b) was used to quantify gene expression to transcripts per kilobase million (TPM) using default parameters. For non-uniquely mapped reads, IsoEM assign fractions of the multiple aligned reads to each location using an expectation maximization algorithm (Nicolae et al., 2011b). Expressed genes were defined as expression level TPM $>1$. "Dosage-sensitive" genes were selected as ubiquitously expressed genes (TPM>1) throughout all somatic samples or
embryonic sample.

### 3.3.4. RNA-seq dataset overview

Matrices of gene expression TPM for the embryo (datasets 1-3) and somatic tissues (datasets 4-8) were processed separately in R to identify ubiquitous genes. Correlation plots and unsupervised hierarchical clustering were conducted in R for quality control and identification of biologically distinct subgroups. Outliers in the biological replicates were removed for the downstream analysis.

The chromosome-wide gene expression distributions were isolated by gene locations on each chromosome in all samples using $\log _{2}$-transformed TPM (TPM>1), the boxplots for the distribution were made in R .

### 3.3.5. GO analysis

Gene ontology enrichment analysis was performed in DAVID (Huang et al., 2009a) and 245 and 7,603 genes on the X and autosomes, respectively, were found as ubiquitous in the somatic tissue datasets. Similarly, 117 and 3,947 genes on the X and autosomes, respectively, were found as ubiquitous in the embryo datasets. The p-values in top 10 biological processes were plotted using plotly (https://plot.ly) in R. Pie charts for biological processes were generated as described by The Gene Ontology Consortium (2015).

### 3.3.6. X :A ratio calculation

When calculating the X :A ratio, we applied the pairwiseCI package in R (Schaarschmidt and Gerhard, 2015) to obtain a $95 \%$ confidence interval for the ratio of the median of $X$ to the median of A as in a previous study (Sangrithi et al., 2017). It is based on 1,000 bootstrap replicates where sampling from the original data was done with replacement and stratified by the
group variables. Bootstrapping (Efron and Tibshirani, 1994) was used because it is simple to apply and does not require any distribution assumptions.

### 3.4. Results

### 3.4.1. Overview of the RNA-seq datasets and paralog analysis

We used seven bovine RNA-seq datasets, three embryonic and four somatic, generated by us (Jiang et al., 2014) and downloaded from NCBI (Table 2). In total, we have 40 samples including 19 embryos and 21 tissues from all datasets. Pearson correlation and unsupervised hierarchical clustering (supplementary fig. S1) show that replicates within each tissue or embryonic stage clustered closely to each other, suggesting even though the data were obtained from different studies, the data were replicable and reliable. Because we only compared the $\mathrm{X}: \mathrm{A}$ ratio and gene expression within each dataset instead of across datasets, we were able to use the data from different studies and experimental platforms after data normalization.Paralogs are homologous genes within the same genome created by gene duplication (Gevers et al., 2004). This is one potential way to achieve X dosage compensation because X lacks a homolog in males (Jue et al., 2013). We found an approximately 1.4-fold increase in the percentage of paralogs ( $>70 \%$ amino acid identity (Jue et al., 2013)) on the bovine X chromosome (33\%) compared to the genome averages (24\%; Table 1). This enrichment is significantly higher (Table $1 ; p<0.05$ by Fisher's exact test) than to that of most chromosomes, with the exception of Chromosomes 15, 21 , and 23 ( $p=0.97,0.10$, and 0.61 , respectively), suggesting the potential roles of paralogs in X dosage compensation. Such paralog enrichment on X has also been observed in humans ( $32 \%$ vs. $17 \%$; 1.9-fold) and mice ( $51 \%$ vs. $35 \%$; 1.5 -fold) (Jue et al., 2013). This information demonstrated that unique mapping as performed in a previous RNA-seq study (Xiong et al., 2010) is not appropriate because many paralogs will be excluded from the analysis, and potentially skewing the $\mathrm{X}: \mathrm{A}$ comparison. Thus, we applied the "non-unique" mapping strategy for reads mapping. Reads that aligned to multiple locations (such as paralog gene family) in the reference
genome or had alternative splice junctions were kept in all subsequent analysis. This resulted in a total of 959 X-linked and 20,316 autosomal protein coding genes.

Deng et al. (2011) suggested that the low and non-expression values in RNA-seq data may result from background noise of sequencing and read mapping. Inclusion of such values would be inappropriate and strongly influence the results. Furthermore, when we calculated the percentages of X-linked and autosomal genes with low transcript per million (TPM) values (Fig. 1A and supplementary table S2), we found that on the average the X chromosome has $11.7 \%$ more genes with TPM $\leq 1$ than autosomes. Somatic tissues including endometrium, fat, liver and muscle had the most enrichment of lowly expressed X-linked genes (supplementary table S2). Therefore, we used a cutoff of TPM>1 as expressed genes to remove data bias. After this filtering, 468 X-linked genes and 12,288 autosomal genes on average were used for X:A ratio calculation. The numbers of expressed genes $(T P M>1)$ on $X$ chromosome or autosomes in each sample are listed in supplementary table S2.

### 3.4.2. Ranges of gene expression of all chromosomes

We then investigated the gene expression profiles of all chromosomes to determine whether the transcriptional outputs from X chromosome were comparable to those of each autosome pairs. We performed $\log _{2}$-transformation of TPM to to normalize the data distribution. The TPM distribution of X-linked genes was not significantly different from those of all autosome pairs in 11 out of 40 samples using all expressed genes, and 31 out of 40 samples using ubiquitously expressed genes ( $p>0.05$, by two-sided Kolmogorov-Smirnov test, Fig. 1B and supplementary table S3). Such distributions were also demonstrated by kernel density estimation (Fig. 1C). These observations demonstrate that regardless of the number of X chromosomes, the
expression levels of ubiquitously expressed genes on X were comparable to those of each autosome pair in all samples, suggesting dosage compensation.

### 3.4.3. X chromosome up-regulation in adult somatic tissues

To determine the X chromosome dosage compensation in adult cattle tissue, we analyzed RNA-seq datasets (Table 2) for two female-specific tissues, endometrium and corpus luteum, and other somatic tissues from both males and females including the brain (hypothalamus), liver, kidney, muscle, fat, pituitary gland, lung, and duodenum. Overall, the X : A ratios of these tissues were in the range of 0.5 to 1 , suggesting up-regulation of the expression from the X chromosome, yet the dosage compensation is incomplete (Fig. 2A \& 2B). Specifically, the liver gave the highest X:A ratio (1.01) in females and showed complete compensation, followed by the pituitary gland (0.91). These data suggest that the X chromosome expression was enriched for activities in these tissues. In contrast, fat, muscle, endometrium and the lung gave relatively low but incomplete compensation X : A ratios (0.64-0.72), indicating less X chromosome activities. Furthermore, we compared the X chromosome expression distribution between males and females in common somatic tissues and observed no significant difference ( $p>0.05$, by twosided Kolmogorov-Smirnov test, supplementary table S4), except in muscle. The X:A ratio of common tissues between sexes was also not significantly different ( $p=0.45$, by paired t -test after log-transformation).

Although all somatic tissues we analyzed had up-regulated expression of X-linked genes which support Ohno's hypothesis, the confidence intervals of X:A ratios did not encompass 1 in most of the samples. As suggested in previous studies "dosage-sensitive" genes with housekeeping functions were more likely affected by dosage imbalance and were up-regulated (Pessia et al., 2012). When non-dosage-sensitive genes were included in the X:A calculation, the

X:A ratio were likely lower (Sangrithi et al., 2017). Therefore, we further selected ubiquitously expressed genes (TPM>1) throughout all somatic samples. Gene ontology analysis showed strong evidence that these ubiquitously expressed genes had housekeeping roles (supplementary fig. S2), such as translation, RNA transcription, protein transport, and cellular and metabolic process (supplementary fig. S2). A total of 245 and 7,603 genes on the $X$ chromosome and autosomes, respectively, were included as ubiquitously expressed genes in the recalculation of the X :A ratios (Fig. 2C \& 2D). The confidence intervals encompassed 1 and the medians were greater than 1 in most of the samples. Brain and its specific regions such as the pituitary gland and hypothalamus had the highest X : A ratios ( $1.20,1.28$, and 1.22 , respectively), consistent with previous reports in other species (Deng et al., 2011; Nguyen and Disteche, 2006).

### 3.4.4. X chromosome up-regulation in immature and mature oocytes

Germinal vesicle stage (immature) oocytes are arrested at the diplotene stage of the first prophase of meiosis (Pro I) (Mehlmann, 2005), and contain a duplicated genome (XXXX:AAAA) and two active X chromosomes (Fukuda et al., 2015). The matured oocytes, on the other hand, are arrested at the second metaphase of meiosis (MII) (Li and Albertini, 2013) and are haploid $(1 N)$ although each homologous chromosome contains two sister chromatids/complements of DNA (2C; XX:AA). Our analysis included immature and both in vivo and in vitro matured oocytes (Graf et al., 2014; Jiang et al., 2014). First, we identified expressed genes (TPM>1) and ubiquitously expressed genes across all pre-implantation samples. Fewer expressed ubiquitous genes were found in these samples than in somatic tissues but similar gene ontology terms (supplementary fig. S3 \& 4). A total of 117 X-linked and 3,947 autosomal genes were used as ubiquitous genes for X : A ratio calculation. Compared to expressed genes (TPM $>1, \mathrm{X}: \mathrm{A} \approx 0.75$ Fig. 3C), ubiquitously expressed genes had higher X:A ratios in immature and mature oocytes at

1 and 0.87 , respectively (Fig. 3D). Taken together, our analyses reveal a higher X:A ratio for ubiquitous genes, and a balanced X to autosome expression in immature diploid oocytes and an incomplete balance in mature haploid oocytes.

### 3.4.5. X chromosome up-regulation in pre-implantation embryos

X inactivation and reactivation happen in cycles during early embryonic development. In mice, the zygote contains an inactive X from the sperm but three X chromosome reactivation events occur subsequently: 1) embryonic genomic activation (EGA) at 2-cell, 2) pluripotency establishment in inner cell mass (ICM) of blastocyst, and 3) primordial germ cell generation in the genital ridge (Ohhata and Wutz, 2013). Using the bovine X-linked monomine oxidase type A (MAOA), Ferreira et al. (2010) demonstrated that transcripts from both the maternal and paternal $M A O A$ were present in embryos at the 4 -, 8 - to 16 -cell, and blastocyst stages, while only the maternal transcripts were present in compact morula. These data revealed that XCI occurred in an imprinted fashion in the morula stage in the bovine and the paternal $X$ was reactivated at the blastocyst stage. A more permanent random XCI was observed between the blastocyst and early elongation stages by analyzing seven X-linked genes in day14 embryos (Bermejo-Alvarez et al., 2011). However, the expression dynamics of an individual gene cannot represent the activity of the whole X chromosome, global transcript analysis will generate a more definitive conclusion on X inactivation-reactivation dynamics.

We therefore analyzed RNA-seq data from pre-attachment embryos. In in vivo produced pre-implantation embryos, we observed an incomplete dosage compensation ( $0.5<\mathrm{X}$ : $\mathrm{A}<1$ ) using expressed genes and an excess of compensation ( $\mathrm{X}: \mathrm{A}>1$ ) from the 8 -cell to compact morula stages using ubiquitous genes (Fig. 3A \& 3B). X dosage slightly decreased after fertilization, with the lowest X : A ratio seen at the 4-cell stage, indicating that the sperm brought
in an inactive X chromosome to the matured oocyte. The X :A ratio started to increase from the 4- to 8-cell stage, coincident with embryonic genome activation (EGA) for bovine in vivo embryos (Jiang et al., 2014), suggesting that EGA actives both paternal and maternal genome and has a more profound effect on the X chromosome. The increased X : A ratio exhibited excess compensation from the 8-cell to compact morula stage. A sharp decrease of X:A ratio was then observed between early (32-cell) and compact morula stages, corresponding to the first observed inactivation of the paternal X chromosome in bovine embryos. The X :A subsequently stabilized from days 7 to 19 of gestation, corresponding to random XCI between the blastocyst and early elongation stages.

Using expressed genes, in vitro produced bovine pre-implantation embryos present a similar X:A dynamics from fertilization to the 8 -cell stage (Fig. 3C \& 3D). However, no excess dosage compensation was observed using ubiquitous genes at any stage but the blastocyst, suggesting a deviation of X compensation from in vivo embryos. These observations are consistent with recent findings of aberrant X regulation in in vitro produced human and mouse embryos (Tan et al., 2016).

### 3.4.6. Effect of PAR and putative XCI-escaping genes on $\mathbf{X}$ upregulation

Pseudoautosomal regions (PARs) contain homologous genes between the X and Y chromosomes, and are important in homologous chromosome pairing and recombination during male meiosis (Das et al., 2009). A total of 20 PAR genes (Table S3) have been characterized in bovine, sheep, goats and other ruminants (Raudsepp and Chowdhary, 2015). Most PAR genes are known to escape XCI in humans (Helena Mangs and Morris, 2007). Moreover, approximately $15 \%$ and $3 \%$ of non-PAR X-linked genes in humans and mice, respectively, are known to escape XCI (Berletch et al., 2011). In the bovine, 55 such X-linked genes
(supplementary table S5) were classified as candidates that escape XCI (Ka et al., 2016). To tease out the effects of these bi-allelically expressed PAR genes and XCI-escaping genes, we plotted X:A ratios in the categories of "all genes", "expressed genes", "genes subjected to XCI (excluding PAR genes and putative XCI-escaping genes)" and "dosage-sensitive genes" (Fig. 4). The X:A ratios for "all genes" had the median value closer to 0.5 , while the ratios for "expressed genes" were closer to 1 . When we excluded PARs and putative XCI-escaping genes from "expressed genes", the outliers of extremely high X:A ratios disappeared, suggesting biallelically expressed X-linked genes did contribute to the high X:A ratios. Moreover, "dosage sensitive genes" maintained the highest X:A ratios (greater than 1), further confirming the hyperexpression nature of this subgroup of genes.

### 3.5. Discussion

In this study, we determined the X chromosome dosage profiles in 4 chromosome scenarios in the bovine. Immature oocytes represent diploid germline with duplicated genome/4 complements of DNA (XXXX:AAAA); mature oocyte represent haploid germline with duplicated genome/2 complements of DNA (XX:AA); bovine pre-implantation embryos at various stages represent the gradual change from two active $\mathrm{X}(\mathrm{XaXa}: \mathrm{AA})$ to one inactive X chromosome (XaXi:AA); female and male somatic tissues contain diploid cells with one already inactivated $\mathrm{X}(\mathrm{XaXi}: \mathrm{AA}$ or $\mathrm{XY}: \mathrm{AA})$. Our analyses showed incomplete compensation $(0.5<\mathrm{X}: \mathrm{A}<1)$ of X chromosome to autosome pairs in all scenarios for expressed genes (TPM>1) and excess compensation ( $\mathrm{X}: \mathrm{A}>1$ ) for "dosage-sensitive" genes in somatic tissues and certain stages in early embryos. These findings suggest that X dosage up-regulation occurs in bovine germlines, pre-attachment embryos and somatic tissues analyzed here.

Our results in bovine are consistent with previous findings in other mammalian species using similar strategies of data filtering (Deng et al., 2011; Pessia et al., 2012). However, studies applying different threshold criteria on RNA-seq data generated conflicting results for mammalian X dosage compensation. Xiong et al. (2010) included genes with low and no expression and reported X :A ratio close to 0.5 . Whereas many follow-up studies reanalyzing the same RNA-seq data after removing the "noise" concluded hyper-activation of X on expressed genes (Deng et al., 2011), especially dosage-sensitive ones (genes encoding protein-complex of seven or more members and having housekeeping roles) (Pessia et al., 2012). Thus, dosage compensation, unlike X chromosome inactivation, has been proposed to be a local process with hyper-expression by only dosage-sensitive genes (Pessia et al., 2014). In our study, we applied two gene selection methods in order to identify "dosage-sensitive" genes: expressed genes that
are TPM $>1$ and ubiquitous genes whose TPM's are $>1$ in all somatic samples or in all embryo samples. We found similar results as in humans and mice that incomplete dosage compensation was incomplete in most scenarios when expressed genes were used, while ubiquitous genes had a higher X dosage, implying that the expression of a group of X -linked bovine genes are collectively more than doubled. Furthermore, this level of up-regulation could not be globally applied to all genes on the X chromosome.

The previous study by Xiong et al (2010) filtered out reads that mapped to multiple locations of the genome and those that spanned splice junctions. Such elimination may generate biased X: A ratio as shown by Jue et al (2013) who analyzed how the X:A ratios could be changed by using different mapping parameters such as unique vs. non-unique mapping. It was concluded that "unique" mapping excluded reads that may be from paralog gene families. Because paralogs are enriched on the mammalian $X$ chromosome and gene duplication is a way to achieve dosage compensation for haploinsufficient genes, excluding reads for paralogs could produce bias in the estimation of the X :A ratios. Therefore, we used the Hisat2 software that by default reports both uniquely and multi-mapped reads Hisat2 is known to have the highest correctly multi-mapped reads compared to other aligners (Kim et al., 2015).

Bovine female somatic tissues had a slightly higher X:A ratio than the same tissues of males. This difference, however, was not significantly different ( $p=0.45$ ). X chromosome expression distribution was also similar between sexes $(p>0.05)$. These demonstrated that the expression of the X chromosome is balanced between males and females although they have different numbers of the X chromosome. The slightly higher X : A ratio in females may be a result of genes that escape X chromosome inactivation (Couldrey et al., 2017). Although it is unclear
how many genes escape XCI in the bovine, a previous report documented a few X-linked genes escaping XCI in a mosaic fashion in the bovine (Yen et al., 2007).

The brain tissue had the highest X:A ratio compared to the other tissues, consistent with previous RNA-seq studies in several mammalian species (Deng et al., 2011; Nguyen and Disteche, 2006). This could be related to the fact that may genes related to brain functions, such as MAOA, are located on the X chromosome (Zechner et al., 2001). On the contrary, X dosage of other bovine somatic tissues including fat, liver, muscle, and the pituitary gland was previously determined as incompletely compensated (Ka et al., 2016), which is consistent with results in humans, mice and ours.

Germ cells and the developing embryos undergo drastic epigenetic changes. We observed balanced expression of the X chromosome with that of the autosomes in diploid immature oocytes and incomplete balance in haploid matured oocytes. These data are consistent with those by Fukuda et al who also showed higher dosage compensation of X chromosome in immature than matured oocytes in the human and mouse (Fukuda et al., 2015). However, X:A ratio slightly decreased after fertilization probably due to the sperm brings in some mRNAs of autosomal origin in addition to an inactive X (Huynh and Lee, 2003). Because early embryonic development is primarily dependent on stored maternal mRNAs and proteins which gradually degrade until embryonic genomic activation (EGA) (Memili and First, 2000), a consistent decrease and then increase of X:A before and after EGA, respectively, were observed. The timing of the changes in $\mathrm{X}: \mathrm{A}$ in in vivo embryos, however, was one cell cycle earlier than their in vitro counterparts due to the timing difference between these two types of embryos, which are 48 and 8-16 cell stages, respectively (Graf et al., 2014; Jiang et al., 2014; Kues et al., 2008;

Misirlioglu et al., 2006; Telford et al., 1990).

In conclusion, our study shows the up-regulation of X chromosome in four bovine genome scenarios, supporting a balanced expression between a single active X and autosome pairs. However, deviating from Ohno's theory, dosage compensation to rescue X haploinsufficiency appears to be an incomplete process for expressed genes but a complete process for "dosage-sensitive" genes. Removal of PAR genes and those putatively escape XCI eliminated the outliers of extremely high X :A ratios. In addition, the switch from imprinted XCI at the compact morula stage to random XCI at the blastocyst stage may happen so rapidly that the potential transient state of two active X chromosome could not be captured in the current dataset with limited time points. Whether a transient two active X state occurs or not during blastulation requires frequent sampling and further study. Lastly, no relative X expression difference was observed between bovine female and male somatic tissues, suggesting Ohno's hypothesis balanced the overall X between sexes.

Table 1. The enrichment of paralogs on each autosome compare to that on $X$ chromosome

| Chromosome | Total number of Genes | Number (\%) of Paralogs | $P$-value | Chromosome | Total number of Genes | Number (\%) of Paralogs | $P$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 985 | 167 (17) | $5.65 \mathrm{e}-18$ | 16 | 710 | 129 (18) | $6.56 \mathrm{e}-13$ |
| 2 | 1,021 | 229 (22) | $1.88 \mathrm{e}-08$ | 17 | 665 | 149 (22) | $6.55 \mathrm{e}-07$ |
| 3 | 1,372 | 314 (23) | $7.24 \mathrm{e}-09$ | 18 | 1,236 | 207 (17) | $1.20 \mathrm{e}-20$ |
| 4 | 855 | 222 (26) | 0.00031 | 19 | 1,347 | 303 (22) | $2.13 \mathrm{e}-09$ |
| 5 | 1,323 | 336 (25) | 1.51e-05 | 20 | 384 | 91 (24) | 0.00027 |
| 6 | 692 | 156 (23) | $6.65 \mathrm{e}-07$ | 21 | 731 | 221 (30) | 0.10 |
| 7 | 1,396 | 377 (27) | 0.00046 | 22 | 608 | 110 (18) | $6.40 \mathrm{e}-12$ |
| 8 | 829 | 230 (28) | 0.0059 | 23 | 785 | 264 (34) | 0.61 |
| 9 | 602 | 146 (24) | 6.45e-05 | 24 | 347 | 98 (28) | 0.049 |
| 10 | 1,074 | 316 (29) | 0.033 | 25 | 766 | 102 (13) | $7.22 \mathrm{e}-24$ |
| 11 | 1,047 | 192 (18) | 1.63e-15 | 26 | 437 | 82 (19) | 5.63e-09 |
| 12 | 414 | 98 (24) | 0.00018 | 27 | 274 | 73 (27) | 0.022 |
| 13 | 850 | 185 (22) | 1.31e-08 | 28 | 355 | 78 (22) | 3.08e-05 |
| 14 | 571 | 135 (24) | 2.76e-05 | 29 | 705 | 186 (26) | 0.0012 |
| 15 | 1,050 | 387 (37) | 0.97 | X | 1,128 | 374 (33) |  |
| Genome Average | 819 | 199 (24) | 1.46e-05 |  |  |  |  |

Table 2. The raw FASTQ files generated by us and downloaded from NCBI GEO database

|  | Tissue Type (replicates) | Breed/subspecies | Number <br> of <br> samples | Library type | BioProject ID | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | In vivo MII oocytes and embryos: $2-, 4-, 8-, 16-, 32$-cell, CM, and BL ( $\mathrm{n}=2$ ) | Holstein | 8 | Single-read SOLiD | PRJNA254699 | Jiang et al., 2014 |
| 2 | In vitro GV \& MII oocytes and embryos: 4-, 8-, 16-cell, and BL ( $\mathrm{n}=3$ ) | German <br> Simmental ( P ) <br> and Brahman ( $\delta^{\top}$ ) <br> cross | 6 | Single-read Illumina | PRJNA228235 | Graf et al., 2014 |
| 3 | $\begin{aligned} & \text { In vivo Conceptuses: Day } 7(\mathrm{n}=6) \text {, } \\ & 10(\mathrm{n}=7), 13(\mathrm{n}=5), 16(\mathrm{n}=5), 19 \\ & (\mathrm{n}=5) \end{aligned}$ | Charolais and Limousin cross | 5 | Single-read Illumina | PRJNA243569 | $\begin{aligned} & \text { Mamo et al., } \\ & 2012 \end{aligned}$ |
| 4 | Female specific tissue: endometria ( $\mathrm{n}=12$ ), corpora lutea ( $\mathrm{n}=14$ ) | Holstein | 2 | Paired-end Illumina | PRJNA298914 | $\begin{aligned} & \text { Moore et al., } \\ & 2016 \end{aligned}$ |
| 5 | Female somatic tissues: brain, liver, muscle and kidney ( $\mathrm{n}=4$ ) | Bos indicus $\times$ Bos taurus | 4 | Single-read Illumina | PRJNA268096 | Chen et al., 2015 |
| 6 | Male somatic tissues: fat, muscle, hypothalamus, duodenum, liver, lung and kidney (pools of 7-14 animals) | Bos taurus | 7 | Paired-end Illumina | PRJEB6377 | $\begin{aligned} & \text { PRJEB6377, } \\ & 2014 \end{aligned}$ |
| 7 | Female and male somatic tissues: fat, liver, muscle, and pituitary gland ( $\mathrm{n}=5$ ) | Hanwoo (Korean cattle) | 8 | Paired-end Illumina | PRJNA273164 | Seo et al., 2016 |

Figure 1 Expression ranges of genes on the $\mathbf{X}$ and autosome pairs in the bovine.

A



Bovine chromosomes

(A) the averaged percentages of lowly expressed genes (TPM<1) on the X and autosomes in all samples, (B) A representative (in vivo matured oocytes) box-plot showing that the range and median expression levels of X-linked genes (red) (TPM > 1) were similar to those of each autosome pairs (blue) in the bovine, (C) A representative (in vivo matured oocyte) Kernel density plot showing that the distribution of X-linked gene (red) expression (TPM > 1) was similar to those of each autosome pairs (blue) in the bovine

Figure 2 Median X:A ratios with $\mathbf{9 5 \%}$ confidence intervals of bovine female (A, B) and male (C, D) somatic tissues.


The X :A ratios were calculated using expressed (TPM > 1) genes ( $\mathrm{A}, \mathrm{C}$ ) and ubiquitously expressed (TPM > 1 and present in all somatic datasets; $B, D$ ) genes. Blue line: $\mathrm{X}: \mathrm{A}=1$, complete dosage compensation; Red line: $\mathrm{X}: \mathrm{A}=0.5$, no dosage compensation

Figure 3 Median X:A ratios with 95\% confidence intervals of bovine in vivo (A, B) and in vitro (C, D) produced oocytes and pre- and post-implantation embryos.


The X :A ratios were calculated using expressed (TPM $>1$ ) genes $(\mathrm{A}, \mathrm{C})$ and ubiquitously expressed (TPM > 1 and present in all embryo datasets; $\mathrm{B}, \mathrm{D}$ ). GV=germinal vesicle, MII: metaphase of second meiosis, $\mathrm{CM}=$ compact morula, $\mathrm{BL}=$ blastocyst. Blue line: $\mathrm{X}: \mathrm{A}=1$, complete dosage compensation; Red line: $\mathrm{X}: \mathrm{A}=0.5$, no dosage compensation

Figure 4 Boxplot of the X : A medians for all datasets.


Genes were categorized in "all genes", "expressed (TPM > 1) genes", "genes subjected to XCI (excluding PAR genes and putative XCI-escaping genes)" and "dosage-sensitive (ubiquitously expressed) genes". Blue line: $\mathrm{X}: \mathrm{A}=1$, complete dosage compensation; Red line: $\mathrm{X}: \mathrm{A}=0.5$, no dosage compensation

### 3.6. Supplementary information

Table S1. The numbers of reads after trimming and the percentages of multiple-mapped reads for each sample

| Dataset and sample ID | reads after trimming | mapping rate | note |
| :---: | :---: | :---: | :---: |
| PRJNA254699 |  |  |  |
| vivo_MII_1 | 13,344,621 | 67.94\% |  |
| vivo_MII_2 | 18,617,919 | 75.05\% |  |
| vivo_2C_1 | 14,956,109 | 55.95\% |  |
| vivo_2C_2 | 17,338,409 | 59.86\% |  |
| vivo_4C_1 | 15,023,254 | 59.58\% |  |
| vivo_4C_2 | 17,197,154 | 59.64\% |  |
| vivo_8C_1 | 15,783,933 | 69.73\% |  |
| vivo_8C_2 | 14,502,762 | 71.51\% |  |
| vivo_16C_1 | 13,396,684 | 64.66\% |  |
| vivo_16C_2 | 10,060,614 | 60.97\% |  |
| vivo_32C_1 | 10,032,365 | 69.07\% |  |
| vivo_32C_2 | 12,974,794 | 69.63\% |  |
| vivo_CM_1 | 12,589,309 | 65.50\% |  |
| vivo_CM_2 | 15,390,895 | 68.73\% |  |
| vivo_BL_1 | 14,067,130 | 68.06\% |  |
| vivo_BL_2 | 9,150,958 | 64.80\% |  |
| PRJNA228235 |  |  |  |
| vitro_GV_1 | 12,435,200 | 86.06\% |  |
| vitro_GV_2 | 18,497,510 | 86.05\% |  |
| vitro_GV_3 | 17,285,535 | 89.25\% |  |
| vitro_MII_1 | 16,015,797 | 83.46\% |  |
| vitro_MII_2 | 22,751,494 | 79.96\% |  |
| vitro_MII_3 | 17,124,799 | 88.56\% |  |
| vitro_4C_1 | 22,296,494 | 88.42\% |  |
| vitro_4C_2 | 27,796,793 | 77.10\% |  |
| vitro_4C_3 | 10,396,440 | 87.35\% |  |
| vitro_8C_1 | 27,893,112 | 87.97\% |  |
| vitro_8C_2 | 25,488,457 | 83.21\% |  |
| vitro_8C_3 | 18,606,472 | 85.83\% |  |
| vitro_16C_1 | 19,025,171 | 85.27\% |  |
| vitro_16C_2 | 9,019,897 | 82.69\% |  |
| vitro_16C_3 | 17,900,332 | 88.01\% |  |
| vitro_BL_1 | 57,889,754 | 88.59\% |  |
| vitro_BL_2 | 34,653,160 | 72.19\% |  |
| vitro_BL_3 | 35,436,710 | 87.67\% |  |
| PRJNA243569 |  |  |  |
| vivo_D7_1 | 23,635,335 | 59.57\% |  |
| vivo_D7_2 | 24,040,750 | 58.01\% |  |
| vivo_D7_3 | 23,940,535 | 64.70\% |  |
| vivo_D7_4 | 25,478,230 | 14.15\% |  |
| vivo_D7_5 | 24,569,767 | 61.13\% |  |
| vivo_D7_6 | 22,747,482 | 40.04\% |  |
| vivo_D10_1 | 15,816,819 | 64.35\% |  |


| vivo_D10_2 | 23,320,839 | 17.44\% |  |
| :---: | :---: | :---: | :---: |
| vivo_D10_3 | 21,782,930 | 37.38\% |  |
| vivo_D10_4 | 25,132,063 | 66.69\% |  |
| vivo_D10_5 | 24,890,896 | 69.17\% |  |
| vivo_D10_6 | 25,740,652 | 41.76\% |  |
| vivo_D10_7 | 24,112,411 | 46.97\% |  |
| vivo_D13_1 | 23,247,754 | 87.40\% |  |
| vivo_D13_2 | 21,782,930 | 37.38\% |  |
| vivo_D13_3 | 21,779,998 | 79.40\% |  |
| vivo_D13_4 | 23,191,573 | 79.47\% |  |
| vivo_D13_5 | 21,182,412 | 80.76\% |  |
| vivo_D16_1 | 20,971,194 | 65.07\% |  |
| vivo_D16_2 | 12,156,512 | 80.09\% |  |
| vivo_D16_3 | 23,247,754 | 87.40\% |  |
| vivo_D16_4 | 21,182,412 | 80.76\% |  |
| vivo_D16_5 | 13,861,219 | 57.12\% |  |
| vivo_D19_1 | 23,643,876 | 90.74\% |  |
| vivo_D19_2 | 23,320,839 | 17.44\% |  |
| vivo_D19_3 | 23,191,573 | 79.47\% |  |
| vivo_D19_4 | 23,643,876 | 90.74\% |  |
| vivo_D19_5 | 21,779,998 | 79.40\% |  |
| PRJNA298914 |  |  |  |
| endometrium_1 | 16,651,250 | 82.77\% |  |
| endometrium_2 | 18,827,510 | 90.34\% |  |
| endometrium_3 | 13,845,319 | 91.11\% |  |
| endometrium_4 | 15,951,167 | 89.57\% |  |
| endometrium_5 | 22,393,957 | 93.39\% |  |
| endometrium_6 | 16,362,983 | 93.67\% |  |
| endometrium_7 | 17,348,883 | 93.21\% |  |
| endometrium_8 | 18,445,197 | 92.69\% |  |
| endometrium_9 | 19,283,243 | 93.14\% |  |
| endometrium_10 | 18,939,982 | 93.70\% |  |
| endometrium_11 | 20,759,413 | 93.37\% |  |
| endometrium_12 | 17,542,556 | 93.01\% |  |
| endometrium_13 | 20,884,795 | 91.55\% |  |
| endometrium_14 | 23,021,723 | 93.55\% |  |
| corpus luteum_1 | 23,265,821 | 94.14\% |  |
| corpus luteum_2 | 24,500,079 | 94.16\% |  |
| corpus luteum_3 | 17,189,314 | 93.58\% |  |
| corpus luteum_4 | 24,116,581 | 94.33\% |  |
| corpus luteum_5 | 17,455,310 | 94.18\% |  |
| corpus luteum_6 | 21,176,305 | 94.04\% |  |
| corpus luteum_7 | 17,183,335 | 94.33\% |  |
| corpus luteum_8 | 16,333,836 | 93.81\% |  |
| corpus luteum_9 | 16,040,727 | 94.36\% |  |
| corpus luteum_10 | 22,241,217 | 94.24\% |  |
| corpus luteum_11 | 15,914,273 | 94.02\% |  |
| corpus luteum_12 | 15,020,472 | 94.04\% |  |
| PRJNA268096 |  |  |  |
| female_brain_1 | 35,348,846 | 97.06\% |  |


| female_brain_2 | 53,329,221 | 91.48\% |  |
| :---: | :---: | :---: | :---: |
| female_brain_3 | 41,368,457 | 97.14\% |  |
| female_brain_4 | 42,597,403 | 97.21\% |  |
| female_liver_1 | 44,445,152 | 97.66\% |  |
| female_liver_2 | 63,210,755 | 91.46\% |  |
| female_liver_3 | 42,200,070 | 97.57\% |  |
| female_liver_4 | 43,889,675 | 97.68\% |  |
| female_muscle_1 | 31,582,057 | 97.03\% |  |
| female_muscle_2 | 40,896,874 | 91.86\% |  |
| female_muscle_3 | 33,407,493 | 97.06\% |  |
| female_muscle_4 | 29,430,409 | 97.08\% |  |
| female_kidney_1 | 40,922,470 | 96.71\% |  |
| female_kidney_2 | 51,224,824 | 96.10\% |  |
| female_kidney_3 | 49,478,093 | 96.56\% |  |
| female_kidney_4 | 47,980,505 | 96.22\% |  |
| PRJEB6377 |  |  |  |
| male_fat | 36,590,829 | 93.08\% |  |
| male_duodenum | 50,036,922 | 89.50\% |  |
| male_hypothalamus | 26,696,424 | 94.86\% |  |
| male_kidney | 25,051,316 | 83.25\% |  |
| male_liver | 29,568,966 | 89.11\% |  |
| male_lung | 22,596,488 | 93.81\% |  |
| male_muscle | 28,739,583 | 80.97\% |  |
| PRJNA273164 |  |  |  |
| female_fat1 | 24,789,261 | 96.28\% |  |
| female_fat2 | 20,825,485 | 91.31\% |  |
| female_fat3 | 19,286,633 | 96.04\% |  |
| female_fat4 | 22,796,156 | 95.36\% |  |
| female_fat5 | 17,233,202 | 89.12\% |  |
| female_liver1 | 25,533,421 | 96.30\% |  |
| female_liver2 | 19,424,452 | 95.88\% |  |
| female_liver3 | 22,086,390 | 96.40\% |  |
| female_liver4 | 17,088,005 | 97.31\% |  |
| female_liver5 | 18,335,813 | 97.64\% |  |
| female_muscle1 | 18,338,844 | 95.17\% |  |
| female_muscle2 | 24,154,490 | 95.26\% |  |
| female_muscle3 | 19,760,958 | 96.66\% |  |
| female_muscle4 | 22,434,484 | 96.68\% |  |
| female_muscle5 | 19,985,126 | 96.90\% |  |
| female_pituitary1 | 19,748,641 | 94.48\% |  |
| female_pituitary2 | 22,093,652 | 94.24\% |  |
| female_pituitary3 | 20,713,183 | 94.13\% |  |
| female_pituitary4 | 16,399,117 | 95.88\% |  |
| female_pituitary5 | 19,140,730 | 95.70\% |  |
| male_fat1 | 15,218,534 | 97.14\% |  |
| male_fat2 | 24,642,148 | 90.46\% |  |
| male_fat3 | 15,553,433 | 96.55\% |  |
| male_fat4 | 15,996,788 | 96.99\% |  |
| male_fat5 | 22,929,105 | 92.65\% |  |
| male_liver1 | 16,491,043 | 97.33\% |  |


| male_liver2 | $12,611,921$ | $84.10 \%$ |  |
| :--- | :---: | :---: | :--- |
| male_liver3 | $15,841,117$ | $97.48 \%$ |  |
| male_liver4 | $31,342,847$ | $95.63 \%$ |  |
| male_liver5 | $24,835,352$ | $96.81 \%$ |  |
| male_muscle1 | $16,509,891$ | $97.35 \%$ |  |
| male_muscle2 | $26,746,481$ | $89.31 \%$ |  |
| male_muscle3 | $21,491,187$ | $0.07 \%$ | discarded |
| male_muscle4 | $14,941,149$ | $97.56 \%$ |  |
| male_muscle5 | $18,804,572$ | $96.32 \%$ |  |
| male_pituitary1 | $15,953,420$ | $96.22 \%$ |  |
| male_pituitary2 | $26,312,948$ | $88.73 \%$ |  |
| male_pituitary3 | $17,196,868$ | $95.81 \%$ |  |
| male_pituitary4 | $30,868,150$ | $95.64 \%$ |  |
| male_pituitary5 | $19,610,395$ | $94.78 \%$ |  |
| average for all samples | $\mathbf{2 3 , 0 0 4 , 5 4 4}$ | $\mathbf{8 3 . 4 \%}$ |  |

Table S2. The numbers of lowly expressed genes (TPM $\leq 1$ ) on the $\mathbf{X}$ chromosome and autosomes in each sample

| Dataset and sample ID | Total X-linked genes 959 |  | Total autosome genes 20,316 |  | values low to high |  | Autosome (TPM>1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X-linked gene counts (TPM $\leq 1$ ) | Percentage (\%) | Autosome gene counts (TPM $\leq 1$ ) | Percentage (\%) | Percentage deviations (X\%A\%) | $\begin{gathered} \text { X-linked } \\ \text { genes } \\ \text { (TPM>1) } \end{gathered}$ |  |
| PRJNA254699 |  |  |  |  |  |  |  |
| vivo_MII_1 | 598 | 62.4\% | 10,914 | 53.7\% | 8.6\% | 361 | 9,402 |
| vivo_MII_2 | 657 | 68.5\% | 12,299 | 60.5\% | 8.0\% | 302 | 8,017 |
| vivo_2C_1 | 571 | 59.5\% | 10,065 | 49.5\% | 10.0\% | 388 | 10,251 |
| vivo_2C_2 | 557 | 58.1\% | 9,711 | 47.8\% | 10.3\% | 402 | 10,605 |
| vivo_4C_1 | 520 | 54.2\% | 9,496 | 46.7\% | 7.5\% | 439 | 10,820 |
| vivo_4C_2 | 551 | 57.5\% | 9,703 | 47.8\% | 9.7\% | 408 | 10,613 |
| vivo_8C_1 | 589 | 61.4\% | 10,782 | 53.1\% | 8.3\% | 370 | 9,534 |
| vivo_8C_2 | 586 | 61.1\% | 10,357 | 51.0\% | 10.1\% | 373 | 9,959 |
| vivo_16C_1 | 521 | 54.3\% | 10,388 | 51.1\% | 3.2\% | 438 | 9,928 |
| vivo_16C_2 | 527 | 55.0\% | 10,156 | 50.0\% | 5.0\% | 432 | 10,160 |
| vivo_32C_1 | 567 | 59.1\% | 11,064 | 54.5\% | 4.7\% | 392 | 9,252 |
| vivo_32C_2 | 554 | 57.8\% | 10,553 | 51.9\% | 5.8\% | 405 | 9,763 |
| vivo_CM_2 | 596 | 62.1\% | 11,465 | 56.4\% | 5.7\% | 363 | 8,851 |
| vivo_CM_1 | 622 | 64.9\% | 10,473 | 51.6\% | 13.3\% | 337 | 9,843 |
| vivo_BL_1 | 630 | 65.7\% | 10,396 | 51.2\% | 14.5\% | 329 | 9,920 |
| vivo_BL_2 | 616 | 64.2\% | 10,147 | 49.9\% | 14.3\% | 343 | 10,169 |
| PRJNA228235 |  |  |  |  |  |  |  |
| vitro_GV_1 | 515 | 53.7\% | 8,636 | 42.5\% | 11.2\% | 444 | 11,680 |
| vitro_GV_2 | 519 | 54.1\% | 8,928 | 43.9\% | 10.2\% | 440 | 11,388 |
| vitro_GV_3 | 505 | 52.7\% | 8,834 | 43.5\% | 9.2\% | 454 | 11,482 |
| vitro_MII_1 | 532 | 55.5\% | 9,254 | 45.6\% | 9.9\% | 427 | 11,062 |
| vitro_MII_2 | 512 | 53.4\% | 9,018 | 44.4\% | 9.0\% | 447 | 11,298 |
| vitro_MII_3 | 528 | 55.1\% | 9,466 | 46.6\% | 8.5\% | 431 | 10,850 |
| vitro_4C_1 | 534 | 55.7\% | 9,146 | 45.0\% | 10.7\% | 425 | 11,170 |
| vitro_4C_2 | 541 | 56.4\% | 9,484 | 46.7\% | 9.7\% | 418 | 10,832 |
| vitro_4C_3 | 536 | 55.9\% | 9,276 | 45.7\% | 10.2\% | 423 | 11,040 |
| vitro_8C_1 | 486 | 50.7\% | 8,916 | 43.9\% | 6.8\% | 473 | 11,400 |
| vitro_8C_2 | 563 | 58.7\% | 10,133 | 49.9\% | 8.8\% | 396 | 10,183 |
| vitro_8C_3 | 450 | 46.9\% | 8,291 | 40.8\% | 6.1\% | 509 | 12,025 |
| vitro_16C_1 | 558 | 58.2\% | 10,565 | 52.0\% | 6.2\% | 401 | 9,751 |


| vitro_16C_2 | 484 | 50.5\% | 9,078 | 44.7\% | 5.8\% | 475 | 11,238 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vitro_16C_3 | 426 | 44.4\% | 8,465 | 41.7\% | 2.8\% | 533 | 11,851 |
| vitro_BL_1 | 466 | 48.6\% | 9,110 | 44.8\% | 3.8\% | 493 | 11,206 |
| vitro_BL_2 | 425 | 44.3\% | 8,417 | 41.4\% | 2.9\% | 534 | 11,899 |
| vitro_BL_3 | 421 | 43.9\% | 8,264 | 40.7\% | 3.2\% | 538 | 12,052 |
| PRJNA243569 |  |  |  |  |  |  |  |
| vivo_D7_1 | 272 | 28.4\% | 4,344 | 21.4\% | 7.0\% | 687 | 15,972 |
| vivo_D7_2 | 371 | 38.7\% | 6,143 | 30.2\% | 8.4\% | 588 | 14,173 |
| vivo_D7_3 | 440 | 45.9\% | 7,084 | 34.9\% | 11.0\% | 519 | 13,232 |
| vivo_D7_4 | 443 | 46.2\% | 7,450 | 36.7\% | 9.5\% | 516 | 12,866 |
| vivo_D7_5 | 469 | 48.9\% | 7,529 | 37.1\% | 11.8\% | 490 | 12,787 |
| vivo_D7_6 | 424 | 44.2\% | 6,703 | 33.0\% | 11.2\% | 535 | 13,613 |
| vivo_D10_1 | 410 | 42.8\% | 6,676 | 32.9\% | 9.9\% | 549 | 13,640 |
| vivo_D10_2 | 547 | 57.0\% | 8,747 | 43.1\% | 14.0\% | 412 | 11,569 |
| vivo_D10_3 | 522 | 54.4\% | 8,569 | 42.2\% | 12.3\% | 437 | 11,747 |
| vivo_D10_4 | 454 | 47.3\% | 7,141 | 35.1\% | 12.2\% | 505 | 13,175 |
| vivo_D10_5 | 465 | 48.5\% | 7,231 | 35.6\% | 12.9\% | 494 | 13,085 |
| vivo_D10_6 | 415 | 43.3\% | 5,661 | 27.9\% | 15.4\% | 544 | 14,655 |
| vivo_D10_7 | 434 | 45.3\% | 7,182 | 35.4\% | 9.9\% | 525 | 13,134 |
| vivo_D13_1 | 428 | 44.6\% | 6,946 | 34.2\% | 10.4\% | 531 | 13,370 |
| vivo_D13_2 | 522 | 54.4\% | 8,568 | 42.2\% | 12.3\% | 437 | 11,748 |
| vivo_D13_3 | 489 | 51.0\% | 7,679 | 37.8\% | 13.2\% | 470 | 12,637 |
| vivo_D13_4 | 486 | 50.7\% | 7,639 | 37.6\% | 13.1\% | 473 | 12,677 |
| vivo_D13_5 | 351 | 36.6\% | 4,431 | 21.8\% | 14.8\% | 608 | 15,885 |
| vivo_D16_1 | 367 | 38.3\% | 5,333 | 26.3\% | 12.0\% | 592 | 14,983 |
| vivo_D16_2 | 409 | 42.6\% | 6,451 | 31.8\% | 10.9\% | 550 | 13,865 |
| vivo_D16_3 | 428 | 44.6\% | 6,947 | 34.2\% | 10.4\% | 531 | 13,369 |
| vivo_D16_4 | 350 | 36.5\% | 4,435 | 21.8\% | 14.7\% | 609 | 15,881 |
| vivo_D16_5 | 352 | 36.7\% | 5,533 | 27.2\% | 9.5\% | 607 | 14,783 |
| vivo_D19_1 | 527 | 55.0\% | 8,673 | 42.7\% | 12.3\% | 432 | 11,643 |
| vivo_D19_2 | 547 | 57.0\% | 8,744 | 43.0\% | 14.0\% | 412 | 11,572 |
| vivo_D19_3 | 486 | 50.7\% | 7,638 | 37.6\% | 13.1\% | 473 | 12,678 |
| vivo_D19_4 | 527 | 55.0\% | 8,674 | 42.7\% | 12.3\% | 432 | 11,642 |
| vivo_D19_5 | 489 | 51.0\% | 7,679 | 37.8\% | 13.2\% | 470 | 12,637 |
| PRJNA298914 |  |  |  |  |  |  |  |
| endometrium_1 | 487 | 50.8\% | 7,262 | 35.7\% | 15.0\% | 472 | 13,054 |


| endometrium_2 | 480 | 50.1\% | 7,302 | 35.9\% | 14.1\% | 479 | 13,014 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| endometrium_3 | 486 | 50.7\% | 7,229 | 35.6\% | 15.1\% | 473 | 13,087 |
| endometrium_4 | 482 | 50.3\% | 7,191 | 35.4\% | 14.9\% | 477 | 13,125 |
| endometrium_5 | 472 | 49.2\% | 7,273 | 35.8\% | 13.4\% | 487 | 13,043 |
| endometrium_6 | 481 | 50.2\% | 7,228 | 35.6\% | 14.6\% | 478 | 13,088 |
| endometrium_7 | 474 | 49.4\% | 7,213 | 35.5\% | 13.9\% | 485 | 13,103 |
| endometrium_8 | 470 | 49.0\% | 7,075 | 34.8\% | 14.2\% | 489 | 13,241 |
| endometrium_9 | 483 | 50.4\% | 7,131 | 35.1\% | 15.3\% | 476 | 13,185 |
| endometrium_10 | 484 | 50.5\% | 7,414 | 36.5\% | 14.0\% | 475 | 12,902 |
| endometrium_11 | 479 | 49.9\% | 7,262 | 35.7\% | 14.2\% | 480 | 13,054 |
| endometrium_12 | 472 | 49.2\% | 7,257 | 35.7\% | 13.5\% | 487 | 13,059 |
| endometrium_13 | 498 | 51.9\% | 7,430 | 36.6\% | 15.4\% | 461 | 12,886 |
| endometrium_14 | 488 | 50.9\% | 7,333 | 36.1\% | 14.8\% | 471 | 12,983 |
| corpus luteum_1 | 460 | 48.0\% | 7,584 | 37.3\% | 10.6\% | 499 | 12,732 |
| corpus luteum_2 | 470 | 49.0\% | 7,471 | 36.8\% | 12.2\% | 489 | 12,845 |
| corpus luteum_3 | 509 | 53.1\% | 7,964 | 39.2\% | 13.9\% | 450 | 12,352 |
| corpus luteum_4 | 468 | 48.8\% | 7,694 | 37.9\% | 10.9\% | 491 | 12,622 |
| corpus luteum_5 | 470 | 49.0\% | 7,556 | 37.2\% | 11.8\% | 489 | 12,760 |
| corpus luteum_6 | 491 | 51.2\% | 8,195 | 40.3\% | 10.9\% | 468 | 12,121 |
| corpus luteum_7 | 504 | 52.6\% | 8,173 | 40.2\% | 12.3\% | 455 | 12,143 |
| corpus luteum_8 | 487 | 50.8\% | 8,114 | 39.9\% | 10.8\% | 472 | 12,202 |
| corpus luteum_9 | 506 | 52.8\% | 8,290 | 40.8\% | 12.0\% | 453 | 12,026 |
| corpus luteum_10 | 499 | 52.0\% | 8,220 | 40.5\% | 11.6\% | 460 | 12,096 |
| corpus luteum_11 | 510 | 53.2\% | 8,228 | 40.5\% | 12.7\% | 449 | 12,088 |
| corpus luteum_12 | 496 | 51.7\% | 8,014 | 39.4\% | 12.3\% | 463 | 12,302 |
| PRJNA268096 |  |  |  |  |  |  |  |
| female_brain_1 | 370 | 38.6\% | 5,977 | 29.4\% | 9.2\% | 589 | 14,339 |
| female_brain_2 | 370 | 38.6\% | 5,830 | 28.7\% | 9.9\% | 589 | 14,486 |
| female_brain_3 | 407 | 42.4\% | 6,711 | 33.0\% | 9.4\% | 552 | 13,605 |
| female_brain_4 | 392 | 40.9\% | 6,332 | 31.2\% | 9.7\% | 567 | 13,984 |
| female_liver_1 | 523 | 54.5\% | 8,155 | 40.1\% | 14.4\% | 436 | 12,161 |
| female_liver_2 | 518 | 54.0\% | 7,897 | 38.9\% | 15.1\% | 441 | 12,419 |
| female_liver_3 | 522 | 54.4\% | 8,159 | 40.2\% | 14.3\% | 437 | 12,157 |
| female_liver_4 | 526 | 54.8\% | 8,238 | 40.5\% | 14.3\% | 433 | 12,078 |
| female_muscle_1 | 431 | 44.9\% | 7,488 | 36.9\% | 8.1\% | 528 | 12,828 |
| female_muscle_2 | 399 | 41.6\% | 6,890 | 33.9\% | 7.7\% | 560 | 13,426 |


| female_muscle_3 | 427 | 44.5\% | 7,457 | 36.7\% | 7.8\% | 532 | 12,859 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| female_muscle_4 | 420 | 43.8\% | 7,293 | 35.9\% | 7.9\% | 539 | 13,023 |
| female_kidney_1 | 395 | 41.2\% | 6,295 | 31.0\% | 10.2\% | 564 | 14,021 |
| female_kidney_2 | 400 | 41.7\% | 6,410 | 31.6\% | 10.2\% | 559 | 13,906 |
| female_kidney_3 | 415 | 43.3\% | 6,505 | 32.0\% | 11.3\% | 544 | 13,811 |
| female_kidney_4 | 407 | 42.4\% | 6,504 | 32.0\% | 10.4\% | 552 | 13,812 |
| PRJEB6377 |  |  |  |  |  |  |  |
| male_fat | 450 | 46.9\% | 6,799 | 33.5\% | 13.5\% | 509 | 13,517 |
| male_duodenum | 582 | 60.7\% | 9,611 | 47.3\% | 13.4\% | 377 | 10,705 |
| male_hypothalamus | 374 | 39.0\% | 5,970 | 29.4\% | 9.6\% | 585 | 14,346 |
| male_kidney | 485 | 50.6\% | 7,113 | 35.0\% | 15.6\% | 474 | 13,203 |
| male_lung | 456 | 47.5\% | 6,494 | 32.0\% | 15.6\% | 503 | 13,822 |
| male_muscle | 525 | 54.7\% | 7,783 | 38.3\% | 16.4\% | 434 | 12,533 |
| male_liver | 556 | 58.0\% | 8,711 | 42.9\% | 15.1\% | 403 | 11,605 |
| PRJNA273164 |  |  |  |  |  |  |  |
| female_fat1 | 472 | 49.2\% | 7,144 | 35.2\% | 14.1\% | 487 | 13,172 |
| female_fat2 | 535 | 55.8\% | 7,925 | 39.0\% | 16.8\% | 424 | 12,391 |
| female_fat3 | 537 | 56.0\% | 8,176 | 40.2\% | 15.8\% | 422 | 12,140 |
| female_fat4 | 514 | 53.6\% | 7,534 | 37.1\% | 16.5\% | 445 | 12,782 |
| female_fat5 | 479 | 49.9\% | 7,536 | 37.1\% | 12.9\% | 480 | 12,780 |
| female_liver1 | 522 | 54.4\% | 7,794 | 38.4\% | 16.1\% | 437 | 12,522 |
| female_liver2 | 520 | 54.2\% | 7,730 | 38.0\% | 16.2\% | 439 | 12,586 |
| female_liver3 | 529 | 55.2\% | 8,179 | 40.3\% | 14.9\% | 430 | 12,137 |
| female_liver4 | 567 | 59.1\% | 8,846 | 43.5\% | 15.6\% | 392 | 11,470 |
| female_liver5 | 589 | 61.4\% | 9,414 | 46.3\% | 15.1\% | 370 | 10,902 |
| female_muscle1 | 517 | 53.9\% | 8,377 | 41.2\% | 12.7\% | 442 | 11,939 |
| female_muscle2 | 521 | 54.3\% | 8,120 | 40.0\% | 14.4\% | 438 | 12,196 |
| female_muscle3 | 518 | 54.0\% | 8,513 | 41.9\% | 12.1\% | 441 | 11,803 |
| female_muscle4 | 561 | 58.5\% | 9,069 | 44.6\% | 13.9\% | 398 | 11,247 |
| female_muscle5 | 549 | 57.2\% | 8,984 | 44.2\% | 13.0\% | 410 | 11,332 |
| female_pituitary1 | 422 | 44.0\% | 6,582 | 32.4\% | 11.6\% | 537 | 13,734 |
| female_pituitary2 | 436 | 45.5\% | 6,809 | 33.5\% | 11.9\% | 523 | 13,507 |
| female_pituitary3 | 425 | 44.3\% | 6,859 | 33.8\% | 10.6\% | 534 | 13,457 |
| female_pituitary4 | 464 | 48.4\% | 7,439 | 36.6\% | 11.8\% | 495 | 12,877 |
| female_pituitary5 | 467 | 48.7\% | 7,437 | 36.6\% | 12.1\% | 492 | 12,879 |
| male_fat1 | 521 | 54.3\% | 8,104 | 39.9\% | 14.4\% | 438 | 12,212 |


| male_fat2 | 508 | 53.0\% | 7,893 | 38.9\% | 14.1\% | 451 | 12,423 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| male_fat3 | 501 | 52.2\% | 7,902 | 38.9\% | 13.3\% | 458 | 12,414 |
| male_fat4 | 495 | 51.6\% | 7,820 | 38.5\% | 13.1\% | 464 | 12,496 |
| male_fat5 | 591 | 61.6\% | 9,473 | 46.6\% | 15.0\% | 368 | 10,843 |
| male_liver1 | 562 | 58.6\% | 8,964 | 44.1\% | 14.5\% | 397 | 11,352 |
| male_liver2 | 534 | 55.7\% | 8,378 | 41.2\% | 14.4\% | 425 | 11,938 |
| male_liver3 | 574 | 59.9\% | 9,322 | 45.9\% | 14.0\% | 385 | 10,994 |
| male_liver4 | 540 | 56.3\% | 8,250 | 40.6\% | 15.7\% | 419 | 12,066 |
| male_liver5 | 548 | 57.1\% | 8,508 | 41.9\% | 15.3\% | 411 | 11,808 |
| male_muscle1 | 550 | 57.4\% | 9,117 | 44.9\% | 12.5\% | 409 | 11,199 |
| male_muscle2 | 560 | 58.4\% | 9,249 | 45.5\% | 12.9\% | 399 | 11,067 |
| male_muscle4 | 536 | 55.9\% | 8,727 | 43.0\% | 12.9\% | 423 | 11,589 |
| male_muscle5 | 542 | 56.5\% | 8,819 | 43.4\% | 13.1\% | 417 | 11,497 |
| male_pituitary1 | 456 | 47.5\% | 7,382 | 36.3\% | 11.2\% | 503 | 12,934 |
| male_pituitary2 | 447 | 46.6\% | 7,182 | 35.4\% | 11.3\% | 512 | 13,134 |
| male_pituitary3 | 466 | 48.6\% | 7,574 | 37.3\% | 11.3\% | 493 | 12,742 |
| male_pituitary4 | 477 | 49.7\% | 7,697 | 37.9\% | 11.9\% | 482 | 12,619 |
| male_pituitary5 | 414 | 43.2\% | 6,364 | 31.3\% | 11.8\% | 545 | 13,952 |
| PRJNA229443 |  |  |  |  |  |  |  |
| contl_placenta | 512 | 53.4\% | 7,761 | 38.2\% | 15.2\% | 447 | 12,555 |
| scnt_placenta | 548 | 57.1\% | 8,546 | 42.1\% | 15.1\% | 411 | 11,770 |

Table S3. TPM distribution of $X$ and autosomes expression difference in each sample

| Sample | Expressed genes P-value | Ubiquitously expressed genes P-value |
| :---: | :---: | :---: |
| PRJNA254699 |  |  |
| O0C_vivo | 0.035 | 0.48 |
| 2C_vivo | $8.53 \mathrm{E}-06$ | 0.012 |
| 4C_vivo | $6.31 \mathrm{E}-05$ | 0.044 |
| 8C_vivo | 0.18 | 0.25 |
| 16C_vivo | 0.74 | 0.0076 |
| 32C_vivo | 0.63 | 0.10 |
| CM_vivo | 0.029 | 0.98 |
| BL_vivo | 0.0028 | 0.68 |
| PRJNA228235 |  |  |
| GOC_vitro | 0.063 | 0.94 |
| MOC_vitro | 0.094 | 0.36 |
| 4C_vitro | 0.03 | 0.26 |
| 8C_vitro | 0.0064 | 0.36 |
| 16C_vitro | 0.079 | 0.16 |
| BL_vitro | 0.0029 | 0.19 |
| PRJNA243569 |  |  |
| D7_vivo | 0 | 0.61 |
| D10_vivo | 2.60E-07 | 0.16 |
| D13_vivo | $1.00 \mathrm{E}-07$ | 0.20 |
| D16_vivo | $6.00 \mathrm{E}-07$ | 0.26 |
| D19_vivo | 0.00026 | 0.15 |
| PRJNA298914 |  |  |
| CL | 7.95E-05 | 0.25 |
| EM | $5.50 \mathrm{E}-07$ | 0.88 |
| PRJNA268096 |  |  |
| female_brain | 0.0017 | 0.021 |
| female_kidney | $8.35 \mathrm{E}-05$ | 0.04 |
| female_liver | 0.43 | 0.16 |
| female_muscle | $2.84 \mathrm{E}-06$ | 0.10 |
| PRJEB6377 |  |  |
| male_adipose | 6.46E-05 | 0.52 |
| male_duodenum | 0.05 | 0.91 |
| male_hypothalamus | 0.052 | 0.018 |
| male_kidney | 0.00048 | 0.40 |
| male_lung | 8.68E-06 | 0.16 |
| male_liver | 0 | 0 |
| male_muscle | 0 | 0 |
| PRJNA273164 |  |  |
| female_fat | 6.54E-06 | 0.29 |
| female_liver | 0.19 | 0.25 |
| female_muscle | 1.18E-05 | 0.19 |
| female_pituitary | 0.04 | 0.0039 |
| male_fat | $2.56 \mathrm{E}-05$ | 0.25 |
| male_liver | 0.11 | 0.56 |
| male_muscle | $2.00 \mathrm{E}-05$ | 0.33 |
| male_pituitary | 0.0067 | 0.0069 |

green highlighed P -value greater than 0.05 for no significant difference between X and autosomes

Table S4. TPM distribution of $X$ chromosome difference of common tissues between males and females

| Common tissue type | $\boldsymbol{P}$-value |
| :--- | ---: |
| Brain | 0.55 |
| Fat | 0.15 |
| Kidney | 0.32 |
| Liver | 0.32 |
| Muscle | 0.044 |
| Pituitary | 0.18 |

Table S5.1. X-linked genes in PAR

| PPP2R3B |
| :--- |
| SLC25A6 |
| IL3RA |
| CSF2RA |
| ASMTL |
| CRLF2 |
| PRKX |
| MXRA5 |
| ARSH |
| ARSE |
| GYG2 |
| CD99 |
| ZBED1 |
| GPR143 |
| TBL1X |
| ANOS1 |
| PNPLA4 |
| NLGN4 |
| ARSD |
| ARSF |

Table S5.2. Candidate XCI escapee genes

| ARR3 |
| :--- |
| ASB11 |
| ATP2B3 |
| CA5B |
| CD99 |
| CHM |
| CNKSR2 |
| CYBB |
| DDX3Y |
| DGAT2L6 |
| DMD |
| DRP2 |
| EBP |
| EIF1AY |
| EIF2S3 |
| FIGF |
| GATA1 |
| GPC3 |
| GRPR |
| HMGB3 |
| IL13RA2 |
| KDM6A |
| LOC513911 |
| MAGEH11 |
| MAOB |
| MED12 |
| MIR3431 |
| MOSPD1 |
| NLGN3 |
| OFD1Y |
| PHEX |
| PORCN |
| PRR32 |
| PSMD10 |
| RAB39B |
| RBM3 |
| RENBP |
| SH3KBP1 |
| SLC6A14 |
| SMARCA1 |
| SRPX |
| SUV39H1 |
| TBL1X |
| TENM1 |
| TLR7 |
| TLR8 |
| USP27X |
| USP9Y |
| VSIG4 |
| XIAP |
| XIST |
| XPNPEP2 |
| ZCCHC12 |
| ZFX |
| ZMYM3 |

Figure S1. Correlation plots and unsupervised hierarchical clustering of RNA-seq datasets for somatic (A) and embryo tissues (B).

A


A
Cluster Dendrogram

dist(cor.info)
hclust (*, "complete")
The color spectrum in correlation plots ranges from blue to red, indicating high to low correlations between sample replicates. Hierarchical Clustering was conducted with all genes. $\mathrm{EM}=$ endometrium, $\mathrm{CL}=$ corpus luteum, $\mathrm{GV}=$ germinal vesicle, $\mathrm{MII}=$ metaphase of second meiosis, $\mathrm{CM}=$ compact morula, $\mathrm{BL}=$ blastocyst



Cluster Dendrogram
B

dist(cor.info)
hclust (*, "complete"
The color spectrum in correlation plots ranges from blue to red, indicating high to low correlations between sample replicates. Hierarchical Clustering was conducted with all genes. $\mathrm{EM}=$ endometrium, $\mathrm{CL}=$ corpus luteum, $\mathrm{GV}=$ germinal vesicle, $\mathrm{MII}=$ metaphase of second meiosis, $\mathrm{CM}=$ compact morula, $\mathrm{BL}=$ blastocyst

Figure S2. Gene ontology enrichment analysis of ubiquitously expressed genes in somatic tissue datasets

(A) GO analysis of 245 genes on X chromosomes and 7,603 genes on autosomes as ubiquitous in the somatic tissue datasets. Plotted are top ten biological processes with their p -values ( X -axis)


- biological adhesion (GO:0022610)
bioloaical requlation (GO:0065007)
cell killina (GO:0001906) $\quad$
cellular component organization or biogenesis (GO:0071840)
- cellular process (GO:0009987)
- developmental process (GO:0032502) a
growth (GO:0040007) a
- immune system process (GO:0002376)
localization (GO:0051179)
图 locomotion (GO:0040011)
- metabolic process (GO:0008152) a
multicellular organismal process (GO:0032501)
reproduction (GO:0000003)
response to stimulus (60:0050896)
ribythmic process (GO:0048511)
(B): Pie chart for biological process was generated in The Gene Ontology Consortium

Figure S3. Gene ontology enrichment analysis of ubiquitously expressed genes in embryo datasets

(A) GO analysis of the 117 genes on X chromosome and 3,947 genes on autosomes as ubiquitous in the embryo datasets. Plotted are top ten biological processes with their p -values ( X -axis)

(B) Pie chart for biological process was generated in The Gene Ontology Consortium

Figure S4. Common ubiquitously expressed genes between somatics and embryonic tissues


## Chapter Four

Methylome Dynamics of Bovine Gametes and In Vivo Early Embryos
Duan J.E., Jiang Z., Alqahtani F., Mandoiu I., Dong H., Zheng X., Marjani S.L., Chen J. \& Tian X.C.

### 4.1. Abstract

Dynamic changes in DNA methylation are crucial in the process of early mammalian embryogenesis. Global DNA methylation studies in the bovine, however, remain mostly at the immunostaining level. We adopted the single-cell whole genome bisulfite sequencing (scWGBS) method to characterize stage-specific genome-wide DNA methylation in bovine sperm, immature oocytes, oocytes matured in vivo and in vitro, as well as in vivo developed embryos at the $2-, 4-, 8$ - and 16 -cell stages. We found that the major wave of genome-wide DNA demethylation was complete by the 8 -cell stage when de novo methylation became prominent. Sperm and oocytes were differentially methylated in numerous regions (DMRs), largely intergenic, suggesting that these noncoding regions may play important roles in gamete specification. DMRs were also identified between in vivo and in vitro matured oocytes, demonstrating environmental effects on epigenetic modifications. Moreover, virtually no (less than $1.5 \%$ ) DNA methylation was found in mitochondrial DNA. Finally, by using RNA-seq data generated from embryos at the same developmental stages, we revealed a weak inverse correlation between gene expression and promoter methylation. These data provide insights into the critical features of the methylome of bovine embryos, and serve as an important reference for embryos produced by assisted reproduction, such as in vitro fertilization and cloning, and a model for the epigenetic dynamics that occur in human early embryos.

Keywords: DNA methylation; Gametes, Single early embryo; WGBS; Bovine

### 4.2. Introduction

Cytosine methylation plays essential roles in mammalian development, including transposon silencing, cell differentiation, genomic imprinting, and X chromosome inactivation (Hackett and Surani, 2013). DNA methylation is relatively stable in differentiated somatic cells, but highly dynamic during primordial germ cell development and pre-implantation embryogenesis (Saadeh and Schulz, 2014). Embryonic DNA methylation reprogramming requires genome-wide DNA demethylation, which erases the epigenetic marks of the parental genomes, as well as rapid de novo methylation to establish the epigenetic state of the early embryo (Seisenberger et al., 2012). With the recent advancement of the methylation highthroughput sequencing technology, many methylome studies have been conducted on mammalian pre-implantation embryos (Gao et al., 2017; Guo et al., 2014; Jiang et al., 2018; Smith et al., 2012; Zhu et al., 2018). In the mouse, reduced representation bisulfite sequencing (RRBS) revealed rapid genome-wide demethylation in zygotes (Smith et al., 2012). In primates (Guo et al., 2014; Gao et al., 2017; Zhu et al., 2018), however, this major demethylation event did not occur until the 2-cell stage. Contrary to observations generated by immunostaining, which showed the highest DNA methylation in mouse blastocysts (Dean et al., 2001), the lowest DNA methylation levels were found at the blastocyst stage, despite that fact that de novo methylation had been initiated earlier than this stage (Smith et al., 2012).

In bovine embryos, many studies have been conducted on the global methylation dynamics by immunostaining of 5mC (Dean et al., 2001; Beaujean et al., 2004; Park et al., 2007) and one by DNA methylation array with a finite numbers of probes (Salilew-Wondim et al., 2015). While immunostaining provides important overall methylation dynamics, it does not provide specific sequence information of the methylated/de-methylated regions. We were the
first to report methylome dynamics at the single-base resolution in bovine in vivo preimplantation embryos using RRBS (Jiang et al., 2018). However, RRBS preferentially selects CpG -rich regions, such as CpG islands, while CpG shores are usually under-represented (Doherty and Couldrey, 2014). These shore regions are known to play important roles in tissue differentiation (Doi et al., 2009). Recently, the development of single-cell whole genome bisulfite sequencing (scWGBS-seq) allowed for the reliable and affordable revelation of all potentially CpG sites in a single oocyte or embryo (Smallwood et al., 2014).

Cattle are one of the most economically valuable livestock species (Woolliams, 1996), and we have found that bovine embryos share more similarities with humans than mice in gene expression profiles and developmental timing (Jiang et al., 2014). The understanding of the methylome dynamics during bovine in vivo pre-implantation embryogenesis will provide the gold standard reference that can lead to improvements in assisted reproductive technologies and provide evolutionary insights across species. Importantly, bovine embryos serve as a great model for understanding human development where in vivo embryos are not available for research studies.

### 4.3. Methods

### 4.3.1. Collection of bovine single gametes and embryos

Frozen bovine sperm from a Holstein bull with proven fertility were thawed and washed using PureCeption gradient solution to remove somatic cell contaminations. After serial dilutions, three aliquots of approximately 20 sperm each were snap frozen and stored at $-80^{\circ} \mathrm{C}$ until library preparation.

Ovarian stimulation and oocyte retrieval from Holsten cows ( $\mathrm{n}=10$ ) was performed as previously described (Hayakawa et al., 2009; Jiang et al., 2014, 2018). Briefly, superovulation was achieved using five doses of intramuscular injections of FSH beginning five days after insertion of a Controlled Intra-vaginal Drug Release (CIDR) device. Two doses of prostaglandin F2 alpha were given along with the last two FSH treatments, followed by CIDR removal. Standing estrus (Day 0) was seen approximately 48h post-prostaglandin injection. GnRH was then administered at estrus exhibition. Each cow was inseminated 12- and 24-hours poststanding heat. Donor cows were sacrificed at 30 hours and 2-4 days after estrus to collect in vivo matured oocytes and 2- to 16-cell embryos by oviductal flushing, respectively. Cumulus-oocyte complexes were collected from slaughterhouse ovaries for GV oocytes. BO-IVM medium (IVF Bioscience) was used for oocyte in vitro maturation. This was conducted in four-well dishes for 24 hours at $38.5^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. The stage of oocytes and embryos was then examined under light microscopy and only Grade 1 embryos by standards of the International Embryo Technology Society were selected for further study.

All single oocytes and embryos were washed with D-PBS containing $1 \mathrm{mg} / \mathrm{ml}$ polyvinylpyrrolidone (PBS-PVP) and transferred into $50 \mu 1$ droplets of $0.1 \%$ protease to remove the zona pellucida. Single oocytes and embryos were rinsed three times in PBS-PVP, and the
absence of contaminating cells was confirmed, they then were snap frozen with minimal medium and stored at $-80^{\circ} \mathrm{C}$ until library preparation.

### 4.3.2. Preparation of WBGS libraries

We obtained pools of 20 sperm ( $n=3$ ), single germinal vesicle (GV) oocytes ( $n=4$ ), single in vivo matured oocytes ( $\mathrm{n}=6$ ), single in vitro matured oocytes $(\mathrm{n}=6)$ and single embryos at the 2 cell $(\mathrm{n}=4), 4$-cell $(\mathrm{n}=5), 8$-cell $(\mathrm{n}=4)$ and 16 -cell $(\mathrm{n}=3)$ stages (Table S1). We followed the protocol of single-cell WGBS library preparation by Smallwood et al. (2014) to prepare the single oocyte/embryo WGBS libraries. Briefly, sperm cells or a single oocyte/embryo were seeded into lysis buffer with $20 \mathrm{mg} / \mathrm{ml}$ of protease and $10 \%$ Trition-X 100. Genomic DNA was released after incubation at $50^{\circ} \mathrm{C}$ for 3 hours, followed by $75^{\circ} \mathrm{C}$ for 30 minutes to inactivate the protease. Bisulfite treatment to convert unmethylated cytosines to uracils was conducted by using the MethylCode Bisulfite Conversion Kit (Thermo Fisher). The synthesis of complementary strands was repeated five times with Biotinylated random primer Bio-P5-N9 (Biotin-CTACACGACGCTCTTCCGATCTNNNNNNNNN). This allowed for the maximizing of the tagged DNA strands and the generation of multiple copies of each fragment. The second strands were synthesized using another random primer, P7-N9 (AGACGTGTGCTCTTCCGATCTNNNNNNNNN). Final libraries were prepared after 12 cycles of PCR amplification using Illunima Universal PCR primer and indexed primer (NEBNext Multiplex Oligos for Illumina, New England BioLabs). Agencourt Ampure beads were used to purify the amplified libraries. The quality and quantity of the libraries were determined using high-sensitivity DNA chips on the Agilent Bioanalyzer, and KAPA Library Quantification Kits (KAPA Biosystems). Single-cell indexed libraries were pooled and sequenced on Illumina HiSeq4000 platform with 150 bp paired-end reads. The raw FASTQ files
are available at Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) under accession number GSE121758.

### 4.3.3. Reads filtering and mapping

After the sequencing adapters were removed by TrimGalore-0.4.3 (Krueger, 2017) using the parameters of quality score higher than 20 and length greater than 36 , reads that contained a total number of 15 Ns were removed. FastQC (Andrews, 2010) was used to assess the read quality. Further, 12 bp low quality reads at the $5^{\prime}$ end of both pairs were also removed. Trimmed sequences were mapped to the bovine genome UMD3.1.1 using Bismark - v.0.18.1(Krueger and Andrews, 2011), with parameters: --non_directional, --score_min L, $0,-0.6,--$ un. This resulted in 11.8 million reads uniquely mapped with a mapping efficiency of $9.3 \%$ (Table S1). This is higher than the average mapping efficiency (1.4\%) of mouse single oocytes subjected to the same protocol (Smallwood et al., 2014). After mapping, we removed duplicates and nonconverted reads using deduplicate_bismark and filter_non_conversion, respectively (Krueger and Andrews, 2011). There were on average 4 million reads per sample for downstream analysis

## (Table S1).

### 4.3.4. Quantification of methylation level and CpG density

Using Bismark Methylation Extractor (Krueger and Andrews, 2011), methylation coverage for every single C was extracted and read coverage files were generated. When calculating the methylation level of each CpG site, the read coverage files of cytosine in CpG context were used. The DNA methylation level of each CpG site was calculated using count_methylated ("C" reads) divided by sum of count_methylated and count_unmethylated ("C" + "T" or total read counts). The numbers of CpG sites with 1X, 5X or 10X total read counts of each stage were summarized in Table S1. The processed CpG coverage files are available in

GSE121758. Data visualization and analysis were preformed using custom R and Java scripts and SeqMonk (Andrews, 2007).

To facilitate the comparison of methylation levels across samples, we applied the consecutive genomic window method to bin the bovine genome (Zhu et al., 2018). Briefly, we first filtered out CpGs that had total read counts of less than 5 . Then, we bound the genome to 300-bp tiles. Only tiles that contained greater than three CpG sites were kept. Tiles from replicate samples of the same developmental stage were combined to increase the coverage (Figure 2A). The numbers of captured 300-bp tiles in each stage are summarized in Figure S1E. We also identified the common 300-bp tiles among all samples as commonly methylated. Uniquely methylated tiles were then obtained for each sample. DNA methylation of each sample was calculated by averaging the $300-\mathrm{bp}$ tiles' methylation. Moreover, we calculated the CpG density as described by Guo et al., 2014. We determined the total number of all CpG sites located within 150 bp upstream and 150 bp downstream of each CpG site. Then the CpG density of every $300-\mathrm{bp}$ tile was determined as the average of all CpG sites within this $300-\mathrm{bp}$ tile.

### 4.3.6. Pairwise comparison of methylation changes and gamete-specific DMRs

Using Bedtools (Quinlan and Hall, 2010), we identified the common 300-bp tiles between consecutive stages and between male and female gametes. We followed the previous study (Guo et al., 2014) to classify changing tiles as those with methylation differences greater than $40 \%$ and significantly different by Fisher's exact test (P-value $\leq 0.05$, FDR $\leq 0.05$ ), while the remaining tiles were defined as stable tiles. Increasing/decreasing tiles between consecutive stages were used to define DNA methylation increases or decreases. Differentially methylated regions (DMRs) were defined as common 300-bp tiles between two types of gametes/stages that had methylation levels $\geq 75 \%$ in one stage/type and $\leq 25 \%$ in another, and significantly different
by Fisher's exact test ( P -value $\leq 0.05$, FDR $\leq 0.05$ ). Hyper- and hypo-methylated tiles were those with DNA methylation levels $\geq 75 \%$ and $\leq 25 \%$, respectively.

### 4.3.7. Genomic feature annotation

Genomic features, including promoters (1,000 bp upstream of Transcription Start Sites; TSS), exons, introns, CpG islands (CGIs), intergenic, long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and long terminal repeats (LTRs) were downloaded from University of California, Santa Cruz (UCSC) genome browser (bovine genome UMD3.1.1).

### 4.3.8. Gene Ontology (GO) analysis

GO analysis of genes annotated from DMRs was performed using DAVID ( https://david.ncifcrf.gov, Huang et al., 2009a, 2009b). Biological processes with a P-value $\leq 0.05$ were determined to be statistically significant.

### 4.3.9. Gene expression analysis

We downloaded RNA-seq data of bovine sperm (Lesch et al., 2016), GV oocytes, in vitro matured oocytes (Graf et al., 2014), and in vivo matured oocytes and embryos (Jiang et al., 2014). Raw reads were trimmed by Trimmomatic (Bolger et al., 2014) and aligned to bovine reference genome assembly UMD3.1.1 using Hisat2 version 2.0.5 aligner (Pertea et al., 2016). IsoEM version 1.1.5 (Nicolae et al., 2011) was used to quantify gene expression to fragment per kilobase million (FPKM) using default parameters. Transcripts that annotated to LINEs, SINEs, and LTRs were determined by Bedtools (Quinlan and Hall, 2010). Spearman correlation coefficients between $\log 2$ transformed gene expression levels and DNA methylation levels of promoter, gene body, exon, intron, CGIs, LINEs, SINEs, and LTRs were calculated and plotted
in $\mathrm{R}(\mathrm{R}$ Core Team, 2014).

### 4.4. Results and Discussion

### 4.4.1. Profiles of the WGBS libraries of bovine gametes and embryos

Using scWGBS, we analyzed a total of 35 samples of sperm, GV, in vivo and in vitro matured oocytes and cleavage stage in vivo developed embryos. The bisulfite conversion efficiency was more than $97 \%$ in each sample (Table S1). Pearson correlations indicated higher reproducibility within stages than between stages (Figure $\mathbf{S 1 A}$ ). Captured CpGs broadly spread across each chromosome (Figure S1B-C). Two distinct profiles of methylation were observed: 1) highly methylated sperm and 2) lowly methylated oocytes and embryos (Figure S1C). However, virtually no (less than 1.5\%) DNA methylation was found in mitochondrial DNA (Figure S1BC); this is in agreement with findings in humans (Hong et al., 2013; Liu et al., 2016) and mice (Mechta et al., 2017).

In single oocytes and embryos, an average of 9 million reads uniquely mapped to the bovine genome assembly, UMD3.1.1, with an averaged 9.3\% mapping rate (Table S1). This is higher than the average mapping efficiency ( $1.4 \%$ ) of mouse single oocytes subjected to the same protocol (Smallwood et al., 2014). After removing duplicated and non-bisulfite converted reads, an average of 4 million reads per sample remained for downstream analysis (Table S1). We obtained an average of 1.8 million and $116,655 \mathrm{CpG}$ dinucleotides at 1 X and 10 X read counts, respectively (Table S1). In sperm samples, the average mapped reads (40 million), mapping rates ( $25.3 \%$ ), unique reads ( 35.6 million) and the numbers of CpGs with 1 X and 10 X read counts ( 12 million and 608,253 ) were much higher than those of the single oocytes and embryos.

### 4.4.2. Unique features of methylome dynamics in bovine gametes and pre-implantation embryos

A circus plot was generated to display CpG methylation levels within 300-bp tiles across all 30 bovine chromosomes (Figure S1D). The number of total 300-bp tiles in each stage is summarized in Figure S1E. Two distinct methylation patterns were found: methylation in sperm was much higher ( $72.5 \%$; Figure 1A) than oocytes ( $29.0 \%$ - $31.3 \%$ ) and embryos ( $15.3 \%$ $32.1 \%$, Figure 1A and Figure S1D). These changes are caused by the global demethylation in the early bovine embryos. After fertilization, CpG methylation in gametes (72.5\% in sperm and $\sim 30 \%$ in oocyte; Figure 1A) decreased rapidly and reached the first low point at the 2-cell stage ( $25.0 \%$; Figure 1A). Subsequently, a slight increase in DNA methylation was observed at the 4cell stage (26.7\%; Figure 1A). As development progressed, a further and major overall demethylation occurred reaching the lowest point at the 8 -cell stage ( $15.3 \%$; Figure $\mathbf{1 A}$ ) and coinciding with onset of major embryonic genome activation (Misirlioglu et al., 2006; Graf et al., 2014; Jiang et al., 2014). A doubling of DNA methylation was then seen at the 16 -cell stage ( $32.1 \%$; Figure 1A). The timing of this major event of de novo methylation was consistent with our previous finding using RRBS (Jiang et al., 2018), as well as with the results generated by immunostaining (Dean et al., 2001; Dobbs et al., 2013; O’Doherty et al., 2015).

Of note, the three types of oocytes studied were all different in their DNA methylation levels. Although the global methylation of in vivo matured oocytes (31.6\%) was only about $2 \%$ higher than that of the GV oocytes (29.7\%), this change occurred to the haploid genome in a relatively short time and may not be minimal. Our data provides the molecular basis for the observation reported by Kono et al. (1996) that the maturation process involves addition of DNA methylation in mouse oocytes. Moreover, a small but noticeable difference in methylation levels
was also seen between in vitro (29.0\%) and in vivo matured oocytes. This difference suggests aberrant DNA methylation during in vitro maturation. In vitro maturation, fertilization, and culture has been linked to abnormal embryo development (Smith et al., 2005) and large offspring syndrome (Young et al., 1998).

Interestingly, the methylation levels of non- $\mathrm{CpG}(\mathrm{CpH})$ sites showed an opposite demethylation-remethylation patterns and remained mostly at low levels (Figure 1B and Figure S1F). For example, non-CpG methylation peaked at the 8 -cell stage and was the lowest in sperm, a reverse pattern to that of CpG methylation. Although non- CpG methylation has been reported to be enriched in oocytes (Tomizawa et al., 2011) and pluripotent stem cells, its functions, if any, remain poorly understood. Our result showed that non-CpG methylation peaked when high expression of pluripotency genes and embryonic genome activation occurred in bovine preimplantation embryos (Jiang et al., 2014), suggesting an active regulatory role of non-CpG methylation on pluripotent gene expression.

### 4.4.3. Potential mechanisms for the methylome dynamics

To better understand the mechanisms of the DNA methylation dynamics, we analyzed the RNA-seq data of bovine gametes and embryos (Graf et al., 2014; Jiang et al., 2014; Lesch et al., 2016) for genes that encode DNA methylcytosine dioxygenases (TET1, TET2, and TET3) and DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMTL). The dioxygenases (Huang et al., 2014), TET3 and TET2, were highly enriched in oocytes and 2-cell stage embryos, and their levels started to fade away at the 4-cell stage (Figure 1C), indicating a $T E T$-mediated active DNA demethylation event immediately after fertilization (Wu and Zhang, 2017).

Interestingly, expression of the other TET hydroxylase family member, TET1, was first seen at 4-cell stage and peaked at the 16-cell stage (Figure 1C), corresponding to its known function of
promoting the pluripotency of the inner cell mass (ICM) in the blastocyst (Seisenberger et al., 2013). On the other hand, the expression level of transcripts for $D N M T 1$, the methylation maintenance enzyme (Goyal et al., 2006) was highest in in vivo matured oocytes, reduced gradually after fertilization, and reached the lowest level at the 8-cell stage (Figure 1C). This may be why the overall methylation levels of matured oocytes and the first two cleavage embryos did not dramatically decline until the 8 -cell stage since bisulfite treatment cannot distinguish between 5-methylcytosine and the product of TET activity, 5-hydroxymethylcytosine. Transcripts for the de novo methyltransferase DNMT3A (Cheng and Blumenthal, 2011), and the cooperative homology, DNMT3L (Hata et al., 2002), were low until the 16-cell stage (Figure 1C), when we observed a doubling of DNA methylation levels. Another gene in the DNMT3 family, DNMT3B, had an expression pattern similar to that of DNMT1, and may be important for de novo methylation at earlier stages (Liao et al., 2015). Taken together, the expression dynamics of methyltransferases is closed related to the dynamics of methylome in bovine oocytes and early embryos, and active demethylation by members of the TET family may be involved throughout early embryo development as opposed to the zygotic stage in the mouse (Iqbal et al., 2011).

### 4.4.4. Genomic regions of dynamic methylation changes

To determine the specific genomic regions that underwent dynamic methylation changes, we analyzed the methylation levels of promoters, exons, introns, CGIs, and intergenic regions of all annotated bovine genes (Figure 1D). We found that promoters and CGIs were consistently lowly methylated across all developmental stages, an observation similar to those found in other species (Guo et al., 2014). Interestingly, exons were hypermethylated (methylation level $\geq 75 \%$ ) in sperm, but hypomethylated in oocytes and cleavage stage embryos. Methylation levels in exons had a minor increase at the 2-cell stage, but surged remarkably between the 8 - and 16 -cell
stages. On the other hand, changes in introns and intergenic regions closely resembled the whole genome dynamics (Figure 1D). In summary, the patterns of methylation dynamics in promoters and CGIs, which make up less than $1 \%$ of the genome, did not follow those of the whole genome and stayed in a hypomethylated state (methylation level $\leq 25 \%$ ). These data suggest that the global methylation changes mainly reflects those of non-coding regions, such as intergenic regions and introns. Regulatory regions, such as promoters and CGIs, as well as coding regions (exons) have their own specific pattern of fluctuations.

We further examined DNA methylation along the gene body and 15 kb up and down stream of all annotated bovine genes (Figure 1E). A valley in methylation levels was observed around the TSS of all genes, coinciding with the predominantly unmethylated promoters. Methylation gradually increased from TSS to TES and slightly decreased after TES in all stages. This pattern was repeatedly observed in all examined gametes and developmental stages (Figure $\mathbf{1 E}$ ) and was also seen in our RRBS study (Jiang et al., 2018). This suggests that DNA methylation may be used as a marker for gene TSS and TES boundaries (Naumann et al., 2009) in addition to its role in gene expression regulation. It also indicates a regulatory role of gene body methylation in transcription activation (Zilberman, 2017).

### 4.4.5. CpG density and methylome dynamics

To determine whether CpG density affects DNA demethylation and remethylation patterns, we plotted the DNA methylation levels of 300-bp tiles against their CpG density in all samples (Figure 2A). Genome regions were categorized into high ( $80 \%$-100\%), intermediate (20\%-40\%, 40\%-60\%, and 60\%-80\%), and low (0-20\%) methylation levels (Figure 2B) and the correlation to CpG density for each was plotted in Figure 2C-E. Sperm exhibited a strong negative correlation ( $\mathrm{r}=-0.97$ ) between CpG density and methylation levels: regions of low CpG
density had high methylation, while those with relatively high CpG density had low-tointermediate methylation (Figure 2A). Surprisingly, such a negative correlation in sperm had also been reported previously in differentiated somatic cells, likely because both cell types are highly methylated (Smith et al., 2012). However, among the other samples, only the 16-cell stage embryos had some trend of negative correlation (Figure 2A). Despite the negative correlation of CpG density and methylation levels, tiles with high CpG density, such as those in CGIs, were still more methylated in sperm and the 16 -cell stage than in the other cleavage stages. The high overall levels of methylation of the sperm was the result of containing more than $60 \%$ of highly methylated tiles, while oocytes and cleavage embryos only had less than $20 \%$ of such tiles (Figure 2B). In addition, previous studies have also found that about 70\% of promoter regions and CGIs that had high CpG densities remained predominantly unmethylated (Xie et al., 2013; Guo et al., 2014; Takahashi et al., 2017), corresponding to the reverse correlation between CpG density and CpG methylation level observed in our results.

### 4.4.6. Correlation between dynamics of transcriptomes and methylomes

Using RNA-seq data of bovine sperm (Lesch et al., 2016), GV oocytes, oocytes matured in vitro (Graf et al., 2014) and in vivo as well as cleavage stage embryos (Jiang et al., 2014), we observed weak negative correlations, ranging from -0.30 in sperm to -0.18 in the in vivo matured oocyte, between methylation levels of promoters and expression of the corresponding genes (Figure S2A). There were very weak negative correlations (in the range of -0.21 to -0.11 ) between the methylation and expression of the regions within gene body, exon, intron, and CGI. (Figure S2B). The correlation between methylation levels of the repetitive elements and the expression of the corresponding transcripts, however, was positive, ranging from 0.14 to 0.18
(Figure S2B). A previous study in mouse embryos also reported similar observations (Papin et
al., 2017). (Figure S2C). While both LINEs and SINEs, but not LTRs, underwent drastic demethylation from gametes to 8-cell stage, their overall RNA expression remained at relative low but constant levels (FPKM<40) throughout development, indicating the repression of repetitive element expression was possibly exerted through other mechanisms (Reik, 2007).

### 4.4.7. Commonly and uniquely methylated regions

A total of 14,939 tiles of 300 bp were found across all samples and termed commonly methylated. Their distribution along the 30 bovine chromosomes is illustrated in circos plots (Figure 3A). These tiles were characterized by low GC content, low CGI density and low gene density (Figure 3B). Specifically, 86\% of these tiles were located in non-coding regions (intergenic and introns), $3 \%$ in CGIs, and $11 \%$ in repetitive regions such as LINEs (2\%), SINEs (1\%) and LTRs (8\%). Because commonly methylated introns are the only regions that can lead to examination of functional genes in this group of tiles, we looked at their Gene Ontology (GO) terms and found that were enriched for involvement in cell differentiation and migration, signal transduction, protein localization and metabolic processes (Figure 3B and Table S2). Many of these were house-keeping genes suggesting the importance of consistent expression during early development. Interestingly, commonly methylated tiles exhibited a very similar dynamic pattern of methylation changes to that of the global pattern in oocytes and embryos, but not in sperm (Figure 3C). This difference suggests that the sperm and oocytes/embryos are differentially methylated even in the intergenic regions. After fertilization, the embryos appeared to maintain a pattern more similar to the oocytes than the sperm. Also, of note, commonly methylated tiles only have an methylation level of $19.4 \%$ in sperm, compared to the global methylation at an overall level of $72.5 \%$, suggesting that these tiles although mainly intergenic, possibly resisted global demethylation.

Within commonly methylated regions, tiles that were hypermethylated in a specific stage and their GO categories are represented by heatmaps (Figure 3D). In the sperm, these tiles were enriched in genes of muscle contraction regulation, as well as oocyte development and differentiation (Figure 3D and Table S3), corresponding to the need for their repression. On the other hand, hypermethylated tiles in in vivo matured oocytes were involved in more GO terms than GV and in vitro matured oocytes (Table S3). A common GO term for hypermethylated tiles among the three types of oocytes was response to oxygen-containing compound (Figure 3D and Table S3). Oxygen stress in in vitro culture could generate excessive cytotoxic reactive oxygen species (ROS) and affect the viability of gametes (Park et al., 2005). The hypermethylation of these genes in oocytes is consistent with better quality when oocytes are matured in low oxygen conditions; perhaps the hypermethylation of these genes hampers the oocytes' ability to adapt to artificial culture environments (Waldenström et al., 2009). Additionally, the hypermethylated regions in 8 - or 16-cell embryos were mostly hypermethylated in other stages (Figure 3D), suggesting these regions either resisted demethylation or regained their methylation during the $d e$ novo process.

We next analyzed the uniquely methylated regions in each sample (Figure S3A). Sperm had the highest number tiles $(276,190)$, followed by the 16 -cell embryos $(31,628)$, with the least in in vivo matured oocytes (877). Those in sperm (Figure S3B) were enriched in intergenic (30\%) and repetitive regions ( $31 \%$ ), including $16 \%$ in SINES, $12 \%$ in LINEs and $3 \%$ in LTR, while only $1 \%$ fell in the promoter regions. The GO terms of genes represented by these tiles were immune and inflammatory responses, G-protein receptor signaling pathway, and cell adhesion (Figure S3B). Uniquely methylated regions in oocytes and embryos were also enriched in intergenic and repetitive regions (Figure S3C). The changes in the methylation levels of these
tiles in oocytes and embryos (Figure S3D) closely resembled the commonly methylated regions (Figure 3C) and global changes in methylation. However, sperm uniquely methylated regions ( $95 \%$ of the total tiles) were hypermethylated; while, sperm commonly methylated region (5\% of the total tiles) were hypomethylated, indicating that the sperm uniquely methylated regions were likely targets of methylation erasure and re-establishment during embryonic development.

### 4.4.8. Pairwise comparisons of methylomes at consecutive stages of development

Overall, the methylation of the majority tiles ( $77.6 \%$ on average of each stage) were stable (differences $\leq 40 \%$ ) during development (Figure 4A), indicating that methylome dynamic changes occurred in a small number of regions of the genome. Of the two transitions that had the most changing tiles (Figure 4A), a large portion (84.7\%) showed decrease in methylation from sperm to 2-cell; while, $78.7 \%$ of tiles increased methylation from 8- to 16-cell. A total of 951 genes were represented by the differentially methylated tiles (Figure S3E) between the 8- and 16-cell stages, with 256 and 695 hypermethylated at the 8 - and 16-cell stage, respectively (Figure S3E). Genes hypermethylated at the 8-cell stage were categorized into the GO terms of: actin cytoskeleton reorganization, negative regulation of transcription and cell adhesion; whereas, those associated with intracellular protein transport, cell migration and DNA-template transcription were hypermethylated at the 16-cell stage (Figure S3E and Table S4). Moreover, we have found four differentially expressed genes between 8- and 16-cell stage: ELOVL5, DEK, $C A D$, and KIAA1191 had DMRs (Table S5). The negatively correlation between gene expression and DNA methylation was expected.

### 4.4.9. Characteristics of DMRs between different types of gametes

We plotted heatmaps of DMRs from six comparisons: between sperm and any one of the three types of oocytes (Figure S4A-C), and between any two of the three oocyte types (Figure

S4D-F). The greatest number of DMRs and corresponding genes were found between sperm and in vitro matured oocytes $(6,211)$, while the least were between GV and in vivo matured oocytes (755) (Figure 4B). Large numbers of DMRs (801) were also found between in vivo and in vitro matured oocytes. Between sperm and in vivo matured oocytes, 1,200 DMRs were highly methylated in in vivo matured oocytes (Figure 4C) and 1,453 were highly methylated in sperm (Figure 4C). These DMRs may represent parent-of-origin specific epigenetic modifications. Most of them, however, were distributed in intergenic regions. A high percentage of DMRs were LTRs (oocyte: $12 \%$; sperm: $3 \%$ ) and SINEs (oocyte: $2 \%$; sperm: $6 \%$ ), respectively. More highly methylated DMRs in sperm were in exons (sperm: 8\%; oocyte: $3 \%$ ) and CGIs (sperm: $13 \%$; oocyte: $8 \%$ ) than those in oocytes.

We then profiled the dynamic changes of DMRs that were highly methylated in one type of gametes during pre-implantation development (Figure 4D, upper left panel). Only DMRs that are located in the commonly methylated regions could be included across all samples. DMRs among the different types of oocytes were mostly intermediately methylated (25-75\%). Interestingly, the majority of DMRs that were highly methylated in in vivo matured oocytes had intermediate methylation in both GV oocytes and in vitro matured oocytes, indicating that the in vitro environment failed to establish proper DNA methylation in these regions during the maturation process. Previous studies also demonstrated the suboptimal in vitro culture altered the DNA methylation landscape in bovine embryos (Salilew-Wondim et al., 2015). Furthermore, changes in DMRs that were hypermethylated in in vivo matured oocytes (Figure 4D upper left panel), resembled the global methylome dynamics during pre-implantation development. In contrast, DMRs hypermethylated in sperm (Figure 4D upper right panel) had relatively high methylation in the 2-cell stage compared to those hypermethylated in oocytes.

Additionally, we identified 1,063 and 9,310 tiles that were either hypermethylated or hypomethylated in both sperm and in vivo matured oocytes (Figure 4D bottom left panel). The hypomethylated tiles were not further de-methylated in pre-implantation embryos, but increased their methylation at the 16 -cell stage (Figure 4D bottom right panel). However, tiles that were hypermethylated in both gametes and localized in mostly intergenic regions became largely hypomethylated during subsequent development with minimal methylation levels reached at the 8-cell stage (Figure 4D).

The Gene Ontology of annotated genes encompassing all DMRs from the six comparisons were summarized in Table S6. Interestingly, only one common GO term, cell adhesion, was found in DMRs that were hypermethylated in sperm while hypomethylated in the three types of oocytes (Figure S4A-C). A previous methylome study (Perrier et al., 2018) compared bull sperm to somatic tissues, and also found the GO terms of cell adhesion in methylated region of sperm, along with migration and fertilization, which are essential functions of sperm. In the DMR comparison between in vivo and in vitro matured oocytes, genes in positive regulation of endosome, cellular component organization, and cytoplasmic transport were hypermethylated in in vivo matured oocytes, while those related to urogenital and reproductive system development and cell development were hypermethylated in in vitro matured oocytes. Our results provide candidate genes that were differentially methylated due to the suboptimal in vitro culture. These genes could be potential targets for the optimization of in vitro maturation and fertilization. Additionally, we analyzed the gene DMR with corresponded gene expression levels in the six comparisons (Table S7). Interestingly, genes with multiple DMRs, such as RNF122 in the comparison between GV and in vivo MII, showed the region specific DMR patterns along the gene body, i.e. some DMRs were hypermethylated in GV while
others were hypermethylated in in vivo MII, and the gene expression regulation difference could through complicate mechanisms.

### 4.4.10. Methylation of the $X$ chromosomes and imprinted genes

In the mouse, the sperm carries an inactive X chromosome which is quickly reactivated after fertilization (Goto and Monk, 1998). We found that the bovine gametes also had differentially methylated $X$ chromosomes with the one in sperm much more methylated than the one in matured oocytes. After fertilization, the overall DNA demethylation pattern of the X chromosome in the sperm closely resembled that of the whole genome (Figure 5A-B), suggesting reactivation of the paternal X chromosome. This is consistent with the observation that expression of the X -linked $M a o A$ gene was detected from both parental X chromosomes until the morula stage when XCI was first observed (Ferreira et al. 2010). Interestingly, the methylation level of X chromosome in sperm was about $10 \%$ lower than that of the entire sperm genome (Figure 5B), which was also observed in our RRBS study (Jiang et al., 2018) and in a monkey WGBS study (Gao et al., 2017). This is likely a result of more X-linked hypomethylated tiles on the X chromosome than the whole genome (Figure S1D).

The expression of the X-linked XIST gene is essential for initiation of XCI in the mouse embryos (Kalantry et al., 2009). In males, XIST is expressed in testes to coat the sex body that forms during male meiotic sex chromosome inactivation (MSCI) (Turner, 2007). In our data, the CpG site in XIST gene was not well cover in every sample (Figure 5A \& Figure S5). We could still observe that in sperm XIST gene was relatively lowly methylated compare to other regions of the X (Figure 5A \& Figure S5). Using expression data from Lesch et al (2016) and Jiang et al. (2014), we found that XIST was absent in the sperm, but its transcription was initiated at the 2cell stage (Figure 5C), supporting the previous data by De La Fuente et al., (1999). The major
elevation of XIST expression was observed between the 4- to 8- cell stage, when embryonic genome activation occurs, and peaked at morula stage, this is likely because XCI will be established soon (Figure 5C), which was first reported by Xue et al. (2002) in the bovine.

Genome imprinting is a phenomenon of gene expression in a parent-of-origin specific manner (Pfeifer, 2000) and can be regulated by differential epigenetic marks on gametes (Plasschaert and Bartolomei, 2014). Unlike the whole genome, which undergoes a drastic reprogramming after fertilization, genomic imprinted genes retain their germline differentially methylated regions (gDMRs) through the demethylation process in a parent-of-origin specific manner (Sanz et al., 2010; Stewart et al., 2016). To date, 53 imprinted genes have been identified in the bovine (Chen et al., 2016), of which 34 are annotated in the current genome and analyzed in our study.

We first characterized genes for which the imprinted control regions (ICR) (Pervjakova et al., 2016) are known regulatory gDMRs. The ICRs for imprinted genes PEG3 (Kim et al., 2007) and H19 (Robbins et al., 2012) (Figure 5D) are located at the first exon (Kim et al., 2007) and 3kb upstream of the H19 promoter (Hansmann et al., 2011; Robbins et al., 2012), respectively. In bovine gametes and early embryos, the methylation of these ICRs in gametes corresponded to their parent-of-origin expression, for example, paternally expressed (Kim et al., 2007) gene PEG3 was hypomethylated in sperm at its ICR and hypermethylation in oocytes, and the methylation was maintained at around $50 \%$ up to the 16 -cell stage (Figure 5D), as expected.

Interestingly, we observed two distinct patterns of gamete-specific methylation for bovine imprinted genes. The first pattern included 20 genes, 9 paternally and 11 maternally expressed, whose methylation along the gene body negatively correlated with their reported allelic expression, as expected. For example, the paternally expressed gene $S G C E$ was
hypomethylated in sperm and hypermethylated in in vivo matured oocytes, while the maternally expressed gene $I G F 2 R$ was hypomethylated in oocytes and hypermethylated in sperm. In the second pattern which included 14 genes, 8 paternally and 6 maternally expressed, a positive correlation of gene body methylation and the known allelic expression pattern was seen (Figure 5E). For instance, the paternally expressed genes, BEGAIN, IGF2, and RTL1, were hypermethylated in the gene bodies in sperm and hypomethylated in oocytes, while the maternal expressed $O O E P$ and PHLDA2 were hypermethylated in oocytes in their gene bodies. Our RRBS study (Jiang et al., 2018) of bovine embryos also reported similar findings. The disagreement between methylation and expression patterns could be due to the involvement of other epigenetic mechanisms as well as the fact that the gene body may not contain the imprinting control region. The expression heatmap (Figure 5E) showed that the majority of paternally expressed genes had high expression levels in sperm, while a significant number of the maternally expressed genes had high expression in GV oocytes.


Figure 1. Methylome dynamics during bovine pre-implantation embryonic development.
Line chart of averaged levels of $\mathrm{CpG}(\mathrm{A})$ and $\mathrm{CpH}(\mathrm{B})$ methylation across stages. Heatmap (C) of fragment per kilobase million (FPKM) expressions of DNMT and TET gene families in bovine early embryos. Line chart (D) of the average DNA methylation levels of annotated genomic features across stages. Trend plot (E) of averaged DNA methylation levels along the gene bodies (from transcription start sites (TSS) to transcription end sites (TES)) and 15,000 base pairs (bp) up- and down-stream of the gene body. GV: germinal vesicle oocytes; MII: matured oocytes.


Figure 2. CpG density and the methylome dynamics of bovine gametes and pre-implantation embryos.
Histogram (A) of the percentages of $300-\mathrm{bp}$ tiles with different DNA methylation levels at each development stage (upper panels). Box plots of methylation levels across different CpG densities at each stage (bottom panels). Stack bar plot (B) of the percentages of tiles with high ( $80 \%-100 \%$ ), intermediate ( $60 \%-80 \% ; 40 \%-60 \%, 20-40 \%$ ), and low ( $0-20 \%$ ) methylation levels. The distribution of high (C), intermediate (D) and low (E) methylation tiles against CpG densities at each stage. GV: germinal vesicle oocytes; MII: matured oocytes.


Figure 3. Commonly and uniquely methylated regions in bovine gametes and pre-implantation embryos.
Circos plot (A) visualization of 14,939 commonly methylated 300 -bp tiles among all samples. a. sperm, b. GV, c. in vivo MII, d. in vitro MII, e. 2-cell, f. 4-cell, g. 8-cell, h. 16-cell. Pie plot (B) of the distribution of commonly methylated tiles in genomic regions and their associated GO term representatives. Bar plot (C) of averaged DNA methylation levels across stages. Heatmap (D) of enrichment of hypermethylated regions in each stage and associated GO term representatives. GV: germinal vesicle oocytes; MII: matured oocytes. Green: hypomethylation, red: hypermethylation.


Figure 4. Pairwise comparisons of methylomes between consecutive development stagesand DMRs in gametes.
Histogram (A) of the numbers of stable (dark blue) and changing (sky blue) tiles between consecutive stages. Histogram of the numbers of decreasing (gray) and increasing (pink) tiles between consecutive stages. The numbers (B) of DMRs and corresponding genes between gametes of different types. Pie plots (C) of the distribution of in vivo MII- and sperm-specific DMRs in annotated genomic regions. Box plots (D) of DNA methylation levels of oocyte- (upper left) or sperm- (upper right) specific DMRs in gametes and early embryos, as well as distributions of tiles hypomethylated ( $\leq 25 \%$; bottom left) and hypermethylated ( $\geq 75 \%$; bottom right) tiles in both gametes in each development stage. GV: germinal vesicle oocytes; MII: matured oocytes.


Figure 5. Methylation of the $X$ chromosome and imprinted genes in bovine gametes and pre-implantation embryos.
Circos plot (A) visualization of the methylation dynamics of genomic region of the X chromosome. All genes are in gray lines, Xist gene is in black line. CGIs are in blue lines. a. sperm, b. GV, c. in vivo MII, d. in vitro MII, e. 2-cell, f. 4-cell, g. 8-cell, h. 16-cell. Line plot (B) showing the DNA methylation dynamics of the X chromosome followed the global pattern of methylation changes. Line chart (C) of fragment per kilobase million (FPKM) expressions levels of XIST in bovine early embryos. Visualization of (D) imprinted control regions (ICR) of PEG3 and H19. Heatmap of (E) of the methylation and expression levels (FPKM) of 34 imprinted genes in pre-implantation embryos. GV: germinal vesicle oocytes; MII: matured oocytes. Blue text: paternally expressed genes, pink text: maternally expressed genes, Color key for heatmap: blue, hypomethylation and low expression, red, hypermethylation and high expression.

### 4.5. Supplementary information

Table S1. Summary of WGBS library mapping and data processing

| Stages | No. of Total Sequencing Reads | No. of Mapped Reads | Mapping Rates | Duplicated reads (rates) | Nonconverted reads | Remained reads | Total Unique CpG Sites (1X) Across Stages | Total Unique CpG Sites (5X) Across Stages | Total Unique CpG Sites (10X) Across Stages | Bisulfite Conversion Rates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sperm_1 | 161,216,442 | 39,681,472 | 24.6\% | 4686722 (11.8\%) | 260,312 | 34,469,772 | 12,993,162 | 1,653,714 | 608,253 | 98.13\% |
| Sperm_2 | 211,319,602 | 53,205,362 | 25.2\% | 6488800 (12.2\%) | 345,993 | 46,018,888 |  |  |  | 98.78\% |
| Sperm_3 | 115,697,874 | 30,044,218 | 26.0\% | 2685134 (8.9\%) | 209,614 | 26,937,100 |  |  |  | 98.20\% |
| GV_1 | 65,016,220 | 11,138,582 | 17.1\% | 4351074 (39.1\%) | 590,462 | 5,605,132 | 1,288,230 | 199,922 | 83,160 | 98.60\% |
| GV_2 | 92,984,096 | 9,846,682 | 10.6\% | 5163658 (52.5\%) | 398,547 | 3,884,834 |  |  |  | 98.55\% |
| GV_3 | 118,194,368 | 16,944,488 | 14.3\% | 11235552 (66.3) | 435,246 | 4,836,406 |  |  |  | 98.49\% |
| GV_4 | 107,145,508 | 7,368,766 | 6.9\% | 2635962 (35.8) | 286,843 | 4,158,022 |  |  |  | 98.60\% |
| In vivo_MII_1 | 85,538,162 | 5,131,986 | 6.0\% | 2184726 (42.6\%) | 279,052 | 2,388,694 | 486,489 | 63,628 | 23,081 | 98.51\% |
| In vivo_MII_2 | 121,845,464 | 14,076,078 | 11.6\% | 9129286 (64.9\%) | 489,460 | 3,966,146 |  |  |  | 98.54\% |
| In vivo_MII_3 | 88,260,850 | 4,711,248 | 5.3\% | 2683234 (57.0\%) | 88,736 | 1,849,790 |  |  |  | 98.59\% |
| In vivo_MII_4 | 100,727,086 | 3,998,724 | 4.0\% | 1808178 (45.2\%) | 155,908 | 1,878,188 |  |  |  | 98.46\% |
| In vivo_MII 5 | 5,365,330 | 311,090 | 5.8\% | 16750 (5.4\%) | 24,940 | 244,444 |  |  |  | 98.90\% |
| In vivo_MII_6 | 83,411,048 | 2,481,584 | 3.0\% | 1503746(60.4\%) | 180,699 | 616,102 |  |  |  | 98.51\% |
| In vitro_MII_1 | 50,214,588 | 4,595,662 | 9.2\% | 2776720 (60.4\%) | 65,986 | 1,686,930 | 775,917 | 146,750 | 67,363 | 95.48\% |
| In vitro_MII_2 | 55,528,252 | 11,645,192 | 21.0\% | 7370920 (63.3\%) | 265,776 | 3,741,820 |  |  |  | 96.28\% |
| In vitro_MII_3 | 58,002,506 | 6,542,116 | 11.3\% | 5137740 (78.5\%) | 136,798 | 1,130,062 |  |  |  | 97.00\% |
| In vitro_MII_4 | 54,537,430 | 702,602 | 1.3\% | 299796 (42.7\%) | 24,107 | 354,532 |  |  |  | 97.72\% |
| In vitro_MII_5 | 90,523,956 | 6,039,752 | 6.7\% | 1558380 (25.8\%) | 401,697 | 3,677,436 |  |  |  | 97.30\% |
| In vitro_MII_6 | 114,323,238 | 5,606,912 | 4.9\% | 1775736 (31.7\%) | 413,647 | 3,003,244 |  |  |  | 98.18\% |
| 2-Cell_1 | 129,875,908 | 7,163,764 | 5.5\% | 3579644 (50.0\%) | 160,494 | 3,262,596 | 1,716,507 | 267,711 | 113,416 | 98.37\% |
| 2-Cell_2 | 164,502,830 | 9,436,404 | 5.7\% | 5080396 (53.8\%) | 226,277 | 3,902,624 |  |  |  | 98.40\% |
| 2-Cell_3 | 91,770,914 | 17,880,216 | 19.5\% | 5201486 (29.1\%) | 514,479 | 11,648,538 |  |  |  | 98.46\% |
| 2-Cell_4 | 70,534,008 | 1,289,856 | 1.8\% | 349382 (27.1\%) | 62,024 | 816,282 |  |  |  | 98.47\% |
| 4-Cell_1 | 97,778,054 | 5,066,414 | 5.2\% | 2952796 (58.3\%) | 207,742 | 1,697,262 | 1,253,797 | 189,680 | 76,240 | 98.29\% |
| 4-Cell_2 | 81,628,404 | 15,646,310 | 19.2\% | 8706226 (55.7\%) | 230,536 | 6,477,846 |  |  |  | 98.41\% |
| 4-Cell_3 | 111,193,874 | 13,843,092 | 12.4\% | 5416762 (39.1\%) | 344,497 | 7,736,016 |  |  |  | 98.34\% |
| 4-Cell_4 | 102,385,078 | 2,225,868 | 2.2\% | 580404 (26.1\%) | 80,738 | 1,483,814 |  |  |  | 98.22\% |
| 4-Cell_5 | 110,694,850 | 3,642,164 | 3.3\% | 1129354 (31.0\%) | 91,131 | 2,330,144 |  |  |  | 98.64\% |
| 8-Cell_1 | 112,311,296 | 20,399,528 | 18.2\% | 6952396 (34.1\%) | 982,604 | 11,480,484 | 1,405,250 | 239,397 | 109,682 | 98.36\% |
| 8-Cell_2 | 94,629,426 | 4,341,724 | 4.6\% | 1847986 (42.6\%) | 240,195 | 2,012,882 |  |  |  | 98.22\% |
| 8-Cell_3 | 90,751,254 | 2,211,738 | 2.4\% | 818182 (37.0\%) | 410,908 | 571,472 |  |  |  | 98.44\% |
| 8-Cell_4 | 97,579,526 | 3,754,886 | 3.8\% | 937256 (25.0\%) | 62,678 | 2,691,994 |  |  |  | 98.53\% |
| 16-Cell_1 | 106,037,758 | 18,636,794 | 17.6\% | 6276054 (33.7\%) | 235,637 | 11,887,768 | 5,791,048 | 799,933 | 343,641 | 98.33\% |
| 16-Cell_2 | 104,228,166 | 23,488,986 | 22.5\% | 7677668 32.7\%) | 392,183 | 15,025,234 |  |  |  | 98.40\% |
| 16-Cell_3 | 197,773,964 | 29,686,398 | 15.0\% | 6293204 (21.2\%) | 1,653,919 | 20,083,406 |  |  |  | 98.45\% |

Table S2. Gene Ontology (GO) terms for genes with commonly methylated introns among all samples

| Term | Count | $\%$ | P-value | Genes |
| :--- | :--- | :--- | :--- | :--- |
| GO:0045638~negative regulation of myeloid cell differentiation | 3 | 1.78 | 0.0083 | PTK2B, MEIS1, CTR9 |
| GO:0007264~small GTPase mediated signal transduction | 6 | 3.55 | 0.0297 | PLCE1, RALGPS1, RAB37, DOCK9, RHOBTB2, RGL1 |
| GO:0001764~neuron migration | 4 | 2.37 | 0.0366 | GPM6A, PRKG1, GFRA3, KIRREL3 |
| GO:0090002~establishment of protein localization to plasma membrane | 3 | 1.78 | 0.0369 | CAV3, TNFRSF1A, TMEM15OA |
| GO:0030204~chondroitin sulfate metabolic process | 2 | 1.18 | 0.0427 | B3GAT2, B3GAT1 |

## Table S3.1. Gene Ontology (GO) terms for hypermethylated genes in sperm

| Term | Count | $\%$ | P-value |  |
| :--- | ---: | ---: | ---: | :--- |
| GO:0060047~heart contraction | 3 | 14.29 | 0.0083 | CAV3, RPS6KA2, PDE5A |
| GO:0003015~heart process | 3 | 14.29 | 0.0086 | CAV3, RPS6KA2, PDE5A |
| GO:0010611~regulation of cardiac muscle hypertrophy | 2 | 9.52 | 0.0219 | CAV3, PDE5A |
| GO:0014743~regulation of muscle hypertrophy | 2 | 9.52 | 0.0230 | CAV3, PDE5A |
| GO:0003300~ cardiac muscle hypertrophy | 2 | 9.52 | 0.0370 | CAV3, PDE5A |
| GO:0043502~regulation of muscle adaptation | 2 | 9.52 | 0.0381 | CAV3, PDE5A |
| GO:0014897~striated muscle hypertrophy | 2 | 9.52 | 0.0392 | CAV3, PDE5A |
| GO:0008015~blood circulation | 3 | 14.29 | 0.0392 | CAV3, RPS6KA2, PDE5A |
| GO:0003013~circulatory system process | 3 | 14.29 | 0.0402 | CAV3, RPS6KA2, PDE5A |
| GO:0014896~muscle hypertrophy | 2 | 9.52 | 0.0402 | CAV3, PDE5A |
| GO:0048599~oocyte development | 2 | 9.52 | 0.0434 | RPS6KA2, PDE5A |
| GO:0055117~regulation of cardiac muscle contraction | 2 | 9.52 | 0.0445 | CAV3, PDE5A |
| GO:0009994~oocyte differentiation | 2 | 9.52 | 0.0477 | RPS6KA2, PDE5A |

Table S3.2. Gene Ontology (GO) terms for hypermethylated genes in GV

| Term | Count | \% | P-value | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:1901700~response to oxygen-containing compound | 12 | 15.58 | 0.0005 | PIK3CG, DNMT3A, TNFRSF1A, SLC38A9, PTK2B, TNFRSF10D, MET, ATP1A1, NFKB1, MSN, CTNNA1, PLCB1 |
| GO:0045822 $\sim$ negative regulation of heart contraction | 3 | 3.90 | 0.0016 | PDE5A, ADRA1A, ATP1A1 |
| GO:1901701~cellular response to oxygen-containing compound | 9 | 11.69 | 0.0021 | PIK3CG, DNMT3A, SLC38A9, PTK2B, MET, NFKB1, MSN, CTNNA1, PLCB1 |
| GO:1903523~negative regulation of blood circulation | 3 | 3.90 | 0.0041 | PDE5A, ADRA1A, ATP1A1 |
| GO:0007610~behavior | 7 | 9.09 | 0.0083 | GRIA1, FBXL20, PREX2, PLCB1, MEIS1, KIRREL3, EPHB2 |
| GO:0048468~cell development | 14 | 18.18 | 0.0113 | PREX2, MET, TTPA, CTNNA1, MEIS1, EPHB2, RNF8, TNFRSF1A, GPM6A, PTK2B, PDE5A, UNC5D, MSN, KIRREL3 |
| GO:1901699~cellular response to nitrogen compound | 6 | 7.79 | 0.0119 | PIK3CG, DNMT3A, SLC38A9, NFKB1, CTNNA1, PLCB1 |
| GO:0001885~endothelial cell development | 3 | 3.90 | 0.0150 | TNFRSF1A, MET, MSN |
| GO:0060284~regulation of cell development | 8 | 10.39 | 0.0155 | TNFRSF1A, PTK2B, PDE5A, TTPA, UNC5D, CTNNA1, MEIS1, EPHB2 |
| GO:0051865 ${ }^{\sim}$ protein autoubiquitination | 3 | 3.90 | 0.0193 | RNF8, UHRF2, ASB4 |
| GO:0006942~regulation of striated muscle contraction | 3 | 3.90 | 0.0215 | PDE5A, ADRA1A, ATP1A1 |
| GO:0000902~cell morphogenesis | 10 | 12.99 | 0.0232 | MKLN1, GPM6A, PTK2B, PREX2, MET, UNC5D, LRGUK, MSN, KIRREL3, EPHB2 |
| GO:0071417 ${ }^{\text {c cellular response to organonitrogen compound }}$ | 5 | 6.49 | 0.0265 | PIK3CG, DNMT3A, SLC38A9, NFKB1, CTNNA1 |
| GO:0009967~positive regulation of signal transduction | 10 | 12.99 | 0.0265 | PIK3CG, TNFRSF1A, SLC38A9, PTK2B, PDE5A, ADRA1A, NFKB1, CTNNA1, PLCB1, ADAMTS3 |
| GO:0048584~positive regulation of response to stimulus | 12 | 15.58 | 0.0268 | RNF8, PIK3CG, TNFRSF1A, SLC38A9, PTK2B, PDE5A, MET, ADRA1A, NFKB1, CTNNA1, PLCB1, ADAMTS3 |
| GO:0032989~ cellular component morphogenesis | 10 | 12.99 | 0.0332 | MKLN1, GPM6A, PTK2B, PREX2, MET, UNC5D, LRGUK, MSN, KIRREL3, EPHB2 |
| GO:0044708~single-organism behavior | 5 | 6.49 | 0.0332 | GRIA1, FBXL20, PREX2, PLCB1, EPHB2 |
| GO:0045446~endothelial cell differentiation | 3 | 3.90 | 0.0344 | TNFRSF1A, MET, MSN |
| GO:0071407~ ${ }^{\text {cellular response to organic cyclic compound }}$ | 5 | 6.49 | 0.0390 | PIK3CG, ATP1A1, NFKB1, MSN, CTNNA1 |
| GO:0051241~negative regulation of multicellular organismal process | 8 | 10.39 | 0.0392 | PTK2B, PDE5A, ADRA1A, ATP1A1, NFKB1, CTNNA1, MEIS1, EPHB2 |
| GO:0033993~response to lipid | 6 | 7.79 | 0.0399 | TNFRSF1A, PTK2B, TNFRSF10D, ATP1A1, NFKB1, MSN |
| GO:0010647~positive regulation of cell communication | 10 | 12.99 | 0.0402 | PIK3CG, TNFRSF1A, SLC38A9, PTK2B, PDE5A, ADRA1A, NFKB1, CTNNA1, PLCB1, ADAMTS3 |
| GO:0023056 ${ }^{\sim}$ positive regulation of signaling | 10 | 12.99 | 0.0415 | PIK3CG, TNFRSF1A, SLC38A9, PTK2B, PDE5A, ADRA1A, NFKB1, CTNNA1, PLCB1, ADAMTS3 |
| GO:0007416 ${ }^{\text {s synapse assembly }}$ | 3 | 3.90 | 0.0423 | GPM6A, KIRREL3, EPHB2 |
| GO:0003158~endothelium development | 3 | 3.90 | 0.0454 | TNFRSF1A, MET, MSN |
| GO:0040011~locomotion | 10 | 12.99 | 0.0480 | GPM6A, PTK2B, MET, UNC5D, MSN, CTNNA1, PLCB1, GFRA3, KIRREL3, EPHB2 |

Table S3.3. Gene Ontology (GO) terms for hypermethylated genes in in vivo MII

| Term | Count | \% | P-value | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:0045822~negative regulation of heart contraction | 3 | 4.92 | 0.0010 | PDE5A, ADRA1A, ATP1A1 |
| GO:0051674~localization of cell | 11 | 18.03 | 0.0011 | PTPRK, GPM6A, MET, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:0048870~cell motility | 11 | 18.03 | 0.0011 | PTPRK, GPM6A, MET, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:1901701~cellular response to oxygen-containing compound | 8 | 13.11 | 0.0018 | PIK3CG, PTPRK, SLC38A9, MET, NFKB1, MSN, CTNNA1, PLCB1 |
| GO:0016477~cell migration | 10 | 16.39 | 0.0018 | PTPRK, GPM6A, MET, PTPN23, UNC5D, MSN, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:1903523~negative regulation of blood circulation | 3 | 4.92 | 0.0024 | PDE5A, ADRA1A, ATP1A1 |
| GO:0040011~locomotion | 11 | 18.03 | 0.0028 | PTPRK, GPM6A, MET, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:0006937~regulation of muscle contraction | 4 | 6.56 | 0.0034 | PDE5A, ADRA1A, ATP1A1, PRKG1 |
| GO:1901700~response to oxygen-containing compound | 9 | 14.75 | 0.0041 | PIK3CG, PTPRK, SLC38A9, MET, ATP1A1, NFKB1, MSN, CTNNA1, PLCB1 |
| GO:0001764~neuron migration | 4 | 6.56 | 0.0047 | GPM6A, PRKG1, GFRA3, KIRREL3 |
| GO:0090257~regulation of muscle system process | 4 | 6.56 | 0.0065 | PDE5A, ADRA1A, ATP1A1, PRKG1 |
| GO:0006928~movement of cell or subcellular component | 11 | 18.03 | 0.0066 | PTPRK, GPM6A, MET, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:0035556~intracellular signal transduction | 14 | 22.95 | 0.0069 | PIK3CG, SLC38A9, DOCK9, NFKB1, PRKG1, ARFGEF1, RGL1, RAB37, PDE5A, ADRA1A, RGS7, PLCB1, ASB4, LCP2 |
| GO:2000145~regulation of cell motility | 7 | 11.48 | 0.0084 | PTPRK, MET, PTPN23, UNC5D, MSN, CTNNA1, PLCB1 |
| GO:0098609~cell-cell adhesion | 8 | 13.11 | 0.0089 | METAP1, PDE5A, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, KIRREL3 |
| GO:0043087~regulation of GTPase activity | 5 | 8.20 | 0.0092 | ASAP1, RGS7, PRKG1, PLCB1, ARFGEF1 |
| GO:0051241~negative regulation of multicellular organismal process | 8 | 13.11 | 0.0100 | PDE5A, PTPN23, ASAP1, ADRA1A, ATP1A1, NFKB1, CTNNA1, PRKG1 |
| GO:0040012 ${ }^{\sim}$ regulation of locomotion | 7 | 11.48 | 0.0104 | PTPRK, MET, PTPN23, UNC5D, MSN, CTNNA1, PLCB1 |
| GO:0048584~positive regulation of response to stimulus | 11 | 18.03 | 0.0105 | PIK3CG, SLC38A9, PDE5A, MET, ADRA1A, NFKB1, CTNNA1, PLCB1, ADAMTS3, ARFGEF1, LCP2 |
| GO:0051270~regulation of cellular component movement | 7 | 11.48 | 0.0117 | PTPRK, MET, PTPN23, UNC5D, MSN, CTNNA1, PLCB1 |
| GO:0043085~positive regulation of catalytic activity | 8 | 13.11 | 0.0125 | PIK3CG, PDE5A, ASAP1, RGS7, WRN, PLCB1, ARFGEF1, LCP2 |
| GO:0006942~regulation of striated muscle contraction | 3 | 4.92 | 0.0129 | PDE5A, ADRA1A, ATP1A1 |
| GO:0071407~ cellular response to organic cyclic compound | 5 | 8.20 | 0.0161 | PIK3CG, ATP1A1, NFKB1, MSN, CTNNA1 |
| GO:2000146~negative regulation of cell motility | 4 | 6.56 | 0.0173 | PTPRK, PTPN23, CTNNA1, PLCB1 |
| GO:2000643~positive regulation of early endosome to late endosome transport | 2 | 3.28 | 0.0198 | PTPN23, MSN |
| GO:1901699~cellular response to nitrogen compound | 5 | 8.20 | 0.0203 | PIK3CG, SLC38A9, NFKB1, CTNNA1, PLCB1 |


| GO:0007155~cell adhesion | 9 | 14.75 | 0.0214 | PTPRK, METAP1, PDE5A, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, KIRREL3 |
| :--- | ---: | ---: | ---: | :--- |
| GO:0022610~biological adhesion | 9 | 14.75 | 0.0219 | PTPRK, METAP1, PDE5A, PTPN23, UNC5D, MSN, CTNNA1, PRKG1, KIRREL3 |
| GO:1903651~positive regulation of cytoplasmic transport | 2 | 3.28 | 0.0230 | PTPN23, MSN |
| GO:0050790~regulation of catalytic activity | 10 | 16.39 | 0.0249 | PIK3CG, PDE5A, ASAP1, RGS7, NFKB1, WRN, PRKG1, PLCB1, ARFGEF1, LCP2 |
| GO:0006936~muscle contraction | 4 | 6.56 | 0.0251 | PDE5A, ADRA1A, ATP1A1, PRKG1 |
| GO:0040013~negative regulation of locomotion | 4 | 6.56 | 0.0254 | PTPRK, PTPN23, CTNNA1, PLCB1 |
| GO:0051271~negative regulation of cellular component <br> movement | 4 | 6.56 | 0.0254 | PTPRK, PTPN23, CTNNA1, PLCB1 |
| GO:0030334~regulation of cell migration | 6 | 9.84 | 0.0267 | PTPRK, MET, PTPN23, UNC5D, MSN, PLCB1 |
| GO:0043547~positive regulation of GTPase activity | 4 | 6.56 | 0.0293 | ASAP1, RGS7, PLCB1, ARFGEF1 |
| GO:1903337~positive regulation of vacuolar transport | 2 | 3.28 | 0.0328 | PTPN23, MSN |
| GO:2000641~regulation of early endosome to late endosome <br> transport | 2 | 3.28 | 0.0328 | PTPN23, MSN |
| GO:0010560~positive regulation of glycoprotein biosynthetic <br> process | 2 | 3.28 | 0.0360 | PLCB1, ARFGEF1 |
| GO:1903649~regulation of cytoplasmic transport | 2 | 3.28 | 0.0360 | PTPN23, MSN |
| GO:0051345~positive regulation of hydrolase activity | 5 | 8.20 | 0.0384 | ASAP1, RGS7, WRN, PLCB1, ARFGEF1 |
| GO:0000902~cell morphogenesis | 8 | 13.11 | 0.0389 | GPM6A, MET, PTPN23, ASAP1, UNC5D, LRGUK, MSN, KIRREL3 |
| GO:0003012~muscle system process | 4 | 6.56 | 0.0398 | PDE5A, ADRA1A, ATP1A1, PRKG1 |
| GO:1903020~positive regulation of glycoprotein metabolic <br> process | 2 | 3.28 | 0.0424 | PLCB1, ARFGEF1 |
| GO:004409 ~positive regulation of molecular function | 8 | 13.11 | 0.0432 | PIK3CG, PDE5A, ASAP1, RGS7, WRN, PLCB1, ARFGEF1, LCP2 |
| GO:0009967~positive regulation of signal transduction | 8 | 13.11 | 0.0434 | PIK3CG, SLC38A9, PDE5A, ADRA1A, NFKB1, CTNNA1, PLCB1, ADAMTS3 |
| GO:0006941~striated muscle contraction | 3 | 4.92 | 0.0443 | PDE5A, ADRA1A, ATP1A1 |

Table S3.4. Gene Ontology (GO) terms for hypermethylated genes in in vitro MII

| Term | Count | \% | P -value | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:0007610~behavior | 7 | 9.72 | 0.0040 | GRIA1, FBXL20, PREX2, PLCB1, MEIS1, KIRREL3, EPHB2 |
| GO:1901700~response to oxygen-containing compound | 9 | 12.50 | 0.0089 | TNFRSF1A, SLC38A9, TNFRSF10D, MET, ATP1A1, NFKB1, MSN, CTNNA1, PLCB1 |
| GO:0001885~endothelial cell development | 3 | 4.17 | 0.0114 | TNFRSF1A, MET, MSN |
| GO:0044708~single-organism behavior | 5 | 6.94 | 0.0207 | GRIA1, FBXL20, PREX2, PLCB1, EPHB2 |
| GO:0040011~locomotion | 10 | 13.89 | 0.0207 | LAMA4, MET, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3, EPHB2 |
| GO:0048468~cell development | 12 | 16.67 | 0.0221 | TNFRSF1A, PREX2, PDE5A, MET, TTPA, UNC5D, MSN, CTNNA1, PRKG1, MEIS1, KIRREL3, EPHB2 |
| GO:0060284~regulation of cell development | 7 | 9.72 | 0.0252 | TNFRSF1A, PDE5A, TTPA, UNC5D, CTNNA1, MEIS1, EPHB2 |
| GO:0045595~regulation of cell differentiation | 10 | 13.89 | 0.0254 | RBFOX1, TNFRSF1A, PDE5A, TTPA, UNC5D, CTNNA1, PLCB1, MEIS1, ASB4, EPHB2 |
| GO:0045446~endothelial cell differentiation | 3 | 4.17 | 0.0263 | TNFRSF1A, MET, MSN |
| GO:0048870~cell motility | 9 | 12.50 | 0.0270 | LAMA4, MET, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:0051674~localization of cell | 9 | 12.50 | 0.0270 | LAMA4, MET, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3 |
| GO:0003158~endothelium development | 3 | 4.17 | 0.0348 | TNFRSF1A, MET, MSN |
| GO:0006928~movement of cell or subcellular component | 10 | 13.89 | 0.0403 | LAMA4, MET, UNC5D, MSN, CTNNA1, PRKG1, PLCB1, GFRA3, KIRREL3, EPHB2 |
| GO:0007399~nervous system development | 11 | 15.28 | 0.0443 | RBFOX1, PREX2, UNC5D, CTNNA1, PRKG1, PLCB1, MEIS1, PLPPR1, GFRA3, KIRREL3, EPHB2 |
| GO:0006937~regulation of muscle contraction | 3 | 4.17 | 0.0460 | PDE5A, ATP1A1, PRKG1 |
| GO:0010721~negative regulation of cell development | 4 | 5.56 | 0.0471 | TTPA, CTNNA1, MEIS1, EPHB2 |
| GO:1901701~cellular response to oxygen-containing compound | 6 | 8.33 | 0.0497 | SLC38A9, MET, NFKB1, MSN, CTNNA1, PLCB1 |

Table S3.5. Function for hypermethylated genes in 2-cell stage

| ASAP1 | This gene encodes an ADP-ribosylation factor (ARF) GTPase-activating protein. |
| :---: | :---: |
| HS6ST2 | Heparan sulfate proteoglycans are ubiquitous components of the cell surface, extracellular matrix, and basement membranes, and interact with various ligands to influence cell growth, differentiation, adhesion, and migration. |

Table S3.6. Gene Ontology (GO) terms for hypermethylated genes in 4-cell stage

| Term | Count | \% | P -value | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:0000902~cell morphogenesis | 6 | 19.35 | 0.0174 | MKLN1, PTK2B, MET, PTPN23, LRGUK, KIRREL3 |
| GO:0010632~regulation of epithelial cell migration | 3 | 9.68 | 0.0181 | PTK2B, MET, PTPN23 |
| GO:0032989~cellular component morphogenesis | 6 | 19.35 | 0.0223 | MKLN1, PTK2B, MET, PTPN23, LRGUK, KIRREL3 |
| GO:0030823~regulation of cGMP metabolic process | 2 | 6.45 | 0.0273 | PTK2B, PDE5A |
| GO:0044248~cellular catabolic process | 6 | 19.35 | 0.0296 | PTK2B, ENPP3, PDE5A, PTPN23, SKIV2L2, RNF122 |
| GO:0010631~epithelial cell migration | 3 | 9.68 | 0.0324 | PTK2B, MET, PTPN23 |
| GO:0090132~epithelium migration | 3 | 9.68 | 0.0331 | PTK2B, MET, PTPN23 |
| GO:0090130~tissue migration | 3 | 9.68 | 0.0351 | PTK2B, MET, PTPN23 |
| GO:0034655~nucleobase-containing compound catabolic process | 3 | 9.68 | 0.0402 | ENPP3, PDE5A, SKIV2L2 |
| GO:0046068~ ${ }^{\text {cGMP }}$ metabolic process | 2 | 6.45 | 0.0492 | PTK2B, PDE5A |
| GO:0046700~heterocycle catabolic process | 3 | 9.68 | 0.0499 | ENPP3, PDE5A, SKIV2L2 |

Table S3.7. Function for hypermethylated genes in 8-cell stage

| KIRREL3 | The protein encoded by this gene is a synaptic cell adhesion molecule |
| :--- | :--- |
| MACROD2 | Deacetylase involved in removing ADP-ribose from mono-ADP-ribosylated proteins. |
| RGL1 | Negative regulator of GA responses, member of GRAS family of transcription factors |

RGL1
Negative regulator of GA responses, member of GRAS family of transcription factors

Table S3.8. Gene Ontology (GO) terms for hypermethylated genes in 16-cell stage

| Term | Count | \% | P -value | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:0007416~synapse assembly | 2 | 18.18 | 0.0435 | KIRREL3, EPHB2 |
| GO:0050808~synapse organization | 2 | 18.18 | 0.0853 | KIRREL3, EPHB2 |
| GO:0021537~telencephalon development | 2 | 18.18 | 0.0940 | KIRREL3, EPHB2 |

Table S4.1. GO terms for DMRs between the 8- and 16-cell embryos that are hypermethylated in the 8-cell embryos

| Term | Count | \% | PValue | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:0031532~actin cytoskeleton reorganization | 4 | 1.50 | 0.023 | MICALL2, FLNA, PARVB, INSRR |
| GO:0000122~negative regulation of transcription from RNA polymerase II promoter | 13 | 4.89 | 0.024 | EGR1, EHMT1, FOXJ1, TP53, MBD3, SUFU, CHD8, PHF19, ATN1, RARA, TBL1X, HDAC7, SUDS3 |
| GO:2000824~negative regulation of androgen receptor activity | 2 | 0.75 | 0.030 | FOXH1, HEYL |
| GO:0007059~chromosome segregation | 4 | 1.50 | 0.031 | CIAO1, PPP2R1A, NAA60, CDK5RAP2 |
| GO:0051306~mitotic sister chromatid separation | 2 | 0.75 | 0.044 | PPP2R1A, DIS3L2 |
| GO:0001578~microtubule bundle formation | 3 | 1.13 | 0.046 | GAS2L2, CDK5RAP2, NCKAP5L |
| GO:0007155~cell adhesion | 7 | 2.63 | 0.046 | PRKCA, LGALS3BP, STAB1, TTYH1, NINJ2, PARVB, CTNNA2 |
| GO:0050896~response to stimulus | 3 | 1.13 | 0.053 | CNGB1, SCNN1B, VSX1 |
| GO:0006468~protein phosphorylation | 6 | 2.26 | 0.055 | PRKCA, SCYL1, LIMK2, COQ8A, RARA, ILF3 |
| GO:2001046 ${ }^{\sim}$ positive regulation of integrin-mediated signaling pathway | 2 | 0.75 | 0.073 | LIMS2, FLNA |
| GO:0090267~positive regulation of mitotic cell cycle spindle assembly checkpoint | 2 | 0.75 | 0.073 | DYNC1LI1, PCID2 |
| GO:0006915~apoptotic process | 7 | 2.63 | 0.086 | PRKCA, TP53, BAD, TRAF7, BRAT1, SUDS3, PEG3 |

Table S4.2. GO terms of DMRs between 8 vs. 16-cell that hypermethylated in 16-cell

| Term | Count | \% | PValue | Genes |
| :---: | :---: | :---: | :---: | :---: |
| GO:0006886~intracellular protein transport | 18 | 2.55 | 0.0010 | VPS18, STX1A, SYNDIG1, AP1B1, SNX8, SNX17, NAPB, TSNARE1, TBC1D22A, TBC1D16, CTTN, SGSM1, TOM1L2, SGSM3, TBC1D14, GRTP1, TBC1D13, GGA3 |
| GO:0031338~regulation of vesicle fusion | 7 | 0.99 | 0.0022 | TBC1D16, SGSM1, SGSM3, TBC1D14, TBC1D13, GRTP1, TBC1D22A |
| GO:0031175~neuron projection development | 10 | 1.41 | 0.0031 | NCAM1, MICALL2, EFHD1, STMN3, RASGRF1, RAB35, CAMSAP1, CAMSAP3, CAPZB, MICALL1 |
| GO:0090630~activation of GTPase activity | 9 | 1.27 | 0.0038 | TBC1D16, SGSM1, SGSM3, RASGRF1, TBC1D14, TBC1D13, GRTP1, TBC1D22A, AKT2 |
| GO:0040011~locomotion | 4 | 0.57 | 0.0051 | ATP2B2, JPH3, SPNS2, WDR1 |
| GO:0007613~memory | 7 | 0.99 | 0.0060 | JPH3, DRD1, B4GALT2, CRTC1, TH, DBH, SORCS3 |
| GO:0008283~cell proliferation | 14 | 1.98 | 0.0080 | GNAT1, PTPN6, HRAS, BYSL, RHBDF1, CSPG4, PRKDC, TACC3, BRAT1, RASGRF1, BOK, ASCC3, ERCC1, CUL1 |
| GO:0016477~cell migration | 12 | 1.70 | 0.0107 | FGFR4, NDE1, PTPRF, PTK6, FSCN1, RHBDF1, CSPG4, LIMD1, TNK2, EPHB3, CD63, BRAT1 |
| GO:2001046~positive regulation of integrin-mediated signaling pathway | 3 | 0.42 | 0.0161 | LIMS2, CD63, FLNA |
| GO:0008286~insulin receptor signaling pathway | 6 | 0.85 | 0.0204 | SLC2A8, PDK2, BAIAP2L2, BAIAP2, AKT2, PIK3R2 |
| GO:0006351~transcription, DNA-templated | 37 | 5.23 | 0.0210 | PTOV1, ZNF18, MED22, ZNF75D, KCNIP3, PCGF3, RAX2, HSF1, SMARCB1, SND1, AGO2, ZNF444, LIMD1, TCEA2, ALX4, TFDP1, NFATC1, CTBP2, TFPT, L3MBTL2, WDR5, RXRA, TBX4, RXRG, PRKCB, UHRF1, BRMS1, ZNF692, ASCC3, RFX2, MAD2L2, PUF60, HDAC7, NR5A1, SMARCA4, ZIM2, PEG3 |
| GO:0036010~protein localization to endosome | 3 | 0.42 | 0.0236 | TOLLIP, RAB35, MICALL1 |
| GO:0007601~visual perception | 10 | 1.41 | 0.0274 | PDE6B, RAX2, CDHR1, TH, CACNB2, RGS9, CNGB1, GPR179, CRX, GUCY2D |
| GO:0030198~extracellular matrix organization | 8 | 1.13 | 0.0289 | SMOC2, FBLN1, ELF3, ADAMTSL2, COL27A1, POMT1, ELN, EMILIN1 |
| GO:0010976~positive regulation of neuron projection development | 6 | 0.85 | 0.0302 | FGFR1, RET, PTK6, CAMK2B, RAPGEF1, MARK2 |
| GO:0007043~cell-cell junction assembly | 3 | 0.42 | 0.0321 | FSCN1, TRPV4, HDAC7 |
| GO:0031115~negative regulation of microtubule polymerization | 3 | 0.42 | 0.0321 | TBCD, MAPRE1, CAPZB |
| GO:0048227~plasma membrane to endosome transport | 3 | 0.42 | 0.0321 | SGSM3, RAB5C, RAB35 |
| GO:0006897~endocytosis | 9 | 1.27 | 0.0350 | MARCH2, HRAS, ATP9B, SNX8, RBSN, TNK2, EHD2, MICALL1, EPN2 |
| GO:0007257~activation of JUN kinase activity | 4 | 0.57 | 0.0375 | DAB2IP, MAP4K2, MAPK8IP3, AXIN1 |
| GO:0016485~protein processing | 7 | 0.99 | 0.0392 | NCSTN, ATG4B, RHBDF1, F7, PCSK7, NRDC, CPZ |
| GO:0070527~platelet aggregation | 5 | 0.71 | 0.0393 | ACTB, PTPN6, FERMT3, CSRP1, FLNA |
| GO:2000146~negative regulation of cell motility | 3 | 0.42 | 0.0416 | FBLN1, SLC9A3R1, PIN1 |

Table S5. Differentially expressed genes between 8- and 16- cell stage with DMRs

| Genes hypermethylated in 8-cell stage |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
|  | RNA Seq gene expression |  |  |  |  |  |
| Gene Name | 8-cell | 16-cell | Fold Change | log2 of Fold Change | P Value |  |
| ELOVL5 | 13.48 | 80.03 | 5.94 | 2.57 | 0.03 |  |
| DEK | 18.39 | 81.61 | 4.44 | 2.15 | 0.03 |  |


| Genes hypermethylated in 16-cell stage |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| RNA Seq gene expression |  |  |  |  |  |  |
| Gene Name | 8-cell | 16-cell | Fold Change | log2 of Fold Change | P Value |  |
| CAD | 16.74 | 0.00 | $-\operatorname{lnf}$ | NA | 0.02 |  |
| KIAA1191 | 85.57 | 8.51 |  | 0.10 | -3.33 | 0.00 |


| WGBS methylation level |  |  |  |
| ---: | ---: | ---: | :--- |
| 8-cell | 16-cell | P Value | q Value |
| 100 | 12 | $6.45 \mathrm{E}-11$ | $8.25 \mathrm{E}-10$ |
| 85 | 0 | $1.66 \mathrm{E}-16$ | $5.93 \mathrm{E}-15$ |


| WGBS methylation level |  |  |  |
| ---: | ---: | ---: | :--- |
| 8-cell | 16-cell | P Value | q Value |
| 0 | 100 | $2.22 \mathrm{E}-19$ | $9.29 \mathrm{E}-18$ |
| 0 | 100 | $2.22 \mathrm{E}-19$ | $9.29 \mathrm{E}-18$ |

Table S6.1. GO terms for DMRs between sperm and GV oocytes

| Hypermethylated genes in sperm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Term | Count | \% | P-value | Genes |
| GO:0007166 $\sim$ cell surface receptor signaling pathway | 13 | 3.10 | 0.0003 | EDN3, TSPAN4, ADCYAP1R1, PTH1R, CD151, GCGR, VIPR2, TSPAN11, CRHR1, TNFRSF1A, TSPAN32, ADGRB1, ADGRA1 |
| GO:0006836~neurotransmitter transport | 5 | 1.19 | 0.0005 | SLC6A9, CPLX1, SLC6A12, SLC6A13, SLC6A6 |
| GO:0009607~response to biotic stimulus | 4 | 0.95 | 0.0018 | IFITM1, IFITM 2 , IFITM3 |
| GO:0007612~ earning | 5 | 1.19 | 0.0050 | SLC8A3, JPH4, JPH3, SORCS3, EPHB2 |
| GO:0030322~stabilization of membrane potential | 4 | 0.95 | 0.0056 | KCNN4, KCNK9, KCNK7, KCNK5 |
| GO:0071805~potassium ion transmembrane transport | 6 | 1.43 | 0.0061 | HPN, KCNK9, KCNK7, SLC9A3, KCNK5, KCNIP3 |
| GO:0007155~cell adhesion | 11 | 2.63 | 0.0075 | COL18A1, ISLR, LGALS3BP, TNXB, PTPRF, TTYH1, ITGAD, THBS2, SSPO, LRFN3, PARVB |
| GO:0043406~positive regulation of MAP kinase activity | 5 | 1.19 | 0.0087 | NOX4, FGFR1, EDN3, PDE5A, PIK3R6 |
| GO:0007601~visual perception | 8 | 1.91 | 0.0099 | PDE6B, LAMB2, CABP4, COL1A1, OLFM2, RHO, GUCY2D, GRK1 |
| GO:0045332~phospholipid translocation | 3 | 0.72 | 0.0106 | KCNN4, ATP9B, ATP8A2 |
| GO:0043206~extracellular fibril organization | 3 | 0.72 | 0.0106 | TNXB, LTBP2, ADAMTS2 |
| GO:0051601~exocyst localization | 3 | 0.72 | 0.0106 | EXOC3L4, EXOC3L1, TNFAIP2 |
| GO:0042130~negative regulation of T cell proliferation | 4 | 0.95 | 0.0123 | MAD1L1, IL2RA, PDE5A, PLA2G2F |
| GO:0016337~single organismal cell-cell adhesion | 6 | 1.43 | 0.0129 | TNXB, LIMS2, COL13A1, PKP3, TTYH1, NTN1 |
| GO:0043085~positive regulation of catalytic activity | 4 | 0.95 | 0.0221 | NCF1, DCP1B, BCL2, SFTPB |
| GO:0006887~exocytosis | 5 | 1.19 | 0.0221 | EXOC3L4, CPLX1, EXOC3L1, VAMP2, TNFAIP2 |
| GO:0030198~extracellular matrix organization | 6 | 1.43 | 0.0251 | COL18A1, SMOC2, TNXB, ADAMTSL2, COL27A1, EMILIN1 |
| GO:0022898~regulation of transmembrane transporter activity | 2 | 0.48 | 0.0462 | INS, BCL2 |
| GO:0007193~adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway | 4 | 0.95 | 0.0477 | ADCY1, GNAI2, OPRL1, GPR37L1 |
| Hypermethylated in GV oocytes |  |  |  |  |
| Term | Count | \% | P-value | Genes |
| GO:0034613~cellular protein localization | 4 | 2.70 | 0.0019 | ARMCX3, CTNNA1, AXIN2, CD63 |
| GO:0030097~hemopoiesis | 3 | 2.03 | 0.0252 | ADD2, KIRREL3, CDK13 |
| GO:0007275~multicellular organism development | 5 | 3.38 | 0.0476 | TNFRSF1A, CDX1, TNFRSF10D, SUFU, FGF4 |
| GO:2000643~positive regulation of early endosome to late endosome transport | 2 | 1.35 | 0.0485 | PTPN23, MSN |

Table S6.2 GO terms for DMRs between sperm vs. in vivo MII

| Hypermethylated in sperm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Term | Count | \% | P -value | Genes |
| GO:0007155 ${ }^{\text {cell }}$ adhesion | 11 | 4.38 | 0.0002 | COL18A1, ISLR, NCAM1, TNXB, PTPRF, TTYH1, NINJ2, EPHB4, THBS2, SSPO, ITGA2B |
| GO:0001508~action potential | 3 | 1.20 | 0.0067 | KCNB1, CHRNB4, CHRNA4 |
| GO:0007275~multicellular organism development | 8 | 3.19 | 0.0089 | SPEM1, TRIM54, TNFRSF10D, RTL1, COLEC11, ALX4, SUFU, QRICH1 |
| GO:0016337~single organismal cell-cell adhesion | 5 | 1.99 | 0.0101 | TNXB, LIMS2, PKP1, PKP3, TTYH1 |
| GO:0007626~locomotory behavior | 5 | 1.99 | 0.0147 | CHRNB4, APBA2, CHRNA4, DBH, OLFM2 |
| GO:0035094~response to nicotine | 3 | 1.20 | 0.0234 | CHRNB4, CHRNA4, CHRNG |
| GO:0098655~cation transmembrane transport | 3 | 1.20 | 0.0261 | CHRNB4, CHRNA4, CHRNG |
| GO:0006508~proteolysis | 7 | 2.79 | 0.0377 | F10, CAPN5, HTRA1, CPQ, ST14, RHBDF1, DPP6 |
| GO:1903038~negative regulation of leukocyte cell-cell adhesion | 2 | 0.80 | 0.0417 | PPARA, ASS1 |
| GO:0043588~skin development | 3 | 1.20 | 0.0480 | RYR1, ADAMTS2, SUFU |
| Hypermethylated in in vivo MII |  |  |  |  |
| Term | Count | \% | P -value | Genes |
| GO:0071354~cellular response to interleukin-6 | 3 | 2.59 | 0.0011 | SBNO2, RELA, NFKB1 |
| GO:0034097~response to cytokine | 3 | 2.59 | 0.0105 | RELA, BCL2, NFKB1 |
| GO:0030282~bone mineralization | 3 | 2.59 | 0.0105 | SBNO2, GPC3, PHEX |
| GO:2000630~positive regulation of miRNA metabolic process | 2 | 1.72 | 0.0194 | RELA, NFKB1 |
| GO:0006898~receptor-mediated endocytosis | 3 | 2.59 | 0.0253 | CUBN, ENPP3, AMN |
| GO:0071316~cellular response to nicotine | 2 | 1.72 | 0.0258 | RELA, NFKB1 |
| GO:0007613~memory | 3 | 2.59 | 0.0279 | CHRNB2, PLCB1, SORCS3 |
| GO:0051963~regulation of synapse assembly | 2 | 1.72 | 0.0321 | CHRNB2, GHSR |
| GO:0038061~NIK/NF-kappaB signaling | 2 | 1.72 | 0.0321 | RELA, NFKB1 |
| GO:0071375~cellular response to peptide hormone stimulus | 2 | 1.72 | 0.0384 | RELA, NFKB1 |
| GO:2000643~positive regulation of early endosome to late endosome transport | 2 | 1.72 | 0.0384 | PTPN23, MSN |
| GO:0001778~plasma membrane repair | 2 | 1.72 | 0.0447 | DYSF, MYOF |
| GO:0022612~gland morphogenesis | 2 | 1.72 | 0.0447 | BCL2, MSN |

Table S6.3 GO terms for DMRs between sperm vs. in vitro MII

| Hypermethylated in sperm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Term | Count | \% | P -value | Genes |
| GO:1904322~cellular response to forskolin | 4 | 0.72 | 0.0010 | ADCY3, ADCY1, ADCY5, EFNA5 |
| GO:0030198~extracellular matrix organization | 9 | 1.61 | 0.0019 | COL18A1, CSGALNACT1, SMOC2, TNXB, ADAMTSL2, COL27A1, ELN, VWA1, EMILIN1 |
| GO:0043542~endothelial cell migration | 5 | 0.90 | 0.0027 | PAXIP1, PTP4A3, PECAM1, NOS3, LOXL2 |
| GO:0002062~ chondrocyte differentiation | 6 | 1.08 | 0.0037 | FGFR1, WNT5B, PTH1R, GLI2, RUNX1, RUNX3 |
| GO:0007193~adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway | 6 | 1.08 | 0.0049 | ADCY3, ADCY1, OPRL1, ADCY5, PSAPL1, GPR37L1 |
| GO:0002159~desmosome assembly | 3 | 0.54 | 0.0059 | JUP, PRKCA, PKP3 |
| GO:0019933~ cAMP-mediated signaling | 5 | 0.90 | 0.0089 | ADCY3, ADCY1, PDE2A, ADCY5, GHRHR |
| GO:0002076~osteoblast development | 4 | 0.72 | 0.0091 | ACHE, PTH1R, LIMD1, GLI2 |
| GO:0022400~regulation of rhodopsin mediated signaling pathway | 4 | 0.72 | 0.0091 | PRKCA, RGS9, RHO, GRK1 |
| GO:0006816 ${ }^{\sim}$ calcium ion transport | 6 | 1.08 | 0.0096 | CACNA1G, CHRNA4, ITPR3, CAMK2A, RAMP1, CDH23 |
| GO:0016337~single organismal cell-cell adhesion | 7 | 1.25 | 0.0122 | ARVCF, TNXB, LIMS2, PKP1, PKP3, TTYH1, NTN1 |
| GO:0006814~sodium ion transport | 5 | 0.90 | 0.0131 | SLC13A5, ATP4B, SLC12A3, SLC13A3, SLC5A10 |
| GO:0090630~activation of GTPase activity | 7 | 1.25 | 0.0131 | TBC1D16, TBC1D10C, FOXJ1, RASGRF1, TBC1D14, EVI5L, TBC1D22A |
| GO:0007601~visual perception | 9 | 1.61 | 0.0166 | UNC119, AIPL1, LAMB2, TH, CABP4, RGS9, RHO, GUCY2D, GRK1 |
| GO:0048469~cell maturation | 5 | 0.90 | 0.0184 | FGFR1, SOX10, GATA2, PTH1R, GHRHR |
| GO:0043117~positive regulation of vascular permeability | 3 | 0.54 | 0.0193 | PDE2A, PTP4A3, TRPV4 |
| GO:0051601~ exocyst localization | 3 | 0.54 | 0.0193 | EXOC3L4, EXOC3L1, TNFAIP2 |
| GO:0045835~negative regulation of meiotic nuclear division | 3 | 0.54 | 0.0193 | OSM, LIF, RPS6KA2 |
| GO:0007626~locomotory behavior | 7 | 1.25 | 0.0202 | ATP2B2, ADCY5, TH, APBA2, CHRNA4, DBH, CDH23 |
| GO:0031338~ regulation of vesicle fusion | 5 | 0.90 | 0.0204 | TBC1D16, TBC1D10C, TBC1D14, EVI5L, TBC1D22A |
| GO:0007155 ${ }^{\sim}$ cell adhesion | 12 | 2.15 | 0.0236 | COL18A1, ISLR, NCAM1, PRKCA, VWF, ACHE, TNXB, FLOT2, PECAM1, TTYH1, THBS2, SSPO |
| GO:0055085 ${ }^{\text {transmembrane transport }}$ | 9 | 1.61 | 0.0250 | SLC13A5, SLC22A18, SLC16A6, SLC25A47, SLC22A6, SLC13A3, SLC25A45, SLC5A10, SLC43A3 |
| GO:0007189~adenylate cyclase-activating G-protein coupled receptor signaling pathway | 5 | 0.90 | 0.0273 | ADCY3, ADCY1, ADCY5, PTH1R, GHRHR |
| GO:0001525~angiogenesis | 10 | 1.79 | 0.0285 | COL18A1, PRKCA, FGFR1, PECAM1, NOS3, MMP2, RAMP1, VASH1, EPHB2, ANGPTL4 |
| GO:0007219~Notch signaling pathway | 7 | 1.25 | 0.0311 | KRT19, PTP4A3, GMDS, MAML2, AGXT, ZNF423, ANGPTL4 |
| GO:0045746~negative regulation of Notch signaling pathway | 4 | 0.72 | 0.0320 | GATA2, PEAR1, DLK1, NEURL1 |
| GO:0007204~positive regulation of cytosolic calcium ion concentration | 6 | 1.08 | 0.0354 | GNA15, GALR1, OPRL1, ADCY5, TRPV4, CACNA1A |
| GO:0060349~bone morphogenesis | 4 | 0.72 | 0.0360 | T, ACP5, IFITM5, ACTN3 |
| GO:0007613~memory | 5 | 0.90 | 0.0383 | CRTC1, TH, DBH, ITPR3, SORCS3 |
| GO:0048266~behavioral response to pain | 3 | 0.54 | 0.0389 | OSM, VWA1, CACNA1A |
| GO:1901379~regulation of potassium ion transmembrane transport | 3 | 0.54 | 0.0389 | DPP6, KCNIP1, KCNIP3 |
| GO:0007416~synapse assembly | 4 | 0.72 | 0.0402 | CEL, NRXN2, CACNA1A, KIRREL3 |
| GO:0042511~positive regulation of tyrosine phosphorylation of Stat1 protein | 3 | 0.54 | 0.0465 | LIF, FGFR3, HPX |
| GO:0007422~peripheral nervous system development | 3 | 0.54 | 0.0465 | OSM, SOX10, ERBB2 |
| GO:0045651~positive regulation of macrophage differentiation | 3 | 0.54 | 0.0465 | LIF, PRKCA, IL34 |
| GO:0035987~endodermal cell differentiation | 4 | 0.72 | 0.0493 | LAMB3, COL6A1, ITGB2, MMP2 |
|  |  |  |  |  |
| Hypermethylated in in vitro MII |  |  |  |  |
| Term | Count | \% | P -value | Genes |
| GO:0006898~receptor-mediated endocytosis | 4 | 2.84 | 0.0027 | CD163L1, CUBN, ENPP3, SCARA5 |
| GO:0001764~neuron migration | 4 | 2.84 | 0.0242 | BARHL1, PRKG1, GFRA3, KIRREL3 |


| GO:1902259~regulation of delayed rectifier potassium channel activity | 2 | 1.42 | 0.0292 | KCNS1, VAMP2 |
| :--- | ---: | :--- | :--- | :--- |
| GO:0072112~glomerular visceral epithelial cell differentiation | 2 | 1.42 | 0.0292 | FOXC2, KLF15 |
| GO:0042058~regulation of epidermal growth factor receptor signaling pathway | 2 | 1.42 | 0.0364 | MVB12A, RHBDF1 |

Table S6.4 GO terms for DMRs between GV vs. in vivo MII

| Hypermethylated in GV |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Term | Count | \% | P -value | Genes |
| GO:1901700~response to oxygen-containing compound | 8 | 15.38 | 0.0036 | EGR1, TNFRSF1A, PFKL, PTK2B, TNFRSF10D, MET, MSN, CTNNA1 |
| GO:0001885~endothelial cell development | 3 | 5.77 | 0.0055 | TNFRSF1A, MET, MSN |
| GO:0098609~ cell-cell adhesion | 7 | 13.46 | 0.0094 | EGR1, PDE5A, UNC5D, MSN, CTNNA1, EBI3, KIRREL3 |
| GO:0045446~endothelial cell differentiation | 3 | 5.77 | 0.0129 | TNFRSF1A, MET, MSN |
| GO:0010646~regulation of cell communication | 12 | 23.08 | 0.0147 | EGR1, TNFRSF1A, MAGI3, PFKL, GRIA1, PTK2B, PREX2, PDE5A, MGLL, CTNNA1, ADAMTS3, SUFU |
| GO:0023051~regulation of signaling | 12 | 23.08 | 0.0159 | EGR1, TNFRSF1A, MAGI3, PFKL, GRIA1, PTK2B, PREX2, PDE5A, MGLL, CTNNA1, ADAMTS3, SUFU |
| GO:0007155 ${ }^{\sim}$ cell adhesion | 8 | 15.38 | 0.0166 | EGR1, PTK2B, PDE5A, UNC5D, MSN, CTNNA1, EBI3, KIRREL3 |
| GO:0022610~biological adhesion | 8 | 15.38 | 0.0170 | EGR1, PTK2B, PDE5A, UNC5D, MSN, CTNNA1, EBI3, KIRREL3 |
| GO:0003158~ ${ }^{\text {endothelium development }}$ | 3 | 5.77 | 0.0172 | TNFRSF1A, MET, MSN |
| GO:1904018~positive regulation of vasculature development | 3 | 5.77 | 0.0305 | EGR1, PTK2B, ASB4 |
| GO:0071480~ cellular response to gamma radiation | 2 | 3.85 | 0.0306 | EGR1, WRN |
| GO:0048468~ cell development | 9 | 17.31 | 0.0347 | TNFRSF1A, PTK2B, PREX2, PDE5A, MET, UNC5D, MSN, CTNNA1, KIRREL3 |
| GO:0000902~cell morphogenesis | 7 | 13.46 | 0.0357 | PTK2B, PREX2, MET, UNC5D, LRGUK, MSN, KIRREL3 |
| GO:0043067~regulation of programmed cell death | 7 | 13.46 | 0.0374 | EGR1, TNFRSF1A, PTK2B, TNFRSF10D, MET, WRN, CTNNA1 |
| GO:0048699~generation of neurons | 7 | 13.46 | 0.0381 | PTK2B, PREX2, UNC5D, CTNNA1, DBN1, SUFU, KIRREL3 |
| GO:0042787~protein ubiquitination involved in ubiquitin-dependent protein catabolic process | 3 | 5.77 | 0.0431 | PTK2B, RNF122, SUFU |
| GO:0030823 ${ }^{\sim}$ regulation of cGMP metabolic process | 2 | 3.85 | 0.0431 | PTK2B, PDE5A |
| GO:2000058~regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process | 2 | 3.85 | 0.0431 | PTK2B, SUFU |
| GO:0007163~establishment or maintenance of cell polarity | 3 | 5.77 | 0.0437 | PTK2B, MSN, CTNNA1 |
| GO:0032989~cellular component morphogenesis | 7 | 13.46 | 0.0464 | PTK2B, PREX2, MET, UNC5D, LRGUK, MSN, KIRREL3 |
| GO:0010941~regulation of cell death | 7 | 13.46 | 0.0467 | EGR1, TNFRSF1A, PTK2B, TNFRSF10D, MET, WRN, CTNNA1 |
| GO:1901701~cellular response to oxygen-containing compound | 5 | 9.62 | 0.0477 | EGR1, PTK2B, MET, MSN, CTNNA1 |
| GO:2000145~regulation of cell motility | 5 | 9.62 | 0.0488 | PTK2B, MET, UNC5D, MSN, CTNNA1 |
|  |  |  |  |  |
| Hypermethylated in in vivo MII |  |  |  |  |
| Term | Count | \% | P -value | Genes |
| GO:0016192~vesicle-mediated transport | 6 | 13.95 | 0.0289 | CUBN, CALY, ENPP3, PTPN23, LOXL4, TNFAIP2 |
| GO:0006897~endocytosis | 4 | 9.30 | 0.0319 | CUBN, CALY, ENPP3, LOXL4 |
| GO:0006898~receptor-mediated endocytosis | 3 | 6.98 | 0.0344 | CUBN, ENPP3, LOXL4 |

Table S6.5 GO terms for DMRs between GV vs. in vitro MII


| GO:0032835~glomerulus development | 3 | 6.98 | 0.0062 | FOXC2, KLF15, KIRREL3 |
| :---: | :---: | :---: | :---: | :---: |
| GO:0006897~endocytosis | 5 | 11.63 | 0.0111 | RAMP3, LGALS3BP, CUBN, CALY, ENPP3 |
| GO:0007610~behavior | 5 | 11.63 | 0.0182 | NRXN2, FBXL20, CHRNA4, SORCS3, KIRREL3 |
| GO:0001764~neuron migration | 3 | 6.98 | 0.0270 | PRKG1, GFRA3, KIRREL3 |
| GO:0072006~nephron development | 3 | 6.98 | 0.0305 | FOXC2, KLF15, KIRREL3 |
| GO:0061318~renal filtration cell differentiation | 2 | 4.65 | 0.0322 | FOXC2, KLF15 |
| GO:0072112~glomerular visceral epithelial cell differentiation | 2 | 4.65 | 0.0322 | FOXC2, KLF15 |
| GO:0044708~single-organism behavior | 4 | 9.30 | 0.0324 | NRXN2, FBXL20, CHRNA4, SORCS3 |
| GO:0072311~glomerular epithelial cell differentiation | 2 | 4.65 | 0.0346 | FOXC2, KLF15 |
| GO:0003013~ ${ }^{\text {circulatory system process }}$ | 4 | 9.30 | 0.0360 | RAMP3, PDE5A, FOXC2, PRKG1 |
| GO:0072010~glomerular epithelium development | 2 | 4.65 | 0.0370 | FOXC2, KLF15 |
| GO:0045932~negative regulation of muscle contraction | 2 | 4.65 | 0.0394 | PDE5A, PRKG1 |
| GO:0090075~relaxation of muscle | 2 | 4.65 | 0.0419 | PDE5A, PRKG1 |

Table S6.6 GO terms for DMRs between in vivo MII vs. in vitro MII

| Hypermethylated in in vivo MII |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Term | Count | \% | P-value | Genes |
| GO:2000643~positive regulation of early endosome to late endosome transport | 2 | 4.55 | 0.0141 | PTPN23, MSN |
| GO:0051128~regulation of cellular component organization | 10 | 22.73 | 0.0154 | FGFR1, PHLDB1, RPS6KA2, ARHGEF19, PTPN23, MSN, LMOD1, BIN1, ZW10, OPRD1 |
| GO:1903651~positive regulation of cytoplasmic transport | 2 | 4.55 | 0.0164 | PTPN23, MSN |
| GO:1903337~positive regulation of vacuolar transport | 2 | 4.55 | 0.0234 | PTPN23, MSN |
| GO:2000641~regulation of early endosome to late endosome transport | 2 | 4.55 | 0.0234 | PTPN23, MSN |
| GO:1903649~regulation of cytoplasmic transport | 2 | 4.55 | 0.0257 | PTPN23, MSN |
| GO:1903335~regulation of vacuolar transport | 2 | 4.55 | 0.0417 | PTPN23, MSN |
|  |  |  |  |  |
|  |  |  |  |  |
| Hypermethylated in in vitro MII |  |  |  |  |
| Term | Count | \% | P-value | Genes |
| GO:0098609~ cell-cell adhesion | 7 | 17.5 | 0.0051 | EGR1, PDE5A, TTYH1, RARA, MSN, CTNNA1, KIRREL3 |
| GO:0032835~glomerulus development | 3 | 7.5 | 0.0051 | EGR1, KLF15, KIRREL3 |
| GO:0016337~single organismal cell-cell adhesion | 6 | 15 | 0.0075 | EGR1, PDE5A, TTYH1, RARA, MSN, CTNNA1 |
| GO:0007155 ${ }^{\sim}$ cell adhesion | 8 | 20 | 0.0085 | EGR1, PDE5A, TTYH1, RARA, MSN, CTNNA1, SSPO, KIRREL3 |
| GO:0022610~biological adhesion | 8 | 20 | 0.0087 | EGR1, PDE5A, TTYH1, RARA, MSN, CTNNA1, SSPO, KIRREL3 |
| GO:0098602~single organism cell adhesion | 6 | 15 | 0.0106 | EGR1, PDE5A, TTYH1, RARA, MSN, CTNNA1 |
| GO:0001822 ${ }^{\sim}$ kidney development | 4 | 10 | 0.0110 | EGR1, RARA, KLF15, KIRREL3 |
| GO:0072001~renal system development | 4 | 10 | 0.0134 | EGR1, RARA, KLF15, KIRREL3 |
| GO:0001655~urogenital system development | 4 | 10 | 0.0193 | EGR1, RARA, KLF15, KIRREL3 |
| GO:0048609~multicellular organismal reproductive process | 5 | 12.5 | 0.0202 | EGR1, OSBP2, PDE5A, RARA, LRGUK |
| GO:0032504~multicellular organism reproduction | 5 | 12.5 | 0.0212 | EGR1, OSBP2, PDE5A, RARA, LRGUK |
| GO:0072006~nephron development | 3 | 7.5 | 0.0256 | EGR1, KLF15, KIRREL3 |
| GO:0044702~single organism reproductive process | 6 | 15 | 0.0341 | EGR1, OSBP2, PDE5A, TTPA, RARA, LRGUK |
| GO:0022414~reproductive process | 6 | 15 | 0.0446 | EGR1, OSBP2, PDE5A, TTPA, RARA, LRGUK |
| GO:0000003 ${ }^{\text {reproduction }}$ | 6 | 15 | 0.0450 | EGR1, OSBP2, PDE5A, TTPA, RARA, LRGUK |
| GO:0048468~cell development | 8 | 20 | 0.0496 | OSBP2, PREX2, PDE5A, TTPA, RARA, MSN, CTNNA1, KIRREL3 |

Table S7.1 Gene expression for DMRs between sperm and GV oocytes

| Gene expression in DMRs from GV vs. Sperm |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Chr | GV_me | Sperm_me | p-value | q-value | GV expression | Spmer expression |
| PFKL | AC_000158.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.888 | 0.197475 |
| PLCL2 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 11.425 | 45.9542 |
| NYNRIN | AC_000167.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.287 | 3.66222 |
| JPH4 | AC_000167.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.095 | 7.74329 |
| KATNBL1 | AC_000167.1 | 76 | 0 | 6.99E-15 | 7.30E-14 | 17.392 | 19.9724 |
| SAMD4A | AC_000167.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 0.229 | 92.4821 |
| SLC8A3 | AC_000167.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.035 | 0.271869 |
| MERTK | AC_000168.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 1.856 | 4.29607 |
| SEMA4C | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.174 | 2.54157 |
| SEMA4C | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.174 | 2.54157 |
| FHL2 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 4.781 | 8.26512 |
| DYSF | AC_000168.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $1.28 \mathrm{E}-13$ | 0.372 | 2.59209 |
| DYSF | AC_000168.1 | 100 | 7 | 2.90E-13 | 2.83E-12 | 0.372 | 2.59209 |
| DYSF | AC_000168.1 | 80 | 20 | 6.94E-06 | 2.81E-05 | 0.372 | 2.59209 |
| ADD2 | AC_000168.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 2.157 | 0.106467 |
| CAMKMT | AC_000168.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $1.73 \mathrm{E}-13$ | 1.742 | 13.4428 |
| EMILIN1 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.121 | 2.56389 |
| OTOF | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.074 | 0.0557878 |
| DNMT3A | AC_000168.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 2.959 | 2.73006 |
| NOL10 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 20.124 | 20.8117 |
| RALGPS1 | AC_000168.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 2.175 | 23.5689 |
| RALGPS1 | AC_000168.1 | 80 | 18 | $2.38 \mathrm{E}-06$ | $1.04 \mathrm{E}-05$ | 2.175 | 23.5689 |
| ENG | AC_000168.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.13 | 5.34783 |
| AIF1L | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.079 | 2.89621 |
| NTNG2 | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.108 | 0.683614 |
| AK8 | AC_000168.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.377 | 44.5611 |
| GFI1B | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.411 | 0.0413428 |
| GFI1B | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.411 | 0.0413428 |
| RALGDS | AC_000168.1 | 85 | 0 | 1.66E-16 | 2.20E-15 | 10.95 | 7.0163 |
| INPP5E | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.551 | 8.13702 |
| AGPAT2 | AC_000168.1 | 12 | 80 | $4.35 \mathrm{E}-08$ | $2.36 \mathrm{E}-07$ | 0.54 | 9.63912 |
| SARDH | AC_000168.1 | 9 | 100 | 3.27E-12 | $2.95 \mathrm{E}-11$ | 0.083 | 0.12003 |
| SARDH | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.083 | 0.12003 |
| SARDH | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.083 | 0.12003 |
| TPRN | AC_000168.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.548 | 1.47106 |
| TPRN | AC_000168.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.548 | 1.47106 |
| RXRA | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.763 | 0.201091 |
| IFITM2 | AC_000168.1 | 0 | 90 | $1.66 \mathrm{E}-17$ | 2.40E-16 | 0.997 | 80.6682 |


| PCDH17 | AC_000169.1 | 83 | 0 | 3.95E-16 | 4.80E-15 | 0.277 | 1.29798 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARL11 | AC_000169.1 | 11 | 100 | $2.69 \mathrm{E}-11$ | 2.18E-10 | 0.41 | 0.261074 |
| MYCBP2 | AC_000169.1 | 75 | 8 | 7.09E-09 | 4.60E-08 | 11.59 | 14.5207 |
| DOCK9 | AC_000169.1 | 93 | 10 | $9.09 \mathrm{E}-11$ | $7.03 \mathrm{E}-10$ | 21.342 | 5.15748 |
| DOCK9 | AC_000169.1 | 88 | 18 | $2.56 \mathrm{E}-07$ | $1.29 \mathrm{E}-06$ | 21.342 | 5.15748 |
| RAB20 | AC_000169.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.13 | 0.975288 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.065 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.065 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.065 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.065 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.065 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.065 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.065 | 1.43627 |
| PLCB1 | AC_000170.1 | 85 | 21 | 3.15E-06 | 1.36E-05 | 2.134 | 1.56312 |
| PLCB1 | AC_000170.1 | 80 | 10 | 8.02E-09 | 5.15E-08 | 2.134 | 1.56312 |
| PLCB1 | AC_000170.1 | 90 | 25 | 5.95E-06 | 2.48E-05 | 2.134 | 1.56312 |
| PLCB1 | AC_000170.1 | 100 | 2 | 5.84E-17 | 8.25E-16 | 2.134 | 1.56312 |
| PLCB1 | AC_000170.1 | 93 | 21 | 3.73E-07 | 1.86E-06 | 2.134 | 1.56312 |
| SFMBT2 | AC_000170.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 1.462 | 4.04179 |
| PFKFB3 | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.697 | 6.93267 |
| IL2RA | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 5.055 | 0.169466 |
| CUBN | AC_000170.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.254 | 4.77637 |
| DIP2C | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.766 | 12.4809 |
| TCEA2 | AC_000170.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | 1.72E-07 | 0.957 | 36.3719 |
| SAMD10 | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.05 | 0.151801 |
| TRIB3 | AC_000170.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.076 | 0.121916 |
| NECAB3 | AC_000170.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.096 | 3.25575 |
| NECAB3 | AC_000170.1 | 83 | 0 | $3.95 \mathrm{E}-16$ | 4.80E-15 | 0.096 | 3.25575 |
| CHMP4B | AC_000170.1 | 80 | 5 | 3.50E-11 | $2.77 \mathrm{E}-10$ | 10.25 | 17.6036 |
| KCNB1 | AC_000170.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.011 | 0.595133 |
| BCAS4 | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.562 | 1.27598 |
| BCAS4 | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.562 | 1.27598 |
| SLC39A4 | AC_000171.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.143 | 0.49789 |
| DGAT1 | AC_000171.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 5.034 | 9.26291 |
| NRBP2 | AC_000171.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | 1.28E-13 | 0.015 | 0.416031 |
| VAMP2 | AC_000171.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 93 | 5.27E-18 | 7.78E-17 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.347 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 8.347 | 5.04003 |
| ARC | AC_000171.1 | 20 | 100 | 2.92E-08 | 1.72E-07 | 0.173 | 0.0375706 |
| TSNARE1 | AC_000171.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.913 | 0.00898524 |


| TSNARE1 | AC_000171.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.913 | 0.00898524 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TSNARE1 | AC_000171.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.913 | 0.00898524 |
| TSNARE1 | AC_000171.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 1.913 | 0.00898524 |
| TRAPPC9 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.403 | 10.3207 |
| ASAP1 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 39.817 | 4.84221 |
| ASAP1 | AC_000171.1 | 10 | 90 | $2.77 \mathrm{E}-10$ | 2.09E-09 | 39.817 | 4.84221 |
| TTPA | AC_000171.1 | 76 | 11 | 6.43E-08 | 3.45E-07 | 0.139 | 1.44846 |
| PREX2 | AC_000171.1 | 100 | 10 | 8.84E-12 | 7.26E-11 | 0.157 | 1.02787 |
| PREX2 | AC_000171.1 | 76 | 15 | $1.29 \mathrm{E}-06$ | 5.88E-06 | 0.157 | 1.02787 |
| PREX2 | AC_000171.1 | 80 | 21 | $1.20 \mathrm{E}-05$ | $4.73 \mathrm{E}-05$ | 0.157 | 1.02787 |
| DEPTOR | AC_000171.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | 2.18E-10 | 4.076 | 0.937093 |
| DEPTOR | AC_000171.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | $1.27 \mathrm{E}-07$ | 4.076 | 0.937093 |
| ALKBH8 | AC_000172.1 | 16 | 75 | 3.16E-06 | $1.36 \mathrm{E}-05$ | 3.047 | 3.89821 |
| PDE2A | AC_000172.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 0.039 | 2.68373 |
| PDE2A | AC_000172.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 0.039 | 2.68373 |
| ARRB1 | AC_000172.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 0.907 | 0.862835 |
| ZNF408 | AC_000172.1 | 16 | 100 | 1.86E-09 | $1.25 \mathrm{E}-08$ | 1.262 | 1.9867 |
| MYBPC3 | AC_000172.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.01 | 0.272787 |
| RGS7 | AC_000173.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | $1.27 \mathrm{E}-07$ | 1.014 | 0.674704 |
| RGS7 | AC_000173.1 | 82 | 15 | $1.98 \mathrm{E}-07$ | $1.01 \mathrm{E}-06$ | 1.014 | 0.674704 |
| LAD1 | AC_000173.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 3.584 | 0.0617539 |
| CSRP1 | AC_000173.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.036 | 22.8617 |
| ACAP3 | AC_000173.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.299 | 0.365091 |
| PLXNA2 | AC_000173.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.033 | 2.16689 |
| CPE | AC_000174.1 | 75 | 20 | $2.62 \mathrm{E}-05$ | $9.81 \mathrm{E}-05$ | 5.305 | 7.84652 |
| CUX2 | AC_000174.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 45.73 | 0.223335 |
| ACADS | AC_000174.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 3.249 | 3.73854 |
| SGSM1 | AC_000174.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.268 | 1.15444 |
| EMID1 | AC_000174.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.867 | 1.45839 |
| EMID1 | AC_000174.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.867 | 1.45839 |
| EMID1 | AC_000174.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.867 | 1.45839 |
| OSBP2 | AC_000174.1 | 10 | 100 | $8.84 \mathrm{E}-12$ | $7.26 \mathrm{E}-11$ | 1.183 | 14.0231 |
| SUSD2 | AC_000174.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.012 | 0.533469 |
| GGT5 | AC_000174.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 1.886 | 0.631976 |
| GGT5 | AC_000174.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 1.886 | 0.631976 |
| GGT1 | AC_000174.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.027 | 0.665504 |
| GGT1 | AC_000174.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.027 | 0.665504 |
| SLC7A4 | AC_000174.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.019 | 0.587754 |
| GNB1L | AC_000174.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 2.053 | 0.53128 |
| TXNRD2 | AC_000174.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.364 | 0.0301001 |
| TXNRD2 | AC_000174.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.364 | 0.0301001 |
| CTRB1 | AC_000175.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.338 | 2.03802 |
| SLC7A5 | AC_000175.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.103 | 22.6674 |
| SLC22A31 | AC_000175.1 | 100 | 12 | 6.45E-11 | 5.03E-10 | 1.469 | 1.63851 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.009 | 1.49701 |


| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.009 | 1.49701 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ZNF423 | AC_000175.1 | 0 | 88 | $3.94 \mathrm{E}-17$ | 5.58E-16 | 0.009 | 1.49701 |
| EXOC3L1 | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.545 | 1.44007 |
| PEPD | AC_000175.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.057 | 3.74324 |
| PEPD | AC_000175.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.057 | 3.74324 |
| PEPD | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.057 | 3.74324 |
| GPI | AC_000175.1 | 16 | 85 | 1.60E-07 | 8.31E-07 | 115.286 | 52.6938 |
| FXYD1 | AC_000175.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.387 | 5.61115 |
| LRFN3 | AC_000175.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.489 | 0.822277 |
| C18H19orf47 | AC_000175.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $2.20 \mathrm{E}-15$ | 6.111 | 1.74616 |
| KCNN4 | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 9.122 | 0.0324022 |
| KLC3 | AC_000175.1 | 20 | 90 | $4.80 \mathrm{E}-07$ | $2.36 \mathrm{E}-06$ | 2.236 | 0.6625 |
| KDELR1 | AC_000175.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 12 | 15.9696 |
| FCGRT | AC_000175.1 | 0 | 88 | 3.94E-17 | 5.58E-16 | 3.272 | 0.128583 |
| NLRP12 | AC_000175.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 0.013 | 0.0885662 |
| FIZ1 | AC_000175.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.675 | 0.0353889 |
| TTYH1 | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.927 | 53.4688 |
| TMC4 | AC_000175.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 11.065 | 0.246617 |
| ZIM2 | AC_000175.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 33.988 | 0.068638 |
| MSI2 | AC_000176.1 | 0 | 81 | $9.35 \mathrm{E}-16$ | $1.13 \mathrm{E}-14$ | 1.261 | 3.4265 |
| MSI2 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.261 | 3.4265 |
| RNF43 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.151 | 0.584618 |
| GAS2L2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.351 | 0.147563 |
| GAS2L2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.351 | 0.147563 |
| MNT | AC_000176.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 4.813 | 1.52517 |
| P2RX1 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 30.979 | 0.134512 |
| SLC35G6 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.381 | 14.2108 |
| GUCY2D | AC_000176.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | $1.25 \mathrm{E}-08$ | 0.207 | 0.0841453 |
| PER1 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 21.299 | 7.59761 |
| CCDC42 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 32.208 | 25.8806 |
| NTN1 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.205 | 0.550449 |
| SGCA | AC_000176.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.551 | $4.48 \mathrm{E}-05$ |
| RPL19 | AC_000176.1 | 77 | 23 | $5.94 \mathrm{E}-05$ | $2.11 \mathrm{E}-04$ | 1281.436 | 133.855 |
| FBXL20 | AC_000176.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | $2.81 \mathrm{E}-09$ | 29.104 | 6.7384 |
| GRB7 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.587 | 0.375847 |
| HDAC5 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.54 | 7.63568 |
| PLCD3 | AC_000176.1 | 0 | 81 | 9.35E-16 | 1.13E-14 | 2.178 | 1.43795 |
| CRHR1 | AC_000176.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 0.075 | 3.05045 |
| RBFOX3 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.287 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.287 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.287 | 0.0541617 |
| LGALS3BP | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.158 | 12.465 |
| LGALS3BP | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.158 | 12.465 |
| LGALS3BP | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.158 | 12.465 |
| SEC14L1 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 18.812 | 31.2194 |


| ST6GALNAC2 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.707 | 23.0638 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAB37 | AC_000176.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 5.424 | 0.531397 |
| RAB37 | AC_000176.1 | 80 | 10 | 8.02E-09 | 5.15E-08 | 5.424 | 0.531397 |
| RAB37 | AC_000176.1 | 83 | 0 | 3.95E-16 | 4.80E-15 | 5.424 | 0.531397 |
| RAB37 | AC_000176.1 | 87 | 7 | 3.08E-11 | 2.44E-10 | 5.424 | 0.531397 |
| RAB37 | AC_000176.1 | 83 | 15 | 1.57E-07 | 8.18E-07 | 5.424 | 0.531397 |
| RAB37 | AC_000176.1 | 80 | 20 | 6.94E-06 | 2.81E-05 | 5.424 | 0.531397 |
| RAB37 | AC_000176.1 | 85 | 25 | $2.09 \mathrm{E}-05$ | 7.94E-05 | 5.424 | 0.531397 |
| TTYH2 | AC_000176.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.025 | 2.69215 |
| ABCA9 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.128 | 1.46739 |
| AXIN2 | AC_000176.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.486 | 0.321127 |
| LIMS2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.017 | 12.1793 |
| LIMS2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.017 | 12.1793 |
| TFCP2L1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.096 | 1.95606 |
| 4-Mar | AC_000159.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 0.525 | 0.0251621 |
| TNS1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.613 | 8.80054 |
| TNS1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.613 | 8.80054 |
| TNS1 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.613 | 8.80054 |
| DNPEP | AC_000159.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 13.277 | 88.9103 |
| SLC4A3 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.187 | 1.40557 |
| SLC4A3 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.187 | 1.40557 |
| ZCCHC17 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 16.436 | 38.4618 |
| CD164L2 | AC_000159.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | $1.28 \mathrm{E}-13$ | 37.44 | 4.59861 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.013 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.013 | 0.528627 |
| EPHB2 | AC_000159.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | 1.72E-07 | 0.013 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.013 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.013 | 0.528627 |
| PADI4 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.019 | 0.107179 |
| PADI4 | AC_000159.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | 1.72E-07 | 0.019 | 0.107179 |
| PADI1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.565 | 0.00684407 |
| ZNF366 | AC_000177.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 1.066 | 0.245052 |
| SLC38A9 | AC_000177.1 | 80 | 5 | 3.50E-11 | $2.77 \mathrm{E}-10$ | 23.88 | 12.0679 |
| SLC38A9 | AC_000177.1 | 83 | 13 | 3.69E-08 | $2.13 \mathrm{E}-07$ | 23.88 | 12.0679 |
| BRD9 | AC_000177.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 8.891 | 7.39757 |
| SLC9A3 | AC_000177.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.741 | 0.282475 |
| ST8SIA2 | AC_000178.1 | 20 | 100 | 2.92E-08 | 1.72E-07 | 0.686 | 2.57432 |
| MRPS11 | AC_000178.1 | 100 | 16 | $1.86 \mathrm{E}-09$ | $1.25 \mathrm{E}-08$ | 24.469 | 1.91452 |
| ARNT2 | AC_000178.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.224 | 2.29686 |
| ACSBG1 | AC_000178.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.042 | 11.0506 |
| ISL2 | AC_000178.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 7.716 | 0.0596224 |
| FRMD5 | AC_000178.1 | 91 | 6 | $1.77 \mathrm{E}-12$ | 1.63E-11 | 8.882 | 0.203298 |
| FRMD5 | AC_000178.1 | 100 | 21 | 5.72E-08 | 3.07E-07 | 8.882 | 0.203298 |
| FRMD5 | AC_000178.1 | 75 | 12 | $2.23 \mathrm{E}-07$ | 1.13E-06 | 8.882 | 0.203298 |
| FRMD5 | AC_000178.1 | 76 | 23 | 7.24E-05 | $2.54 \mathrm{E}-04$ | 8.882 | 0.203298 |


| FRMD5 | AC_000178.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 8.882 | 0.203298 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRMD5 | AC_000178.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 8.882 | 0.203298 |
| FRMD5 | AC_000178.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | $1.27 \mathrm{E}-07$ | 8.882 | 0.203298 |
| EXOC3L4 | AC_000178.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 0.433 | 0.202865 |
| EXOC3L4 | AC_000178.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 0.433 | 0.202865 |
| TNFAIP2 | AC_000178.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.091 | 3.27001 |
| TNFAIP2 | AC_000178.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.091 | 3.27001 |
| TNFAIP2 | AC_000178.1 | 14 | 100 | $3.79 \mathrm{E}-10$ | $2.81 \mathrm{E}-09$ | 0.091 | 3.27001 |
| TNFAIP2 | AC_000178.1 | 14 | 100 | $3.79 \mathrm{E}-10$ | 2.81E-09 | 0.091 | 3.27001 |
| TNFAIP2 | AC_000178.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.091 | 3.27001 |
| ADSSL1 | AC_000178.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.028 | 14.3029 |
| ADSSL1 | AC_000178.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.028 | 14.3029 |
| ADSSL1 | AC_000178.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.028 | 14.3029 |
| ADSSL1 | AC_000178.1 | 0 | 90 | $1.66 \mathrm{E}-17$ | $2.40 \mathrm{E}-16$ | 0.028 | 14.3029 |
| VILL | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.021 | 3.56041 |
| SYNPR | AC_000179.1 | 80 | 22 | $1.84 \mathrm{E}-05$ | $7.05 \mathrm{E}-05$ | 1.72 | 0.493366 |
| SYNPR | AC_000179.1 | 80 | 4 | 7.32E-12 | 6.05E-11 | 1.72 | 0.493366 |
| ERC2 | AC_000179.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 5.638 | 0.399069 |
| SFMBT1 | AC_000179.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 9.88 | 17.3451 |
| GNAI2 | AC_000179.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 11.738 | 62.7405 |
| APEH | AC_000179.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.519 | 12.0954 |
| LAMB2 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.113 | 0.0489692 |
| LAMB2 | AC_000179.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $4.80 \mathrm{E}-15$ | 0.113 | 0.0489692 |
| H1FOO | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 638.647 | 1.64813 |
| RHO | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.538 | 0.102191 |
| RHO | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.538 | 0.102191 |
| SLC6A6 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.189 | 8.29457 |
| NUP210 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.119 | $2.69 \mathrm{E}-06$ |
| NUP210 | AC_000179.1 | 12 | 100 | $6.45 \mathrm{E}-11$ | 5.03E-10 | 0.119 | $2.69 \mathrm{E}-06$ |
| NUP210 | AC_000179.1 | 100 | 16 | $1.86 \mathrm{E}-09$ | $1.25 \mathrm{E}-08$ | 0.119 | $2.69 \mathrm{E}-06$ |
| NUP210 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.119 | $2.69 \mathrm{E}-06$ |
| EEFSEC | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.196 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.196 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 1.196 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.196 | 3.16696 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 88 | $3.94 \mathrm{E}-17$ | 5.58E-16 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.776 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.776 | 4.96885 |
| CHCHD6 | AC_000179.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 1.991 | 0.0769569 |


| ALDH1L1 | AC_000179.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.018 | 0.125084 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAPK13 | AC_000180.1 | 16 | 100 | 1.86E-09 | 1.25E-08 | 0.124 | 1.2245 |
| RNF8 | AC_000180.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | $2.01 \mathrm{E}-06$ | 173.175 | 24.6931 |
| MRPL2 | AC_000180.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 63.72 | 25.8689 |
| HIST1H1C | AC_000180.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | $2.36 \mathrm{E}-07$ | 168.516 | 0.347191 |
| MAK | AC_000180.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $2.20 \mathrm{E}-15$ | 1.998 | 20.5848 |
| TUBB2B | AC_000180.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 4.438 | 2.88E-07 |
| GMDS | AC_000180.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.846 | 29.0845 |
| GMDS | AC_000180.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.846 | 29.0845 |
| GMDS | AC_000180.1 | 20 | 87 | $1.14 \mathrm{E}-06$ | 5.21E-06 | 1.846 | 29.0845 |
| GMDS | AC_000180.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.846 | 29.0845 |
| GMDS | AC_000180.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.846 | 29.0845 |
| GMDS | AC_000180.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 1.846 | 29.0845 |
| PARD6G | AC_000181.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.18 | 0.705794 |
| ATP9B | AC_000181.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.054 | 20.9405 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.892 | 0.498227 |
| KCTD1 | AC_000181.1 | 100 | 10 | $8.84 \mathrm{E}-12$ | 7.26E-11 | 3.893 | 2.85029 |
| ST8SIA5 | AC_000181.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.098 | 0.267697 |
| ST8SIA5 | AC_000181.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.098 | 0.267697 |
| BCL2 | AC_000181.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.742 | 2.29554 |
| BCL2 | AC_000181.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.742 | 2.29554 |
| PDIA2 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.193 | 0.0197089 |
| PDIA2 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.193 | 0.0197089 |
| AXIN1 | AC_000182.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 9.70E-16 | 8.127 | 2.99307 |
| FBXL16 | AC_000182.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.915 | 0.756621 |
| FBXL16 | AC_000182.1 | 20 | 83 | $3.33 \mathrm{E}-06$ | $1.43 \mathrm{E}-05$ | 0.915 | 0.756621 |
| MAPK8IP3 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 3.017 | 2.75834 |
| TBL3 | AC_000182.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 1.21 | 9.98598 |
| DNAH3 | AC_000182.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.334 | 6.18503 |
| QPRT | AC_000182.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 0.074 | 1.49625 |
| NCF1 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.347 | 0.120512 |
| GTF2IRD1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.277 | 1.03709 |
| GTF2IRD1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.277 | 1.03709 |
| POLR2J | AC_000182.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 9.70E-16 | 939.48 | 5.48768 |
| LRWD1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.981 | 9.38676 |
| COL26A1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.01 | 0.355506 |
| COL26A1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.01 | 0.355506 |
| TRIM56 | AC_000182.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 0.004 | 0.267774 |
| TMEM130 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.151 | 0.498274 |
| CARD11 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.036 | 0.584971 |
| LFNG | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.155 | 2.2758 |
| LFNG | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.155 | 2.2758 |
| LFNG | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 1.155 | 2.2758 |
| LFNG | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.155 | 2.2758 |
| MAD1L1 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.594 | 2.44948 |


| MAD1L1 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.594 | 2.44948 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAD1L1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.594 | 2.44948 |
| MAD1L1 | AC_000182.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | $9.70 \mathrm{E}-16$ | 0.594 | 2.44948 |
| TMEM184A | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.062 | 0.466166 |
| TMEM184A | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.062 | 0.466166 |
| TMEM184A | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.062 | 0.466166 |
| MICALL2 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.551 | 0.182125 |
| MICALL2 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.551 | 0.182125 |
| MICALL2 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.551 | 0.182125 |
| MICALL2 | AC_000182.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.551 | 0.182125 |
| MICALL2 | AC_000182.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $2.81 \mathrm{E}-05$ | 0.551 | 0.182125 |
| ADAP1 | AC_000182.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 28.765 | 0.734833 |
| ADAP1 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 28.765 | 0.734833 |
| ADAP1 | AC_000182.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 28.765 | 0.734833 |
| MYOF | AC_000183.1 | 100 | 9 | 3.27E-12 | 2.95E-11 | 6.025 | 12.114 |
| CRTAC1 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.289 | 0.0517082 |
| CRTAC1 | AC_000183.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.289 | 0.0517082 |
| LOXL4 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.014 | 0.144052 |
| SUFU | AC_000183.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.698 | 3.82115 |
| SUFU | AC_000183.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 2.698 | 3.82115 |
| SUFU | AC_000183.1 | 75 | 6 | $8.00 \mathrm{E}-10$ | 5.54E-09 | 2.698 | 3.82115 |
| SUFU | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 2.698 | 3.82115 |
| SORCS3 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 20 | 88 | 8.27E-07 | 3.96E-06 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $4.80 \mathrm{E}-15$ | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 8.191 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 8.191 | 20.632 |
| CTBP2 | AC_000183.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 21.969 | 0.0139396 |
| PTPRE | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 1.274 | 1.64891 |
| IRF2 | AC_000184.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.511 | 4.58319 |
| CFAP97 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 20.386 | 67.3662 |
| WRN | AC_000184.1 | 88 | 0 | 3.94E-17 | 5.58E-16 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $1.28 \mathrm{E}-13$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $1.73 \mathrm{E}-13$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 83 | 0 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 83 | 0 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 10.07 | 8.79611 |


| WRN | AC_000184.1 | 100 | 4 | 2.93E-15 | 3.09E-14 | 10.07 | 8.79611 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WRN | AC_000184.1 | 78 | 0 | $2.95 \mathrm{E}-15$ | 3.11E-14 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 7 | $2.90 \mathrm{E}-13$ | $2.83 \mathrm{E}-12$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 91 | 6 | $1.77 \mathrm{E}-12$ | 1.63E-11 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 9 | $3.27 \mathrm{E}-12$ | 2.95E-11 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.32E-09 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 87 | 10 | 8.39E-10 | 5.80E-09 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 81 | 14 | $1.53 \mathrm{E}-07$ | 7.97E-07 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 87 | 18 | 3.61E-07 | 1.80E-06 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 85 | 18 | 5.63E-07 | 2.75E-06 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 83 | 17 | 5.72E-07 | $2.80 \mathrm{E}-06$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 83 | 0 | 3.95E-16 | 4.80E-15 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 81 | 0 | 9.35E-16 | 1.13E-14 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 2 | 2.15E-13 | $2.12 \mathrm{E}-12$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.32E-09 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 89 | 12 | 2.24E-09 | 1.50E-08 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 89 | 13 | 5.59E-09 | 3.66E-08 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 20 | 2.92E-08 | 1.72E-07 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | $2.36 \mathrm{E}-07$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 90 | 19 | 2.52E-07 | 1.28E-06 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 76 | 13 | 2.97E-07 | 1.49E-06 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 88 | 25 | 1.06E-05 | $4.21 \mathrm{E}-05$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 93 | 0 | 5.27E-18 | 7.78E-17 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 82 | 0 | 5.25E-16 | 6.39E-15 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 97 | 7 | $7.91 \mathrm{E}-13$ | $7.35 \mathrm{E}-12$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 85 | 7 | $6.35 \mathrm{E}-11$ | $4.99 \mathrm{E}-10$ | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 12 | 6.45E-11 | 5.03E-10 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 75 | 5 | 2.05E-10 | 1.55E-09 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 16 | 1.86E-09 | 1.25E-08 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 87 | 12 | 5.03E-09 | 3.30E-08 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | 1.72E-07 | 10.07 | 8.79611 |
| WRN | AC_000184.1 | 83 | 22 | 9.08E-06 | 3.65E-05 | 10.07 | 8.79611 |
| RNF122 | AC_000184.1 | 80 | 7 | $4.23 \mathrm{E}-10$ | 3.12E-09 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | 1.72E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 22 | 9.08E-06 | 3.65E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | 1.24E-15 | 1.32E-14 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 14 | 9.09E-07 | $4.25 \mathrm{E}-06$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 3 | $1.61 \mathrm{E}-12$ | $1.48 \mathrm{E}-11$ | 9.872 | 10.1717 |


| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 9.872 | 10.1717 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | $1.72 \mathrm{E}-07$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 20 | 91 | 3.85E-07 | 1.92E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 25 | 2.10E-04 | 6.57E-04 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 25 | 2.10E-04 | 6.57E-04 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 14 | 3.79E-10 | 2.81E-09 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 25 | 6.49E-06 | 2.70E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 7 | 2.90E-13 | $2.83 \mathrm{E}-12$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 11 | 2.08E-08 | 1.27E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 13 | $1.01 \mathrm{E}-07$ | 5.30E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 20 | 3.33E-06 | $1.43 \mathrm{E}-05$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 6 | 1.16E-10 | 8.91E-10 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 20 | 6.94E-06 | 2.81E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 77 | 22 | $3.69 \mathrm{E}-05$ | $1.34 \mathrm{E}-04$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 9 | 3.27E-12 | 2.95E-11 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | 2.36E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 25 | $1.06 \mathrm{E}-05$ | 4.21E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 13 | $1.98 \mathrm{E}-08$ | $1.21 \mathrm{E}-07$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 11 | 2.08E-08 | $1.27 \mathrm{E}-07$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 11 | 2.08E-08 | $1.27 \mathrm{E}-07$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 18 | 1.10E-06 | 5.02E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 81 | 20 | 5.62E-06 | 2.36E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 25 | 7.02E-05 | $2.46 \mathrm{E}-04$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 25 | 7.02E-05 | 2.46E-04 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 11 | $7.24 \mathrm{E}-09$ | 4.69E-08 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 78 | 2.95E-15 | 3.11E-14 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 4 | 7.32E-12 | 6.05E-11 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 9 | 5.67E-10 | 3.93E-09 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 14 | 9.09E-07 | 4.25E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 3.49E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 78 | 4 | $1.58 \mathrm{E}-11$ | $1.30 \mathrm{E}-10$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 9 | 1.70E-08 | 1.05E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 16 | 7.24E-07 | 3.49E-06 | 9.872 | 10.1717 |


| RNF122 | AC_000184.1 | 100 | 14 | 3.79E-10 | 2.81E-09 | 9.872 | 10.1717 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 80 | 9 | 3.43E-09 | 2.27E-08 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 10 | 8.02E-09 | 5.15E-08 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | 2.01E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 15 | 4.06E-07 | 2.01E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 77 | 16 | $1.60 \mathrm{E}-06$ | 7.23E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 20 | 84 | 2.42E-06 | 1.06E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 4 | $7.32 \mathrm{E}-12$ | 6.05E-11 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 0 | $3.94 \mathrm{E}-17$ | 5.58E-16 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $2.20 \mathrm{E}-15$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 10 | 75 | $4.51 \mathrm{E}-08$ | 2.45E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 18 | 2.38E-06 | 1.04E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 78 | 0 | $2.95 \mathrm{E}-15$ | 3.11E-14 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 7 | $2.90 \mathrm{E}-13$ | 2.83E-12 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 18 | 2.38E-06 | $1.04 \mathrm{E}-05$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 75 | 1.25E-14 | 1.28E-13 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 15 | $9.23 \mathrm{E}-10$ | 6.36E-09 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 12 | $1.75 \mathrm{E}-09$ | $1.20 \mathrm{E}-08$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 11 | $9.55 \mathrm{E}-08$ | 5.06E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 9 | 3.43E-09 | 2.27E-08 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 23 | $9.52 \mathrm{E}-05$ | 3.26E-04 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 0 | $1.66 \mathrm{E}-17$ | 2.40E-16 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | 4.80E-15 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 4 | 7.32E-12 | 6.05E-11 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | $1.72 \mathrm{E}-07$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 17 | 3.24E-07 | 1.62E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 15 | $1.62 \mathrm{E}-06$ | 7.31E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 19 | $4.34 \mathrm{E}-06$ | $1.85 \mathrm{E}-05$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 21 | 5.30E-06 | 2.22E-05 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 4 | $2.57 \mathrm{E}-12$ | $2.35 \mathrm{E}-11$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 18 | $2.56 \mathrm{E}-07$ | $1.29 \mathrm{E}-06$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 10 | 1.65E-09 | 1.12E-08 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 25 | 5.20E-07 | 2.55E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 92 | 24 | 2.34E-06 | $1.03 \mathrm{E}-05$ | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 4 | $7.32 \mathrm{E}-12$ | 6.05E-11 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 16 | 7.03E-08 | 3.76E-07 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 25 | 2.10E-04 | 6.57E-04 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 16 | 7.24E-07 | 3.49E-06 | 9.872 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 9.872 | 10.1717 |
| UNC5D | AC_000184.1 | 100 | 1 | 5.75E-18 | 8.47E-17 | 9.564 | 0.293699 |
| UNC5D | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $1.73 \mathrm{E}-13$ | 9.564 | 0.293699 |


| UNC5D | AC_000184.1 | 100 | 15 | 9.23E-10 | 6.36E-09 | 9.564 | 0.293699 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNC5D | AC_000184.1 | 97 | 15 | 2.19E-09 | $1.47 \mathrm{E}-08$ | 9.564 | 0.293699 |
| UNC5D | AC_000184.1 | 100 | 17 | 4.16E-09 | $2.74 \mathrm{E}-08$ | 9.564 | 0.293699 |
| UNC5D | AC_000184.1 | 88 | 18 | 2.56E-07 | $1.29 \mathrm{E}-06$ | 9.564 | 0.293699 |
| UNC5D | AC_000184.1 | 100 | 24 | $2.94 \mathrm{E}-07$ | $1.48 \mathrm{E}-06$ | 9.564 | 0.293699 |
| UNC5D | AC_000184.1 | 100 | 24 | $2.94 \mathrm{E}-07$ | $1.48 \mathrm{E}-06$ | 9.564 | 0.293699 |
| FGFR1 | AC_000184.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.222 | 4.27163 |
| FGFR1 | AC_000184.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.222 | 4.27163 |
| SFRP1 | AC_000184.1 | 0 | 75 | 1.25E-14 | $1.28 \mathrm{E}-13$ | 4.191 | 0.563249 |
| ARV1 | AC_000185.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 6.677 | 41.2131 |
| SYT15 | AC_000185.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.017 | 0.0270671 |
| ROBO4 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.264 | 1.91423 |
| ST14 | AC_000186.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.066 | 0.233181 |
| FADS2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.051 | 34.409 |
| FADS2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.051 | 34.409 |
| MACROD1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 5.449 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 5.449 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 5.449 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 5.449 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 5.449 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 5.449 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 5.449 | 8.30819 |
| NRXN2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.23 | 4.57515 |
| LTBP3 | AC_000186.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.2 | 4.5186 |
| KCNK7 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 5.012 | 0.153702 |
| KCNK7 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 5.012 | 0.153702 |
| MAP3K11 | AC_000186.1 | 20 | 100 | 2.92E-08 | $1.72 \mathrm{E}-07$ | 3.373 | 1.86971 |
| KLC2 | AC_000186.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $1.28 \mathrm{E}-13$ | 0.59 | 19.3057 |
| ALDH3B1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.14 | 1.67588 |
| GAL | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.129 | 0.502274 |
| ANO1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.03 | 52.6666 |
| ANO1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.03 | 52.6666 |
| ANO1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.03 | 52.6666 |
| TSPAN4 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.30 \mathrm{E}-18$ | 0.216 | 2.43992 |
| CD151 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 5.355 | 2.44507 |
| PKP3 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.108 | 0.0558369 |
| IFITM3 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.745 | 19.5725 |
| IFITM3 | AC_000186.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.745 | 19.5725 |
| IGSF9 | AC_000160.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.148 | 0.376391 |
| IGSF9 | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.148 | 0.376391 |
| IGSF9 | AC_000160.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.148 | 0.376391 |
| MUC1 | AC_000160.1 | 0 | 88 | 3.94E-17 | $5.58 \mathrm{E}-16$ | 0.529 | 0.33369 |
| PHGDH | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.183 | 8.71506 |
| ATP1A1 | AC_000160.1 | 85 | 11 | 3.76E-09 | 2.48E-08 | 68.749 | 148.908 |
| ATP1A1 | AC_000160.1 | 88 | 18 | 2.56E-07 | $1.29 \mathrm{E}-06$ | 68.749 | 148.908 |


| TRIM33 | AC_000160.1 | 100 | 14 | 3.79E-10 | 2.81E-09 | 64.699 | 18.3993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MYBPHL | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.121 | 0.238176 |
| SLC44A5 | AC_000160.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 15.46 | 7.84819 |
| LRP8 | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.404 | 27.1152 |
| ERI3 | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 16.469 | 8.40504 |
| ERI3 | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 16.469 | 8.40504 |
| SLC6A9 | AC_000160.1 | 25 | 100 | 5.20E-07 | 2.55E-06 | 0.4 | 0.408613 |
| SLC6A9 | AC_000160.1 | 25 | 100 | $5.20 \mathrm{E}-07$ | $2.55 \mathrm{E}-06$ | 0.4 | 0.408613 |
| PTPRF | AC_000160.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 1.055 | 4.93606 |
| PTPRF | AC_000160.1 | 11 | 100 | 2.69E-11 | 2.18E-10 | 1.055 | 4.93606 |
| PTPRF | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.055 | 4.93606 |
| PTPRF | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.055 | 4.93606 |
| YBX1 | AC_000160.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 167.373 | 136.83 |
| SCLY | AC_000160.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $2.20 \mathrm{E}-15$ | 5.341 | 1.3474 |
| HES6 | AC_000160.1 | 100 | 20 | 2.92E-08 | 1.72E-07 | 0.019 | 1.23965 |
| PPP1R7 | AC_000160.1 | 100 | 11 | 2.69E-11 | 2.18E-10 | 1.141 | 49.8063 |
| THAP4 | AC_000160.1 | 100 | 9 | 3.27E-12 | 2.95E-11 | 11.392 | $3.32 \mathrm{E}-10$ |
| THAP4 | AC_000160.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 11.392 | $3.32 \mathrm{E}-10$ |
| PDCD1 | AC_000160.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.018 | 0.19741 |
| GRB10 | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.866 | 0.612057 |
| ZPBP | AC_000161.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 9.70E-16 | 10.6 | 139.982 |
| ASB4 | AC_000161.1 | 100 | 2 | 5.84E-17 | 8.25E-16 | 0.292 | 2.29124 |
| ASB4 | AC_000161.1 | 90 | 4 | $1.49 \mathrm{E}-13$ | 1.47E-12 | 0.292 | 2.29124 |
| ASB4 | AC_000161.1 | 100 | 10 | 8.84E-12 | 7.26E-11 | 0.292 | 2.29124 |
| ASB4 | AC_000161.1 | 83 | 6 | 3.47E-11 | $2.75 \mathrm{E}-10$ | 0.292 | 2.29124 |
| ASB4 | AC_000161.1 | 75 | 4 | 5.64E-11 | $4.44 \mathrm{E}-10$ | 0.292 | 2.29124 |
| ASB4 | AC_000161.1 | 92 | 18 | 8.16E-08 | $4.36 \mathrm{E}-07$ | 0.292 | 2.29124 |
| KIAA1324L | AC_000161.1 | 85 | 11 | 3.76E-09 | 2.48E-08 | 14.742 | 26.3772 |
| KIAA1324L | AC_000161.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | $2.01 \mathrm{E}-06$ | 14.742 | 26.3772 |
| KIAA1324L | AC_000161.1 | 75 | 17 | $5.30 \mathrm{E}-06$ | 2.22E-05 | 14.742 | 26.3772 |
| KIAA1324L | AC_000161.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 14.742 | 26.3772 |
| LHFPL3 | AC_000161.1 | 77 | 0 | 5.26E-15 | 5.50E-14 | 88.447 | 0.712787 |
| LHFPL3 | AC_000161.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | 2.36E-07 | 88.447 | 0.712787 |
| LHFPL3 | AC_000161.1 | 14 | 83 | $8.33 \mathrm{E}-08$ | 4.44E-07 | 88.447 | 0.712787 |
| LHFPL3 | AC_000161.1 | 76 | 22 | 4.90E-05 | 1.77E-04 | 88.447 | 0.712787 |
| PIK3CG | AC_000161.1 | 100 | 9 | 3.27E-12 | $2.95 \mathrm{E}-11$ | 0.008 | 2.34793 |
| MET | AC_000161.1 | 100 | 17 | 4.16E-09 | $2.74 \mathrm{E}-08$ | 0.14 | 3.35075 |
| MET | AC_000161.1 | 93 | 15 | 7.59E-09 | 4.91E-08 | 0.14 | 3.35075 |
| MET | AC_000161.1 | 80 | 11 | 2.08E-08 | $1.27 \mathrm{E}-07$ | 0.14 | 3.35075 |
| MET | AC_000161.1 | 87 | 18 | $3.61 \mathrm{E}-07$ | 1.80E-06 | 0.14 | 3.35075 |
| HOXA3 | AC_000161.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 7.99 | 0.576763 |
| GTPBP10 | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 36.996 | 16.8739 |
| GTPBP10 | AC_000161.1 | 83 | 0 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 36.996 | 16.8739 |
| GTPBP10 | AC_000161.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 36.996 | 16.8739 |
| ADCY1 | AC_000161.1 | 0 | 90 | 1.66E-17 | 2.40E-16 | 0.047 | 2.7462 |


| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.723 | 0.127235 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.723 | 0.127235 |
| CAMK2B | AC_000161.1 | 12 | 100 | 6.45E-11 | 5.03E-10 | 0.723 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.723 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.723 | 0.127235 |
| CDK13 | AC_000161.1 | 100 | 4 | $2.93 \mathrm{E}-15$ | 3.09E-14 | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 100 | 8 | 9.20E-13 | 8.52E-12 | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | $1.27 \mathrm{E}-07$ | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 81 | 15 | $2.83 \mathrm{E}-07$ | $1.43 \mathrm{E}-06$ | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 100 | 4 | $2.93 \mathrm{E}-15$ | 3.09E-14 | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 100 | 8 | $9.20 \mathrm{E}-13$ | 8.52E-12 | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 80 | 11 | 2.08E-08 | 1.27E-07 | 20.688 | 15.9006 |
| CDK13 | AC_000161.1 | 81 | 15 | $2.83 \mathrm{E}-07$ | 1.43E-06 | 20.688 | 15.9006 |
| FLNC | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 25.289 | 0.616482 |
| SMO | AC_000161.1 | 16 | 100 | 1.86E-09 | $1.25 \mathrm{E}-08$ | 0.345 | 4.28726 |
| COPG2 | AC_000161.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 81.719 | 38.8886 |
| MKLN1 | AC_000161.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | $2.81 \mathrm{E}-05$ | 122.779 | 54.2709 |
| LRGUK | AC_000161.1 | 83 | 10 | 3.22E-09 | $2.14 \mathrm{E}-08$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 100 | 16 | 1.86E-09 | $1.25 \mathrm{E}-08$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 100 | 25 | 5.20E-07 | 2.55E-06 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 80 | 16 | 7.24E-07 | 3.49E-06 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 83 | 20 | 3.33E-06 | $1.43 \mathrm{E}-05$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | $1.28 \mathrm{E}-13$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $1.28 \mathrm{E}-13$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 77 | 11 | $5.04 \mathrm{E}-08$ | 2.73E-07 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | 9.80E-07 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 90 | 20 | 4.80E-07 | 2.36E-06 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 75 | 16 | 3.16E-06 | $1.36 \mathrm{E}-05$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 80 | 8 | 1.14E-09 | 7.86E-09 | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 100 | 19 | $1.64 \mathrm{E}-08$ | $1.02 \mathrm{E}-07$ | 2.844 | 4.2307 |
| LRGUK | AC_000161.1 | 77 | 22 | $3.69 \mathrm{E}-05$ | $1.34 \mathrm{E}-04$ | 2.844 | 4.2307 |
| SLC13A4 | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.01 | 0.0585892 |
| UBN2 | AC_000161.1 | 92 | 10 | $1.40 \mathrm{E}-10$ | 1.07E-09 | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 77 | 0 | 5.26E-15 | 5.50E-14 | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 84 | 2 | 4.19E-14 | 4.26E-13 | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 96 | 10 | $3.54 \mathrm{E}-11$ | 2.80E-10 | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 76 | 5 | $1.27 \mathrm{E}-10$ | $9.69 \mathrm{E}-10$ | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 16 | 1.86E-09 | $1.25 \mathrm{E}-08$ | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 83 | 21 | 5.30E-06 | $2.22 \mathrm{E}-05$ | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 80 | 7 | $4.23 \mathrm{E}-10$ | 3.12E-09 | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 84 | 12 | $1.22 \mathrm{E}-08$ | $7.78 \mathrm{E}-08$ | 55.015 | 3.21039 |
| UBN2 | AC_000161.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | 2.36E-07 | 55.015 | 3.21039 |
| SSPO | AC_000161.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.002 | 6.73901 |


| SSPO | AC_000161.1 | 20 | 100 | 2.92E-08 | 1.72E-07 | 0.002 | 6.73901 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LRRC61 | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.447 | 0.902497 |
| ASIC3 | AC_000161.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.247 | 0.0670749 |
| CDK5 | AC_000161.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 117.235 | 3.36212 |
| TMUB1 | AC_000161.1 | 12 | 100 | 6.45E-11 | 5.03E-10 | 3.563 | 0.833155 |
| GALNTL5 | AC_000161.1 | 100 | 14 | 3.79E-10 | 2.81E-09 | 0.18 | 0.229288 |
| SP7 | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.01 | 0.0416708 |
| SPRYD3 | AC_000162.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 1.286 | 10.0505 |
| NR4A1 | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 27.527 | 59.1168 |
| ENDOU | AC_000162.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.548 | 0.858649 |
| CD63 | AC_000162.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 121.698 | 43.8496 |
| ITPR2 | AC_000162.1 | 100 | 14 | 3.79E-10 | 2.81E-09 | 2.054 | 0.00624904 |
| CHD4 | AC_000162.1 | 100 | 20 | 2.92E-08 | 1.72E-07 | 21.262 | 32.8897 |
| TNFRSF1A | AC_000162.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 0.315 | 15.1137 |
| TNFRSF1A | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.315 | 15.1137 |
| SCNN1A | AC_000162.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 4.3 | 1.35987 |
| TSPAN11 | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.029 | 0.189952 |
| DCP1B | AC_000162.1 | 25 | 100 | 5.20E-07 | 2.55E-06 | 0.063 | 13.4787 |
| 3-Sep | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 18.311 | 6.71972 |
| PARVB | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.016 | 0.260424 |
| PARVB | AC_000162.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 0.016 | 0.260424 |
| PARVB | AC_000162.1 | 0 | 83 | 3.95E-16 | 4.80E-15 | 0.016 | 0.260424 |
| PARVB | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.016 | 0.260424 |
| TTC38 | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.036 | 1.79398 |
| TBC1D22A | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.875 | 8.54892 |
| TBC1D22A | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.875 | 8.54892 |
| TBC1D22A | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.875 | 8.54892 |
| HDAC10 | AC_000162.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 3.22 | $3.73 \mathrm{E}-07$ |
| MAPK12 | AC_000162.1 | 0 | 87 | 7.02E-17 | 9.70E-16 | 0.075 | 0.340854 |
| MAPK12 | AC_000162.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $2.20 \mathrm{E}-15$ | 0.075 | 0.340854 |
| PDE5A | AC_000163.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.32E-09 | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 12 | 80 | $4.35 \mathrm{E}-08$ | $2.36 \mathrm{E}-07$ | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 83 | 20 | 3.33E-06 | 1.43E-05 | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 25 | 79 | 8.51E-05 | 2.97E-04 | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 80 | 7 | $4.23 \mathrm{E}-10$ | 3.12E-09 | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 90 | 15 | $1.78 \mathrm{E}-08$ | 1.10E-07 | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 90 | 22 | $1.43 \mathrm{E}-06$ | 6.46E-06 | 20.575 | 14.8399 |
| PDE5A | AC_000163.1 | 83 | 8 | 4.40E-10 | 3.24E-09 | 20.575 | 14.8399 |
| NFKB1 | AC_000163.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 5.368 | 2.82109 |
| NFKB1 | AC_000163.1 | 83 | 3 | 4.30E-13 | 4.19E-12 | 5.368 | 2.82109 |
| NFKB1 | AC_000163.1 | 83 | 25 | 3.36E-05 | $1.23 \mathrm{E}-04$ | 5.368 | 2.82109 |
| ADAMTS3 | AC_000163.1 | 81 | 0 | $9.35 \mathrm{E}-16$ | 1.13E-14 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.32E-09 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 93 | 13 | 1.56E-09 | $1.07 \mathrm{E}-08$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 87 | 11 | $1.94 \mathrm{E}-09$ | 1.31E-08 | 0.48 | 0.815374 |


| ADAMTS3 | AC_000163.1 | 75 | 8 | 7.09E-09 | 4.60E-08 | 0.48 | 0.815374 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADAMTS3 | AC_000163.1 | 85 | 13 | $1.98 \mathrm{E}-08$ | $1.21 \mathrm{E}-07$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 90 | 20 | $4.80 \mathrm{E}-07$ | $2.36 \mathrm{E}-06$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 83 | 0 | 3.95E-16 | 4.80E-15 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 76 | 2 | 1.10E-12 | 1.02E-11 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 87 | 7 | 3.08E-11 | $2.44 \mathrm{E}-10$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 7 | 3.48E-10 | 2.61E-09 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 94 | 12 | 4.73E-10 | 3.48E-09 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 16 | 1.86E-09 | $1.25 \mathrm{E}-08$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 87 | 15 | $4.73 \mathrm{E}-08$ | $2.57 \mathrm{E}-07$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 77 | 11 | 5.04E-08 | 2.73E-07 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 76 | 13 | 2.97E-07 | $1.49 \mathrm{E}-06$ | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 82 | 16 | 4.07E-07 | 2.02E-06 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 25 | 5.20E-07 | 2.55E-06 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 75 | 16 | 3.16E-06 | 1.36E-05 | 0.48 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 6 | 1.16E-10 | 8.91E-10 | 0.48 | 0.815374 |
| SH3BP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.027 | 1.04775 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.456 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.456 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.456 | 0.0316418 |
| PCGF3 | AC_000163.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 18.068 | 4.38092 |
| GAK | AC_000163.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 5.639 | 47.1206 |
| CD38 | AC_000163.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 0.024 | 0.885186 |
| ADAMTS2 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.317 | 1.22682 |
| EPS15L1 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 80.258 | 1.85987 |
| KANK2 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 1.231 | 2.5804 |
| ACP5 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.11 | 4.61674 |
| LRRC8E | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 12.207 | 0.158038 |
| VAV1 | AC_000164.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.209 | 5.27356 |
| C3 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.049 | 1.40461 |
| C3 | AC_000164.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.049 | 1.40461 |
| GNA15 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.135 | 0.126829 |
| SLC12A2 | AC_000164.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 22.906 | 23.0761 |
| CLTB | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 4.821 | 1.73103 |
| DBN1 | AC_000164.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 5.413 | 15.3577 |
| C7H19orf24 | AC_000164.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 4.371 | 1.72247 |
| CTNNA1 | AC_000164.1 | 85 | 17 | 3.24E-07 | 1.62E-06 | 282.447 | 29.6623 |
| CTNNA1 | AC_000164.1 | 80 | 20 | 6.94E-06 | $2.81 \mathrm{E}-05$ | 282.447 | 29.6623 |
| PCDH1 | AC_000164.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 2.623 | 1.2975 |
| GRIA1 | AC_000164.1 | 81 | 22 | $1.37 \mathrm{E}-05$ | 5.36E-05 | 0.245 | 0.551824 |
| GLRX | AC_000164.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.32E-14 | 53.395 | 4.6074 |
| UHRF2 | AC_000165.1 | 80 | 5 | 3.50E-11 | $2.77 \mathrm{E}-10$ | 405.262 | 6.3504 |
| UHRF2 | AC_000165.1 | 83 | 12 | 1.81E-08 | 1.11E-07 | 405.262 | 6.3504 |
| HR | AC_000165.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.059 | 0.110229 |


| HR | AC_000165.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 2.20E-15 | 0.059 | 0.110229 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDLIM2 | AC_000165.1 | 14 | 100 | 3.79E-10 | 2.81E-09 | 24.276 | 1.36257 |
| RHOBTB2 | AC_000165.1 | 16 | 100 | 1.86E-09 | $1.25 \mathrm{E}-08$ | 0.079 | 1.10532 |
| RHOBTB2 | AC_000165.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.079 | 1.10532 |
| CHMP7 | AC_000165.1 | 25 | 92 | $3.96 \mathrm{E}-06$ | $1.69 \mathrm{E}-05$ | 26.863 | 22.6218 |
| SEMA4D | AC_000165.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 4.448 | 1.15805 |
| TMEM246 | AC_000165.1 | 86 | 20 | $1.42 \mathrm{E}-06$ | 6.42E-06 | 0.276 | 0.61765 |
| COL27A1 | AC_000165.1 | 0 | 100 | 2.22E-19 | $3.30 \mathrm{E}-18$ | 0.064 | 1.08769 |
| COL27A1 | AC_000165.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.064 | 1.08769 |
| TNC | AC_000165.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.397 | $9.43 \mathrm{E}-06$ |
| GSN | AC_000165.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.032 | 26.6831 |
| GSN | AC_000165.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.032 | 26.6831 |
| GSN | AC_000165.1 | 5 | 100 | $1.69 \mathrm{E}-14$ | $1.73 \mathrm{E}-13$ | 0.032 | 26.6831 |
| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.032 | 26.6831 |
| GSN | AC_000165.1 | 5 | 100 | $1.69 \mathrm{E}-14$ | $1.73 \mathrm{E}-13$ | 0.032 | 26.6831 |
| ASCC3 | AC_000166.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | $2.81 \mathrm{E}-09$ | 31.562 | 6.19346 |
| ASCC3 | AC_000166.1 | 87 | 21 | $1.86 \mathrm{E}-06$ | 8.35E-06 | 31.562 | 6.19346 |
| ASCC3 | AC_000166.1 | 83 | 24 | 2.27E-05 | 8.60E-05 | 31.562 | 6.19346 |
| ASCC3 | AC_000166.1 | 100 | 17 | $4.16 \mathrm{E}-09$ | $2.74 \mathrm{E}-08$ | 31.562 | 6.19346 |
| MAP3K5 | AC_000166.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.694 | 3.75012 |
| MAP3K5 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.694 | 3.75012 |
| UTRN | AC_000166.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $4.80 \mathrm{E}-15$ | 15.018 | 6.83952 |
| AGPAT4 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.047 | 0.391436 |
| RPS6KA2 | AC_000166.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 9.70E-16 | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 83 | 3.95E-16 | $4.80 \mathrm{E}-15$ | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 3 | 77 | $4.67 \mathrm{E}-12$ | $4.20 \mathrm{E}-11$ | 0.203 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.203 | 1.24944 |
| THBS2 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.046 | 1.91925 |
| THBS2 | AC_000166.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.046 | 1.91925 |
| THBS2 | AC_000166.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.046 | 1.91925 |
| THBS2 | AC_000166.1 | 100 | 0 | 2.22E-19 | 3.30E-18 | 0.046 | 1.91925 |
| THBS2 | AC_000166.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 0.046 | 1.91925 |
| THBS2 | AC_000166.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.72 \mathrm{E}-07$ | 0.046 | 1.91925 |
| THBS2 | AC_000166.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.046 | 1.91925 |
| ZNF75D | AC_000187.1 | 81 | 4 | $5.58 \mathrm{E}-12$ | $5.00 \mathrm{E}-11$ | 109.846 | 66.9043 |
| ZNF75D | AC_000187.1 | 14 | 100 | $3.79 \mathrm{E}-10$ | $2.81 \mathrm{E}-09$ | 109.846 | 66.9043 |
| ZNF75D | AC_000187.1 | 0 | 100 | 2.22E-19 | 3.30E-18 | 109.846 | 66.9043 |
| ZNF75D | AC_000187.1 | 7 | 100 | $2.90 \mathrm{E}-13$ | $2.83 \mathrm{E}-12$ | 109.846 | 66.9043 |
| FLNA | AC_000187.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.091 | 2.68062 |
| ARMCX3 | AC_000187.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 3.30E-18 | 0.119 | 22.8209 |
| MAGED4B | AC_000187.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.32 \mathrm{E}-14$ | 0.253 | 28.9642 |


| MSN | AC_000187.1 | 77 | 9 | $8.67 \mathrm{E}-09$ | $5.57 \mathrm{E}-08$ | 42.143 | 9.52565 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MSN | AC_000187.1 | 81 | 12 | $2.94 \mathrm{E}-08$ | $1.73 \mathrm{E}-07$ | 42.143 | 9.52565 |
| MSN | AC_000187.1 | 81 | 16 | $5.78 \mathrm{E}-07$ | $2.83 \mathrm{E}-06$ | 42.143 | 9.52565 |
| MOSPD2 | AC_000187.1 | 16 | 85 | $1.60 \mathrm{E}-07$ | $8.31 \mathrm{E}-07$ | 23.626 | 6.82811 |

Table S7.2 Gene expression for DMRs between sperm vs. in vivo MII

| Gene expression in DMRs from in vivo MII vs. Sperm |  |  |  | p-value | q-value | In vivo MII expression | Spmer expression |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Chr | In vivo MII_me | Sperm_me |  |  |  |  |
| KCNJ15 | AC_000158.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.053 | 0.289892 |
| DNAJC17 | AC_000167.1 | 0 | 83 | 3.95E-16 | 6.84E-15 | 50.793 | 3.12752 |
| ITPKA | AC_000167.1 | 100 | 0 | 2.22E-19 | 4.69E-18 | 0.015 | 1.33639 |
| DYSF | AC_000168.1 | 83 | 7 | 1.31E-10 | 1.29E-09 | 0.004 | 2.59209 |
| CAMKMT | AC_000168.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | 2.45E-13 | 0.25 | 13.4428 |
| OSR1 | AC_000168.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.157 | 3.88409 |
| OSR1 | AC_000168.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.157 | 3.88409 |
| NAIF1 | AC_000168.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.538 | 0.59891 |
| ASS1 | AC_000168.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.739 | 2.18424 |
| ASS1 | AC_000168.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.739 | 2.18424 |
| ASS1 | AC_000168.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.739 | 2.18424 |
| INPP5E | AC_000168.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.252 | 8.13702 |
| INPP5E | AC_000168.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.252 | 8.13702 |
| TPT1 | AC_000169.1 | 100 | 0 | 2.22E-19 | 4.69E-18 | 201.573 | 216.619 |
| RNF6 | AC_000169.1 | 100 | 20 | 2.92E-08 | 2.12E-07 | 2.473 | 106.775 |
| DOCK9 | AC_000169.1 | 80 | 11 | 2.08E-08 | 1.55E-07 | 11.036 | 5.15748 |
| RAB20 | AC_000169.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.142 | 0.975288 |
| TFDP1 | AC_000169.1 | 20 | 92 | 2.77E-07 | 1.65E-06 | 8.96 | 7.1083 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.565 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.565 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.565 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 85 | 1.66E-16 | 3.11E-15 | 0.565 | 1.43627 |
| PLCB1 | AC_000170.1 | 75 | 10 | 4.51E-08 | 2.95E-07 | 0.06 | 1.56312 |
| PLCB1 | AC_000170.1 | 91 | 2 | 2.71E-15 | 4.07E-14 | 0.06 | 1.56312 |
| PLCB1 | AC_000170.1 | 88 | 21 | 1.50E-06 | 7.92E-06 | 0.06 | 1.56312 |
| PFKP | AC_000170.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.048 | 30.7787 |
| RBM38 | AC_000170.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 102.274 | 3.80514 |
| CHMP4B | AC_000170.1 | 80 | 5 | 3.50E-11 | 3.63E-10 | 8.831 | 17.6036 |
| PPP1R16B | AC_000170.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.004 | 1.50396 |
| KCNB1 | AC_000170.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.022 | 0.595133 |
| NRBP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.205 | 0.416031 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.552 | 5.04003 |
| ASAP1 | AC_000171.1 | 20 | 95 | 1.27E-07 | 8.00E-07 | 6.048 | 4.84221 |
| CPQ | AC_000171.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.857 | 65.1425 |


| CPQ | AC_000171.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.857 | 65.1425 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NCAM1 | AC_000172.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.014 | 7.27085 |
| NCAM1 | AC_000172.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.014 | 7.27085 |
| PHLDB1 | AC_000172.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.203 | 2.4146 |
| BCL9L | AC_000172.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.078 | 2.06981 |
| APBB1 | AC_000172.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.036 | 2.96761 |
| ARHGEF17 | AC_000172.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 0.029 | 2.78951 |
| SLCO2B1 | AC_000172.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.014 | 2.77052 |
| CAPN5 | AC_000172.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.013 | 2.56793 |
| EXT2 | AC_000172.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 48.201 | 9.74457 |
| IKBKE | AC_000173.1 | 14 | 92 | 4.81E-09 | 3.93E-08 | 0.036 | 0.151946 |
| RGL1 | AC_000173.1 | 76 | 22 | $4.90 \mathrm{E}-05$ | $1.99 \mathrm{E}-04$ | 5.433 | 32.4076 |
| LAMB3 | AC_000173.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.007 | 0.36457 |
| AP1B1 | AC_000174.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.302 | 31.4239 |
| OSBP2 | AC_000174.1 | 0 | 80 | 1.24E-15 | 1.87E-14 | 0.035 | 14.0231 |
| OSBP2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.035 | 14.0231 |
| OSBP2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.035 | 14.0231 |
| SMTN | AC_000174.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.011 | 3.96868 |
| SMTN | AC_000174.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 0.011 | 3.96868 |
| GNB1L | AC_000174.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.027 | 0.53128 |
| ZNF423 | AC_000175.1 | 0 | 75 | 1.25E-14 | 1.81E-13 | 0.225 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.225 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.225 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.225 | 1.49701 |
| LIPE | AC_000175.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 11.61 | 8.02781 |
| IRGQ | AC_000175.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.214 | 1.15819 |
| TRAPPC6A | AC_000175.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 0.017 | 0.966851 |
| KLC3 | AC_000175.1 | 14 | 90 | 8.99E-09 | 7.07E-08 | 0.15 | 0.6625 |
| IGLON5 | AC_000175.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $3.11 \mathrm{E}-15$ | 0.078 | 14.9143 |
| TTYH1 | AC_000175.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 0.017 | 53.4688 |
| TTYH1 | AC_000175.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.017 | 53.4688 |
| ZIM2 | AC_000175.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 9.323 | 0.068638 |
| IGF2BP1 | AC_000176.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.137 | 1.60696 |
| COPZ2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.879 | 3.59874 |
| COPZ2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.879 | 3.59874 |
| RPL19 | AC_000176.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 27.609 | 133.855 |
| FBXL20 | AC_000176.1 | 100 | 16 | 1.86E-09 | 1.56E-08 | 52.768 | 6.7384 |
| FBXL20 | AC_000176.1 | 100 | 10 | 8.84E-12 | $9.63 \mathrm{E}-11$ | 52.768 | 6.7384 |
| ITGA2B | AC_000176.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | $1.56 \mathrm{E}-08$ | 0.052 | 0.65249 |
| MRC2 | AC_000176.1 | 0 | 87 | 7.02E-17 | $1.38 \mathrm{E}-15$ | 0.04 | 0.917673 |


| RBFOX3 | AC_000176.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 0.664 | 0.0541617 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| RAB37 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.14 | 0.531397 |
| RAB37 | AC_000176.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $2.88 \mathrm{E}-10$ | 0.14 | 0.531397 |
| RAB37 | AC_000176.1 | 80 | 6 | $1.16 \mathrm{E}-10$ | $1.15 \mathrm{E}-09$ | 0.14 | 0.531397 |
| RAB37 | AC_000176.1 | 20 | 87 | $1.14 \mathrm{E}-06$ | $6.08 \mathrm{E}-06$ | 0.14 | 0.531397 |
| SLC39A11 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 2.317 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 2.317 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 2.317 | 10.2451 |
| AXIN2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 2.758 | 0.321127 |
| FAM168B | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 34.317 | 15.9093 |
| AGPS | AC_000159.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 71.586 | 20.5211 |
| CERS6 | AC_000159.1 | 75 | 15 | $1.62 \mathrm{E}-06$ | $8.53 \mathrm{E}-06$ | 0.031 | 2.91735 |
| TMEM177 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.039 | 1.3049 |
| INO80D | AC_000159.1 | 16 | 83 | $2.86 \mathrm{E}-07$ | $1.71 \mathrm{E}-06$ | 2.769 | 1.99658 |
| UNC80 | AC_000159.1 | 90 | 22 | $1.43 \mathrm{E}-06$ | $7.53 \mathrm{E}-06$ | 0.064 | 1.09951 |
| SPEG | AC_000159.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $2.12 \mathrm{E}-07$ | 4.833 | 0.286045 |
| OBSL1 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.014 | 1.48814 |
| PHC2 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 8.287 | 29.4464 |
| TRIM62 | AC_000159.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.037 | 1.09498 |
| EPHB2 | AC_000159.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 0.22 | 0.528627 |
| ALPL | AC_000159.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.059 | 1.66984 |
| PADI4 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.022 | 0.107179 |
| PADI4 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.022 | 0.107179 |
| PADI4 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.022 | 0.107179 |
| SLC38A9 | AC_000177.1 | $40_{1}$ | 12.0679 |  |  |  |  |
| MRPS11 | AC_000178.1 | 80 | 4 | $7.32 \mathrm{E}-12$ | $8.01 \mathrm{E}-11$ | 10.109 | 1.443 |


| SLC4A7 | AC_000179.1 | 80 | 23 | 3.02E-05 | 1.25E-04 | 11.245 | 12.9901 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCN5A | AC_000179.1 | 0 | 83 | 3.95E-16 | 6.84E-15 | 0.75 | 0.949517 |
| SCN5A | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.75 | 0.949517 |
| BRPF1 | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 1.437 | 2.63067 |
| SUMF1 | AC_000179.1 | 16 | 100 | 1.86E-09 | 1.56E-08 | 7.417 | 11.0717 |
| SYNPR | AC_000179.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $2.12 \mathrm{E}-07$ | 3.006 | 0.493366 |
| SYNPR | AC_000179.1 | 87 | 21 | 1.86E-06 | $9.75 \mathrm{E}-06$ | 3.006 | 0.493366 |
| ERC2 | AC_000179.1 | 75 | 16 | 3.16E-06 | $1.58 \mathrm{E}-05$ | 1.022 | 0.399069 |
| DUSP7 | AC_000179.1 | 80 | 0 | 1.24E-15 | 1.87E-14 | 15.385 | 1.07444 |
| QRICH1 | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 14.186 | 20.7372 |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.161 | $2.69 \mathrm{E}-06$ |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.161 | $2.69 \mathrm{E}-06$ |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.028 | 3.16696 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.045 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.045 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.045 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.045 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.045 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.045 | 4.96885 |
| MGLL | AC_000179.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 0.045 | 4.96885 |
| NRM | AC_000180.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.581 | 0.0629649 |
| ATP9B | AC_000181.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | 6.84E-15 | 0.513 | 20.9405 |
| FHOD3 | AC_000181.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | 3.60E-09 | 6.035 | 3.32774 |
| BCL2 | AC_000181.1 | 83 | 16 | 2.86E-07 | $1.71 \mathrm{E}-06$ | 0.091 | 2.29554 |
| RHBDF1 | AC_000182.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.628 | 1.15272 |
| RABEP2 | AC_000182.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 1.15 | 3.18206 |
| ATXN2L | AC_000182.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 14.898 | 142.313 |
| YPEL3 | AC_000182.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 10.012 | 12.0849 |
| TBC1D10B | AC_000182.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.371 | 9.56179 |
| ELN | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 5.444 | 89.7002 |
| TRIM50 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.231 | 0.36161 |
| EPHB4 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.2 | 2.07076 |
| SLC29A4 | AC_000182.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | 3.60E-09 | 0.407 | 0.192267 |
| MAD1L1 | AC_000182.1 | 20 | 100 | 2.92E-08 | $2.12 \mathrm{E}-07$ | 0.132 | 2.44948 |
| INTS1 | AC_000182.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.031 | 16.9102 |
| C25H7orf50 | AC_000182.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 1.179 | 3.55481 |
| GPR146 | AC_000182.1 | 0 | 83 | 3.95E-16 | $6.84 \mathrm{E}-15$ | 1.013 | 1.0669 |
| PRKG1 | AC_000183.1 | 87 | 7 | $3.08 \mathrm{E}-11$ | $3.21 \mathrm{E}-10$ | 34.973 | 2.01529 |
| MYOF | AC_000183.1 | 100 | 9 | 3.27E-12 | $3.99 \mathrm{E}-11$ | 0.805 | 12.114 |
| SUFU | AC_000183.1 | 0 | 87 | 7.02E-17 | $1.38 \mathrm{E}-15$ | 1.731 | 3.82115 |


| SUFU | AC_000183.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 1.731 | 3.82115 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.896 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.896 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 2.896 | 20.632 |
| SORCS3 | AC_000183.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.896 | 20.632 |
| SORCS3 | AC_000183.1 | 100 | 12 | $6.45 \mathrm{E}-11$ | $6.57 \mathrm{E}-10$ | 2.896 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 2.896 | 20.632 |
| HTRA1 | AC_000183.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.013 | 34.0764 |
| WRN | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $3.11 \mathrm{E}-15$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 75 | 0 | 1.25E-14 | $1.81 \mathrm{E}-13$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $2.45 \mathrm{E}-13$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 15 | 9.23E-10 | 8.02E-09 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 18 | $7.85 \mathrm{E}-09$ | $6.23 \mathrm{E}-08$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 80 | 10 | 8.02E-09 | $6.31 \mathrm{E}-08$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 90 | 0 | $1.66 \mathrm{E}-17$ | $3.40 \mathrm{E}-16$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 88 | 0 | $3.94 \mathrm{E}-17$ | 7.96E-16 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $3.11 \mathrm{E}-15$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 4 | 2.93E-15 | $4.38 \mathrm{E}-14$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 76 | 0 | $6.99 \mathrm{E}-15$ | 1.04E-13 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 80 | 3 | $1.61 \mathrm{E}-12$ | $2.01 \mathrm{E}-11$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 94 | 17 | $2.51 \mathrm{E}-08$ | $1.86 \mathrm{E}-07$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 88 | 18 | $2.56 \mathrm{E}-07$ | $1.53 \mathrm{E}-06$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 93 | 0 | 5.27E-18 | $1.10 \mathrm{E}-16$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 83 | 3 | $4.30 \mathrm{E}-13$ | 5.86E-12 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 96 | 12 | $2.44 \mathrm{E}-10$ | 2.37E-09 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 95 | 13 | 8.16E-10 | 7.14E-09 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 88 | 13 | 7.12E-09 | 5.68E-08 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 83 | 12 | $1.81 \mathrm{E}-08$ | 1.36E-07 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $2.12 \mathrm{E}-07$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 90 | 19 | 2.83E-07 | $1.69 \mathrm{E}-06$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 25 | $5.20 \mathrm{E}-07$ | $2.99 \mathrm{E}-06$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 97 | 0 | 9.38E-19 | 1.97E-17 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 95 | 3 | $3.52 \mathrm{E}-15$ | 5.26E-14 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $2.45 \mathrm{E}-13$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 97 | 7 | 7.91E-13 | $1.01 \mathrm{E}-11$ | 1.63 | 8.79611 |


| WRN | AC_000184.1 | 88 | 7 | 1.93E-11 | $2.08 \mathrm{E}-10$ | 1.63 | 8.79611 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WRN | AC_000184.1 | 86 | 12 | 6.41E-09 | 5.18E-08 | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $2.12 \mathrm{E}-07$ | 1.63 | 8.79611 |
| WRN | AC_000184.1 | 85 | 16 | $1.81 \mathrm{E}-07$ | 1.10E-06 | 1.63 | 8.79611 |
| RNF122 | AC_000184.1 | 0 | 83 | 3.95E-16 | $6.84 \mathrm{E}-15$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 14 | 9.09E-07 | 4.97E-06 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 22 | $2.41 \mathrm{E}-06$ | $1.24 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 5 | $1.01 \mathrm{E}-11$ | $1.10 \mathrm{E}-10$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 11 | 1.94E-09 | $1.63 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 5 | $3.50 \mathrm{E}-11$ | $3.63 \mathrm{E}-10$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 14 | 100 | $3.79 \mathrm{E}-10$ | 3.60E-09 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 25 | 9.72E-06 | $4.45 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 12 | $1.81 \mathrm{E}-08$ | $1.36 \mathrm{E}-07$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 20 | 87 | 1.14E-06 | 6.08E-06 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | 3.60E-09 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 87 | 7.02E-17 | $1.38 \mathrm{E}-15$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 10 | 8.02E-09 | 6.31E-08 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 11 | 80 | $2.08 \mathrm{E}-08$ | $1.55 \mathrm{E}-07$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 22 | $9.72 \mathrm{E}-08$ | 6.15E-07 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | 3.22E-05 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 25 | 5.20E-07 | $2.99 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 18 | $2.38 \mathrm{E}-06$ | $1.22 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 18 | $2.38 \mathrm{E}-06$ | 1.22E-05 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 13 | $3.69 \mathrm{E}-08$ | $2.57 \mathrm{E}-07$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 10 | 2.71E-09 | $2.26 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 20 | 1.96E-06 | $1.02 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 10 | 8.84E-12 | $9.63 \mathrm{E}-11$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | $1.56 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 20 | 3.33E-06 | $1.65 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 8 | $9.20 \mathrm{E}-13$ | $1.16 \mathrm{E}-11$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 16 | 3.16E-06 | $1.58 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 8 | 1.14E-09 | 9.88E-09 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 3.22E-05 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 10 | 85 | 1.65E-09 | $1.41 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 10 | 8.02E-09 | $6.31 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 20 | 78 | 1.17E-05 | $5.25 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 12 | $6.45 \mathrm{E}-11$ | $6.57 \mathrm{E}-10$ | 2.269 | 10.1717 |


| RNF122 | AC_000184.1 | 83 | 14 | 8.33E-08 | 5.33E-07 | 2.269 | 10.1717 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | $1.16 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 11 | 7.82E-10 | $6.86 \mathrm{E}-09$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 16 | $1.86 \mathrm{E}-09$ | $1.56 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 22 | 5.47E-06 | $2.64 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 4 | $7.32 \mathrm{E}-12$ | 8.01E-11 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 84 | 16 | 2.28E-07 | $1.37 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 84 | 2.22E-16 | $4.13 \mathrm{E}-15$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 1.87E-14 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 0 | 1.25E-14 | 1.81E-13 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 0 | $1.66 \mathrm{E}-17$ | $3.40 \mathrm{E}-16$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 0 | $1.66 \mathrm{E}-17$ | $3.40 \mathrm{E}-16$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 8 | $9.20 \mathrm{E}-13$ | 1.16E-11 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | $1.55 \mathrm{E}-07$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 24 | $2.94 \mathrm{E}-07$ | $1.75 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 21 | 75 | $3.99 \mathrm{E}-05$ | $1.63 \mathrm{E}-04$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 7 | 2.27E-09 | $1.90 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | $1.55 \mathrm{E}-07$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 11 | $3.76 \mathrm{E}-09$ | 3.11E-08 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 23 | $3.02 \mathrm{E}-05$ | 1.25E-04 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 5 | $4.73 \mathrm{E}-12$ | 5.76E-11 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 9 | $3.27 \mathrm{E}-12$ | $3.99 \mathrm{E}-11$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 25 | 85 | $2.09 \mathrm{E}-05$ | $9.03 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | 1.16E-06 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 17 | $5.72 \mathrm{E}-07$ | $3.28 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 16 | $1.86 \mathrm{E}-09$ | $1.56 \mathrm{E}-08$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 16 | 75 | 3.16E-06 | $1.58 \mathrm{E}-05$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 10 | 8.02E-09 | 6.31E-08 | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 10 | $4.51 \mathrm{E}-08$ | $2.95 \mathrm{E}-07$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 12 | 2.23E-07 | $1.34 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 25 | $5.20 \mathrm{E}-07$ | $2.99 \mathrm{E}-06$ | 2.269 | 10.1717 |
| RNF122 | AC_000184.1 | 76 | 24 | $1.14 \mathrm{E}-04$ | $4.26 \mathrm{E}-04$ | 2.269 | 10.1717 |
| UNC5D | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $2.45 \mathrm{E}-13$ | 3.119 | 0.293699 |
| UNC5D | AC_000184.1 | 95 | 15 | 4.09E-09 | 3.37E-08 | 3.119 | 0.293699 |
| UNC5D | AC_000184.1 | 97 | 18 | 2.03E-08 | $1.52 \mathrm{E}-07$ | 3.119 | 0.293699 |
| LDB3 | AC_000185.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.931 | 0.28762 |


| FADS2 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.01 | 34.409 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| FADS2 | AC_000186.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | $1.56 \mathrm{E}-08$ | 0.01 | 34.409 |
| MACROD1 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.955 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.955 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 0.955 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.955 | 8.30819 |
| NRXN2 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.016 | 4.57515 |
| VPS51 | AC_000186.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.408 | 16.563 |
| RELA | AC_000186.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 40.482 | 15.7251 |
| ANO1 | AC_000186.1 | 12 | 100 | $6.45 \mathrm{E}-11$ | $6.57 \mathrm{E}-10$ | 0.227 | 52.6666 |
| ANO1 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.227 | 52.6666 |
| NADSYN1 | AC_000186.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $3.11 \mathrm{E}-15$ | 0.047 | 1.3615 |
| CARS | AC_000186.1 | 20 | 97 | $7.26 \mathrm{E}-08$ | $4.66 \mathrm{E}-07$ | 0.776 | 12.83 |
| PHRF1 | AC_000186.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $6.84 \mathrm{E}-15$ | 1.394 | 0.489806 |
| CHRNB2 | AC_000160.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 10.768 | 0.0575072 |
| CELF3 | AC_000160.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $3.22 \mathrm{E}-05$ | 0.124 | 0.74321 |
| ATP1A1 | AC_000160.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $2.88 \mathrm{E}-10$ | 24.236 | 148.908 |
| ATP1A1 | AC_000160.1 | 93 | 18 | $5.75 \mathrm{E}-08$ | $3.72 \mathrm{E}-07$ | 24.236 | 148.908 |
| RNF220 | AC_000160.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 8.801 | 0.0276694 |
| PTPRF | AC_000160.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | $1.38 \mathrm{E}-15$ | 3.076 | 4.93606 |
| GRIK3 | AC_000160.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.01 | 0.0418562 |
| SH3BP4 | AC_000160.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $2.12 \mathrm{E}-07$ | 0.189 | 5.17138 |
| PER2 | AC_000160.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $1.87 \mathrm{E}-14$ | 0.539 | 2.68266 |
| KIAA1324L | AC_000161.1 | AC_000161.1 | 83 | 14 | $8.33 \mathrm{E}-08$ | $5.33 \mathrm{E}-07$ | 26.3772 |
| KIAA1324L | AC_000161.1 | 80 | 18 | $2.38 \mathrm{E}-06$ | $1.22 \mathrm{E}-05$ | 3.943 | 3.943 |
| MET | AC_00. | 0.156 | 3.3572 |  |  |  |  |
| MET | AC_000161.1 | 85 | 11 | $3.76 \mathrm{E}-09$ | $3.11 \mathrm{E}-08$ | 0.156 | 3.35075 |
| MET | AC_000161.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | $2.38 \mathrm{E}-06$ | 0.156 | 3.35075 |
| ADCY1 | AC_000161.1 | 83 | 17 | $5.72 \mathrm{E}-07$ | $3.28 \mathrm{E}-06$ | 2.7462 |  |
| ADCY1 | AC_000161.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.69 \mathrm{E}-18$ | 0.016 | 0.016 |


| LRGUK | AC_000161.1 | 100 | 12 | 6.45E-11 | 6.57E-10 | 0.074 | 4.2307 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LRGUK | AC_000161.1 | 87 | 20 | 1.14E-06 | 6.08E-06 | 0.074 | 4.2307 |
| LRGUK | AC_000161.1 | 16 | 75 | 3.16E-06 | 1.58E-05 | 0.074 | 4.2307 |
| UBN2 | AC_000161.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 3.553 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 2 | 5.84E-17 | 1.18E-15 | 3.553 | 3.21039 |
| UBN2 | AC_000161.1 | 90 | 5 | 6.30E-13 | 8.01E-12 | 3.553 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 10 | 8.84E-12 | $9.63 \mathrm{E}-11$ | 3.553 | 3.21039 |
| UBN2 | AC_000161.1 | 80 | 7 | $4.23 \mathrm{E}-10$ | 3.99E-09 | 3.553 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 21 | 5.72E-08 | 3.70E-07 | 3.553 | 3.21039 |
| UBN2 | AC_000161.1 | 92 | 12 | 9.13E-10 | 7.97E-09 | 3.553 | 3.21039 |
| RHEBL1 | AC_000162.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 63.627 | 0.755525 |
| GLS2 | AC_000162.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 85.077 | 0.903068 |
| NABP2 | AC_000162.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 11.492 | 4.72175 |
| IKZF4 | AC_000162.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.166 | 2.6742 |
| ITPR2 | AC_000162.1 | 75 | 6 | 8.00E-10 | 7.01E-09 | 1.345 | 0.00624904 |
| PHB2 | AC_000162.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 10.422 | 6.06531 |
| PIANP | AC_000162.1 | 20 | 100 | 2.92E-08 | 2.12E-07 | 0.108 | 0.763825 |
| PPARA | AC_000162.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | 3.11E-15 | 0.821 | 1.65248 |
| HDAC10 | AC_000162.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.076 | 3.73E-07 |
| PDE5A | AC_000163.1 | 80 | 14 | 1.93E-07 | 1.16E-06 | 6.356 | 14.8399 |
| PDE5A | AC_000163.1 | 83 | 20 | 3.33E-06 | $1.65 \mathrm{E}-05$ | 6.356 | 14.8399 |
| PDE5A | AC_000163.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 6.356 | 14.8399 |
| PDE5A | AC_000163.1 | 80 | 10 | 8.02E-09 | 6.31E-08 | 6.356 | 14.8399 |
| PDE5A | AC_000163.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | $2.85 \mathrm{E}-07$ | 6.356 | 14.8399 |
| PDE5A | AC_000163.1 | 80 | 0 | 1.24E-15 | $1.87 \mathrm{E}-14$ | 6.356 | 14.8399 |
| PDE5A | AC_000163.1 | 100 | 23 | 1.80E-07 | 1.10E-06 | 6.356 | 14.8399 |
| NFKB1 | AC_000163.1 | 80 | 3 | $1.61 \mathrm{E}-12$ | $2.01 \mathrm{E}-11$ | 10.451 | 2.82109 |
| NFKB1 | AC_000163.1 | 100 | 12 | 6.45E-11 | 6.57E-10 | 10.451 | 2.82109 |
| NFKB1 | AC_000163.1 | 90 | 11 | 7.82E-10 | 6.86E-09 | 10.451 | 2.82109 |
| METAP1 | AC_000163.1 | 80 | 13 | 1.01E-07 | 6.33E-07 | 11.068 | 9.01996 |
| ADAMTS3 | AC_000163.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 8 | 9.20E-13 | 1.16E-11 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 95 | 13 | 8.16E-10 | 7.14E-09 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 87 | 11 | 1.94E-09 | $1.63 \mathrm{E}-08$ | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 13 | 1.01E-07 | 6.33E-07 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 2 | 5.84E-17 | 1.18E-15 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 75 | 0 | 1.25E-14 | $1.81 \mathrm{E}-13$ | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 7 | 3.48E-10 | 3.35E-09 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 15 | 9.23E-10 | 8.02E-09 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 13 | 1.01E-07 | 6.33E-07 | 0.026 | 0.815374 |


| ADAMTS3 | AC_000163.1 | 80 | 16 | 7.24E-07 | 4.12E-06 | 0.026 | 0.815374 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADAMTS3 | AC_000163.1 | 85 | 25 | 2.09E-05 | 9.03E-05 | 0.026 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 75 | 6 | 8.00E-10 | 7.01E-09 | 0.026 | 0.815374 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 2.49 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 2.49 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 2.49 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 2.49 | 0.0316418 |
| TNIP2 | AC_000163.1 | 14 | 100 | 3.79E-10 | 3.60E-09 | 2.49 | 0.0316418 |
| CCDC96 | AC_000163.1 | 100 | 0 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.013 | 66.6834 |
| CCDC96 | AC_000163.1 | 85 | 0 | 1.66E-16 | $3.11 \mathrm{E}-15$ | 0.013 | 66.6834 |
| ADAMTS2 | AC_000164.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.066 | 1.22682 |
| ADAMTS2 | AC_000164.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 0.066 | 1.22682 |
| KANK2 | AC_000164.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 4.933 | 2.5804 |
| KANK2 | AC_000164.1 | 0 | 100 | 2.22E-19 | $4.69 \mathrm{E}-18$ | 4.933 | 2.5804 |
| C3 | AC_000164.1 | 100 | 0 | 2.22E-19 | 4.69E-18 | 0.018 | 1.40461 |
| ZBTB7A | AC_000164.1 | 100 | 20 | 2.92E-08 | $2.12 \mathrm{E}-07$ | 0.081 | 1.57111 |
| PDLIM4 | AC_000164.1 | 16 | 100 | 1.86E-09 | $1.56 \mathrm{E}-08$ | 0.175 | 4.14576 |
| SBNO2 | AC_000164.1 | 100 | 0 | 2.22E-19 | 4.69E-18 | 0.183 | 2.25867 |
| GFRA3 | AC_000164.1 | 83 | 18 | 1.10E-06 | 5.87E-06 | 0.024 | 1.93982 |
| GFRA3 | AC_000164.1 | 80 | 21 | 1.20E-05 | 5.39E-05 | 0.024 | 1.93982 |
| EGR1 | AC_000164.1 | 16 | 87 | 8.86E-08 | 5.65E-07 | 0.357 | 97.3863 |
| CTNNA1 | AC_000164.1 | 83 | 0 | 3.95E-16 | 6.84E-15 | 782.826 | 29.6623 |
| ZNF395 | AC_000165.1 | 85 | 25 | 2.09E-05 | 9.03E-05 | 0.043 | 3.82017 |
| MOB3B | AC_000165.1 | 100 | 0 | 2.22E-19 | 4.69E-18 | 0.981 | 2.09704 |
| KLF9 | AC_000165.1 | 80 | 0 | 1.24E-15 | 1.87E-14 | 0.372 | 8.86346 |
| RHOBTB2 | AC_000165.1 | 16 | 100 | 1.86E-09 | $1.56 \mathrm{E}-08$ | 0.129 | 1.10532 |
| FANCC | AC_000165.1 | 83 | 23 | 1.39E-05 | 6.16E-05 | 4.859 | 2.9906 |
| ASCC3 | AC_000166.1 | 100 | 17 | 4.16E-09 | 3.41E-08 | 6.901 | 6.19346 |
| PTPRK | AC_000166.1 | 83 | 20 | 3.33E-06 | $1.65 \mathrm{E}-05$ | 2.563 | 7.58014 |
| LRP11 | AC_000166.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 1.06 | 1.14334 |
| RPS6KA2 | AC_000166.1 | 0 | 80 | 1.24E-15 | 1.87E-14 | 0.216 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | 4.69E-18 | 0.216 | 1.24944 |
| GPC3 | AC_000187.1 | 77 | 0 | 5.26E-15 | 7.81E-14 | 4.36 | 8.81999 |
| ZNF75D | AC_000187.1 | 83 | 0 | 3.95E-16 | 6.84E-15 | 204.013 | 66.9043 |
| ZNF75D | AC_000187.1 | 83 | 11 | 7.24E-09 | 5.76E-08 | 204.013 | 66.9043 |
| ZNF75D | AC_000187.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | $1.81 \mathrm{E}-13$ | 204.013 | 66.9043 |
| TMEM185A | AC_000187.1 | 100 | 0 | 2.22E-19 | 4.69E-18 | 60.753 | 0.15763 |
| MSN | AC_000187.1 | 80 | 0 | 1.24E-15 | 1.87E-14 | 5.118 | 9.52565 |
| MSN | AC_000187.1 | 100 | 6 | 6.67E-14 | 9.52E-13 | 5.118 | 9.52565 |
| MSN | AC_000187.1 | 80 | 7 | 4.23E-10 | 3.99E-09 | 5.118 | 9.52565 |


| MSN | AC_000187.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | $4.12 \mathrm{E}-06$ | 5.118 | 9.52565 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PHEX | AC_000187.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $3.11 \mathrm{E}-15$ | 0.032 | 1.12563 |
| MOSPD2 | AC_000187.1 | 75 | 13 | $4.30 \mathrm{E}-07$ | $2.51 \mathrm{E}-06$ | 2.568 | 6.82811 |

Table S7.3 Gene expression for DMRs between sperm vs. in vitro MII

| Gene expression in DMRs from in vitro MII vs. Sperm |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Chr | In vitr MII_me | Sperm_me | p-value | q-value | In vitr MII expression | Spmer expression |
| ADCY5 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.06 | 5.65265 |
| BDH1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.802 | 11.332 |
| XXYLT1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 9.236 | 2.88536 |
| KPNA6 | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 17.299 | 3.88082 |
| UBASH3A | AC_000158.1 | 18 | 100 | 7.85E-09 | $4.28 \mathrm{E}-08$ | 16.101 | 0.164468 |
| PFKL | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.129 | 0.197475 |
| PFKL | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.129 | 0.197475 |
| PDXK | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.386 | 1.29524 |
| PDXK | AC_000158.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 3.386 | 1.29524 |
| COL18A1 | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.071 | 19.4062 |
| COL18A1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.071 | 19.4062 |
| SPATC1L | AC_000158.1 | 100 | 18 | 7.85E-09 | $4.28 \mathrm{E}-08$ | 0.019 | 16.2154 |
| RUNX1 | AC_000158.1 | 20 | 100 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 0.42 | 0.393924 |
| RUNX1 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.42 | 0.393924 |
| BTD | AC_000158.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 3.236 | 2.48654 |
| BTD | AC_000158.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 3.236 | 2.48654 |
| OXNAD1 | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.977 | 10.5107 |
| OXNAD1 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.977 | 10.5107 |
| OXNAD1 | AC_000158.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 1.977 | 10.5107 |
| OXNAD1 | AC_000158.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.977 | 10.5107 |
| OXNAD1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 1.977 | 10.5107 |
| OXNAD1 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 1.977 | 10.5107 |
| OXNAD1 | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.977 | 10.5107 |
| PLCL2 | AC_000158.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 10.364 | 45.9542 |
| PLCL2 | AC_000158.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 10.364 | 45.9542 |
| PLCL2 | AC_000158.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 10.364 | 45.9542 |
| TXNDC16 | AC_000167.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.544 | 5.12414 |
| NOX5 | AC_000167.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.728 | 0.104699 |
| BCL2L2 | AC_000167.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 5.42 | 10.4149 |
| TEP1 | AC_000167.1 | 0 | 92 | 7.02E-18 | 7.27E-17 | 0.165 | 0.898197 |
| KATNBL1 | AC_000167.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | 8.74E-07 | 22.924 | 19.9724 |
| TMEM229B | AC_000167.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 0.197 | 2.78354 |


| VASH1 | AC_000167.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.301 | 2.02373 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNNM4 | AC_000168.1 | 20 | 92 | $2.77 \mathrm{E}-07$ | $1.24 \mathrm{E}-06$ | 11.71 | 6.86361 |
| FHL2 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 2.757 | 8.26512 |
| FHL2 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 2.757 | 8.26512 |
| FHL2 | AC_000168.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 2.757 | 8.26512 |
| LOXL3 | AC_000168.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.279 | 0.975324 |
| DYSF | AC_000168.1 | 80 | 20 | 6.94E-06 | $2.60 \mathrm{E}-05$ | 0.44 | 2.59209 |
| CAMKMT | AC_000168.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | 1.30E-13 | 2.258 | 13.4428 |
| EMILIN1 | AC_000168.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.05 | 2.56389 |
| ADCY3 | AC_000168.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.876 | 2.50149 |
| RALGPS1 | AC_000168.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 2.29 | 23.5689 |
| ENG | AC_000168.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.057 | 5.34783 |
| NTNG2 | AC_000168.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.26 | 0.683614 |
| NTNG2 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.26 | 0.683614 |
| AK8 | AC_000168.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 0.032 | 44.5611 |
| AK8 | AC_000168.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.032 | 44.5611 |
| AK8 | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.032 | 44.5611 |
| AK8 | AC_000168.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.032 | 44.5611 |
| GFI1B | AC_000168.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.57 | 0.0413428 |
| GFI1B | AC_000168.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.57 | 0.0413428 |
| INPP5E | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.14 | 8.13702 |
| INPP5E | AC_000168.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.14 | 8.13702 |
| INPP5E | AC_000168.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.14 | 8.13702 |
| SARDH | AC_000168.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.042 | 0.12003 |
| SARDH | AC_000168.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.042 | 0.12003 |
| SARDH | AC_000168.1 | 14 | 100 | $3.79 \mathrm{E}-10$ | $2.31 \mathrm{E}-09$ | 0.042 | 0.12003 |
| SARDH | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.042 | 0.12003 |
| SARDH | AC_000168.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.042 | 0.12003 |
| CACNA1B | AC_000168.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 0.477 | 0.0635291 |
| TPRN | AC_000168.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.685 | 1.47106 |
| SLC7A1 | AC_000169.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.518 | 16.1771 |
| TNFRSF19 | AC_000169.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $3.44 \mathrm{E}-15$ | 0.037 | 0.107024 |
| DOCK9 | AC_000169.1 | 88 | 0 | $3.94 \mathrm{E}-17$ | 3.96E-16 | 27.006 | 5.15748 |
| DOCK9 | AC_000169.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | 1.09E-07 | 27.006 | 5.15748 |
| DOCK9 | AC_000169.1 | 75 | 20 | $2.62 \mathrm{E}-05$ | $9.12 \mathrm{E}-05$ | 27.006 | 5.15748 |
| RAB20 | AC_000169.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.304 | 0.975288 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.302 | 1.43627 |
| RASA3 | AC_000169.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.302 | 1.43627 |
| PLCB1 | AC_000170.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $1.74 \mathrm{E}-10$ | 0.538 | 1.56312 |
| PLCB1 | AC_000170.1 | 88 | 10 | 5.48E-10 | 3.19E-09 | 0.538 | 1.56312 |
| PLCB1 | AC_000170.1 | 100 | 22 | $9.72 \mathrm{E}-08$ | $4.57 \mathrm{E}-07$ | 0.538 | 1.56312 |
| PLCB1 | AC_000170.1 | 93 | 25 | $2.95 \mathrm{E}-06$ | 1.17E-05 | 0.538 | 1.56312 |
| PLCB1 | AC_000170.1 | 95 | 2 | 5.23E-16 | $4.55 \mathrm{E}-15$ | 0.538 | 1.56312 |
| PLCB1 | AC_000170.1 | 100 | 21 | 5.72E-08 | 2.73E-07 | 0.538 | 1.56312 |
| ISM1 | AC_000170.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.191 | 2.60195 |


| CUBN | AC_000170.1 | 92 | 4 | 6.82E-14 | 5.22E-13 | 0.097 | 4.77637 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CUBN | AC_000170.1 | 83 | 6 | $4.28 \mathrm{E}-11$ | 2.72E-10 | 0.097 | 4.77637 |
| CUBN | AC_000170.1 | 75 | 14 | 9.09E-07 | 3.87E-06 | 0.097 | 4.77637 |
| CUBN | AC_000170.1 | 75 | 14 | 9.09E-07 | 3.87E-06 | 0.097 | 4.77637 |
| PFKP | AC_000170.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.159 | 30.7787 |
| SLC4A11 | AC_000170.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.637 | 12.4908 |
| PCMTD2 | AC_000170.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 30.34 | 23.5781 |
| OPRL1 | AC_000170.1 | 21 | 75 | 3.99E-05 | $1.35 \mathrm{E}-04$ | 0.088 | 2.42345 |
| OPRL1 | AC_000170.1 | 21 | 75 | 3.99E-05 | $1.35 \mathrm{E}-04$ | 0.088 | 2.42345 |
| RBM38 | AC_000170.1 | 14 | 100 | 3.79E-10 | 2.31E-09 | 22.426 | 3.80514 |
| CHMP4B | AC_000170.1 | 75 | 12 | 2.23E-07 | $1.01 \mathrm{E}-06$ | 6.574 | 17.6036 |
| CHMP4B | AC_000170.1 | 90 | 25 | 6.49E-06 | 2.48E-05 | 6.574 | 17.6036 |
| RBL1 | AC_000170.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.118 | 9.51603 |
| RBL1 | AC_000170.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 2.118 | 9.51603 |
| KCNB1 | AC_000170.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.148 | 0.595133 |
| DOK5 | AC_000170.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.076 | 1.18619 |
| TONSL | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.864 | 1.07664 |
| SLC39A4 | AC_000171.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 0.012 | 0.49789 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 14 | 83 | 8.33E-08 | 3.95E-07 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 93 | 5.27E-18 | 5.48E-17 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 5.115 | 5.04003 |
| VAMP2 | AC_000171.1 | 14 | 100 | $3.79 \mathrm{E}-10$ | 2.31E-09 | 5.115 | 5.04003 |
| TSNARE1 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.863 | 0.00898524 |
| TSNARE1 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.863 | 0.00898524 |
| TSNARE1 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.863 | 0.00898524 |
| PTP4A3 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.208 | 0.747433 |
| PTP4A3 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.208 | 0.747433 |
| PTP4A3 | AC_000171.1 | 16 | 100 | 1.86E-09 | $1.05 \mathrm{E}-08$ | 1.208 | 0.747433 |
| NDRG1 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.022 | 8.90479 |
| NDRG1 | AC_000171.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.022 | 8.90479 |
| NDRG1 | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.022 | 8.90479 |
| ASAP1 | AC_000171.1 | 0 | 95 | $2.22 \mathrm{E}-18$ | 2.32E-17 | 38.082 | 4.84221 |
| ASAP1 | AC_000171.1 | 0 | 92 | 7.02E-18 | 7.27E-17 | 38.082 | 4.84221 |
| TTPA | AC_000171.1 | 100 | 22 | $9.72 \mathrm{E}-08$ | 4.57E-07 | 0.127 | 1.44846 |
| PREX2 | AC_000171.1 | 87 | 10 | $8.39 \mathrm{E}-10$ | 4.88E-09 | 0.204 | 1.02787 |
| CPQ | AC_000171.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 4.798 | 65.1425 |


| CPQ | AC_000171.1 | 0 | 80 | 1.24E-15 | 9.79E-15 | 4.798 | 65.1425 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAML2 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.035 | 0.898364 |
| NCAM1 | AC_000172.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 0.052 | 7.27085 |
| NCAM1 | AC_000172.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.052 | 7.27085 |
| NCAM1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.052 | 7.27085 |
| NCAM1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.052 | 7.27085 |
| UPK2 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.076 | 0.915982 |
| UPK2 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.076 | 0.915982 |
| UPK2 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.076 | 0.915982 |
| PHLDB1 | AC_000172.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.626 | 2.4146 |
| MCAM | AC_000172.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.287 | 0.514236 |
| GRAMD1B | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 10.286 | 9.43855 |
| SPON1 | AC_000172.1 | 100 | 16 | 1.86E-09 | 1.05E-08 | 5.547 | 36.0375 |
| HPX | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.034 | 2.16298 |
| APBB1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.01 | 2.96761 |
| PDE2A | AC_000172.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.052 | 2.68373 |
| PDE2A | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.052 | 2.68373 |
| ARRB1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.553 | 0.862835 |
| ARRB1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.553 | 0.862835 |
| CAPN5 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.013 | 2.56793 |
| CAPN5 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.013 | 2.56793 |
| CD82 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.012 | 17.878 |
| CD82 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.012 | 17.878 |
| CD82 | AC_000172.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.012 | 17.878 |
| CD82 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.012 | 17.878 |
| CD82 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.012 | 17.878 |
| CD82 | AC_000172.1 | 22 | 94 | $4.95 \mathrm{E}-07$ | 2.18E-06 | 0.012 | 17.878 |
| CD82 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.012 | 17.878 |
| MAPK8IP1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.236 | 6.49307 |
| MAPK8IP1 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.236 | 6.49307 |
| ATG13 | AC_000172.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 4.369 | 17.2482 |
| MYBPC3 | AC_000172.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.042 | 0.272787 |
| MYBPC3 | AC_000172.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.042 | 0.272787 |
| RAPSN | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.068 | 0.345906 |
| SLC43A3 | AC_000172.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.271 | 0.656248 |
| SLC43A3 | AC_000172.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.271 | 0.656248 |
| SLC43A3 | AC_000172.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 0.271 | 0.656248 |
| UBE2L6 | AC_000172.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 3.465 | 1.79197 |
| ZDHHC5 | AC_000172.1 | 20 | 100 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 11.02 | 9.20832 |
| NCAPD3 | AC_000172.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 13.269 | 29.5086 |
| IKBKE | AC_000173.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 0.026 | 0.151946 |
| IL10 | AC_000173.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.598 | 2.08477 |
| LEFTY2 | AC_000173.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.091 | 0.377381 |
| RGS7 | AC_000173.1 | 87 | 7 | 3.08E-11 | 1.96E-10 | 0.034 | 0.674704 |
| RGS7 | AC_000173.1 | 100 | 6 | 6.67E-14 | 5.10E-13 | 0.034 | 0.674704 |


| RGS7 | AC_000173.1 | 77 | 10 | 1.99E-08 | $1.05 \mathrm{E}-07$ | 0.034 | 0.674704 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RGS7 | AC_000173.1 | 75 | 15 | $1.62 \mathrm{E}-06$ | $6.65 \mathrm{E}-06$ | 0.034 | 0.674704 |
| PLOD1 | AC_000173.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.255 | 13.5712 |
| SLC2A5 | AC_000173.1 | 0 | 90 | $1.66 \mathrm{E}-17$ | $1.70 \mathrm{E}-16$ | 0.043 | 1.0146 |
| ACOT7 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 6.274 | 92.1376 |
| NMNAT2 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.051 | 11.5046 |
| NCF2 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 12.602 | 0.711148 |
| LAMB3 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.106 | 0.36457 |
| PLXNA2 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.028 | 2.16689 |
| PLXNA2 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.028 | 2.16689 |
| PLXNA2 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.028 | 2.16689 |
| PLXNA2 | AC_000173.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.028 | 2.16689 |
| PITPNM2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.483 | 2.33325 |
| PITPNM2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.483 | 2.33325 |
| PITPNM2 | AC_000174.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 3.483 | 2.33325 |
| PITPNM2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.483 | 2.33325 |
| PITPNM2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.483 | 2.33325 |
| PITPNM2 | AC_000174.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 3.483 | 2.33325 |
| RHOF | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.357 | 1.26635 |
| CUX2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 50.403 | 0.223335 |
| CUX2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 50.403 | 0.223335 |
| RAB35 | AC_000174.1 | 0 | 90 | 1.66E-17 | 1.70E-16 | 18.804 | 5.9147 |
| RAB35 | AC_000174.1 | 16 | 100 | 1.86E-09 | 1.05E-08 | 18.804 | 5.9147 |
| TRPV4 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.085 | 0.254707 |
| TRPV4 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.085 | 0.254707 |
| TRPV4 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.085 | 0.254707 |
| TRPV4 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.085 | 0.254707 |
| TRPV4 | AC_000174.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.085 | 0.254707 |
| TMEM119 | AC_000174.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.219 | 0.865139 |
| LIF | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.019 | 0.442617 |
| CCDC157 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.086 | 20.239 |
| CCDC157 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.086 | 20.239 |
| CCDC157 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.086 | 20.239 |
| OSBP2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.359 | 14.0231 |
| OSBP2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.359 | 14.0231 |
| OSBP2 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.359 | 14.0231 |
| SMTN | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.083 | 3.96868 |
| SMTN | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.083 | 3.96868 |
| GGT5 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.174 | 0.631976 |
| GGT5 | AC_000174.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.174 | 0.631976 |
| GGT5 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.174 | 0.631976 |
| GGT5 | AC_000174.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.174 | 0.631976 |
| GGT5 | AC_000174.1 | 16 | 100 | 1.86E-09 | 1.05E-08 | 0.174 | 0.631976 |
| SDF2L1 | AC_000174.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 6.88E-16 | 2.915 | 6.17688 |
| CCDC116 | AC_000174.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.556 | 8.55385 |


| SLC7A4 | AC_000174.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.014 | 0.587754 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MZT2B | AC_000174.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.19 | 1.20482 |
| ARVCF | AC_000174.1 | 0 | 80 | 1.24E-15 | 9.79E-15 | 0.241 | 0.0686743 |
| VAC14 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.848 | 5.18937 |
| VAC14 | AC_000175.1 | 0 | 80 | 1.24E-15 | 9.79E-15 | 0.848 | 5.18937 |
| PDPR | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 7.187 | 5.03969 |
| PDPR | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 7.187 | 5.03969 |
| SLC38A8 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 21.463 | 0.203353 |
| COTL1 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.614 | 7.3541 |
| COTL1 | AC_000175.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 0.614 | 7.3541 |
| FOXC2 | AC_000175.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.358 | 0.366771 |
| SLC7A5 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.039 | 22.6674 |
| SLC7A5 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.039 | 22.6674 |
| SLC7A5 | AC_000175.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.039 | 22.6674 |
| DPEP1 | AC_000175.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.061 | 5.56081 |
| DPEP1 | AC_000175.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 0.061 | 5.56081 |
| DPEP1 | AC_000175.1 | 11 | 100 | 2.69E-11 | 1.74E-10 | 0.061 | 5.56081 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 75 | 1.25E-14 | 9.63E-14 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.044 | 1.49701 |
| ZNF423 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.044 | 1.49701 |
| MMP2 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.043 | 11.6334 |
| SLC12A3 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.912 | 0.238977 |
| SLC12A3 | AC_000175.1 | 0 | 88 | 3.94E-17 | 3.96E-16 | 0.912 | 0.238977 |
| DRC7 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 195.295 | 14.7228 |
| NDRG4 | AC_000175.1 | 100 | 20 | 2.92E-08 | 1.49E-07 | 8.888 | 16.7646 |
| EXOC3L1 | AC_000175.1 | 0 | 88 | 3.94E-17 | 3.96E-16 | 0.412 | 1.44007 |
| SMPD3 | AC_000175.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.034 | 1.30709 |
| PEPD | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.154 | 3.74324 |
| PEPD | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.154 | 3.74324 |
| PEPD | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.154 | 3.74324 |
| PEPD | AC_000175.1 | 0 | 81 | 9.35E-16 | 8.12E-15 | 0.154 | 3.74324 |
| PEPD | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.154 | 3.74324 |
| GPI | AC_000175.1 | 80 | 0 | 1.24E-15 | 9.79E-15 | 86.567 | 52.6938 |
| IGFLR1 | AC_000175.1 | 100 | 14 | 3.79E-10 | 2.31E-09 | 1.824 | 2.01574 |
| SHKBP1 | AC_000175.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 7.656 | 6.43168 |
| CYP2S1 | AC_000175.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 2.047 | 0.065393 |


| CEACAM19 | AC_000175.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 6.162 | 0.0432857 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PPP1R37 | AC_000175.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 5.595 | 16.1979 |
| PPP1R37 | AC_000175.1 | 100 | 9 | $3.27 \mathrm{E}-12$ | $2.29 \mathrm{E}-11$ | 5.595 | 16.1979 |
| DHX34 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.444 | 7.09385 |
| DHX34 | AC_000175.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.444 | 7.09385 |
| TULP2 | AC_000175.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.794 | 16.9575 |
| FCGRT | AC_000175.1 | 0 | 87 | 7.02E-17 | 6.88E-16 | 1.853 | 0.128583 |
| RCN3 | AC_000175.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 2.171 | 3.84027 |
| TSKS | AC_000175.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $1.49 \mathrm{E}-07$ | 0.185 | 40.0046 |
| TBC1D17 | AC_000175.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.524 | 5.25401 |
| KLK12 | AC_000175.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.207 | 0.021982 |
| FIZ1 | AC_000175.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.346 | 0.0353889 |
| NAT14 | AC_000175.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.49 \mathrm{E}-07$ | 0.065 | 0.546189 |
| PPP6R1 | AC_000175.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.638 | 31.2632 |
| TNNI3 | AC_000175.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.331 | 11.6081 |
| TTYH1 | AC_000175.1 | 0 | 90 | $1.66 \mathrm{E}-17$ | 1.70E-16 | 1.491 | 53.4688 |
| TTYH1 | AC_000175.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 1.491 | 53.4688 |
| TTYH1 | AC_000175.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 1.491 | 53.4688 |
| MBOAT7 | AC_000175.1 | 20 | 87 | $1.14 \mathrm{E}-06$ | $4.73 \mathrm{E}-06$ | 4.474 | 0.113894 |
| TMC4 | AC_000175.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 9.292 | 0.246617 |
| ZIM2 | AC_000175.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 39.328 | 0.068638 |
| ZIM2 | AC_000175.1 | 14 | 75 | 9.09E-07 | 3.87E-06 | 39.328 | 0.068638 |
| ZIM2 | AC_000175.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 39.328 | 0.068638 |
| ZNF583 | AC_000175.1 | 14 | 75 | $9.09 \mathrm{E}-07$ | 3.87E-06 | 57.418 | 0.178527 |
| MSI2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 0.929 | 3.4265 |
| MSI2 | AC_000176.1 | 0 | 81 | 9.35E-16 | 8.12E-15 | 0.929 | 3.4265 |
| MSI2 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.929 | 3.4265 |
| MSI2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.929 | 3.4265 |
| MSI2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.929 | 3.4265 |
| RNF43 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.831 | 0.584618 |
| RNF43 | AC_000176.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | 1.49E-07 | 0.831 | 0.584618 |
| C19H17orf64 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.075 | 32.1067 |
| GAS2L2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.038 | 0.147563 |
| LGALS9 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.127 | 0.82207 |
| LGALS9 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.127 | 0.82207 |
| NOS2 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 14.803 | 0.0757853 |
| UNC119 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 37.376 | 8.00687 |
| TRAF4 | AC_000176.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | $3.14 \mathrm{E}-06$ | 13.713 | 2.96348 |
| FLOT2 | AC_000176.1 | 0 | 81 | $9.35 \mathrm{E}-16$ | $8.12 \mathrm{E}-15$ | 21.125 | 3.41417 |
| TRPV3 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.687 | 0.436797 |
| CAMKK1 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.194 | 0.879351 |
| CAMKK1 | AC_000176.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.49 \mathrm{E}-07$ | 0.194 | 0.879351 |
| ATP2A3 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.053 | 8.57103 |
| SLC13A5 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.016 | 0.0628505 |
| WSCD1 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.044 | 4.50593 |


| SPEM1 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.029 | 12.3162 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GUCY2D | AC_000176.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | $9.63 \mathrm{E}-14$ | 0.197 | 0.0841453 |
| NTN1 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.574 | 0.550449 |
| GAS7 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 6.404 | 3.74942 |
| DNAH9 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.097 | 0.0143802 |
| FAM83G | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.022 | 1.55324 |
| CACNA1G | AC_000176.1 | 11 | 100 | 2.69E-11 | $1.74 \mathrm{E}-10$ | 0.054 | 0.704679 |
| CACNA1G | AC_000176.1 | 11 | 100 | $2.69 \mathrm{E}-11$ | $1.74 \mathrm{E}-10$ | 0.054 | 0.704679 |
| SP2 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 52.222 | 3.75422 |
| SP2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 52.222 | 3.75422 |
| RPL19 | AC_000176.1 | 80 | 23 | 3.02E-05 | $1.03 \mathrm{E}-04$ | 622.381 | 133.855 |
| FBXL20 | AC_000176.1 | 77 | 9 | 8.67E-09 | 4.71E-08 | 27.908 | 6.7384 |
| FBXL20 | AC_000176.1 | 80 | 14 | 1.93E-07 | $8.74 \mathrm{E}-07$ | 27.908 | 6.7384 |
| FBXL20 | AC_000176.1 | 20 | 83 | 3.33E-06 | 1.30E-05 | 27.908 | 6.7384 |
| ERBB2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.006 | 1.35771 |
| RARA | AC_000176.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 5.363 | 10.1415 |
| KRT19 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 5.702 | 0.105565 |
| JUP | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.111 | 3.69015 |
| FKBP10 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.139 | 3.3218 |
| DHX58 | AC_000176.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 33.229 | 0.249484 |
| HDAC5 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.17 | 7.63568 |
| MAPT | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.795 | 0.731686 |
| DCXR | AC_000176.1 | 0 | 81 | $9.35 \mathrm{E}-16$ | 8.12E-15 | 1.349 | 2.01575 |
| CCDC137 | AC_000176.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 2.166 | 1.53063 |
| BAIAP2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 20.545 | 3.97209 |
| BAIAP2 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 20.545 | 3.97209 |
| TBC1D16 | AC_000176.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.174 | 0.690348 |
| TBC1D16 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.174 | 0.690348 |
| RBFOX3 | AC_000176.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.362 | 0.0541617 |
| RBFOX3 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.362 | 0.0541617 |
| TIMP2 | AC_000176.1 | 25 | 100 | 5.20E-07 | $2.28 \mathrm{E}-06$ | 1.267 | 273.458 |
| TRIM47 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.015 | 1.20996 |
| TRIM47 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.015 | 1.20996 |
| TRIM47 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.015 | 1.20996 |
| TRIM47 | AC_000176.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $1.49 \mathrm{E}-07$ | 0.015 | 1.20996 |
| TRIM47 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.015 | 1.20996 |
| GALK1 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.572 | 3.79491 |
| MIF4GD | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 24.332 | 2.68766 |


| MRPS7 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 16.342 | 0.682308 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CDR2L | AC_000176.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 1.002 | 0.619825 |
| FADS6 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.374 | 2.77879 |
| RAB37 | AC_000176.1 | 100 | 22 | 9.72E-08 | $4.57 \mathrm{E}-07$ | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 75 | 17 | 5.30E-06 | $2.04 \mathrm{E}-05$ | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 75 | 7 | 2.27E-09 | 1.28E-08 | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 100 | 22 | 9.72E-08 | $4.57 \mathrm{E}-07$ | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 23 | 87 | 5.11E-06 | 1.98E-05 | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 75 | 22 | $6.49 \mathrm{E}-05$ | $2.14 \mathrm{E}-04$ | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 75 | 25 | 2.10E-04 | 6.22E-04 | 2.856 | 0.531397 |
| RAB37 | AC_000176.1 | 75 | 10 | 4.51E-08 | $2.16 \mathrm{E}-07$ | 2.856 | 0.531397 |
| TTYH2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.01 | 2.69215 |
| TTYH2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.01 | 2.69215 |
| TTYH2 | AC_000176.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 0.01 | 2.69215 |
| TTYH2 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.01 | 2.69215 |
| SLC39A11 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.182 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.182 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.182 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.182 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.182 | 10.2451 |
| SLC39A11 | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.182 | 10.2451 |
| ARSG | AC_000176.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.088 | 0.503372 |
| ARSG | AC_000176.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.088 | 0.503372 |
| ARSG | AC_000176.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 0.088 | 0.503372 |
| RGS9 | AC_000176.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.307 | 0.266382 |
| RGS9 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.307 | 0.266382 |
| RGS9 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.307 | 0.266382 |
| PRKCA | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.412 | 1.8482 |
| LIMS2 | AC_000159.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.03 | 12.1793 |
| BIN1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 20 | 87 | 1.14E-06 | $4.73 \mathrm{E}-06$ | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 0 | 88 | 3.94E-17 | 3.96E-16 | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 16 | 100 | 1.86E-09 | 1.05E-08 | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.059 | 2.75044 |
| BIN1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.059 | 2.75044 |
| GAD1 | AC_000159.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 10.777 | 0.625979 |
| GLI2 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.17 | 0.233586 |
| TFCP2L1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.037 | 1.95606 |
| TFCP2L1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.037 | 1.95606 |
| 4-Mar | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.089 | 0.0251621 |
| TNS1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.237 | 8.80054 |


| TNS1 | AC_000159.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.237 | 8.80054 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TNS1 | AC_000159.1 | 20 | 100 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 0.237 | 8.80054 |
| TNS1 | AC_000159.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.237 | 8.80054 |
| SPEG | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.872 | 0.286045 |
| OBSL1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.406 | 1.48814 |
| OBSL1 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.406 | 1.48814 |
| SLC4A3 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.033 | 1.40557 |
| TMEM54 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.367 | 0.0103144 |
| FGR | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 4.108 | 0.765796 |
| FGR | AC_000159.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 4.108 | 0.765796 |
| UBXN11 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.157 | 25.2103 |
| RUNX3 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.047 | 1.51401 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.42 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.42 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.42 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.42 | 0.528627 |
| EPHB2 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.42 | 0.528627 |
| RAP1GAP | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.052 | 2.88221 |
| RAP1GAP | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.052 | 2.88221 |
| RAP1GAP | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.052 | 2.88221 |
| RAP1GAP | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.052 | 2.88221 |
| RAP1GAP | AC_000159.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.052 | 2.88221 |
| RAP1GAP | AC_000159.1 | 16 | 100 | 1.86E-09 | 1.05E-08 | 0.052 | 2.88221 |
| KIF17 | AC_000159.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 1.718 | 4.03725 |
| KIF17 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.718 | 4.03725 |
| KIF17 | AC_000159.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.718 | 4.03725 |
| AKR7A2 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 20.822 | 10.6193 |
| AKR7A2 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 20.822 | 10.6193 |
| PADI1 | AC_000159.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.039 | 0.00684407 |
| LCP2 | AC_000177.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | 2.09E-07 | 1.715 | 0.857954 |
| LCP2 | AC_000177.1 | 75 | 20 | 2.62E-05 | 9.12E-05 | 1.715 | 0.857954 |
| SLC38A9 | AC_000177.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 23.787 | 12.0679 |
| SLC9A3 | AC_000177.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.518 | 0.282475 |
| MRPS11 | AC_000178.1 | 75 | 21 | 3.99E-05 | $1.35 \mathrm{E}-04$ | 5.9 | 1.91452 |
| SLC28A1 | AC_000178.1 | 100 | 15 | 9.23E-10 | 5.35E-09 | 23.765 | 0.0796632 |
| RASGRF1 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 5.526 | 0.237718 |
| APBA2 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.009 | 0.122996 |
| SNX33 | AC_000178.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.025 | 2.69601 |
| LOXL1 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.117 | 5.00407 |
| LOXL1 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.117 | 5.00407 |
| LOXL1 | AC_000178.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 0.117 | 5.00407 |
| FRMD5 | AC_000178.1 | 88 | 14 | 1.67E-08 | 8.86E-08 | 5.627 | 0.203298 |
| FRMD5 | AC_000178.1 | 100 | 25 | 5.20E-07 | 2.28E-06 | 5.627 | 0.203298 |
| FRMD5 | AC_000178.1 | 80 | 20 | 6.94E-06 | 2.60E-05 | 5.627 | 0.203298 |
| IFI27 | AC_000178.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.061 | 0.682495 |


| KRTCAP2 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 66.354 | 13.6621 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEGAIN | AC_000178.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.026 | 0.239427 |
| EXOC3L4 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.104 | 0.202865 |
| TNFAIP2 | AC_000178.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.041 | 3.27001 |
| TNFAIP2 | AC_000178.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.041 | 3.27001 |
| SCN5A | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 8.015 | 0.949517 |
| SCN5A | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 8.015 | 0.949517 |
| SLC25A38 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 6.859 | 2.83743 |
| SYNPR | AC_000179.1 | 83 | 22 | 9.08E-06 | 3.37E-05 | 0.827 | 0.493366 |
| SYNPR | AC_000179.1 | 75 | 20 | 2.62E-05 | 9.12E-05 | 0.827 | 0.493366 |
| ERC2 | AC_000179.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 6.3 | 0.399069 |
| ERC2 | AC_000179.1 | 80 | 16 | 7.24E-07 | 3.14E-06 | 6.3 | 0.399069 |
| POC1A | AC_000179.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 24.123 | 18.5052 |
| GRM2 | AC_000179.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 0.412 | 0.063472 |
| SLC38A3 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.596 | 0.00938683 |
| LAMB2 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.037 | 0.0489692 |
| LAMB2 | AC_000179.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.037 | 0.0489692 |
| LAMB2 | AC_000179.1 | 16 | 100 | 1.86E-09 | 1.05E-08 | 0.037 | 0.0489692 |
| CSPG5 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.17 | 21.0075 |
| CSPG5 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 2.17 | 21.0075 |
| CSPG5 | AC_000179.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 2.17 | 21.0075 |
| PTH1R | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.034 | 1.46063 |
| PTH1R | AC_000179.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.034 | 1.46063 |
| PTH1R | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.034 | 1.46063 |
| PTH1R | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.034 | 1.46063 |
| PTH1R | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.034 | 1.46063 |
| LIMD1 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.854 | 0.771372 |
| ATP2B2 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.009 | 0.118503 |
| ATP2B2 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.009 | 0.118503 |
| ATP2B2 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.009 | 0.118503 |
| RHO | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.131 | 0.102191 |
| SLC6A6 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.039 | 8.29457 |
| SLC6A6 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.039 | 8.29457 |
| SLC6A6 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.039 | 8.29457 |
| SLC6A6 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.039 | 8.29457 |
| SLC6A6 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.039 | 8.29457 |
| SLC6A6 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.039 | 8.29457 |
| TMEM43 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 39.068 | 14.655 |
| HDAC11 | AC_000179.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 4.063 | 28.2128 |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.36 | 2.69E-06 |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.36 | 2.69E-06 |
| NUP210 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.36 | 2.69E-06 |
| NUP210 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 0.36 | $2.69 \mathrm{E}-06$ |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.36 | 2.69E-06 |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.36 | 2.69E-06 |


| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.36 | 2.69E-06 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.36 | 2.69E-06 |
| NUP210 | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.36 | $2.69 \mathrm{E}-06$ |
| GATA2 | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 21.446 | 1.24153 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.386 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.386 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.386 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.386 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.386 | 3.16696 |
| EEFSEC | AC_000179.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 0.386 | 3.16696 |
| KLF15 | AC_000179.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 0.159 | 2.02475 |
| ITPR3 | AC_000180.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.419 | 15.3446 |
| LEMD2 | AC_000180.1 | 20 | 87 | 1.14E-06 | $4.73 \mathrm{E}-06$ | 0.012 | 4.92624 |
| NFKBIE | AC_000180.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 13.733 | 4.98304 |
| MSH5 | AC_000180.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 32.708 | 4.41634 |
| HIST1H1C | AC_000180.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | 2.09E-07 | 154.3 | 0.347191 |
| TFAP2A | AC_000180.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.195 | 0.580145 |
| NRN1 | AC_000180.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.097 | 0.237949 |
| PXDC1 | AC_000180.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.098 | 0.305641 |
| PXDC1 | AC_000180.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.098 | 0.305641 |
| PXDC1 | AC_000180.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.098 | 0.305641 |
| SLC22A23 | AC_000180.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.015 | 1.59637 |
| SLC22A23 | AC_000180.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.015 | 1.59637 |
| SLC22A23 | AC_000180.1 | 0 | 88 | 3.94E-17 | 3.96E-16 | 0.015 | 1.59637 |
| GMDS | AC_000180.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 1.399 | 29.0845 |
| GMDS | AC_000180.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 1.399 | 29.0845 |
| NFATC1 | AC_000181.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 6.88E-16 | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | 6.88E-16 | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.291 | 0.256695 |
| NFATC1 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.291 | 0.256695 |
| CELF4 | AC_000181.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | 2.31E-09 | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |


| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.169 | 0.498227 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.169 | 0.498227 |
| CELF4 | AC_000181.1 | 0 | 90 | 1.66E-17 | 1.70E-16 | 0.169 | 0.498227 |
| RHBDF1 | AC_000182.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 1.067 | 1.15272 |
| RHBDF1 | AC_000182.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.067 | 1.15272 |
| ABCA3 | AC_000182.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.347 | 5.89378 |
| CORO7 | AC_000182.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 0.265 | 2.71946 |
| CORO7 | AC_000182.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.265 | 2.71946 |
| RBFOX1 | AC_000182.1 | 80 | 22 | $1.84 \mathrm{E}-05$ | 6.52E-05 | 0.646 | 0.038647 |
| RBFOX1 | AC_000182.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.646 | 0.038647 |
| ABAT | AC_000182.1 | 20 | 100 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 9.507 | 13.3077 |
| ABCC6 | AC_000182.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.027 | 8.03E-08 |
| RABEP2 | AC_000182.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 2.217 | 3.18206 |
| ELN | AC_000182.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 8.902 | 89.7002 |
| ELN | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 8.902 | 89.7002 |
| COL26A1 | AC_000182.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.018 | 0.355506 |
| TRIM56 | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.621 | 0.267774 |
| TRIM56 | AC_000182.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 0.621 | 0.267774 |
| ACHE | AC_000182.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 0.018 | 2.36354 |
| MEPCE | AC_000182.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 20.474 | 134.825 |
| SLC29A4 | AC_000182.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 24.313 | 0.192267 |
| CARD11 | AC_000182.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.007 | 0.584971 |
| CARD11 | AC_000182.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | 2.60E-05 | 0.007 | 0.584971 |
| CARD11 | AC_000182.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.007 | 0.584971 |
| MICALL2 | AC_000182.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.044 | 0.182125 |
| C25H7orf50 | AC_000182.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $3.44 \mathrm{E}-15$ | 1.02 | 3.55481 |
| C25H7orf50 | AC_000182.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.02 | 3.55481 |
| PRKG1 | AC_000183.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 25.31 | 2.01529 |
| SUFU | AC_000183.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.2 | 3.82115 |
| SUFU | AC_000183.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.2 | 3.82115 |
| SUFU | AC_000183.1 | 0 | 87 | 7.02E-17 | 6.88E-16 | 1.2 | 3.82115 |
| SUFU | AC_000183.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.2 | 3.82115 |
| SUFU | AC_000183.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.2 | 3.82115 |
| NEURL1 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.024 | 2.93028 |
| SORCS3 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 7.95 | 20.632 |
| SORCS3 | AC_000183.1 | 14 | 100 | 3.79E-10 | 2.31E-09 | 7.95 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 7.95 | 20.632 |
| SORCS3 | AC_000183.1 | 100 | 12 | 6.45E-11 | 4.07E-10 | 7.95 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 7.95 | 20.632 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 7.95 | 20.632 |
| SORCS3 | AC_000183.1 | 12 | 100 | $6.45 \mathrm{E}-11$ | $4.07 \mathrm{E}-10$ | 7.95 | 20.632 |


| LHPP | AC_000183.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 0.303 | 2.59394 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LHPP | AC_000183.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.303 | 2.59394 |
| LHPP | AC_000183.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.303 | 2.59394 |
| MYOM2 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.057 | 0.0286405 |
| MYOM2 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 0.057 | 0.0286405 |
| MYOM2 | AC_000184.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.057 | 0.0286405 |
| MYOM2 | AC_000184.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.057 | 0.0286405 |
| MYOM2 | AC_000184.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.057 | 0.0286405 |
| MYOM2 | AC_000184.1 | 0 | 90 | 1.66E-17 | 1.70E-16 | 0.057 | 0.0286405 |
| WRN | AC_000184.1 | 87 | 0 | 7.02E-17 | 6.88E-16 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 75 | 0 | 1.25E-14 | $9.63 \mathrm{E}-14$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 77 | 5 | $9.69 \mathrm{E}-11$ | 6.06E-10 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 85 | 0 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 75 | 0 | 1.25E-14 | $9.63 \mathrm{E}-14$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 84 | 4 | $1.55 \mathrm{E}-12$ | 1.10E-11 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.08E-09 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 93 | 17 | 3.16E-08 | $1.61 \mathrm{E}-07$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 75 | 10 | $4.51 \mathrm{E}-08$ | 2.16E-07 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 94 | 18 | $4.57 \mathrm{E}-08$ | 2.19E-07 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 87 | 0 | 7.02E-17 | 6.88E-16 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 75 | 0 | 1.25E-14 | $9.63 \mathrm{E}-14$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 6 | 6.67E-14 | 5.10E-13 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.08E-09 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 92 | 12 | 9.13E-10 | 5.30E-09 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 93 | 13 | $1.56 \mathrm{E}-09$ | 8.97E-09 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 17 | 4.16E-09 | $2.32 \mathrm{E}-08$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 87 | 13 | 1.05E-08 | 5.72E-08 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 21 | 5.72E-08 | $2.73 \mathrm{E}-07$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 93 | 20 | 2.22E-07 | 1.00E-06 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 78 | 25 | $1.11 \mathrm{E}-04$ | 3.51E-04 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 93 | 0 | 5.27E-18 | 5.48E-17 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $1.30 \mathrm{E}-13$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 7 | $2.90 \mathrm{E}-13$ | 2.15E-12 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 85 | 7 | 6.35E-11 | $4.03 \mathrm{E}-10$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 100 | 12 | 6.45E-11 | $4.07 \mathrm{E}-10$ | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 86 | 12 | 6.41E-09 | 3.54E-08 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 83 | 16 | 3.25E-07 | 1.45E-06 | 20.063 | 8.79611 |
| WRN | AC_000184.1 | 80 | 22 | 1.84E-05 | 6.52E-05 | 20.063 | 8.79611 |
| RNF122 | AC_000184.1 | 75 | 0 | 1.25E-14 | $9.63 \mathrm{E}-14$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 12 | 6.45E-11 | 4.07E-10 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 23 | 1.80E-07 | $8.23 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 20 | 83 | 3.33E-06 | 1.30E-05 | 8.137 | 10.1717 |


| RNF122 | AC_000184.1 | 80 | 22 | 1.84E-05 | 6.52E-05 | 8.137 | 10.1717 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 85 | 0 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 11 | 2.69E-11 | $1.74 \mathrm{E}-10$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 16 | 7.24E-07 | 3.14E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | 1.24E-15 | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 77 | 0 | 5.26E-15 | 4.10E-14 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 0 | 7.02E-17 | 6.88E-16 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 91 | 1.25E-17 | 1.29E-16 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | 1.49E-07 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 82 | 25 | 4.09E-05 | $1.38 \mathrm{E}-04$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 14 | 3.79E-10 | 2.31E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | 1.24E-15 | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 7 | $4.23 \mathrm{E}-10$ | 2.58E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 17 | 4.16E-09 | $2.32 \mathrm{E}-08$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 7 | 4.23E-10 | $2.58 \mathrm{E}-09$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 6 | 8.00E-10 | 4.66E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 14 | 8.99E-09 | $4.88 \mathrm{E}-08$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 11 | 2.08E-08 | $1.09 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 16 | 1.86E-09 | 1.05E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 11 | 3.76E-09 | 2.10E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 13 | 7.12E-09 | 3.90E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 12 | 2.23E-07 | $1.01 \mathrm{E}-06$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 18 | 6.32E-07 | $2.76 \mathrm{E}-06$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 15 | 4.73E-08 | 2.27E-07 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 17 | 1.82E-07 | 8.30E-07 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 7 | 2.90E-13 | $2.15 \mathrm{E}-12$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 10 | 7.04E-10 | 4.10E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 81 | 20 | 5.62E-06 | $2.16 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 9 | 3.27E-12 | 2.29E-11 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 23 | 3.02E-05 | $1.03 \mathrm{E}-04$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 25 | 7.02E-05 | $2.30 \mathrm{E}-04$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 8 | 1.14E-09 | 6.61E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 11 | 75 | 9.55E-08 | $4.50 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 20 | 6.94E-06 | $2.60 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 75 | 1.25E-14 | 9.63E-14 | 8.137 | 10.1717 |


| RNF122 | AC_000184.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.08E-09 | 8.137 | 10.1717 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 80 | 14 | 1.93E-07 | $8.74 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 20 | 6.94E-06 | $2.60 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 6 | $1.16 \mathrm{E}-10$ | $7.26 \mathrm{E}-10$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 17 | $1.41 \mathrm{E}-06$ | 5.80E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 20 | 3.33E-06 | $1.30 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 23 | 3.02E-05 | 1.03E-04 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 9 | 3.27E-12 | 2.29E-11 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $1.74 \mathrm{E}-10$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 14 | 1.93E-07 | $8.74 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 16 | 3.16E-06 | $1.24 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 86 | 22 | 4.04E-06 | 1.58E-05 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 23 | $1.39 \mathrm{E}-05$ | 5.01E-05 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | 1.24E-15 | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 16 | 1.86E-09 | 1.05E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 18 | 3.61E-07 | $1.61 \mathrm{E}-06$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 22 | 9.08E-06 | 3.37E-05 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 12 | $1.81 \mathrm{E}-08$ | 9.56E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 16 | 77 | 1.60E-06 | 6.57E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 20 | 2.62E-05 | $9.12 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 0 | 3.94E-17 | 3.96E-16 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 14 | 1.93E-07 | $8.74 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 24 | 8.58E-06 | 3.19E-05 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 78 | 0 | $2.95 \mathrm{E}-15$ | 2.32E-14 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 16 | 7.03E-08 | 3.34E-07 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 14 | 80 | $1.93 \mathrm{E}-07$ | 8.74E-07 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 92 | 12 | $9.13 \mathrm{E}-10$ | 5.30E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 18 | 1.10E-06 | 4.57E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 21 | 1.36E-06 | 5.60E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 7 | 2.90E-13 | 2.15E-12 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 83 | 5 | $1.01 \mathrm{E}-11$ | 6.62E-11 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | $1.80 \mathrm{E}-06$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 0 | 1.24E-15 | $9.79 \mathrm{E}-15$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $1.74 \mathrm{E}-10$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 9 | 1.70E-08 | 8.98E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | 1.80E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 23 | 3.02E-05 | 1.03E-04 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 14 | 2.45E-08 | 1.29E-07 | 8.137 | 10.1717 |


| RNF122 | AC_000184.1 | 100 | 20 | 2.92E-08 | 1.49E-07 | 8.137 | 10.1717 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 77 | 17 | 3.06E-06 | $1.21 \mathrm{E}-05$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 20 | 6.94E-06 | 2.60E-05 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 22 | 6.49E-05 | 2.14E-04 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 18 | $2.56 \mathrm{E}-07$ | 1.15E-06 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 25 | 75 | 2.10E-04 | 6.22E-04 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 10 | 8.84E-12 | 5.80E-11 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 10 | 8.84E-12 | 5.80E-11 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 8 | 6.85E-11 | $4.32 \mathrm{E}-10$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 85 | 10 | 1.65E-09 | 9.47E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 12 | 3.36E-09 | 1.88E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 77 | 20 | $1.58 \mathrm{E}-05$ | 5.68E-05 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 80 | 12 | $4.35 \mathrm{E}-08$ | $2.09 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 16 | 7.03E-08 | $3.34 \mathrm{E}-07$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 75 | 6 | 8.00E-10 | 4.66E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 87 | 10 | 8.39E-10 | 4.88E-09 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 16 | 1.86E-09 | 1.05E-08 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 88 | 16 | 7.03E-08 | 3.34E-07 | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 100 | 18 | 7.85E-09 | $4.28 \mathrm{E}-08$ | 8.137 | 10.1717 |
| RNF122 | AC_000184.1 | 90 | 20 | 4.80E-07 | 2.11E-06 | 8.137 | 10.1717 |
| UNC5D | AC_000184.1 | 100 | 5 | $1.69 \mathrm{E}-14$ | $1.30 \mathrm{E}-13$ | 5.798 | 0.293699 |
| UNC5D | AC_000184.1 | 96 | 15 | 3.22E-09 | 1.80E-08 | 5.798 | 0.293699 |
| UNC5D | AC_000184.1 | 100 | 24 | 2.94E-07 | 1.32E-06 | 5.798 | 0.293699 |
| UNC5D | AC_000184.1 | 83 | 24 | 2.27E-05 | $7.98 \mathrm{E}-05$ | 5.798 | 0.293699 |
| FGFR1 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.128 | 4.27163 |
| FGFR1 | AC_000184.1 | 12 | 100 | 6.45E-11 | 4.07E-10 | 1.128 | 4.27163 |
| SFRP1 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.73 | 0.563249 |
| SFRP1 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.73 | 0.563249 |
| CSGALNACT1 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.037 | 2.32425 |
| ADAMTS14 | AC_000185.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.207 | 0.0820264 |
| CDH23 | AC_000185.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 20.334 | 0.962554 |
| CDH23 | AC_000185.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 20.334 | 0.962554 |
| ANXA8L1 | AC_000185.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.02 | 0.00748011 |
| ANXA8L1 | AC_000185.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.02 | 0.00748011 |
| PKNOX2 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.007 | 1.20047 |
| PKNOX2 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.007 | 1.20047 |
| KIRREL3 | AC_000186.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 77 | 7 | 1.12E-09 | 6.47E-09 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 95 | 14 | 2.01E-09 | $1.14 \mathrm{E}-08$ | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 18 | 2.38E-06 | $9.54 \mathrm{E}-06$ | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 76 | 18 | 7.00E-06 | $2.61 \mathrm{E}-05$ | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 22 | $1.84 \mathrm{E}-05$ | 6.52E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 75 | 22 | 6.49E-05 | $2.14 \mathrm{E}-04$ | 0.014 | 0.26713 |


| KIRREL3 | AC_000186.1 | 80 | 18 | 2.38E-06 | 9.54E-06 | 0.014 | 0.26713 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KIRREL3 | AC_000186.1 | 83 | 22 | 9.08E-06 | 3.37E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 75 | 9 | 1.70E-08 | 8.98E-08 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 90 | 16 | 3.88E-08 | 1.88E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 87 | 22 | 3.28E-06 | 1.29E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 88 | 24 | 6.41E-06 | 2.45E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 25 | 7.02E-05 | 2.30E-04 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 85 | 9 | 5.67E-10 | 3.30E-09 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 100 | 15 | 9.23E-10 | 5.35E-09 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 10 | 8.02E-09 | 4.36E-08 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 90 | 16 | 3.88E-08 | 1.88E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 78 | 11 | 3.96E-08 | 1.91E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 100 | 22 | 9.72E-08 | 4.57E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 17 | 5.72E-07 | 2.51E-06 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 17 | 5.72E-07 | 2.51E-06 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 81 | 25 | 5.36E-05 | 1.79E-04 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 10 | 2.71E-09 | 1.53E-08 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 14 | 8.33E-08 | 3.95E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 15 | 4.06E-07 | 1.80E-06 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 75 | 16 | 3.16E-06 | 1.24E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 7 | 4.23E-10 | 2.58E-09 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 76 | 10 | 3.00E-08 | 1.53E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 100 | 24 | 2.94E-07 | 1.32E-06 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 76 | 16 | 2.25E-06 | 9.06E-06 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 76 | 6 | 5.02E-10 | 3.04E-09 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 8 | 1.14E-09 | 6.61E-09 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 80 | 11 | 2.08E-08 | 1.09E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 0 | 3.95E-16 | 3.44E-15 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 81 | 21 | 8.86E-06 | 3.29E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 77 | 11 | 5.04E-08 | 2.42E-07 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 10 | 3.22E-09 | 1.80E-08 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 100 | 18 | 7.85E-09 | 4.28E-08 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 83 | 24 | $2.27 \mathrm{E}-05$ | 7.98E-05 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 75 | 22 | 6.49E-05 | 2.14E-04 | 0.014 | 0.26713 |
| KIRREL3 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.014 | 0.26713 |
| TMEM132A | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.101 | 2.9154 |
| TMEM258 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 6.39 | 34.137 |
| FADS2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.022 | 34.409 |
| FADS2 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.022 | 34.409 |
| FADS2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.022 | 34.409 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |


| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| MACROD1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 3.035 | 8.30819 |
| FKBP2 | AC_000186.1 | 100 | 11 | 2.69E-11 | $1.74 \mathrm{E}-10$ | 2.701 | 43.4495 |
| FKBP2 | AC_000186.1 | 100 | 11 | 2.69E-11 | 1.74E-10 | 2.701 | 43.4495 |
| NRXN2 | AC_000186.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.031 | 4.57515 |
| NRXN2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.031 | 4.57515 |
| EHBP1L1 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.063 | 1.11711 |
| ANKRD13D | AC_000186.1 | 100 | 25 | 5.20E-07 | 2.28E-06 | 0.273 | 0.307814 |
| TMEM134 | AC_000186.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 1.769 | 0.00026075 |
| ALDH3B1 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.043 | 1.67588 |
| ALDH3B1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.043 | 1.67588 |
| ALDH3B1 | AC_000186.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 0.043 | 1.67588 |
| MRGPRF | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.028 | 0.0658296 |
| MRGPRF | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.028 | 0.0658296 |
| ANO1 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.11 | 52.6666 |
| ANO1 | AC_000186.1 | 20 | 85 | $1.96 \mathrm{E}-06$ | 7.96E-06 | 0.11 | 52.6666 |
| ANO1 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.11 | 52.6666 |
| ANO1 | AC_000186.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 0.11 | 52.6666 |
| ANO1 | AC_000186.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.11 | 52.6666 |
| DHCR7 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 2.574 | 1.67939 |
| TSSC4 | AC_000186.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.6 | 0.0114462 |
| TSSC4 | AC_000186.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 0.6 | 0.0114462 |
| TH | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.215 | 0.230183 |
| TH | AC_000186.1 | 0 | 91 | 1.25E-17 | 1.29E-16 | 0.215 | 0.230183 |
| TH | AC_000186.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 0.215 | 0.230183 |
| IGF2 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.037 | 31.6633 |
| IGF2 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.037 | 31.6633 |
| IGF2 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.037 | 31.6633 |
| PNPLA2 | AC_000186.1 | 100 | 25 | 5.20E-07 | 2.28E-06 | 0.752 | 8.83435 |
| HRAS | AC_000186.1 | 8 | 100 | 9.20E-13 | 6.56E-12 | 1.46 | $1.73 \mathrm{E}-06$ |
| HRAS | AC_000186.1 | 8 | 100 | $9.20 \mathrm{E}-13$ | 6.56E-12 | 1.46 | $1.73 \mathrm{E}-06$ |
| PKP3 | AC_000186.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.211 | 0.0558369 |
| PKP3 | AC_000186.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.211 | 0.0558369 |
| ADAMTS4 | AC_000160.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 8.259 | 13.4961 |


| PEAR1 | AC_000160.1 | 0 | 90 | 1.66E-17 | 1.70E-16 | 0.017 | 3.50785 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATP1A1 | AC_000160.1 | 96 | 11 | $1.05 \mathrm{E}-10$ | 6.54E-10 | 72.836 | 148.908 |
| ATP1A1 | AC_000160.1 | 95 | 18 | 3.21E-08 | $1.63 \mathrm{E}-07$ | 72.836 | 148.908 |
| SLC44A5 | AC_000160.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 26.817 | 7.84819 |
| EFHD1 | AC_000160.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 12.044 | 61.7899 |
| INPP5D | AC_000160.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.005 | 0.417505 |
| INPP5D | AC_000160.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.005 | 0.417505 |
| BOK | AC_000160.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.023 | 0.290115 |
| BOK | AC_000160.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.023 | 0.290115 |
| BOK | AC_000160.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.023 | 0.290115 |
| THAP4 | AC_000160.1 | 100 | 9 | 3.27E-12 | 2.29E-11 | 5.406 | 3.32E-10 |
| ASB4 | AC_000161.1 | 100 | 2 | 5.84E-17 | 5.86E-16 | 0.059 | 2.29124 |
| ASB4 | AC_000161.1 | 94 | 4 | $3.11 \mathrm{E}-14$ | $2.39 \mathrm{E}-13$ | 0.059 | 2.29124 |
| ASB4 | AC_000161.1 | 83 | 6 | 3.47E-11 | 2.22E-10 | 0.059 | 2.29124 |
| ASB4 | AC_000161.1 | 95 | 18 | 3.21E-08 | $1.63 \mathrm{E}-07$ | 0.059 | 2.29124 |
| ASB4 | AC_000161.1 | 83 | 13 | 3.69E-08 | 1.88E-07 | 0.059 | 2.29124 |
| KIAA1324L | AC_000161.1 | 80 | 14 | 1.93E-07 | 8.74E-07 | 8.885 | 26.3772 |
| KIAA1324L | AC_000161.1 | 75 | 19 | $1.53 \mathrm{E}-05$ | 5.52E-05 | 8.885 | 26.3772 |
| LHFPL3 | AC_000161.1 | 77 | 0 | 5.26E-15 | 4.10E-14 | 99.227 | 0.712787 |
| LHFPL3 | AC_000161.1 | 77 | 0 | 5.26E-15 | 4.10E-14 | 99.227 | 0.712787 |
| MET | AC_000161.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $1.74 \mathrm{E}-10$ | 0.49 | 3.35075 |
| MET | AC_000161.1 | 83 | 18 | 1.10E-06 | 4.57E-06 | 0.49 | 3.35075 |
| MET | AC_000161.1 | 80 | 17 | $1.41 \mathrm{E}-06$ | 5.80E-06 | 0.49 | 3.35075 |
| CRHR2 | AC_000161.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.576 | 0.21157 |
| GTPBP10 | AC_000161.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 28.986 | 16.8739 |
| ADCY1 | AC_000161.1 | 0 | 90 | 1.66E-17 | 1.70E-16 | 0.016 | 2.7462 |
| ADCY1 | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.016 | 2.7462 |
| ADCY1 | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.016 | 2.7462 |
| CAMK2B | AC_000161.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 16 | 100 | 1.86E-09 | 1.05E-08 | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 87 | 7.02E-17 | 6.88E-16 | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 16 | 100 | 1.86E-09 | $1.05 \mathrm{E}-08$ | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 20 | 83 | 3.33E-06 | 1.30E-05 | 0.187 | 0.127235 |
| CAMK2B | AC_000161.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.187 | 0.127235 |
| GCK | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.055 | 0.419373 |
| CDK13 | AC_000161.1 | 78 | 15 | 6.41E-07 | 2.80E-06 | 22.109 | 15.9006 |
| CDK13 | AC_000161.1 | 78 | 15 | 6.41E-07 | 2.80E-06 | 22.109 | 15.9006 |
| PLXNA4 | AC_000161.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.799 | 0.523385 |
| LRGUK | AC_000161.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 94 | 14 | 2.56E-09 | $1.44 \mathrm{E}-08$ | 2.29 | 4.2307 |


| LRGUK | AC_000161.1 | 83 | 12 | 1.81E-08 | 9.56E-08 | 2.29 | 4.2307 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LRGUK | AC_000161.1 | 86 | 25 | 1.71E-05 | 6.13E-05 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 83 | 0 | 3.95E-16 | 3.44E-15 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 100 | 11 | 2.69E-11 | 1.74E-10 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 83 | 16 | $2.86 \mathrm{E}-07$ | 1.29E-06 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 80 | 16 | 7.24E-07 | 3.14E-06 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | 2.31E-09 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 100 | 17 | 4.16E-09 | 2.32E-08 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 83 | 18 | 1.10E-06 | 4.57E-06 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 78 | 20 | 1.17E-05 | 4.26E-05 | 2.29 | 4.2307 |
| LRGUK | AC_000161.1 | 83 | 19 | 1.84E-06 | 7.50E-06 | 2.29 | 4.2307 |
| UBN2 | AC_000161.1 | 80 | 10 | 8.02E-09 | 4.36E-08 | 46.853 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 10 | 8.84E-12 | 5.80E-11 | 46.853 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | 1.74E-10 | 46.853 | 3.21039 |
| UBN2 | AC_000161.1 | 85 | 21 | 3.15E-06 | 1.24E-05 | 46.853 | 3.21039 |
| UBN2 | AC_000161.1 | 75 | 17 | 5.30E-06 | 2.04E-05 | 46.853 | 3.21039 |
| UBN2 | AC_000161.1 | 100 | 6 | $6.67 \mathrm{E}-14$ | 5.10E-13 | 46.853 | 3.21039 |
| UBN2 | AC_000161.1 | 93 | 12 | 6.06E-10 | 3.53E-09 | 46.853 | 3.21039 |
| SSPO | AC_000161.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 0.01 | 6.73901 |
| SSPO | AC_000161.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 0.01 | 6.73901 |
| SSPO | AC_000161.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.01 | 6.73901 |
| RARRES2 | AC_000161.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 4.624 | 5.74164 |
| RARRES2 | AC_000161.1 | 0 | 80 | 1.24E-15 | 9.79E-15 | 4.624 | 5.74164 |
| RARRES2 | AC_000161.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | $9.63 \mathrm{E}-14$ | 4.624 | 5.74164 |
| NOS3 | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.32 | 1.16742 |
| TMUB1 | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.297 | 0.833155 |
| PAXIP1 | AC_000161.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 21.428 | $1.97 \mathrm{E}-07$ |
| RAPGEF3 | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.919 | 1.38967 |
| STAT6 | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.117 | 1.92315 |
| PTPN6 | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.146 | 0.552625 |
| TNFRSF1A | AC_000162.1 | 78 | 20 | 1.17E-05 | 4.26E-05 | 0.649 | 15.1137 |
| SCNN1A | AC_000162.1 | 78 | 20 | 1.17E-05 | 4.26E-05 | 1.772 | 1.35987 |
| VWF | AC_000162.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 2.671 | 4.28453 |
| VWF | AC_000162.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 2.671 | 4.28453 |
| SLC6A12 | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.009 | 1.19542 |
| DCP1B | AC_000162.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 0.08 | 13.4787 |
| DCP1B | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.08 | 13.4787 |
| DCP1B | AC_000162.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 2.32E-18 | 0.08 | 13.4787 |
| JOSD1 | AC_000162.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 9.79E-15 | 29.302 | 17.061 |
| TBC1D22A | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.421 | 8.54892 |
| HDAC10 | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.293 | 3.73E-07 |
| MAPK12 | AC_000162.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.03 | 0.340854 |
| PDE5A | AC_000163.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 76 | 0 | 6.99E-15 | 5.45E-14 | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 10 | 80 | 8.02E-09 | 4.36E-08 | 20.064 | 14.8399 |


| PDE5A | AC_000163.1 | 85 | 13 | 1.98E-08 | 1.04E-07 | 20.064 | 14.8399 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDE5A | AC_000163.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $9.63 \mathrm{E}-14$ | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 88 | 10 | 5.48E-10 | 3.19E-09 | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 75 | 7 | 2.27E-09 | 1.28E-08 | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 83 | 15 | 1.57E-07 | 7.27E-07 | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 80 | 21 | 1.20E-05 | $4.38 \mathrm{E}-05$ | 20.064 | 14.8399 |
| PDE5A | AC_000163.1 | 75 | 21 | 3.99E-05 | $1.35 \mathrm{E}-04$ | 20.064 | 14.8399 |
| CASP6 | AC_000163.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 214.923 | 2.46198 |
| CASP6 | AC_000163.1 | 100 | 16 | 1.86E-09 | 1.05E-08 | 214.923 | 2.46198 |
| NFKB1 | AC_000163.1 | 93 | 11 | $2.63 \mathrm{E}-10$ | 1.63E-09 | 6.486 | 2.82109 |
| NFKB1 | AC_000163.1 | 75 | 12 | 2.23E-07 | $1.01 \mathrm{E}-06$ | 6.486 | 2.82109 |
| NFKB1 | AC_000163.1 | 85 | 25 | $2.09 \mathrm{E}-05$ | $7.36 \mathrm{E}-05$ | 6.486 | 2.82109 |
| ADAMTS3 | AC_000163.1 | 94 | 0 | 2.96E-18 | 3.08E-17 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 13 | $1.74 \mathrm{E}-10$ | 1.08E-09 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 97 | 13 | 4.27E-10 | 2.60E-09 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 8 | 1.14E-09 | $6.61 \mathrm{E}-09$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 87 | 11 | $1.94 \mathrm{E}-09$ | 1.10E-08 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 75 | 9 | $1.70 \mathrm{E}-08$ | 8.98E-08 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 85 | 13 | $1.98 \mathrm{E}-08$ | $1.04 \mathrm{E}-07$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 100 | 20 | 2.92E-08 | $1.49 \mathrm{E}-07$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 80 | 13 | $1.01 \mathrm{E}-07$ | 4.71E-07 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 75 | 20 | 2.62E-05 | 9.12E-05 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 78 | 2 | 4.86E-13 | 3.60E-12 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 87 | 7 | 3.08E-11 | $1.96 \mathrm{E}-10$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 83 | 7 | $1.31 \mathrm{E}-10$ | $8.14 \mathrm{E}-10$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 77 | 11 | 5.04E-08 | $2.42 \mathrm{E}-07$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 88 | 16 | 7.03E-08 | 3.34E-07 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 77 | 15 | 9.12E-07 | 3.87E-06 | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 77 | 25 | 1.34E-04 | $4.21 \mathrm{E}-04$ | 0.202 | 0.815374 |
| ADAMTS3 | AC_000163.1 | 75 | 6 | 8.00E-10 | $4.66 \mathrm{E}-09$ | 0.202 | 0.815374 |
| JAKMIP1 | AC_000163.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.935 | 0.04102 |
| JAKMIP1 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.935 | 0.04102 |
| JAKMIP1 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.935 | 0.04102 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.492 | 0.0316418 |
| TNIP2 | AC_000163.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.492 | 0.0316418 |
| TBC1D14 | AC_000163.1 | 0 | 83 | 3.95E-16 | 3.44E-15 | 61.99 | 13.8021 |
| CRTC1 | AC_000164.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.328 | 1.00504 |


| CRTC1 | AC_000164.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.328 | 1.00504 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MVB12A | AC_000164.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.818 | 2.91305 |
| CACNA1A | AC_000164.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.415 | 0.723295 |
| IER2 | AC_000164.1 | 100 | 0 | 2.22E-19 | 2.32E-18 | 0.043 | 16.2488 |
| COL5A3 | AC_000164.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.1 | 2.99264 |
| S1PR5 | AC_000164.1 | 83 | 0 | 3.95E-16 | 3.44E-15 | 0.185 | 0.920123 |
| LDLR | AC_000164.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 2.294 | 8.06501 |
| EVI5L | AC_000164.1 | 0 | 80 | 1.24E-15 | 9.79E-15 | 1.675 | 12.5533 |
| ANGPTL4 | AC_000164.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.067 | 0.499163 |
| C3 | AC_000164.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.01 | 1.40461 |
| RFX2 | AC_000164.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.075 | 42.5618 |
| RFX2 | AC_000164.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.075 | 42.5618 |
| TJP3 | AC_000164.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.072 | 1.60424 |
| PTBP1 | AC_000164.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 107.244 | 6.34773 |
| PTBP1 | AC_000164.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 107.244 | 6.34773 |
| EGR1 | AC_000164.1 | 85 | 0 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 14.139 | 97.3863 |
| CTNNA1 | AC_000164.1 | 87 | 0 | 7.02E-17 | 6.88E-16 | 359.821 | 29.6623 |
| CTNNA1 | AC_000164.1 | 80 | 0 | 1.24E-15 | 9.79E-15 | 359.821 | 29.6623 |
| CTNNA1 | AC_000164.1 | 83 | 13 | 3.69E-08 | 1.88E-07 | 359.821 | 29.6623 |
| PCDH1 | AC_000164.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.542 | 1.2975 |
| GRIA1 | AC_000164.1 | 85 | 23 | 8.46E-06 | 3.15E-05 | 0.377 | 0.551824 |
| EFNA5 | AC_000164.1 | 0 | 80 | 1.24E-15 | 9.79E-15 | 0.397 | 29.9675 |
| ZNF395 | AC_000165.1 | 80 | 0 | 1.24E-15 | $9.79 \mathrm{E}-15$ | 5.019 | 3.82017 |
| ZNF395 | AC_000165.1 | 80 | 8 | 1.14E-09 | 6.61E-09 | 5.019 | 3.82017 |
| ZNF395 | AC_000165.1 | 80 | 12 | 4.35E-08 | 2.09E-07 | 5.019 | 3.82017 |
| ZNF395 | AC_000165.1 | 80 | 18 | 2.38E-06 | 9.54E-06 | 5.019 | 3.82017 |
| SCARA5 | AC_000165.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.32 \mathrm{E}-18$ | 0.093 | 3.45835 |
| SCARA5 | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.093 | 3.45835 |
| SHB | AC_000165.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 10.368 | 0.272166 |
| SHB | AC_000165.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 10.368 | 0.272166 |
| RHOBTB2 | AC_000165.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.412 | 1.10532 |
| RHOBTB2 | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.412 | 1.10532 |
| RHOBTB2 | AC_000165.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.412 | 1.10532 |
| RHOBTB2 | AC_000165.1 | 0 | 96 | 1.25E-18 | 1.30E-17 | 0.412 | 1.10532 |
| AQP7 | AC_000165.1 | 0 | 85 | 1.66E-16 | 1.56E-15 | 0.018 | 16.045 |
| AQP7 | AC_000165.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.018 | 16.045 |
| CNTFR | AC_000165.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 1.272 | 0.401799 |
| RPP25L | AC_000165.1 | 100 | 20 | 2.92E-08 | 1.49E-07 | 0.022 | 9.72948 |
| TMEM246 | AC_000165.1 | 78 | 20 | 1.17E-05 | 4.26E-05 | 0.048 | 0.61765 |
| COL27A1 | AC_000165.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.199 | 1.08769 |
| COL27A1 | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.199 | 1.08769 |
| COL27A1 | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.199 | 1.08769 |
| COL27A1 | AC_000165.1 | 20 | 100 | 2.92E-08 | 1.49E-07 | 0.199 | 1.08769 |
| PHF19 | AC_000165.1 | 0 | 90 | 1.66E-17 | 1.70E-16 | 0.213 | 2.04815 |
| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.529 | 26.6831 |


| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.529 | 26.6831 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.529 | 26.6831 |
| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.529 | 26.6831 |
| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.529 | 26.6831 |
| GSN | AC_000165.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.529 | 26.6831 |
| LAMA4 | AC_000166.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | $8.74 \mathrm{E}-07$ | 1.364 | 2.82183 |
| ASCC3 | AC_000166.1 | 88 | 14 | $1.67 \mathrm{E}-08$ | 8.86E-08 | 34.241 | 6.19346 |
| ASCC3 | AC_000166.1 | 83 | 21 | 5.30E-06 | $2.04 \mathrm{E}-05$ | 34.241 | 6.19346 |
| ENPP3 | AC_000166.1 | 77 | 9 | 8.67E-09 | $4.71 \mathrm{E}-08$ | 0.191 | 2.2943 |
| ENPP3 | AC_000166.1 | 85 | 20 | 1.76E-06 | $7.20 \mathrm{E}-06$ | 0.191 | 2.2943 |
| ZDHHC14 | AC_000166.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.56 \mathrm{E}-15$ | 0.565 | 6.51905 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | 2.32E-18 | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 83 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $9.79 \mathrm{E}-15$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 77 | 5.26E-15 | $4.10 \mathrm{E}-14$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 5 | 100 | 1.69E-14 | $1.30 \mathrm{E}-13$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| RPS6KA2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.225 | 1.24944 |
| THBS2 | AC_000166.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.311 | 1.91925 |
| THBS2 | AC_000166.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.311 | 1.91925 |
| ERMARD | AC_000166.1 | 0 | 88 | 3.94E-17 | 3.96E-16 | 2.539 | 9.29923 |
| ZNF75D | AC_000187.1 | 14 | 85 | 3.93E-08 | $1.89 \mathrm{E}-07$ | 140.532 | 66.9043 |
| ZNF75D | AC_000187.1 | 83 | 0 | 3.95E-16 | $3.44 \mathrm{E}-15$ | 140.532 | 66.9043 |
| ZNF75D | AC_000187.1 | 0 | 85 | 1.66E-16 | $1.56 \mathrm{E}-15$ | 140.532 | 66.9043 |
| ZNF75D | AC_000187.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 140.532 | 66.9043 |
| ABCD1 | AC_000187.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.088 | 4.01559 |
| TMEM164 | AC_000187.1 | 100 | 0 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 1.617 | 2.99726 |
| PAK3 | AC_000187.1 | 14 | 78 | 3.50E-07 | $1.56 \mathrm{E}-06$ | 12.109 | 2.90494 |
| MSN | AC_000187.1 | 91 | 9 | 7.07E-11 | $4.45 \mathrm{E}-10$ | 34.72 | 9.52565 |
| MSN | AC_000187.1 | 77 | 20 | 1.58E-05 | 5.68E-05 | 34.72 | 9.52565 |
| MOSPD2 | AC_000187.1 | 18 | 85 | 6.32E-07 | $2.76 \mathrm{E}-06$ | 27.71 | 6.82811 |
| STS | AC_000187.1 | 0 | 100 | 2.22E-19 | $2.32 \mathrm{E}-18$ | 0.282 | 0.38815 |

Table S7.4 Gene expression for DMRs between GV vs. in vivo MII

| Gene expression in DMRs from GV vs. in vivo MII |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Chr | GV_me | In vivo MII_me | p-value | q-value | GV expression | In vivo MII expression |
| SENP7 | AC_000158.1 | 20 | 100 | 2.92E-08 | $4.20 \mathrm{E}-07$ | 28.275 | 1.328 |
| MYCBP2 | AC_000169.1 | 75 | 14 | 9.09E-07 | 8.19E-06 | 11.59 | 6.121 |
| DOCK9 | AC_000169.1 | 14 | 80 | 1.93E-07 | 2.06E-06 | 21.342 | 11.036 |
| SERTAD4 | AC_000173.1 | 0 | 100 | 2.22E-19 | $4.19 \mathrm{E}-17$ | 0.377 | 0.386 |
| ZNF524 | AC_000175.1 | 0 | 100 | 2.22E-19 | $4.19 \mathrm{E}-17$ | 3.733 | 0.517 |
| RPL19 | AC_000176.1 | 77 | 20 | $1.58 \mathrm{E}-05$ | 1.10E-04 | 1281.436 | 27.609 |
| RAB37 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 5.424 | 0.14 |
| RAB37 | AC_000176.1 | 85 | 16 | $1.60 \mathrm{E}-07$ | 1.79E-06 | 5.424 | 0.14 |
| RAB37 | AC_000176.1 | 87 | 21 | 1.86E-06 | $1.61 \mathrm{E}-05$ | 5.424 | 0.14 |
| TRIM62 | AC_000159.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | 4.19E-17 | 10.799 | 0.037 |
| LCP2 | AC_000177.1 | 0 | 100 | 2.22E-19 | 4.19E-17 | 1.083 | 0.162 |
| SLC38A9 | AC_000177.1 | 25 | 80 | 7.02E-05 | $4.25 \mathrm{E}-04$ | 23.88 | 10.109 |
| MRPS11 | AC_000178.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 24.469 | 1.443 |
| MRPS11 | AC_000178.1 | 22 | 100 | $9.72 \mathrm{E}-08$ | 1.10E-06 | 24.469 | 1.443 |
| FRMD5 | AC_000178.1 | 100 | 25 | 5.20E-07 | 5.31E-06 | 8.882 | 3.842 |
| FRMD5 | AC_000178.1 | 100 | 16 | $1.86 \mathrm{E}-09$ | 3.35E-08 | 8.882 | 3.842 |
| FRMD5 | AC_000178.1 | 80 | 15 | 4.06E-07 | 4.23E-06 | 8.882 | 3.842 |
| SLC4A7 | AC_000179.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 7.76 | 11.245 |
| ERC2 | AC_000179.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 7.27E-06 | 5.638 | 1.022 |
| DUSP7 | AC_000179.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 129.436 | 15.385 |
| PTPN23 | AC_000179.1 | 23 | 80 | 3.02E-05 | $1.94 \mathrm{E}-04$ | 9.137 | 1.502 |
| MGLL | AC_000179.1 | 83 | 0 | 3.95E-16 | $4.34 \mathrm{E}-14$ | 0.776 | 0.045 |
| HIST1H1C | AC_000180.1 | 80 | 20 | 6.94E-06 | 5.05E-05 | 168.516 | 8.217 |
| ATP9B | AC_000181.1 | 100 | 0 | 2.22E-19 | 4.19E-17 | 1.054 | 0.513 |
| KCTD1 | AC_000181.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 3.893 | 6.366 |
| LOXL4 | AC_000183.1 | 0 | 100 | 2.22E-19 | $4.19 \mathrm{E}-17$ | 0.014 | 0.052 |
| SUFU | AC_000183.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | 8.05E-13 | 2.698 | 1.731 |
| SORCS3 | AC_000183.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 8.191 | 2.896 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | $4.19 \mathrm{E}-17$ | 8.191 | 2.896 |
| WRN | AC_000184.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | 4.23E-06 | 10.07 | 1.63 |
| WRN | AC_000184.1 | 93 | 16 | $1.47 \mathrm{E}-08$ | 2.45E-07 | 10.07 | 1.63 |
| RNF122 | AC_000184.1 | 80 | 0 | 1.24E-15 | 8.79E-14 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 15 | 80 | $4.06 \mathrm{E}-07$ | 4.23E-06 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 87 | 0 | $7.02 \mathrm{E}-17$ | 1.15E-14 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | 8.76E-09 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 7 | 2.90E-13 | $1.60 \mathrm{E}-11$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | 4.20E-07 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 83 | 20 | $3.33 \mathrm{E}-06$ | $2.69 \mathrm{E}-05$ | 9.872 | 2.269 |


| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | 4.19E-17 | 9.872 | 2.269 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | 4.19E-17 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 83 | 11 | $7.24 \mathrm{E}-09$ | $1.23 \mathrm{E}-07$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 14 | 83 | $8.33 \mathrm{E}-08$ | 9.57E-07 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 83 | 20 | 3.33E-06 | $2.69 \mathrm{E}-05$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | 7.27E-06 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 0 | 83 | $3.95 \mathrm{E}-16$ | $4.34 \mathrm{E}-14$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $8.79 \mathrm{E}-14$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 14 | 100 | 3.79E-10 | 8.76E-09 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $4.19 \mathrm{E}-17$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 25 | 90 | $6.49 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 25 | 85 | $2.09 \mathrm{E}-05$ | $1.41 \mathrm{E}-04$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 5 | 80 | 3.50E-11 | 9.03E-10 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $8.79 \mathrm{E}-14$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 76 | 16 | $2.25 \mathrm{E}-06$ | $1.91 \mathrm{E}-05$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 81 | 0 | $9.35 \mathrm{E}-16$ | $8.79 \mathrm{E}-14$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 7.27E-06 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | 2.06E-06 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 8.79E-14 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 88 | 0 | $3.94 \mathrm{E}-17$ | 6.82E-15 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $8.79 \mathrm{E}-14$ | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | 5.05E-05 | 9.872 | 2.269 |
| RNF122 | AC_000184.1 | 100 | 25 | $5.20 \mathrm{E}-07$ | 5.31E-06 | 9.872 | 2.269 |
| UNC5D | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 9.564 | 3.119 |
| MACROD1 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 5.449 | 0.955 |
| PC | AC_000186.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 0.961 | 0.042 |
| CARS | AC_000186.1 | 77 | 20 | $1.58 \mathrm{E}-05$ | $1.10 \mathrm{E}-04$ | 3.16 | 0.776 |


| MAGI3 | AC_000160.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $8.79 \mathrm{E}-14$ | 68.672 | 7.925 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| KIAA1324L | AC_000161.1 | 85 | 9 | $5.67 \mathrm{E}-10$ | $1.06 \mathrm{E}-08$ | 14.742 | 3.943 |
| KIAA1324L | AC_000161.1 | 80 | 25 | $7.02 \mathrm{E}-05$ | $4.25 \mathrm{E}-04$ | 14.742 | 3.943 |
| KIAA1324L | AC_000161.1 | 22 | 83 | $9.08 \mathrm{E}-06$ | $6.54 \mathrm{E}-05$ | 14.742 | 3.943 |
| MET | AC_000161.1 | 87 | 20 | $1.14 \mathrm{E}-06$ | $1.00 \mathrm{E}-05$ | 0.14 | 0.156 |
| GTPBP10 | AC_000161.1 | 83 | 0 | $3.95 \mathrm{E}-16$ | $4.34 \mathrm{E}-14$ | 36.996 | 1.259 |
| LRGUK | AC_000161.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 2.844 | 0.074 |
| LRGUK | AC_000161.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 2.844 | 0.074 |
| LRGUK | AC_000161.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | $2.06 \mathrm{E}-06$ | 2.844 | 0.074 |
| LRGUK | AC_000161.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | $5.05 \mathrm{E}-05$ | 2.844 | 0.074 |
| LRGUK | AC_000161.1 | 77 | 20 | $1.58 \mathrm{E}-05$ | $1.10 \mathrm{E}-04$ | 2.844 | 0.074 |
| LRGUK | AC_000161.1 | 75 | 20 | $2.62 \mathrm{E}-05$ | $1.76 \mathrm{E}-04$ | 2.844 | 0.074 |
| LRGUK | AC_000161.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 2.844 | 0.074 |
| UBN2 | AC_000161.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | $3.35 \mathrm{E}-08$ | 55.015 | 3.553 |
| ITPR2 | AC_000162.1 | 23 | 75 | $9.52 \mathrm{E}-05$ | $5.55 \mathrm{E}-04$ | 2.054 | 1.345 |
| TNFRSF1A | AC_000162.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | $7.27 \mathrm{E}-06$ | 0.315 | 0.058 |
| SCNN1A | AC_000162.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | $7.27 \mathrm{E}-06$ | 4.3 | 0.279 |
| PDE5A | AC_000163.1 | 83 | 0 | $3.95 \mathrm{E}-16$ | $4.34 \mathrm{E}-14$ | 20.575 | 6.356 |
| PDE5A | AC_000163.1 | 12 | 80 | $4.35 \mathrm{E}-08$ | $5.03 \mathrm{E}-07$ | 20.575 | 6.356 |
| PDE5A | AC_000163.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | $2.06 \mathrm{E}-06$ | 20.575 | 6.356 |
| PDE5A | AC_000163.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | $7.27 \mathrm{E}-06$ | 20.575 | 6.356 |
| PDE5A | AC_000163.1 | 90 | 23 | $2.50 \mathrm{E}-06$ | $2.11 \mathrm{E}-05$ | 20.575 | 6.356 |
| METAP1 | AC_000163.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $5.05 \mathrm{E}-05$ | 10.854 | 11.068 |
| ADAMTS3 | AC_000163.1 | 87 | 20 | $1.14 \mathrm{E}-06$ | $1.00 \mathrm{E}-05$ | 0.48 | 0.026 |
| CCDC96 | AC_000163.1 | 20 | 85 | $1.96 \mathrm{E}-06$ | $1.68 \mathrm{E}-05$ | 0.902 | 0.013 |
| SLC12A2 | AC_000164.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 22.906 | 9.346 |
| DBN1 | AC_000164.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $4.19 \mathrm{E}-17$ | 2.413 | 2.981 |
| EGR1 | AC_000164.1 | 100 | 16 | $1.86 \mathrm{E}-09$ | $3.35 \mathrm{E}-08$ | 23.657 | 0.357 |
| CTNNA1 | AC_000164.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.20 \mathrm{E}-07$ | 282.447 | 782.826 |
| CTNNA1 | AC_000164.1 | 85 | 20 | $1.96 \mathrm{E}-06$ | $1.68 \mathrm{E}-05$ | 282.447 | 2826 |
| CTNNA1 | AC_000164.1 | 81 | 25 | $5.36 \mathrm{E}-05$ | $3.34 \mathrm{E}-04$ | 282.447 | 0.088 |
| GRIA1 | AC_000164.1 | 81 | 0 | $9.35 \mathrm{E}-16$ | $8.79 \mathrm{E}-14$ | 9.118 |  |
| MSN | AC_000187.1 | 77 | 9 | $8.67 \mathrm{E}-09$ | $1.45 \mathrm{E}-07$ | 42.143 |  |

Table S7.5 Gene expression for DMRs between GV vs. in vitro MII

| Gene expression in DMRs from GV vs. in vitro MII |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Chr | GV_me | In vitro MII_me | p-value | q-value | GV expression | In vitro MII expression |
| CNNM4 | AC_000168.1 | 85 | 20 | $1.96 \mathrm{E}-06$ | $1.95 \mathrm{E}-05$ | 23.617 | 11.71 |
| DYSF | AC_000168.1 | 20 | 80 | 6.94E-06 | $5.87 \mathrm{E}-05$ | 0.372 | 0.44 |
| DYSF | AC_000168.1 | 80 | 20 | 6.94E-06 | $5.87 \mathrm{E}-05$ | 0.372 | 0.44 |
| RALGPS1 | AC_000168.1 | 80 | 16 | 7.24E-07 | $8.28 \mathrm{E}-06$ | 2.175 | 2.29 |
| DOCK9 | AC_000169.1 | 14 | 80 | $1.93 \mathrm{E}-07$ | 2.37E-06 | 21.342 | 27.006 |
| PLCB1 | AC_000170.1 | 85 | 0 | 1.66E-16 | $1.71 \mathrm{E}-14$ | 2.134 | 0.538 |
| MACROD2 | AC_000170.1 | 87 | 12 | 4.29E-09 | $8.34 \mathrm{E}-08$ | 6.478 | 6.667 |
| MACROD2 | AC_000170.1 | 77 | 12 | 1.04E-07 | $1.34 \mathrm{E}-06$ | 6.478 | 6.667 |
| CUBN | AC_000170.1 | 25 | 83 | 3.36E-05 | $2.50 \mathrm{E}-04$ | 0.254 | 0.097 |
| CUBN | AC_000170.1 | 100 | 22 | 9.72E-08 | $1.26 \mathrm{E}-06$ | 0.254 | 0.097 |
| DEPTOR | AC_000171.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 4.076 | 1.409 |
| CD82 | AC_000172.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.07 | 0.012 |
| RGS7 | AC_000173.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 1.014 | 0.034 |
| PKP1 | AC_000173.1 | 83 | 0 | 3.95E-16 | $3.29 \mathrm{E}-14$ | 0.483 | 0.111 |
| CPE | AC_000174.1 | 75 | 25 | 2.10E-04 | 0.00122266 | 5.305 | 5.301 |
| PRODH | AC_000174.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 1.218 | 0.165 |
| CCDC116 | AC_000174.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.377 | 0.556 |
| FOXC2 | AC_000175.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.521 | 0.358 |
| MNT | AC_000176.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 4.813 | 2.52 |
| FAM83G | AC_000176.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.014 | 0.022 |
| FBXL20 | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 29.104 | 27.908 |
| RAB37 | AC_000176.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 5.424 | 2.856 |
| RAB37 | AC_000176.1 | 80 | 9 | 3.43E-09 | $6.69 \mathrm{E}-08$ | 5.424 | 2.856 |
| RAB37 | AC_000176.1 | 83 | 0 | 3.95E-16 | $3.29 \mathrm{E}-14$ | 5.424 | 2.856 |
| RAB37 | AC_000176.1 | 20 | 100 | 2.92E-08 | $4.73 \mathrm{E}-07$ | 5.424 | 2.856 |
| RAB37 | AC_000176.1 | 83 | 15 | $1.57 \mathrm{E}-07$ | $2.01 \mathrm{E}-06$ | 5.424 | 2.856 |
| 4-Mar | AC_000159.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.525 | 0.089 |
| SLC38A9 | AC_000177.1 | 83 | 0 | 3.95E-16 | $3.29 \mathrm{E}-14$ | 23.88 | 23.787 |
| SLC38A9 | AC_000177.1 | 20 | 80 | 6.94E-06 | $5.87 \mathrm{E}-05$ | 23.88 | 23.787 |
| SKIV2L2 | AC_000177.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 15.244 | 16.212 |
| MRPS11 | AC_000178.1 | 83 | 5 | 1.01E-11 | $2.96 \mathrm{E}-10$ | 24.469 | 5.9 |
| MRPS11 | AC_000178.1 | 20 | 100 | 2.92E-08 | $4.73 \mathrm{E}-07$ | 24.469 | 5.9 |
| FRMD5 | AC_000178.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 8.882 | 5.627 |
| FRMD5 | AC_000178.1 | 14 | 100 | 3.79E-10 | $9.40 \mathrm{E}-09$ | 8.882 | 5.627 |
| PTPN23 | AC_000179.1 | 80 | 16 | 7.24E-07 | $8.28 \mathrm{E}-06$ | 9.137 | 3.856 |
| ATP2B2 | AC_000179.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.003 | 0.009 |
| KLF15 | AC_000179.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 0.233 | 0.159 |
| PXDC1 | AC_000180.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 0.076 | 0.098 |


| GMDS | AC_000180.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 1.846 | 1.399 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FBXL16 | AC_000182.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.73 \mathrm{E}-07$ | 0.915 | 0.279 |
| PRKG1 | AC_000183.1 | 14 | 83 | 8.33E-08 | 1.09E-06 | 21.133 | 25.31 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 8.191 | 7.95 |
| SORCS3 | AC_000183.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 8.191 | 7.95 |
| RNF122 | AC_000184.1 | 12 | 100 | $6.45 \mathrm{E}-11$ | $1.73 \mathrm{E}-09$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 14 | $3.79 \mathrm{E}-10$ | $9.40 \mathrm{E}-09$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 9 | 100 | 3.27E-12 | $1.23 \mathrm{E}-10$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | 8.28E-06 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.71 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.73 \mathrm{E}-07$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 15 | $4.06 \mathrm{E}-07$ | $4.81 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 25 | 87 | $1.29 \mathrm{E}-05$ | $1.05 \mathrm{E}-04$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 83 | 3.33E-06 | $3.08 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 16 | $7.24 \mathrm{E}-07$ | $8.28 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | 2.92E-08 | $4.73 \mathrm{E}-07$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 83 | $2.86 \mathrm{E}-07$ | 3.43E-06 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | $8.28 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 75 | 0 | 1.25E-14 | $6.66 \mathrm{E}-13$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 85 | 12 | 8.19E-09 | $1.53 \mathrm{E}-07$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 75 | 20 | $2.62 \mathrm{E}-05$ | 2.02E-04 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 90 | $1.66 \mathrm{E}-17$ | $2.26 \mathrm{E}-15$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 7.34E-14 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 83 | 3.95E-16 | 3.29E-14 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 80 | 6.94E-06 | $5.87 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 25 | 86 | $1.71 \mathrm{E}-05$ | $1.38 \mathrm{E}-04$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $6.66 \mathrm{E}-13$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.73 \mathrm{E}-07$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 85 | $1.96 \mathrm{E}-06$ | $1.95 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 11 | $2.08 \mathrm{E}-08$ | 3.55E-07 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.73 \mathrm{E}-07$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 85 | $1.96 \mathrm{E}-06$ | $1.95 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 14 | 1.93E-07 | $2.37 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 80 | 6.94E-06 | $5.87 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 25 | 85 | $2.09 \mathrm{E}-05$ | 1.63E-04 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 76 | 25 | $1.74 \mathrm{E}-04$ | 0.00110776 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | 3.70E-08 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | $8.28 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 87 | $1.14 \mathrm{E}-06$ | $1.16 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 0 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 9.872 | 8.137 |


| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 9.872 | 8.137 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 0 | 78 | $2.95 \mathrm{E}-15$ | $1.73 \mathrm{E}-13$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 77 | $5.26 \mathrm{E}-15$ | $3.00 \mathrm{E}-13$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 100 | 1.86E-09 | $3.70 \mathrm{E}-08$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 25 | $7.02 \mathrm{E}-05$ | $4.91 \mathrm{E}-04$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.71 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 75 | $1.25 \mathrm{E}-14$ | 6.66E-13 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | $8.28 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | 3.29E-14 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 83 | 20 | 3.33E-06 | $3.08 \mathrm{E}-05$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $3.28 \mathrm{E}-17$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 88 | 3.94E-17 | $5.09 \mathrm{E}-15$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 83 | 0 | 3.95E-16 | 3.29E-14 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | 2.92E-08 | $4.73 \mathrm{E}-07$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | 3.28E-17 | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 14 | $1.93 \mathrm{E}-07$ | $2.37 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | $8.28 \mathrm{E}-06$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 75 | $2.62 \mathrm{E}-05$ | $2.02 \mathrm{E}-04$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 100 | $1.86 \mathrm{E}-09$ | $3.70 \mathrm{E}-08$ | 9.872 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 11 | $2.69 \mathrm{E}-11$ | $7.78 \mathrm{E}-10$ | 9.872 | 8.137 |
| UNC5D | AC_000184.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.73 \mathrm{E}-07$ | 9.564 | 5.798 |
| MACROD1 | AC_000186.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | $8.06 \mathrm{E}-15$ | 5.449 | 3.035 |
| MACROD1 | AC_000186.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.71 \mathrm{E}-14$ | 5.449 | 3.035 |
| NRXN2 | AC_000186.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 0.23 | 0.031 |
| KLC2 | AC_000186.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $6.66 \mathrm{E}-13$ | 0.59 | 0.89 |
| MAGI3 | AC_000160.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 68.672 | 59.519 |
| YBX1 | AC_000160.1 | 100 | 20 | 2.92E-08 | $4.73 \mathrm{E}-07$ | 167.373 | 157.381 |
| KIAA1324L | AC_000161.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.87E-05 | 14.742 | 8.885 |
| LHFPL3 | AC_000161.1 | 76 | 14 | $6.34 \mathrm{E}-07$ | $7.37 \mathrm{E}-06$ | 88.447 | 99.227 |
| MET | AC_000161.1 | 87 | 0 | 7.02E-17 | $8.06 \mathrm{E}-15$ | 0.14 | 0.49 |
| LRGUK | AC_000161.1 | 85 | 0 | $1.66 \mathrm{E}-16$ | $1.71 \mathrm{E}-14$ | 2.844 | 2.29 |
| LRGUK | AC_000161.1 | 75 | 0 | $1.25 \mathrm{E}-14$ | $6.66 \mathrm{E}-13$ | 2.844 | 2.29 |
| LRGUK | AC_000161.1 | 16 | 80 | $7.24 \mathrm{E}-07$ | 8.28E-06 | 2.844 | 2.29 |
| LRGUK | AC_000161.1 | 75 | 14 | $9.09 \mathrm{E}-07$ | 9.50E-06 | 2.844 | 2.29 |
| UBN2 | AC_000161.1 | 88 | 0 | 3.94E-17 | $5.09 \mathrm{E}-15$ | 55.015 | 46.853 |
| TOM1 | AC_000162.1 | 83 | 0 | 3.95E-16 | 3.29E-14 | 4.641 | 2.929 |
| TNFRSF1A | AC_000162.1 | 80 | 20 | $6.94 \mathrm{E}-06$ | 5.87E-05 | 0.315 | 0.649 |
| SCNN1A | AC_000162.1 | 80 | 20 | 6.94E-06 | 5.87E-05 | 4.3 | 1.772 |
| PDE5A | AC_000163.1 | 0 | 76 | 6.99E-15 | 3.93E-13 | 20.575 | 20.064 |
| PDE5A | AC_000163.1 | 100 | 25 | 5.20E-07 | $6.07 \mathrm{E}-06$ | 20.575 | 20.064 |
| PDE5A | AC_000163.1 | 20 | 83 | 3.33E-06 | $3.08 \mathrm{E}-05$ | 20.575 | 20.064 |
| PDE5A | AC_000163.1 | 0 | 87 | $7.02 \mathrm{E}-17$ | $8.06 \mathrm{E}-15$ | 20.575 | 20.064 |
| PDE5A | AC_000163.1 | 12 | 80 | $4.35 \mathrm{E}-08$ | $5.78 \mathrm{E}-07$ | 20.575 | 20.064 |


| NFKB1 | AC_000163.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $7.34 \mathrm{E}-14$ | 5.368 | 6.486 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| NSG1 | AC_000163.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 12.347 | 5.216 |
| PRDX2 | AC_000164.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 541.593 | 139.339 |
| SLC12A2 | AC_000164.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 22.906 | 24.104 |
| CTNNA1 | AC_000164.1 | 100 | 20 | $2.92 \mathrm{E}-08$ | $4.73 \mathrm{E}-07$ | 282.447 | 359.821 |
| CTNNA1 | AC_000164.1 | 20 | 83 | $3.33 \mathrm{E}-06$ | $3.08 \mathrm{E}-05$ | 282.447 | 359.821 |
| GRIA1 | AC_000164.1 | 81 | 23 | $2.27 \mathrm{E}-05$ | $1.78 \mathrm{E}-04$ | 0.245 | 0.377 |
| ZNF395 | AC_000165.1 | 14 | 80 | $1.93 \mathrm{E}-07$ | $2.37 \mathrm{E}-06$ | 6.707 | 5.019 |
| ZNF395 | AC_000165.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $5.87 \mathrm{E}-05$ | 6.707 | 5.019 |
| RHOBTB2 | AC_000165.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 0.079 | 0.412 |
| RPS6KA2 | AC_000166.1 | 100 | 0 | $2.2 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 0.203 | 0.225 |
| THBS2 | AC_000166.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 0.046 | 1.311 |
| HS6ST2 | AC_000187.1 | 85 | 20 | $1.96 \mathrm{E}-06$ | $1.95-05$ | 0.774 | 0.364 |
| ZNF75D | AC_000187.1 | 80 | 10 | $8.02 \mathrm{E}-09$ | $1.50 \mathrm{E}-07$ | 109.846 | 140.532 |
| ZNF75D | AC_000187.1 | 81 | 20 | $5.62 \mathrm{E}-06$ | $5.11 \mathrm{E}-05$ | 109.846 | 140.532 |
| TMEM164 | AC_000187.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $3.28 \mathrm{E}-17$ | 6.522 | 1.617 |

Table S6.6 Gene expression for DMRs between in vivo MII vs. in vitro MII

| Gene expression in DMRs from in vivo MII vs. in vitro MII |  |  |  | p-value | q-value | In vivo MII expression | In vitro MII expression |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Chr | In vivo MII_me | In vitro MII_me |  |  |  |  |
| DOCK9 | AC_000169.1 | 14 | 88 | $1.67 \mathrm{E}-08$ | $2.48 \mathrm{E}-07$ | 11.036 | 27.006 |
| CHMP4B | AC_000170.1 | 20 | 75 | $2.62 \mathrm{E}-05$ | $1.79 \mathrm{E}-04$ | 8.831 | 6.574 |
| ZW10 | AC_000172.1 | 75 | 25 | $2.10 \mathrm{E}-04$ | 0.00106068 | 74.41 | 27.922 |
| PHLDB1 | AC_000172.1 | 100 | 0 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.203 | 0.626 |
| CAPN5 | AC_000172.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | $4.16 \mathrm{E}-07$ | 0.013 | 0.013 |
| OSBP2 | AC_000174.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 0.035 | 0.359 |
| SLC7A5 | AC_000175.1 | 100 | 0 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.029 | 0.039 |
| ZNF423 | AC_000175.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 0.225 | 0.044 |
| ZNF423 | AC_000175.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 0.225 | 0.044 |
| TTYH1 | AC_000175.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 0.017 | 1.491 |
| COPZ2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.879 | 2.322 |
| COPZ2 | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.879 | 2.322 |
| RPL19 | AC_000176.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $5.31 \mathrm{E}-05$ | 27.609 | 622.381 |
| RARA | AC_000176.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.389 | 5.363 |
| CDR2L | AC_000176.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | $6.96 \mathrm{E}-14$ | 0.017 | 1.002 |
| RAB37 | AC_000176.1 | 20 | 75 | $2.62 \mathrm{E}-05$ | $1.79 \mathrm{E}-04$ | 0.14 | 2.856 |
| RAB37 | AC_000176.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $6.96 \mathrm{E}-14$ | 0.14 | 2.856 |
| RAB37 | AC_000176.1 | 16 | 75 | 3.16E-06 | $2.68 \mathrm{E}-05$ | 0.14 | 2.856 |
| RAB37 | AC_000176.1 | 21 | 75 | $3.99 \mathrm{E}-05$ | $2.55 \mathrm{E}-04$ | 0.14 | 2.856 |
| LCP2 | AC_000177.1 | 100 | 0 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.162 | 1.715 |
| SKIV2L2 | AC_000177.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $5.31 \mathrm{E}-05$ | 0.801 | 16.212 |
| SKIV2L2 | AC_000177.1 | 100 | 0 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.801 | 16.212 |
| FRMD5 | AC_000178.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $6.96 \mathrm{E}-14$ | 3.842 | 5.627 |
| FRMD5 | AC_000178.1 | 13 | 80 | $1.01 \mathrm{E}-07$ | $1.17 \mathrm{E}-06$ | 3.842 | 5.627 |
| SYNPR | AC_000179.1 | 87 | 25 | $1.29 \mathrm{E}-05$ | $9.32 \mathrm{E}-05$ | 3.006 | 0.827 |
| ERC2 | AC_000179.1 | 16 | 83 | $2.86 \mathrm{E}-07$ | 3.08E-06 | 1.022 | 6.3 |
| PTPN23 | AC_000179.1 | 80 | 18 | $2.38 \mathrm{E}-06$ | $2.09 \mathrm{E}-05$ | 1.502 | 3.856 |
| KLF15 | AC_000179.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 1.162 | 0.159 |
| HIST1H1C | AC_000180.1 | 20 | 80 | $6.94 \mathrm{E}-06$ | $5.31 \mathrm{E}-05$ | 8.217 | 154.3 |
| LHPP | AC_000183.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | $6.96 \mathrm{E}-14$ | 0.171 | 0.303 |
| LHPP | AC_000183.1 | 100 | 0 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 0.171 | 0.303 |
| RNF122 | AC_000184.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 83 | 3.95E-16 | $3.04 \mathrm{E}-14$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 77 | $1.58 \mathrm{E}-05$ | $1.13 \mathrm{E}-04$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 81 | $9.35 \mathrm{E}-16$ | 6.96E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 7 | 81 | $2.68 \mathrm{E}-10$ | $5.96 \mathrm{E}-09$ | 2.269 | 8.137 |


| RNF122 | AC_000184.1 | 0 | 100 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 11 | 100 | $2.69 \mathrm{E}-11$ | 7.05E-10 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 90 | $1.66 \mathrm{E}-17$ | $1.86 \mathrm{E}-15$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 11 | 100 | $2.69 \mathrm{E}-11$ | 7.05E-10 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 25 | 80 | 7.02E-05 | $4.29 \mathrm{E}-04$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 83 | 8 | $4.40 \mathrm{E}-10$ | 9.35E-09 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 9 | 85 | 5.67E-10 | $1.02 \mathrm{E}-08$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 83 | 3.95E-16 | 3.04E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 83 | 20 | 3.33E-06 | 2.78E-05 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 22 | 75 | 6.49E-05 | 4.02E-04 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | 2.92E-08 | $4.16 \mathrm{E}-07$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | 2.71E-17 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 100 | 1.86E-09 | $3.23 \mathrm{E}-08$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | 2.71E-17 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 10 | 83 | 3.22E-09 | 5.45E-08 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | 2.92E-08 | 4.16E-07 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 25 | 83 | $3.36 \mathrm{E}-05$ | 2.19E-04 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 25 | 7.02E-05 | $4.29 \mathrm{E}-04$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 83 | 3.33E-06 | $2.78 \mathrm{E}-05$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 88 | 3.94E-17 | 4.13E-15 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 12 | 100 | 6.45E-11 | 1.56E-09 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 87 | $1.14 \mathrm{E}-06$ | $1.04 \mathrm{E}-05$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 100 | 2.22E-19 | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 75 | 7 | $2.27 \mathrm{E}-09$ | $3.91 \mathrm{E}-08$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 11 | 80 | $2.08 \mathrm{E}-08$ | 3.05E-07 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 100 | $2.92 \mathrm{E}-08$ | 4.16E-07 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 0 | $2.22 \mathrm{E}-19$ | $2.71 \mathrm{E}-17$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 12 | 100 | $6.45 \mathrm{E}-11$ | 1.56E-09 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 16 | 85 | 1.60E-07 | $1.85 \mathrm{E}-06$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 20 | 80 | 6.94E-06 | 5.31E-05 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 85 | $1.66 \mathrm{E}-16$ | $1.48 \mathrm{E}-14$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 100 | 25 | 5.20E-07 | 5.45E-06 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 80 | 16 | 7.24E-07 | $7.46 \mathrm{E}-06$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 14 | 83 | 8.33E-08 | 9.92E-07 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 88 | 3.94E-17 | $4.13 \mathrm{E}-15$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 11 | 100 | $2.69 \mathrm{E}-11$ | 7.05E-10 | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 0 | 88 | $3.94 \mathrm{E}-17$ | $4.13 \mathrm{E}-15$ | 2.269 | 8.137 |
| RNF122 | AC_000184.1 | 14 | 75 | $9.09 \mathrm{E}-07$ | 8.53E-06 | 2.269 | 8.137 |


| FGFR1 | AC_000184.1 | 100 | 12 | 6.45E-11 | 1.56E-09 | 2.2 | 1.128 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MACROD1 | AC_000186.1 | 100 | 0 | 2.22E-19 | 2.71E-17 | 0.955 | 3.035 |
| CARS | AC_000186.1 | 20 | 81 | 5.62E-06 | $4.60 \mathrm{E}-05$ | 0.776 | 4.071 |
| KIAA1324L | AC_000161.1 | 0 | 88 | 3.94E-17 | $4.13 \mathrm{E}-15$ | 3.943 | 8.885 |
| LRGUK | AC_000161.1 | 12 | 80 | 4.35E-08 | 5.27E-07 | 0.074 | 2.29 |
| LRGUK | AC_000161.1 | 14 | 83 | 8.33E-08 | 9.92E-07 | 0.074 | 2.29 |
| LRGUK | AC_000161.1 | 100 | 22 | 9.72E-08 | $1.14 \mathrm{E}-06$ | 0.074 | 2.29 |
| LRGUK | AC_000161.1 | 20 | 83 | 3.33E-06 | 2.78E-05 | 0.074 | 2.29 |
| UBN2 | AC_000161.1 | 100 | 20 | 2.92E-08 | $4.16 \mathrm{E}-07$ | 3.553 | 46.853 |
| UBN2 | AC_000161.1 | 16 | 75 | 3.16E-06 | 2.68E-05 | 3.553 | 46.853 |
| UBN2 | AC_000161.1 | 85 | 0 | 1.66E-16 | $1.48 \mathrm{E}-14$ | 3.553 | 46.853 |
| PDE5A | AC_000163.1 | 83 | 16 | 2.86E-07 | 3.08E-06 | 6.356 | 20.064 |
| PDE5A | AC_000163.1 | 80 | 0 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 6.356 | 20.064 |
| PDE5A | AC_000163.1 | 14 | 75 | 9.09E-07 | 8.53E-06 | 6.356 | 20.064 |
| PDE5A | AC_000163.1 | 80 | 10 | 8.02E-09 | $1.29 \mathrm{E}-07$ | 6.356 | 20.064 |
| ADAMTS3 | AC_000163.1 | 20 | 83 | 3.33E-06 | $2.78 \mathrm{E}-05$ | 0.026 | 0.202 |
| EGR1 | AC_000164.1 | 0 | 85 | 1.66E-16 | $1.48 \mathrm{E}-14$ | 0.357 | 14.139 |
| EGR1 | AC_000164.1 | 16 | 100 | 1.86E-09 | 3.23E-08 | 0.357 | 14.139 |
| CTNNA1 | AC_000164.1 | 0 | 87 | 7.02E-17 | 6.88E-15 | 782.826 | 359.821 |
| ZNF395 | AC_000165.1 | 0 | 80 | $1.24 \mathrm{E}-15$ | 6.96E-14 | 0.043 | 5.019 |
| RPS6KA2 | AC_000166.1 | 100 | 0 | 2.22E-19 | 2.71E-17 | 0.216 | 0.225 |
| RPS6KA2 | AC_000166.1 | 100 | 0 | 2.22E-19 | 2.71E-17 | 0.216 | 0.225 |
| HS6ST2 | AC_000187.1 | 83 | 0 | 3.95E-16 | 3.04E-14 | 0.013 | 0.364 |
| ZNF75D | AC_000187.1 | 83 | 16 | 2.86E-07 | 3.08E-06 | 204.013 | 140.532 |
| SYN1 | AC_000187.1 | 85 | 0 | 1.66E-16 | $1.48 \mathrm{E}-14$ | 1.073 | 15.124 |
| MSN | AC_000187.1 | 9 | 91 | 7.07E-11 | 1.65E-09 | 5.118 | 34.72 |
| MSN | AC_000187.1 | 80 | 23 | 3.02E-05 | $1.97 \mathrm{E}-04$ | 5.118 | 34.72 |
| MSN | AC_000187.1 | 80 | 25 | 7.02E-05 | 4.29E-04 | 5.118 | 34.72 |





D


| E | Strges | No. of total 300bp <br> tiles |
| :---: | :---: | :---: |
|  | Sperm | 459,097 |
| GV | 33,041 |  |
| In vivo MII | 24,638 |  |
| In virro MII | 39,077 |  |
| 2-Cell | 69,912 |  |
| 4-Cell | 54,275 |  |
| 8 -Cell | 69,989 |  |
| 16-Cell | 179,325 |  |
|  |  |  |

Figure S1. Methylome profiles of bovine gametes and in vivo developed embryos
The Pearson correlation heatmap (A) between stages. Color key: purple low correlation, red high correlation. Heatmaps of the numbers (Color key: purple: low CpG number, red high CpG numbers) (B) and methylation levels (Color key: purple: hypomethylation, red hypermethylation) (C) of captured CpGs in each chromosome. Circos plot (D) visualization of all methylated 300-bp tiles of each stage of pre-implantation embryonic development. a. sperm, b. GV oocytes, c. in vivo MII oocytes, d. in vitro MII oocytes, e. 2-cell, f. 4-cell, g. 8-cell, h. 16-cell. The number (E) of total captured 300-bp tiles in each stage. Bar plot (F) of non-CpG methylation level and bisulfite non-conversion rate of each stage. GV: germinal vesicle oocytes; MII: matured oocytes.


Figure S2. Relationship between transcriptomes and methylomes of bovine gametes and in vivo developed embryos Correlation between gene expression and methylation of the promoters (A), gene bodies, exons, introns, CGIs (B). Line plots of DNA methylation (C) and RNA expression levels (D) of repetitive elements LINEs, SINEs, and LTR in each development stage. GV: germinal vesicle oocytes; MII: matured oocytes.

| Stages | No. of unique <br> 300 bp tiles |
| :---: | :---: |
| Sperm | 276,190 |
| GV | 1,089 |
| In vivo MII | 877 |
| In vitro MII | 2,435 |
| 2-Cell | 6,091 |
| 4-Cell | 4,195 |
| 8 -Cell | 6,168 |
| 16 -Cell | 31,628 |




Figure S3. Commonly and uniquely methylated regions in bovine gametes and in vivo developed embryos The numbers (A) of uniquely methylated 300-bp tiles in each development stage. Pie plot (B) of the distribution of uniquely methylated tiles in sperm categorized by genomic regions and the associated GO terms. Stack bar plot (C) of uniquely methylated 300-bp tiles in each stage categorized by genomic regions. Heatmap (E) of DMRs between the 8 - and 16 -cell stages that were hypermethylated in the 8 -cell (upper) or 16-cell (lower) and their GO term representatives. GV: germinal vesicle oocytes; MII: matured oocytes. (Color key: purple: hypomethylation, red hypermethylation)


Figure $\mathbf{S 4}$. DMRs between different types of gametes and their GO term representatives.
Heatmaps of DMRs: sperm vs. GV (A), sperm vs. in vivo MII (B), sperm vs. in vitro MII (C), GV vs. in vivo MII (D), GV vs. in vitro MII (E), and in vivo MII vs. in vitro MII (F). GV: germinal vesicle oocytes; MII: matured oocytes. (Color key: purple: hypomethylation, red hypermethylation)


Figure S5. Visualization of gene body methylation of XIST gene. GV: germinal vesicle oocytes; MII: matured oocytes.

## Chapter Five

## Conclusions

This dissertation reported three aspects of epigenetic regulation in domestic ruminants: 1) The effect of maternal nutrition on imprinted gene expression and genomic imprinting pattern in sheep, 2) X chromosome dosage upregulation in bovine germlines, preimplantation embryos, and somatic tissues, 3) Methylome dynamic in bovine early embryos and gametes. Specifically, the following conclusions are made:

1. Maternal diets affected imprinted gene expression while the parental-of-origin expression pattern was not affected. These data suggest that gene expression levels and imprinted patterns may be regulated through different epigenetic mechanisms.
2. In bovine germline, embryos and somatic tissues expression of X-linked genes, especially those that are housekeeping or 'dosage-sensitive' genes were up-regulated, supporting a balanced expression between a single active X and autosome pairs.
3. During bovine embryo development, global demethylation was observed up to the 8cell stage and de novo methylation at 16-cell stage, refining the current knowledge on bovine embryo DNA methylation dynamics and providing valuable resources for future studies.

Our studies of epigenetic regulations in domestic ruminants will provide insights for animal prenatal nutrition management and optimal in vitro culture condition for early embryo development. Future investigations on how the uterine environment influences fetal development, epigenetic regulation, and germline differentiation are needed. Future studies should also include more details in studying the onset of imprinted XCI after fertilization and transition to random XCI during early embryonic development. Moreover, differential genomic markers could be identified from the comparison of epigenetic markers between in vivo and in vitro produced oocytes and embryos.

## Reference

Al Seesi, S., Tiagueu, Y.T., Zelikovsky, A., and Măndoiu, I.I. (2014). Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. BMC Genomics 15, S2.

Andergassen, D., Dotter, C.P., Wenzel, D., Sigl, V., Bammer, P.C., Muckenhuber, M., Mayer, D., Kulinski, T.M., Theussl, H.-C., Penninger, J.M., et al. (2017). Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. ELife 6, e25125.

Andrews, S. (2007). SeqMonk, a tool to visualise and analyse high throughput mapped sequence data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/.

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Auclair, G., and Weber, M. (2012). Mechanisms of DNA methylation and demethylation in mammals. Biochimie 94, 2202-2211.

Augui, S., Nora, E.P., and Heard, E. (2011). Regulation of X-chromosome inactivation by the Xinactivation centre. Nat. Rev. Genet. 12, 429-442.

Avner, P., and Heard, E. (2001). X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2, 59-67.

Babak, T., Deveale, B., Armour, C., Raymond, C., Cleary, M.A., van der Kooy, D., Johnson, J.M., and Lim, L.P. (2008). Global survey of genomic imprinting by transcriptome sequencing. Curr. Biol. CB 18, 1735-1741.

Babak, T., DeVeale, B., Tsang, E.K., Zhou, Y., Li, X., Smith, K.S., Kukurba, K.R., Zhang, R., Li, J.B., van der Kooy, D., et al. (2015). Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat. Genet. 47, 544-549.

Bakhtari, A., and P. J. Ross (2014). DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics 1272-1279.

Balhorn, R., Brewer, L., and Corzett, M. (2000). DNA condensation by protamine and argininerich peptides: Analysis of toroid stability using single DNA molecules. Mol. Reprod. Dev. 56, 230-234.

Bao, J., and Bedford, M.T. (2016). Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reprod. Camb. Engl. 151, R55-R70.

Baran, Y., Subramaniam, M., Biton, A., Tukiainen, T., Tsang, E.K., Rivas, M.A., Pirinen, M., Gutierrez-Arcelus, M., Smith, K.S., Kukurba, K.R., et al. (2015). The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 25, 927-936.

Barbaux, S., Gascoin-Lachambre, G., Buffat, C., Monnier, P., Mondon, F., Tonanny, M.-B., Pinard, A., Auer, J., Bessières, B., Barlier, A., et al. (2012). A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics 7, 1079-1090.

Barlow, D.P., and Bartolomei, M.S. (2014). Genomic Imprinting in Mammals. Cold Spring Harb. Perspect. Biol. 6, a018382.

Barry, J.S., and Anthony, R.V. (2008). The Pregnant Sheep as a Model for Human Pregnancy. Theriogenology 69, 55-67.

Bartolomei, M.S., and Ferguson-Smith, A.C. (2011). Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3.

Beaujean, N., Hartshorne, G., Cavilla, J., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004). Non-conservation of mammalian preimplantation methylation dynamics. Curr. Biol. CB 14, R266-267.

Begum, G., Stevens, A., Smith, E.B., Connor, K., Challis, J.R.G., Bloomfield, F., and White, A. (2012). Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J. 26, 1694-1703.

Belton, J.-M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., and Dekker, J. (2012). Hi-C: a comprehensive technique to capture the conformation of genomes. Methods San Diego Calif 58, 268-276.

Berletch, J.B., Yang, F., Xu, J., Carrel, L., and Disteche, C.M. (2011). Genes that escape from X inactivation. Hum. Genet. 130, 237-245.

Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes. Reproduction 141, 801-808.

Bhutani, N., Burns, D.M., and Blau, H.M. (2011). DNA demethylation dynamics. Cell 866-872.
Bischoff, S.R., Tsai, S., Hardison, N., Motsinger-Reif, A.A., Freking, B.A., Nonneman, D., Rohrer, G., and Piedrahita, J.A. (2009). Characterization of conserved and nonconserved imprinted genes in swine. Biol. Reprod. 81, 906-920.

Black, J.C., Van Rechem, C., and Whetstine, J.R. (2012). Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol. Cell 48.

Blake, A., Pickford, K., Greenaway, S., Thomas, S., Pickard, A., Williamson, C.M., Adams, N.C., Walling, A., Beck, T., Fray, M., et al. (2010). MouseBook: an integrated portal of mouse resources. Nucleic Acids Res. 38, D593-599.

Bock, C., Tomazou, E.M., Brinkman, A.B., Müller, F., Simmer, F., Gu, H., Jäger, N., Gnirke, A., Stunnenberg, H.G., and Meissner, A. (2010). Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28, 1106-1114.

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114-2120.

Bostick, M., Kim, J.K., Estève, P.-O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-1764.

Bridger, P.S., Haupt, S., Klisch, K., Leiser, R., Tinneberg, H.-R., and Pfarrer, C. (2007). Validation of primary epitheloid cell cultures isolated from bovine placental caruncles and cotyledons. Theriogenology 68, 592-603.

Canovas, S., and Ross, P.J. (2016). Epigenetics in preimplantation mammalian development. Theriogenology 86, 69-79.

Canovas, S., Ross, P.J., Kelsey, G., and Coy, P. (2017). DNA Methylation in Embryo Development: Epigenetic Impact of ART (Assisted Reproductive Technologies). BioEssays 39.

Cao, J., Cusanovich, D.A., Ramani, V., Aghamirzaie, D., Pliner, H.A., Hill, A.J., Daza, R.M., McFaline-Figueroa, J.L., Packer, J.S., Christiansen, L., et al. (2018). Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science eaau0730.

Chandler Christopher H. (2017). When and why does sex chromosome dosage compensation evolve? Ann. N. Y. Acad. Sci. 1389, 37-51.

Chédin, F. (2011). Chapter 7 - The DNMT3 Family of Mammalian De Novo DNA Methyltransferases. In Progress in Molecular Biology and Translational Science, X. Cheng, and R.M. Blumenthal, eds. (Academic Press), pp. 255-285.

Chen, Z., Hagen, D.E., Elsik, C.G., Ji, T., Morris, C.J., Moon, L.E., and Rivera, R.M. (2015). Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc. Natl. Acad. Sci. U. S. A. 112, 4618-4623.

Chen, Z., Hagen, D.E., Wang, J., Elsik, C.G., Ji, T., Siqueira, L.G., Hansen, P.J., and Rivera, R.M. (2016). Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics 11, 501-516.

Cheng, X., and Blumenthal, R.M. (2011). Chapter 1 - Introduction-Epiphanies in Epigenetics. In Progress in Molecular Biology and Translational Science, X. Cheng, and R.M. Blumenthal, eds. (Academic Press), pp. 1-21.

Choy, J.S., Wei, S., Lee, J.Y., Tan, S., Chu, S., and Lee, T.-H. (2010). DNA Methylation Increases Nucleosome Compaction and Rigidity. J. Am. Chem. Soc. 132, 1782-1783.

Clayton, A.L., Hazzalin, C.A., and Mahadevan, L.C. (2006). Enhanced histone acetylation and transcription: a dynamic perspective. Mol. Cell 23, 289-296.

Cooney, C.A., Dave, A.A., and Wolff, G.L. (2002). Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132, 2393S-2400S.

Couldrey, C., Johnson, T., Lopdell, T., Zhang, I.L., Littlejohn, M.D., Keehan, M., Sherlock, R.G., Tiplady, K., Scott, A., Davis, S.R., et al. (2017). Bovine mammary gland X chromosome inactivation. J. Dairy Sci. 100, 5491-5500.

Curradi, M., Izzo, A., Badaracco, G., and Landsberger, N. (2002). Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation. Mol. Cell. Biol. 22, 3157-3173.

Das, P.J., Chowdhary, B.P., and Raudsepp, T. (2009). Characterization of the Bovine Pseudoautosomal Region and Comparison with Sheep, Goat, and Other Mammalian Pseudoautosomal Regions. Cytogenet. Genome Res. 126, 139-147.

De La Fuente, R., Hahnel, A., Basrur, P.K., and King, W.A. (1999). X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol. Reprod. 60, 769-775.

De Majo, F., and Calore, M. (2018). Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Non-Coding RNA Res. 3, 20-28.

De Paepe, C., Krivega, M., Cauffman, G., Geens, M., and Van de Velde, H. (2014). Totipotency and lineage segregation in the human embryo. MHR Basic Sci. Reprod. Med. 20, 599-618.

Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. U. S. A. 98, 13734-13738.

Dekker, J. (2006). The three "C" s of chromosome conformation capture: controls, controls, controls. Nat. Methods 3, 17-21.

Delaval, K., and Feil, R. (2004). Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev. 14, 188-195.

Demetriou, C., Abu-Amero, S., Thomas, A.C., Ishida, M., Aggarwal, R., Al-Olabi, L., Leon, L.J., Stafford, J.L., Syngelaki, A., Peebles, D., et al. (2014). Paternally Expressed, Imprinted InsulinLike Growth Factor-2 in Chorionic Villi Correlates Significantly with Birth Weight. PLOS ONE 9, e85454.

Deng, X., Hiatt, J.B., Nguyen, D.K., Ercan, S., Sturgill, D., Hillier, L.W., Schlesinger, F., Davis, C.A., Reinke, V.J., Gingeras, T.R., et al. (2011). Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat. Genet. 43, 1179-1185.

Denker, A., and Laat, W. de (2016). The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357-1382.

DeVeale, B., van der Kooy, D., and Babak, T. (2012). Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet. 8, e1002600.

Dobbs, K.B., Rodriguez, M., Sudano, M.J., Ortega, M.S., and Hansen, P.J. (2013). Dynamics of DNA Methylation during Early Development of the Preimplantation Bovine Embryo. PLoS ONE 8.

Doherty, R., and Couldrey, C. (2014). Exploring genome wide bisulfite sequencing for DNA methylation analysis in livestock: a technical assessment. Front. Genet. 5.

Doi, A., Park, I.-H., Wen, B., Murakami, P., Aryee, M.J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J., Loewer, S., et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350-1353.

Dolinoy, D.C., Weidman, J.R., and Jirtle, R.L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reprod. Toxicol. 23, 297-307.

Dominguez-Salas, P., Moore, S.E., Baker, M.S., Bergen, A.W., Cox, S.E., Dyer, R.A., Fulford, A.J., Guan, Y., Laritsky, E., Silver, M.J., et al. (2014). Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746.

Dostie, J., and Dekker, J. (2007). Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988-1002.

Duitama, J., Srivastava, P.K., and Măndoiu, I.I. (2012). Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data. BMC Genomics 13 , S6.

Efron, B., and Tibshirani, R.J. (1994). An Introduction to the Bootstrap (CRC Press).
Engel, N., and Bartolomei, M.S. (2003). Mechanisms of Insulator Function in Gene Regulation and Genomic Imprinting. In International Review of Cytology, (Academic Press), pp. 89-127.

Ercan, S. (2015). Mechanisms of X Chromosome Dosage Compensation. J. Genomics 3, 1-19.
Erwin, J.A., and Lee, J.T. (2008). New twists in X-chromosome inactivation. Curr. Opin. Cell Biol. 20, 349-355.

Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissuespecific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics MCP 13, 397-406.

Fairbairn, D.J., Blanckenhorn, W.U., and Székely, T. (2007). Sex, Size and Gender Roles (Oxford University Press).

Ferreira, A.R., Machado, G.M., Diesel, T.O., Carvalho, J.O., Rumpf, R., Melo, E.O., Dode, M. a. N., and Franco, M.M. (2010). Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryos. Mol. Reprod. Dev. 77, 615-621.

Freking, B.A., Murphy, S.K., Wylie, A.A., Rhodes, S.J., Keele, J.W., Leymaster, K.A., Jirtle, R.L., and Smith, T.P.L. (2002). Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 12, 1496-1506.

Frost, J.M., and Moore, G.E. (2010). The importance of imprinting in the human placenta. PLoS Genet. 6, e1001015.

Fukuda, A., Tanino, M., Matoba, R., Umezawa, A., and Akutsu, H. (2015). Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes. Sci. Rep. 5, 14101 .

Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58-64.

Funaya, S., and Aoki, F. (2017). Regulation of zygotic gene activation by chromatin structure and epigenetic factors. J. Reprod. Dev. 63, 359-363.

Gao, F., Niu, Y., Sun, Y.E., Lu, H., Chen, Y., Li, S., Kang, Y., Luo, Y., Si, C., Yu, J., et al. (2017). De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Res. 27, 526-539.

Gene Ontology Consortium (2015). Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049-D1056.

Gevers, D., Vandepoele, K., Simillon, C., and Van de Peer, Y. (2004). Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol. 12, 148-154.

Godfrey, K.M., and Barker, D.J. (2001). Fetal programming and adult health. Public Health Nutr. 4, 611-624.

Goldberg, A.D., Allis, C.D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635-638.

Gordon, D.J., Resio, B., and Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189-203.

Goto, T., and Monk, M. (1998). Regulation of X-Chromosome Inactivation in Development in Mice and Humans. Microbiol. Mol. Biol. Rev. 62, 362-378.

Goyal, R., Reinhardt, R., and Jeltsch, A. (2006). Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res. 34, 1182-1188.

Graf, A., Krebs, S., Zakhartchenko, V., Schwalb, B., Blum, H., and Wolf, E. (2014). Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. U. S. A. 111, 4139-4144.

Graves, J.A.M., and Disteche, C.M. (2007). Does gene dosage really matter? J. Biol. 6, 1.
Gregg, C., Zhang, J., Weissbourd, B., Luo, S., Schroth, G.P., Haig, D., and Dulac, C. (2010a). High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643-648.

Gregg, C., Zhang, J., Butler, J.E., Haig, D., and Dulac, C. (2010b). Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329, 682-685.

Gu, T.-P., Guo, F., Yang, H., Wu, H.-P., Xu, G.-F., Liu, W., Xie, Z.-G., Shi, L., He, X., Jin, S., et al. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606-610.

Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., et al. (2014). The DNA methylation landscape of human early embryos. Nature 511, 606-610.

Guo, Y., Su, Z.-Y., and Kong, A.-N.T. (2015). Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. Curr. Pharmacol. Rep. 1, 245-257.

Gupta, V., Parisi, M., Sturgill, D., Nuttall, R., Doctolero, M., Dudko, O.K., Malley, J.D., Eastman, P.S., and Oliver, B. (2006). Global analysis of X-chromosome dosage compensation. J. Biol. 5, 3 .

Gutiérrez-Aguirre, I., Rački, N., Dreo, T., and Ravnikar, M. (2015). Droplet digital PCR for absolute quantification of pathogens. Methods Mol. Biol. Clifton NJ 1302, 331-347.

Hackett, J.A., and Surani, M.A. (2013). DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. B Biol. Sci. 368.

Haig, D. (1992). Genomic imprinting and the theory of parent-offspring conflict. Semin Dev Biol 3, 153-160.

Haig, D., and Graham, C. (1991). Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64, 1045-1046.

Handy, D.E., Castro, R., and Loscalzo, J. (2011). Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease. Circulation 123, 2145-2156.

Hanna, C.W., and Kelsey, G. (2014). The specification of imprints in mammals. Heredity 113, 176-183.

Hanna, C.W., Demond, H., and Kelsey, G. (2018). Epigenetic regulation in development: is the mouse a good model for the human? Hum. Reprod. Update 24, 556-576.

Hansmann, T., Heinzmann, J., Wrenzycki, C., Zechner, U., Niemann, H., and Haaf, T. (2011). Characterization of differentially methylated regions in 3 bovine imprinted genes: a model for studying human germ-cell and embryo development. Cytogenet. Genome Res. 132, 239-247.

Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280-291.

Hassold, T., Chen, N., Funkhouser, J., Jooss, T., Manuel, B., Matsuura, J., Matsuyama, A., Wilson, C., Yamane, J.A., and Jacobs, P.A. (1980). A cytogenetic study of 1000 spontaneous abortions. Ann. Hum. Genet. 44, 151-178.

Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 19831993.

Hayakawa, H., Hirai, T., Takimoto, A., Ideta, A., and Aoyagi, Y. (2009). Superovulation and embryo transfer in Holstein cattle using sexed sperm. Theriogenology 71, 68-73.

Hayashi, K., Lopes, S.M.C. de S., and Surani, M.A. (2007). Germ Cell Specification in Mice. Science 316, 394-396.

He, X., and Zhang, J. (2016). X-Chromosome Dosage Compensation. ELS.
He, X., Chen, X., Xiong, Y., Chen, Z., Wang, X., Shi, S., Wang, X., and Zhang, J. (2011). He et al. reply. Nat. Genet. 43, 1171-1172.

Heard, E., Clerc, P., and Avner, P. (1997). X-chromosome inactivation in mammals. Annu. Rev. Genet. 31, 571-610.

Helena Mangs, A., and Morris, B.J. (2007). The Human Pseudoautosomal Region (PAR): Origin, Function and Future. Curr. Genomics 8, 129-136.

Hoffman, M.L., Reed, S.A., Pillai, S.M., Jones, A.K., McFadden, K.K., Zinn, S.A., and Govoni, K.E. (2017). PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM:The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. J. Anim. Sci. 95, 2222-2232.

Holtzman, D.M., Bayney, R.M., Li, Y.W., Khosrovi, H., Berger, C.N., Epstein, C.J., and Mobley, W.C. (1992). Dysregulation of gene expression in mouse trisomy 16, an animal model of Down syndrome. EMBO J. 11, 619-627.

Hong, E.E., Okitsu, C.Y., Smith, A.D., and Hsieh, C.-L. (2013). Regionally Specific and Genome-Wide Analyses Conclusively Demonstrate the Absence of CpG Methylation in Human Mitochondrial DNA. Mol. Cell. Biol. 33, 2683-2690.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 113.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.

Huang, S., Chang, I.S., Lin, W., Ye, W., Luo, R.Z., Lu, Z., Lu, Y., Zhang, K., Liao, W.S.-L., Tao, T., et al. (2009c). ARHI (DIRAS3), an imprinted tumour suppressor gene, binds to importins and blocks nuclear import of cargo proteins. Biosci. Rep. 30, 159-168.

Huang, Y., Chavez, L., Chang, X., Wang, X., Pastor, W.A., Kang, J., Zepeda-Martínez, J.A., Pape, U.J., Jacobsen, S.E., Peters, B., et al. (2014). Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 111, 1361-1366.

Hurles, M.E., Dermitzakis, E.T., and Tyler-Smith, C. (2008). The functional impact of structural variation in humans. Trends Genet. TIG 24, 238-245.

Huynh, K.D., and Lee, J.T. (2003). Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857-862.

Hyun, K., Jeon, J., Park, K., and Kim, J. (2017). Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49, e324.

Iqbal, K., Jin, S.-G., Pfeifer, G.P., and Szabó, P.E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. 108, 3642-3647.

Ishida, M., and Moore, G.E. (2013). The role of imprinted genes in humans. Mol. Aspects Med. 34, 826-840.

Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 333, 1300-1303.

Iwasa, Y., and Pomiankowski, A. (2001). The evolution of X-linked genomic imprinting. Genetics 158, 1801-1809.

Jansson, M.D., and Lund, A.H. (2012). MicroRNA and cancer. Mol. Oncol. 6, 590-610.
Jennings, L.J., Arcila, M.E., Corless, C., Kamel-Reid, S., Lubin, I.M., Pfeifer, J., TempleSmolkin, R.L., Voelkerding, K.V., and Nikiforova, M.N. (2017). Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 19, 341-365.

Jeon, Y., Sarma, K., and Lee, J.T. (2012). New and Xisting Regulatory Mechanisms of X Chromosome Inactivation. Curr. Opin. Genet. Dev. 22, 62-71.

Jia, C.-W., Wang, L., Lan, Y.-L., Song, R., Zhou, L.-Y., Yu, L., Yang, Y., Liang, Y., Li, Y., Ma, Y.-M., et al. (2015). Aneuploidy in Early Miscarriage and its Related Factors. Chin. Med. J. (Engl.) 128, 2772-2776.

Jiang, C., and Yang, Z. (2009). Characterization, Imprinting Status and Tissue Distribution of Porcine GTL2 Gene. Agric. Sci. China 8, 216-222.

Jiang, Z., Sun, J., Dong, H., Luo, O., Zheng, X., Obergfell, C., Tang, Y., Bi, J., O’Neill, R., Ruan, Y., et al. (2014). Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics $15,756$.

Jiang, Z., Lin, J., Dong, H., Zheng, X., Marjani, S.L., Duan, J., Ouyang, Z., Chen, J., and Tian, X. (Cindy) (2018). DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol. Reprod.

Johnson, M.H., and Ziomek, C.A. (1981). Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J. Cell Biol. 91, 303-308.

Jones, A.K., Gately, R.E., McFadden, K.K., Zinn, S.A., Govoni, K.E., and Reed, S.A. (2016). Transabdominal ultrasound for detection of pregnancy, fetal and placental landmarks, and fetal age before Day 45 of gestation in the sheep. Theriogenology 85, 939-945.e1.

Jue, N.K., Murphy, M.B., Kasowitz, S.D., Qureshi, S.M., Obergfell, C.J., Elsisi, S., Foley, R.J., O'Neill, R.J., and O'Neill, M.J. (2013). Determination of dosage compensation of the mammalian X chromosome by RNA-seq is dependent on analytical approach. BMC Genomics $14,150$.

Ka, S., Ahn, H., Seo, M., Kim, H., Kim, J.N., and Lee, H.-J. (2016). Status of dosage compensation of X chromosome in bovine genome. Genetica 144, 435-444.

Kaikkonen, M.U., Lam, M.T.Y., and Glass, C.K. (2011). Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 90, 430-440.

Kainz, B., Shehata, M., Bilban, M., Kienle, D., Heintel, D., Krömer-Holzinger, E., Le, T., Kröber, A., Heller, G., Schwarzinger, I., et al. (2007). Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int. J. Cancer 121, 1984-1993.

Kalantry, S., Purushothaman, S., Bowen, R.B., Starmer, J., and Magnuson, T. (2009). Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460, 647-651.

Kharchenko, P.V., Xi, R., and Park, P.J. (2011). Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat. Genet. 43, 1167-1169.

Khatib, H. (2005). The COPG2, DCN, and SDHD genes are biallelically expressed in cattle. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 16, 545-552.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360.

Kim, J., Bergmann, A., Choo, J.H., and Stubbs, L. (2007). Genomic organization and imprinting of the Peg3 domain in bovine. Genomics 90, 85-92.

Ko, Y.-G., Yun, J., Park, H.J., Tanaka, S., Shiota, K., and Cho, J.-H. (2013). Dynamic methylation pattern of the methyltransferase 10 (Dnmtlo) 5'-flanking region during mouse oogenesis and spermatogenesis. Mol. Reprod. Dev. 80, 212-222.

Kobayashi, H., Sakurai, T., Imai, M., Takahashi, N., Fukuda, A., Yayoi, O., Sato, S., Nakabayashi, K., Hata, K., Sotomaru, Y., et al. (2012). Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks. PLOS Genet. 8, e1002440.

Koerner, M.V., Pauler, F.M., Huang, R., and Barlow, D.P. (2009). The function of non-coding RNAs in genomic imprinting. Dev. Camb. Engl. 136, 1771-1783.

Kohli, R.M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472-479.

Kono, T., Obata, Y., Yoshimzu, T., Nakahara, T., and Carroll, J. (1996). Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat. Genet. 13, 91-94.

Krueger, F. (2017). Trim Galore: a wrapper script to automate quality and adapter trimming as well as quality control. Available online at:
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinforma. Oxf. Engl. 27, 1571-1572.

Kues, W.A., Sudheer, S., Herrmann, D., Carnwath, J.W., Havlicek, V., Besenfelder, U., Lehrach, H., Adjaye, J., and Niemann, H. (2008). Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc. Natl. Acad. Sci. U. S. A. 105, 19768-19773.

Lan, X., Cretney, E.C., Kropp, J., Khateeb, K., Berg, M.A., Peñagaricano, F., Magness, R., Radunz, A.E., and Khatib, H. (2013). Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep. Front. Genet. 4, 49.

Lee, J.T. (2003). Molecular Links between X-Inactivation and Autosomal Imprinting: XInactivation as a Driving Force for the Evolution of Imprinting? Curr. Biol. 13, R242-R254.

Lee, J.T. (2009). Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 23, 1831-1842.

Lee, J.T., and Lu, N. (1999). Targeted Mutagenesis of Tsix Leads to Nonrandom X Inactivation. Cell 99, 47-57.

Lee, M.T., Bonneau, A.R., and Giraldez, A.J. (2014). Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581-613.

Lee, Y.J., Park, C.W., Hahn, Y., Park, J., Lee, J., Yun, J.H., Hyun, B., and Chung, J.H. (2000). Mit1/Lb9 and Copg2, new members of mouse imprinted genes closely linked to Peg1/Mest(1). FEBS Lett. 472, 230-234.

Leitch, H.G., Tang, W.W.C., and Surani, M.A. (2013). Chapter Five - Primordial Germ-Cell Development and Epigenetic Reprogramming in Mammals. In Current Topics in Developmental Biology, E. Heard, ed. (Academic Press), pp. 149-187.

Lepikhov, K., Zakhartchenko, V., Hao, R., Yang, F., Wrenzycki, C., Niemann, H., Wolf, E., and Walter, J. (2008). Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1, 8.

Lesch, B.J., Silber, S.J., McCarrey, J.R., and Page, D.C. (2016). Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat. Genet. 48, 888-894.

Lewis, A., Green, K., Dawson, C., Redrup, L., Huynh, K.D., Lee, J.T., Hemberger, M., and Reik, W. (2006). Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Dev. Camb. Engl. 133, 4203-4210.

Lewis, R.M., Cleal, J.K., Ntani, G., Crozier, S.R., Mahon, P.A., Robinson, S.M., Harvey, N.C., Cooper, C., Inskip, H.M., Godfrey, K.M., et al. (2012). Relationship between placental expression of the imprinted PHLDA2 gene, intrauterine skeletal growth and childhood bone mass. Bone 50, 337-342.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinforma. Oxf. Engl. 27, 2987-2993.

Li, R., and Albertini, D.F. (2013). The road to maturation: somatic cell interaction and selforganization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 14, 141-152.

Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926.

Li, E., Beard, C., and Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature 366, 362-365.

Li, L., Zheng, P., and Dean, J. (2010a). Maternal control of early mouse development. Dev. Camb. Engl. 137, 859-870.

Li, N., Ye, M., Li, Y., Yan, Z., Butcher, L.M., Sun, J., Han, X., Chen, Q., Zhang, X., and Wang, J. (2010b). Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods San Diego Calif 52, 203-212.

Li, Y., Zhu, J., Tian, G., Li, N., Li, Q., Ye, M., Zheng, H., Yu, J., Wu, H., Sun, J., et al. (2010c). The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 8, e1000533.

Liao, J., Karnik, R., Gu, H., Ziller, M.J., Clement, K., Tsankov, A.M., Akopian, V., Gifford, C.A., Donaghey, J., Galonska, C., et al. (2015). Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469-478.

Lin, F., Xing, K., Zhang, J., and He, X. (2012). Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation. Proc. Natl. Acad. Sci. U. S. A. 109, 11752-11757.

Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.-M., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.

Liu, B., Du, Q., Chen, L., Fu, G., Li, S., Fu, L., Zhang, X., Ma, C., and Bin, C. (2016). CpG methylation patterns of human mitochondrial DNA. Sci. Rep. 6, 23421.

Luedi, P.P., Dietrich, F.S., Weidman, J.R., Bosko, J.M., Jirtle, R.L., and Hartemink, A.J. (2007). Computational and experimental identification of novel human imprinted genes. Genome Res. 17, 1723-1730.

Lyon, M.F. (1961). Gene Action in the X-chromosome of the Mouse (Mus musculus L.). Nature 190, 372-373.

Lyon, M.F. (1993). Epigenetic inheritance in mammals. Trends Genet. 9, 123-128.
Maher, E.R., Afnan, M., and Barratt, C.L. (2003). Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum. Reprod. Oxf. Engl. 18, 2508-2511.

Mamo, S., Rizos, D., and Lonergan, P. (2012). Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation. Anim. Reprod. Sci. 134, 56-63.

Marikawa, Y., and Alarcón, V.B. (2009). Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol. Reprod. Dev. 76, 1019-1032.

Meaburn, E., and Schulz, R. (2012). Next generation sequencing in epigenetics: insights and challenges. Semin. Cell Dev. Biol. 23, 192-199.

Mehlmann, L.M. (2005). Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reprod. Camb. Engl. 130, 791-799.

Memili, E., and First, N.L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote Camb. Engl. 8, 87-96.

Messerschmidt, D.M., Knowles, B.B., and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812828.

Misirlioglu, M., Page, G.P., Sagirkaya, H., Kaya, A., Parrish, J.J., First, N.L., and Memili, E. (2006). Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc. Natl. Acad. Sci. 103, 18905-18910.

Monk, D., Wagschal, A., Arnaud, P., Müller, P.-S., Parker-Katiraee, L., Bourc'his, D., Scherer, S.W., Feil, R., Stanier, P., and Moore, G.E. (2008). Comparative analysis of human chromosome 7 q 21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res. 18, 12701281.

Moore, T., and Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. TIG 7, 45-49.

Moore, L.D., Le, T., and Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology 38, 23-38.

Moore, S.G., Pryce, J.E., Hayes, B.J., Chamberlain, A.J., Kemper, K.E., Berry, D.P., McCabe, M., Cormican, P., Lonergan, P., Fair, T., et al. (2016). Differentially Expressed Genes in Endometrium and Corpus Luteum of Holstein Cows Selected for High and Low Fertility Are Enriched for Sequence Variants Associated with Fertility. Biol. Reprod. 94.

Morales, V., and Richard-Foy, H. (2000). Role of Histone N-Terminal Tails and Their Acetylation in Nucleosome Dynamics. Mol. Cell. Biol. 20, 7230-7237.

Morison, I.M., Paton, C.J., and Cleverley, S.D. (2001). The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 29, 275-276.

Morison, I.M., Ramsay, J.P., and Spencer, H.G. (2005). A census of mammalian imprinting. Trends Genet. 21, 457-465.

Nakabayashi, K., Makino, S., Minagawa, S., Smith, A., Bamforth, J., Stanier, P., Preece, M., Parker-Katiraee, L., Paton, T., Oshimura, M., et al. (2004). Genomic imprinting of PPP1R9A encoding neurabin I in skeletal muscle and extra-embryonic tissues. J. Med. Genet. 41, 601-608.

Naumann, A., Hochstein, N., Weber, S., Fanning, E., and Doerfler, W. (2009). A Distinct DNAMethylation Boundary in the 5'- Upstream Sequence of the FMR1 Promoter Binds Nuclear Proteins and Is Lost in Fragile X Syndrome. Am. J. Hum. Genet. 85, 606-616.

Nguyen, D.K., and Disteche, C.M. (2006). Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47-53.

Niakan, K.K., Han, J., Pedersen, R.A., Simon, C., and Pera, R.A.R. (2012). Human preimplantation embryo development. Dev. Camb. Engl. 139, 829-841.

Nicolae, M., Mangul, S., Măndoiu, I.I., and Zelikovsky, A. (2011a). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol. Biol. AMB 6, 9.

Nicolae, M., Mangul, S., Măndoiu, I.I., and Zelikovsky, A. (2011b). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol. Biol. AMB 6, 9.

O'Doherty, A.M., MacHugh, D.E., Spillane, C., and Magee, D.A. (2015a). Genomic imprinting effects on complex traits in domesticated animal species. Front. Genet. 6, 156.

O’Doherty, A.M., Magee, D.A., O’Shea, L.C., Forde, N., Beltman, M.E., Mamo, S., and Fair, T. (2015b). DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development. BMC Dev. Biol. 15, 13.

O'Geen, H., Echipare, L., and Farnham, P.J. (2011). Using ChIP-Seq Technology to Generate High-Resolution Profiles of Histone Modifications. Methods Mol. Biol. Clifton NJ 791, 265-286.

Ohhata, T., and Wutz, A. (2013). Reactivation of the inactive X chromosome in development and reprogramming. Cell. Mol. Life Sci. CMLS 70, 2443-2461.

Ohlsson, R., Paldi, A., and Graves, J.A.M. (2001). Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet. 17, 136-141.

Ohno, S. (1966). Sex Chromosomes and Sex-Linked Genes (Berlin Heidelberg: Springer-Verlag).
Ohno, S., Kaplan, W.D., and Kinosita, R. (1959). Formation of the sex chromatin by a single Xchromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18, 415-418.

Okamoto, I., and Heard, E. (2006). The dynamics of imprinted X inactivation during preimplantation development in mice. Cytogenet. Genome Res. 113, 318-324.

Okamoto, I., Patrat, C., Thépot, D., Peynot, N., Fauque, P., Daniel, N., Diabangouaya, P., Wolf, J.-P., Renard, J.-P., Duranthon, V., et al. (2011). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370-374.

O’Neill, C. (2015). The epigenetics of embryo development. Anim. Front. 5, 42-49.
Ono, R., Shiura, H., Aburatani, H., Kohda, T., Kaneko-Ishino, T., and Ishino, F. (2003). Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res. 13, 1696-1705.

Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475-478.

Otto, S.P., and Gerstein, A.C. (2008). The evolution of haploidy and diploidy. Curr. Biol. 18, R1121-R1124.

Papin, C., Ibrahim, A., Gras, S.L., Velt, A., Stoll, I., Jost, B., Menoni, H., Bronner, C., Dimitrov, S., and Hamiche, A. (2017). Combinatorial DNA methylation codes at repetitive elements. Genome Res. 27, 934-946.

Park, J.I., Hong, J.Y., Yong, H.Y., Hwang, W.S., Lim, J.M., and Lee, E.S. (2005). High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Anim. Reprod. Sci. 87, 133-141.

Park, J.S., Jeong Young Sun, Shin Sang Tae, Lee Kyung-Kwang, and Kang Yong-Kook (2007). Dynamic DNA methylation reprogramming: Active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523-2533.

Pauler, F.M., Koerner, M.V., and Barlow, D.P. (2007). Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet. 23, 284-292.

Payer, B., and Lee, J.T. (2008). X Chromosome Dosage Compensation: How Mammals Keep the Balance. Annu. Rev. Genet. 42, 733-772.

Payer, B., Lee, J.T., and Namekawa, S.H. (2011). X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum. Genet. 130, 265-280.

Peñagaricano, F., Wang, X., Rosa, G.J., Radunz, A.E., and Khatib, H. (2014). Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics 15, 1034.

Perrier, J.-P., Sellem, E., Prézelin, A., Gasselin, M., Jouneau, L., Piumi, F., Al Adhami, H., Weber, M., Fritz, S., Boichard, D., et al. (2018). A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific features. BMC Genomics 19.

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650-1667.

Pervjakova, N., Kasela, S., Morris, A.P., Kals, M., Metspalu, A., Lindgren, C.M., Salumets, A., and Mägi, R. (2016). Imprinted genes and imprinting control regions show predominant intermediate methylation in adult somatic tissues. Epigenomics 8, 789-799.

Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A., and Marais, G.A.B. (2012). Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc. Natl. Acad. Sci. U. S. A. 109, 5346-5351.

Pessia, E., Engelstädter, J., and Marais, G.A.B. (2014). The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis? Cell. Mol. Life Sci. CMLS 71, 1383-1394.

Pfeifer, K. (2000). Mechanisms of Genomic Imprinting. Am. J. Hum. Genet. 67, 777-787.
Piedrahita, J.A. (2011). The role of imprinted genes in fetal growth abnormalities. Birt. Defects Res. A. Clin. Mol. Teratol. 91, 682-692.

Pillai, S.M., Sereda, N.H., Hoffman, M.L., Valley, E.V., Crenshaw, T.D., Park, Y.-K., Lee, J.-Y., Zinn, S.A., and Govoni, K.E. (2016). Effects of Poor Maternal Nutrition during Gestation on Bone Development and Mesenchymal Stem Cell Activity in Offspring. PloS One 11, e0168382.

Pillai, S.M., Jones, A.K., Hoffman, M.L., McFadden, K.K., Reed, S.A., Zinn, S.A., and Govoni, K.E. (2017). Fetal and organ development at gestational days 45, 90, 135 and at birth of lambs exposed to under- or over-nutrition during gestation,,. Transl. Anim. Sci. 1, 16-25.

Piskol, R., Ramaswami, G., and Li, J.B. (2013). Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet. 93, 641-651.

Plasschaert, R.N., and Bartolomei, M.S. (2014). Genomic imprinting in development, growth, behavior and stem cells. Dev. Camb. Engl. 141, 1805-1813.

Prothero, K.E., Stahl, J.M., and Carrel, L. (2009). Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 17, 637-648.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma. Oxf. Engl. 26, 841-842.

Rakyan, V.K., Chong, S., Champ, M.E., Cuthbert, P.C., Morgan, H.D., Luu, K.V.K., and Whitelaw, E. (2003). Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. 100, 2538-2543.

Raudsepp, T., and Chowdhary, B.P. (2015). The Eutherian Pseudoautosomal Region. Cytogenet. Genome Res. 147, 81-94.

Reed, S.A., Raja, J.S., Hoffman, M.L., Zinn, S.A., and Govoni, K.E. (2014). Poor maternal nutrition inhibits muscle development in ovine offspring. J. Anim. Sci. Biotechnol. 5, 43.

Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425-432.

Reik, W., Constancia, M., Dean, W., Davies, K., Bowden, L., Murrell, A., Feil, R., Walter, J., and Kelsey, G. (2000). Igf2 imprinting in development and disease. Int. J. Dev. Biol. 44, 145150.

Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089-1093.

Reynolds, L.P., Borowicz, P.P., Caton, J.S., Vonnahme, K.A., Luther, J.S., Hammer, C.J., Maddock Carlin, K.R., Grazul-Bilska, A.T., and Redmer, D.A. (2010). Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. J. Anim. Sci. 88, E61-72.

Robbins, K.M., Chen, Z., Wells, K.D., and Rivera, R.M. (2012). Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J. Biomed. Sci. 19, 95.

Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24-26.

Rougier, N., Bourc'his, D., Gomes, D.M., Niveleau, A., Plachot, M., Pàldi, A., and ViegasPéquignot, E. (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108-2113.

Rountree, M.R., and Selker, E.U. (2010). DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 105, 38-44.

Saadeh, H., and Schulz, R. (2014). Protection of CpG islands against de novo DNA methylation during oogenesis is associated with the recognition site of E2f1 and E2f2. Epigenetics Chromatin 7, 26.

Salilew-Wondim, D., Fournier, E., Hoelker, M., Saeed-Zidane, M., Tholen, E., Looft, C., Neuhoff, C., Besenfelder, U., Havlicek, V., Rings, F., et al. (2015). Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro. PLOS ONE 10, e0140467.

Sangrithi, M.N., Royo, H., Mahadevaiah, S.K., Ojarikre, O., Bhaw, L., Sesay, A., Peters, A.H.F.M., Stadler, M., and Turner, J.M.A. (2017). Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline. Dev. Cell 40, 289-301.e3.

Sanz, L.A., Kota, S.K., and Feil, R. (2010). Genome-wide DNA demethylation in mammals. Genome Biol. 11, 110.

Schaarschmidt, F., and Gerhard, D. (2015). Confidence Intervals for Two Sample Comparisons.
Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., Popp, C., Thienpont, B., Dean, W., and Reik, W. (2012). The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849-862.

Seisenberger, S., Peat, J.R., Hore, T.A., Santos, F., Dean, W., and Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil Trans R Soc B 368, 20110330.

Seo, M., Caetano-Anolles, K., Rodriguez-Zas, S., Ka, S., Jeong, J.Y., Park, S., Kim, M.J., Nho, W.-G., Cho, S., Kim, H., et al. (2016). Comprehensive identification of sexually dimorphic genes in diverse cattle tissues using RNA-seq. BMC Genomics 17,81 .

Sharma, S., Kelly, T.K., and Jones, P.A. (2010). Epigenetics in cancer. Carcinogenesis 31, 27-36.

Sharp, A.J., Stathaki, E., Migliavacca, E., Brahmachary, M., Montgomery, S.B., Dupre, Y., and Antonarakis, S.E. (2011). DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 21, 1592-1600.

Shen, S., Qu, Y., and Zhang, J. (2014). [The application of next generation sequencing on epigenetic study]. Yi Chuan Hered. 36, 256-275.

Shi, L., and Wu, J. (2009). Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol. RBE 7, 59.

Siddiqi, S., Mills, J., and Matushansky, I. (2010). Epigenetic Remodeling of Chromatin Architecture: Exploring Tumor Differentiation Therapies in Mesenchymal Stem Cells and Sarcomas. Curr. Stem Cell Res. Ther. 5, 63-73.

Siegfried, Z., Eden, S., Mendelsohn, M., Feng, X., Tsuberi, B.Z., and Cedar, H. (1999). DNA methylation represses transcription in vivo. Nat. Genet. 22, 203-206.

Slotkin, R.K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.

Smallwood, S.A., and Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33-42.

Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S.R., Stegle, O., Reik, W., and Kelsey, G. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817-820.

Smit, M.A., Tordoir, X., Gyapay, G., Cockett, N.E., Georges, M., and Charlier, C. (2005). BEGAIN: a novel imprinted gene that generates paternally expressed transcripts in a tissue- and promoter-specific manner in sheep. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 16, 801814.

Smith, S.L., Everts, R.E., Tian, X.C., Du, F., Sung, L.-Y., Rodriguez-Zas, S.L., Jeong, B.-S., Renard, J.-P., Lewin, H.A., and Yang, X. (2005). Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc. Natl. Acad. Sci. U. S. A. $102,17582$.

Smith, Z.D., Gu, H., Bock, C., Gnirke, A., and Meissner, A. (2009). High-throughput bisulfite sequencing in mammalian genomes. Methods San Diego Calif 48, 226-232.

Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339-344.

Soneson, C., Love, M.I., and Robinson, M.D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521.

Stewart, K.R., Veselovska, L., and Kelsey, G. (2016). Establishment and functions of DNA methylation in the germline. Epigenomics 8, 1399-1413.

Surani, M.A., and Barton, S.C. (1983). Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222, 1034-1036.

Surani, M.A., Barton, S.C., and Norris, M.L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548-550.

Suzuki, M.M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465-476.

Tadros, W., and Lipshitz, H.D. (2009). The maternal-to-zygotic transition: a play in two acts. Development 136, 3033-3042.

Takahashi, Y., Wu, J., Suzuki, K., Martinez-Redondo, P., Li, M., Liao, H.-K., Wu, M.-Z., Hernández-Benítez, R., Hishida, T., Shokhirev, M.N., et al. (2017). Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science 356, 503508.

Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., Zhang, Z., Wang, X., Xia, W., Liu, J., et al. (2016). Impaired imprinted $X$ chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proc. Natl. Acad. Sci. U. S. A. 113, 3197-3202.

Telford, N.A., Watson, A.J., and Schultz, G.A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90-100.

Terrenoire, E., McRonald, F., Halsall, J.A., Page, P., Illingworth, R.S., Taylor, A.M.R., Davison, V., O'Neill, L.P., and Turner, B.M. (2010). Immunostaining of modified histones defines highlevel features of the human metaphase epigenome. Genome Biol. 11, R110.

Thurston, A., Taylor, J., Gardner, J., Sinclair, K.D., and Young, L.E. (2008). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reprod. Camb. Engl. 135, 29-40.

Tian, X. (cindy) (2012). Bovine Epigenetics and Epigenomics. In Bovine Genomics, J.E. Womack, ed. (Wiley-Blackwell), pp. 144-168.

Tian, D., Sun, S., and Lee, J.T. (2010). The long noncoding RNA, Jpx, is a molecular switch for X-chromosome inactivation. Cell 143, 390-403.

Tomizawa, S., Kobayashi, H., Watanabe, T., Andrews, S., Hata, K., Kelsey, G., and Sasaki, H. (2011). Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Dev. Camb. Engl. 138, 811-820.

Turner, J.M.A. (2007). Meiotic sex chromosome inactivation. Dev. Camb. Engl. 134, 1823-1831.

Umlauf, D., Goto, Y., Cao, R., Cerqueira, F., Wagschal, A., Zhang, Y., and Feil, R. (2004). Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296-1300.

Urich, M.A., Nery, J.R., Lister, R., Schmitz, R.J., and Ecker, J.R. (2015). MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475-483.

Vakoc, C.R., Sachdeva, M.M., Wang, H., and Blobel, G.A. (2006). Profile of Histone Lysine Methylation across Transcribed Mammalian Chromatin. Mol. Cell. Biol. 26, 9185-9195.

Valinluck, V., and Sowers, L.C. (2007). Endogenous Cytosine Damage Products Alter the Site Selectivity of Human DNA Maintenance Methyltransferase DNMT1. Cancer Res. 67, 946-950.

Van Bemmel, J.G., Mira-Bontenbal, H., and Gribnau, J. (2016). Cis- and trans-regulation in X inactivation. Chromosoma 125, 41-50.

Van Cleve, J., and Feldman, M.W. (2007). Sex-Specific Viability, Sex Linkage and Dominance in Genomic Imprinting. Genetics 176, 1101-1118.

Varmuza, S., and Mann, M. (1994). Genomic imprinting--defusing the ovarian time bomb. Trends Genet. TIG 10, 118-123.

Vastenhouw, N.L., Zhang, Y., Woods, I.G., Imam, F., Regev, A., Liu, X.S., Rinn, J., and Schier, A.F. (2010). Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922-926.

Veitia, R.A., and Potier, M.C. (2015). Gene dosage imbalances: action, reaction, and models. Trends Biochem. Sci. 40, 309-317.

Veselovska, L., Smallwood, S.A., Saadeh, H., Stewart, K.R., Krueger, F., Maupetit-Méhouas, S., Arnaud, P., Tomizawa, S., Andrews, S., and Kelsey, G. (2015). Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol. 16, 209.

Vickers, M.H. (2014). Early life nutrition, epigenetics and programming of later life disease. Nutrients 6, 2165-2178.

Waddington, C.H. (1942). The epigenotype. 1942. Int. J. Epidemiol. 41, 10-13.
Waldenström, U., Engström, A.-B., Hellberg, D., and Nilsson, S. (2009). Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil. Steril. 91, 2461-2465.

Wan, L., and Bartolomei, M.S. (2008). Chapter 7 Regulation of Imprinting in Clusters: Noncoding RNAs Versus Insulators. In Advances in Genetics, (Academic Press), pp. 207-223.

Wang, H., and Dey, S.K. (2006). Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185-199.

Wang, X., and Clark, A.G. (2014). Using next-generation RNA sequencing to identify imprinted genes. Heredity 113, 156-166.

Wang, L., Zhang, J., Duan, J., Gao, X., Zhu, W., Lu, X., Yang, L., Zhang, J., Li, G., Ci, W., et al. (2014). Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979991.

Wang, X., Soloway, P.D., and Clark, A.G. (2011). A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics 189, 109-122.

Waterland, R.A., Travisano, M., Tahiliani, K.G., Rached, M.T., and Mirza, S. (2008). Methyl donor supplementation prevents transgenerational amplification of obesity. Int. J. Obes. 2005 32, 1373-1379.

Wei, Y., Su, J., Liu, H., Lv, J., Wang, F., Yan, H., Wen, Y., Liu, H., Wu, Q., and Zhang, Y. (2014). MetaImprint: an information repository of mammalian imprinted genes. Dev. Camb. Engl. 141, 2516-2523.

Weisstein, A.E., Feldman, M.W., and Spencer, H.G. (2002). Evolutionary genetic models of the ovarian time bomb hypothesis for the evolution of genomic imprinting. Genetics 162, 425-439.

White, M.D., Bissiere, S., Alvarez, Y.D., and Plachta, N. (2016). Chapter Seven - Mouse Embryo Compaction. In Current Topics in Developmental Biology, M.L. DePamphilis, ed. (Academic Press), pp. 235-258.

Wiley, C.D., Matundan, H.H., Duselis, A.R., Isaacs, A.T., and Vrana, P.B. (2008). Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation. PloS One 3, e3572.

Wilkins, J.F., and Haig, D. (2003). What good is genomic imprinting: the function of parentspecific gene expression. Nat. Rev. Genet. 4, 359-368.

Wit, E. de, and Laat, W. de (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11-24.

Wolf, J.B., and Hager, R. (2006). A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 4, e380.

Woolliams, J.A. (1996). Economic aspects of animal breeding. Livest. Prod. Sci. 2, 155.
Wu, X., and Zhang, Y. (2017). TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517-534.

Wu, G., Bazer, F.W., Wallace, J.M., and Spencer, T.E. (2006). Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 23162337.

Wutz, A., Smrzka, O.W., Schweifer, N., Schellander, K., Wagner, E.F., and Barlow, D.P. (1997). Imprinted expression of the $\operatorname{Ig} 22 r$ gene depends on an intronic CpG island. Nature 389, 745-749.

Xie, W., Schultz, M.D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J.W., Tian, S., Hawkins, R.D., Leung, D., et al. (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134-1148.

Xiong, Y., Chen, X., Chen, Z., Wang, X., Shi, S., Wang, X., Zhang, J., and He, X. (2010). RNA sequencing shows no dosage compensation of the active X-chromosome. Nat. Genet. 42, 10431047.

Xue, F., Tian, X.C., Du, F., Kubota, C., Taneja, M., Dinnyes, A., Dai, Y., Levine, H., Pereira, L.V., and Yang, X. (2002). Aberrant patterns of X chromosome inactivation in bovine clones. Nat. Genet. 31, 216-220.

Yamasaki, K., Hayashida, S., Miura, K., Masuzaki, H., Ishimaru, T., Niikawa, N., and Kishino, T. (2000). The novel gene, gamma2-COP (COPG2), in the 7q32 imprinted domain escapes genomic imprinting. Genomics 68, 330-335.

Yang, X., Han, H., De Carvalho, D.D., Lay, F.D., Jones, P.A., and Liang, G. (2014). Gene Body Methylation Can Alter Gene Expression and Is a Therapeutic Target in Cancer. Cancer Cell 26, 577-590.

Yen, Z.C., Meyer, I.M., Karalic, S., and Brown, C.J. (2007). A cross-species comparison of Xchromosome inactivation in Eutheria. Genomics 90, 453-463.

Young, L.E., Sinclair, K.D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155-163.

Yu, M., Hon, G.C., Szulwach, K.E., Song, C.-X., Zhang, L., Kim, A., Li, X., Dai, Q., Shen, Y., Park, B., et al. (2012). Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome. Cell 149, 1368-1380.

Zechner, U., Wilda, M., Kehrer-Sawatzki, H., Vogel, W., Fundele, R., and Hameister, H. (2001). A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet. TIG 17, 697-701.

Zhang, B., Liu, T., Wu, T., Wang, Z., Rao, Z., and Gao, J. (2015). microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18. Int. J. Biol. Macromol. 74, 111-118.

Zhang, S., Chen, X., Wang, F., An, X., Tang, B., Zhang, X., Sun, L., and Li, Z. (2016). Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos. Sci. Rep. 6, 30345.

Zhu, P., Guo, H., Ren, Y., Hou, Y., Dong, J., Li, R., Lian, Y., Fan, X., Hu, B., Gao, Y., et al. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50, 12-19.

Zilberman, D. (2017). An evolutionary case for functional gene body methylation in plants and animals. Genome Biol. 18, 87.

Picard Tools - By Broad Institute. Available online:http://broadinstitute.github.io/picard/.


[^0]:    Recommended Citation
    Duan, Jingyue, "Genomic Imprinting and X Chromosome Dosage Compensation in Domestic Ruminants" (2018). Doctoral Dissertations. 2015.
    https: / /opencommons.uconn.edu/dissertations/2015

