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Genomic inference of the metabolism and
evolution of the archaeal phylum Aigarchaeota
Zheng-Shuang Hua1, Yan-Ni Qu1, Qiyun Zhu 2, En-Min Zhou1, Yan-Ling Qi1, Yi-Rui Yin1, Yang-Zhi Rao1,

Ye Tian1, Yu-Xian Li1, Lan Liu1, Cindy J. Castelle3, Brian P. Hedlund4,5, Wen-Sheng Shu6, Rob Knight 2,7,8 &

Wen-Jun Li 1,9

Microbes of the phylum Aigarchaeota are widely distributed in geothermal environments,

but their physiological and ecological roles are poorly understood. Here we analyze six

Aigarchaeota metagenomic bins from two circumneutral hot springs in Tengchong, China,

to reveal that they are either strict or facultative anaerobes, and most are chemolithotrophs

that can perform sulfide oxidation. Applying comparative genomics to the Thaumarchaeota

and Aigarchaeota, we find that they both originated from thermal habitats, sharing 1154 genes

with their common ancestor. Horizontal gene transfer played a crucial role in shaping

genetic diversity of Aigarchaeota and led to functional partitioning and ecological divergence

among sympatric microbes, as several key functional innovations were endowed by Bacteria,

including dissimilatory sulfite reduction and possibly carbon monoxide oxidation. Our study

expands our knowledge of the possible ecological roles of the Aigarchaeota and clarifies

their evolutionary relationship to their sister lineage Thaumarchaeota.
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R
ecent advancements in metagenomics and single-cell
techniques have enabled researchers to obtain a glimpse
of the genomic information and genetic diversity of major

lineages of Bacteria and Archaea that have eluded microbial
cultivation1–4. One such group is the archaeal lineage Aigarch-
aeota. Members of the Aigarchaeota are widely distributed in
terrestrial and subsurface geothermal systems and marine
hydrothermal environments3,5–9. To date, eight non-redundant
Aigarchaeota single-amplified genomes (SAGs) and metagenome-
assembled genomes (MAGs) exist in the IMG and NCBI RefSeq
databases. However, CheckM10 estimates that only one is >90%
complete. Phylogenetic analysis of conserved, single-copy core
genes showed that Aigarchaeota is closely related to Crenarch-
aeota, Korarchaeota and Thaumarchaeota3,7, forming the
“TACK” superphylum11. As a sister lineage, Thaumarchaeota has
been largely studied with respect to their importance in nitrogen
cycling, particularly chemolithotrophic ammonia oxidation12–14.
In contrast, little is known about Aigarchaeota’s ecological
role or evolutionary history. It is still controversial whether
Aigarchaeota represents a new phylum or a subclade of phylum
Thaumarchaeota7,9,15,16.

Here, by integrating genome-resolved metagenomics and
comparative genomics, we aim to address the gaps in under-
standing the origin and evolutionary history of the Aigarchaeota,
and their roles in biogeochemical cycling. Our results reveal the
facultative or strictly anaerobic lifestyle of Aigarchaeota with the
ability to oxidize sulfide to gain energy for growth. Evolutionary
genomic analyses of Thaumarchaeota and Aigarchaeota suggest
both two phyla evolved from hot habitats and they share a large
proportion of gene families with their last common ancestor.
Adaptation to different habitats led to the functional differ-
entiation of Aigarchaeota and Thaumarchaeota, with the latter
invading a wide diversity of non-thermal environments. Genes
acquired horizontally from Euryarchaeota and Firmicutes played
a significant role in the functional diversification of Aigarchaeota

in hot spring habitats. This study represents a significant
advancement in our understanding of the genomic diversity and
evolution of Aigarchaeota.

Results and discussion
Aigarchaeota genomes recovered from metagenomes. Meta-
genome sequencing was performed on two hot spring sediment
samples collected from Tengchong county of Yunnan, China
(Fig. 1a). Metagenome assembly of sequencing data and genome
binning based on tetra-nucleotide frequencies and coverage
patterns were conducted, resulting in six near-complete
Aigarchaeota genomic bins (Table 1). One bin was obtained
from Gumingquan (GMQ, pH 9.3 and temperature 89 °C)17, and
five from another pool named Jinze (JZ, pH 6.5 and temperature
75 °C)18 (Supplementary Table 1). The genome sizes of the
obtained bins range from 1.09 Mbp to 1.65 Mbp (averagely
1.4 Mbp). They encode an average of 1384 genes with an average
gene length of 905 bp. Genomes are well curated and genome
quality was evaluated using CheckM10, indicating the high-
quality of the genomic bins with genome completeness ranging
from 97 to 99% and nearly no contamination of other genome
fragments with 16S rRNA and tRNA (>18) are detectable19

(Table 1; Supplementary Fig. 1). A concatenated alignment of 16
ribosomal proteins was used for maximum likelihood tree con-
struction (Fig. 1b). A phylogenetic tree with high bootstrap
support reveals that the six genomes are located in distinct
lineages. A 16S rRNA-based phylogenetic tree indicates that they
represent three groups with 94% as a threshold (Supplementary
Fig. 2). GMQ bin_10 and JZ bin_10 are the close neighbors
sharing 97% of the amino acid identity (AAI) (Supplementary
Figs. 3, 4). JZ bins_28 shows 92% AAI to the published genome
of “Candidatus Caldiarchaeum subterraneum” (Supplementary
Fig. 3). The only detected Thaumarchaeota genome, DRTY7
bin_36, may be the first genome of the pSL12 lineage, which has
been found in hot springs previously20–22.
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Metabolic potential. Most Aigarchaeota genomes contain com-
plete glycolysis pathways and citrate (TCA) cycles (Fig. 2). JZ
bin_40 might also degrade cellulose, as it contains endoglucanase
and beta-glucosidase. These genes may enable hydrolysis of cel-
lulose to cellobiose and finally to glucose (Fig. 2; Supplementary
Data 1). Amino acid sequence analysis showed that the predicted
endoglucanase in JZ bin_40 contained a Frv domain, an

aminopeptidase belonging to the M42 family. The identified
putative endoglucanases share 33~56% identity to currently
known endoglucanases, sharin the same structure including the
active sites and potential metal-binding sites (Supplementary
Fig. 5). Despite the difficulty in distinguishing them based on
sequence similarity, previous cellulase assays showed that this
might be a new enzyme with hydrolytic activity against cellulose

Table 1 General genomic features of the Aigarchaeota and Thaumarchaeota bins reconstructed from the metagenome assembly

Bins Aigarchaeota Thaumarchaeota

GMQ bins_10 JZ bins_10 JZ bins_15 JZ bins_19 JZ bins_28 JZ bins_40 DRTY7 bin_36

No. of scaffolds 10 79 25 54 17 25 167

Genome size (bp) 1,230,238 1,086,093 1,473,345 1,654,953 1,440,436 1,471,612 1,241,443

GC content (%) 53.7 55.4 37.48 62.32 51.83 51.92 36.12

N50 value (bp) 239,895 18,760 82,890 59,043 161,320 136,575 10,470

No. of protein coding genes 1,398 1,222 1,524 1,734 1,581 1,566 1,443

Coding density (%) 90.0 92.5 90.0 89.9 94.7 92.7 91.2

No. of rRNAs 3 4 4 5 2 4 3

No. of tRNAs 44 36 36 38 41 45 46

No. of genes annotated by COGa 904(64.6%) 859(70.3%) 1099(72.1%) 1097(63.3%) 1080(68.3%) 1055(67.4%) 757(50.7%)

No. of genes annotated by KOGa 341(24.4%) 323(26.4%) 398(26.1%) 396(22.8%) 405(25.6%) 385(24.6%) 283(18.9%)

No. of genes annotated by KOa 712(50.9%) 686(56.1%) 898(58.9%) 870(50.2%) 913(57.7%) 835(53.3%) 623(41.7%)

No. of genes annotated by InterProa 710(50.8%) 669(54.7%) 847(55.6%) 904(52.1%) 849(53.7%) 848(54.1%) 664(44.4%)

No. of genes annotated by MetaCyca 338(24.2%) 327(26.8%) 432(28.3%) 436(25.1%) 442(28.0%) 388(24.8%) 276(18.5%)

Completeness (%)b 98.06 97.09 99.03 97.09 97.57 98.06 93.69

Contamination (%)b 0 0 0 0 0 0 0.97

aFunctional annotation for the seven genomes was conducted by uploading to IMG database
bGenome completeness and contamination were estimated using CheckM (ref. 10)
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in thermal ecosystems23,24. Additionally, based on the compar-
ison to Carbohydrate-active enzymes (CAZy) database, numerous
genes (29) distributed in 15 glycosyl hydrolase (GH) families were
observed in JZ bin_40, including genes for alpha-glucosidase
(GH31, degradation of starch and disaccharides), beta-
glucosidase (disaccharides degradation), alpha-galactosidase
(GH36, lactose degradation), alpha-galactosidase (GH4, meli-
biose degradation), beta-galactosidase (GH1, cellulose or hemi-
cellulose degradation), alpha-mannosidase (GH38, mannose
degradation), alpha-amylase (GH57, starch degradation), alpha-
L-rhamnosidase (GH78, pectin degradation), and also a glycogen-
debranching enzyme (GH63, release of glucose through the
breakdown of glycogen) (Fig. 2; Supplementary Table 2). The
generated glucose could further support cell growth through
oxidation in glycolysis and the TCA cycle. The first-pass KEGG
annotation annotated no gene as beta-glucosidase. However, the
best hit for one of the genes in JZ bin_40 was identified as beta-
glucosidase (GBC70340.1; 99% in query coverage and 86% in
amino-acid identity) by BLASTp to the NCBI-nr database
manually, underscoring the need for manual curation of anno-
tation results. Additionally, 26 genes involved in oligosaccharide
transporters were identified in JZ bin_40 which could be
employed to transport mono/polysaccharides into the cell, mainly
including 17 and 5 genes involved in multiple and simple sugar
transport system, and a complete raffinose/stachyose/melibiose
transport system (three genes; Supplementary Data 1).

Both ATP citrate lyase and citryl-CoA synthase/citryl-CoA
lyase were not annotated, indicating the lack of carbon fixation by
conventional reductive TCA (rTCA) cycle. Instead, an alternative
pathway to generate oxaloacetate, encoding citrate synthase,
exists across the Aigarchaeota, suggesting the reversed oxidative
TCA (roTCA) pathway for carbon fixation, as proposed
recently25. In another recent study, strong evidence was presented
that the enzymatic activity for citrate synthase was detectable
under chemolithoautotrophic conditions in Thermosulfidibacter
takaii ABI70S6, suggesting this reversible enzyme may convert
citrate into oxaloacetate and acetyl-CoA26. Previous studies
suggested that Aigarchaeota had the potential to fix carbon
through the Calvin-Benson-Bassham (CBB) and 3-hydroxypro-
pionate/4-hydroxybutyrate (HP/HB) (dicarboxylate/4-hydroxy-
buyrate (DC/HB)) cycles3,8. However, no enzymes encoding
RubisCO and 4-hydroxybutyryl-CoA dehydratase were observed,
suggesting these two pathways are missing from these Aigarch-
aeota genomes, consistent with a previous study27. Several heme-
copper terminal oxidases were identified in all Aigarchaeota
except GMQ bin_10 and JZ bin_10, indicating that most of them
are aerobes28 (Supplementary Data 1). GMQ bin_10 and JZ
bin_10 might be anaerobes because that they do not possess any
clearly recognizable terminal oxidases. Despite the anaerobic
lifestyle of these two organisms, near-complete complex I of
respiratory chains were observed, including nearly all subunits of
NADH ubiquinone oxidoreductase (nuo), but with the absence of
nuoK and nuoN (Supplementary Fig. 6a, b). Instead, the detected
mrpC and mrpD may function as alternatives due to their
homology to nuoK and nuoN29. Interestingly, the CXXC motif
was identifiable in the nuoD protein in GMQ bin_10 and JZ
bin_10, implicating it may function as a Group 4 NiFe
hydrogenases (Supplementary Fig. 6c). The absence of acetalde-
hyde dehydrogenase and acetyl-CoA synthetase (ADP-forming)
suggests that these thermophiles cannot generate alcohol, acetate
or butyrate through fermentation.

Recent studies suggested that microbes may have exploited
carbon monoxide as a supplemental energy source for their
growth3,7,30. Pathways for CO metabolism occur frequently
among aerobic bacteria31. Most Aigarchaeota bins described here
contain at least two copies of all three subunits of the coxLMS

complex. However, the absence of cox genes reinforces the
anaerobic characteristics of JZ bin_10 and GMQ bin_10. In total,
13 coxL genes were detected among the genomes. Phylogenetic
analysis showed that most of them are classified as Form II, a
putative CODH, with typical (AYRGAGR) or atypical motifs
(PYRGAGR) observed (Supplementary Fig. 7). Only one coxL
belonging to JZ bin_19 was identified as Form I with an
AYXCSFR signature. This suggests Aigarchaeota could oxidize
CO aerobically as an energy supplement when organic substrates
are limited. We speculate that the supplied energy might
contribute to biomass by coupling carbon fixation through the
roTCA cycle.

Sulfur and hydrogen are thought to be crucial in energy cycling
in thermal habitats32. It is noteworthy that all bins appear to
encode capacity for sulfur utilization. Dissimilatory sulfite
reductase encoded by dsrA and dsrB were detected in JZ
bin_15, suggesting that this bin could perform dissimilatory
sulfite reduction. Aigarchaeota dsrA and dsrB genes are located
near the tips of branches with genes from the phylum Firmicutes
(Supplementary Fig. 8a), suggesting that JZ bin_15 might have
gained this feature by horizontal gene transfer (HGT) from
Firmicutes. High amino acid similarity (66 and 63%, respectively)
to Thermanaeromonas toyohensis ToBE, within the Firmicutes,
supports this observation. Consensus coverage depth shows
that the sequence assembly of the dsrAB-containing scaffold is
reliable (Supplementary Fig. 8b). Previous studies also indicate
that thermophiles have undergone frequent HGTs, facilitating
their adaptation to the harsh environments33–35. The genomic
bins GMQ bin_10 and JZ bin_10 harbor genes related to
sulfohydrogenase but lack beta and gamma subunits, suggesting
a deficiency in sulfur reduction36. The alpha subunit may
function as a Ni/Fe hydrogenase in these two organisms, which
may be important for redox balance37. Moreover, the gene
encoding for sulfide-quinone reductase (sqr) was present in all
genome bins except GMQ bin_10 and JZ bin_10. This indicates
that most Aigarchaeota are chemolithotrophs, harvesting energy
from the oxidation of sulfide to elemental sulfur. In most cases,
the oxidation of sulfide by sqr or reduction of sulfite by dsrAB
takes place under anaerobic conditions, implicating a facultatively
anaerobic lifestyle of these Aigarchaeota. Interestingly, we found
several copies of a heterodisulfide reductase (hdr) complex in JZ
bin_15 (Supplementary Fig. 9). In particular, one copy clustered
with subunits of F420-non-reducing hydrogenase (mvh complex),
was also found in some sulfate-reducing microorganisms38,39.
The H2 is oxidized by mvhADG to generate protons along with
electrons. Due to the absence of methanogensis pathways in
this bin, we propose that the released electrons might be
transferred to HdrABC to reduce Fdox and DsrC instead of
heterodisulfide. Then the reduced DsrC functions as an electron
donor by coupling with DsrAB sulfite reductase to perform
sulfite reduction39. It was also speculated that the detected Mvh:
Hdr complex in Archaeoglobus profundus might be employed to
reduce an electron carrier, which in turn functions as an electron
donor of the enzymes of sulfite reduction38.

In Aigarchaeota, 19 NiFe hydrogenases and 33 hydrogenase
maturation factors are present (Supplementary Data 1), poten-
tially involved redox homeostasis4,36. Most of these hydrogenases
form a separate lineage, showing that they are highly divergent
from previous reported hydrogenases in other microbes (Supple-
mentary Fig. 10). Phylogenetic analysis reveals that 7, 5, 3,
and 4 of the 19 NiFe hydrogenases are type 3a, 3b, 3c,
and 4d hydrogenases, respectively, which mainly include
F420-reducing hydrogenase (frh), sulfohydrogenase (hyd) and
Ni,Fe-hydrogenase III (ech) (Supplementary Fig. 10; Supplemen-
tary Data 1). Several of them are Aigarchaeota-specific and
are distantly related to other hydrogenases. The mvh complex
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described above represents a type 3c hydrogenases. These
hydrogenases could supply intracellular reducing equivalents
needed for various redox reactions40,41.

The presence of Mu-like prophages in JZ bin_28 and
bin_40 suggests that Aigarchaeota might be subject to phage
infection in hot springs. Prophages impose a fitness burden
through DNA insertion in the host genome, but can also provide
beneficial functions to their hosts to make them competitive and
survive in harsh environments. As in most Archaea, several
CRISPR loci consisting of CRISPR arrays, belonging to type I and
type III systems, were detected in all the genomes (Supplementary
Fig. 11). This illustrates that even under the extreme high
temperature, microbes in the community could also be invaded
by viruses. This is consistent with previous research showing
that these two CRISPR-cas systems are ubiquitous among other
Archaea42.

Current available Aigarchaeota genomes were all from hot
spring ecosystems, with the exception of “Candidatus Caldiarch-
aeum subterraneum”, which was from hot fracture water within a
subsurface gold mine (Supplementary Data 2)7. Most of them
harbor heme-copper oxidases, showing they are aerobes that can
use oxygen as an electron acceptor3,30. GMQ bin_10 and JZ
bin_10 are anaerobes due to the lack of terminal oxidases. Their
phylogenetic position near the tips of the Aigarchaeota illustrates
a possible shift from a facultatively anaerobic to a strictly
anaerobic lifestyle. In this study, these two bins are divergent
from the other four and show dramatic metabolic differences,
suggesting that Aigarchaeota is experiencing sympatric evolu-
tionary divergence. Unlike the considerable metabolic diversity
within most Aigarchaeota genomes, GMQ bin_10 and JZ_10 are
devoid of pathways for carbon monoxide oxidation, aerobic
respiration, dissimilatory sulfite reduction, and sulfide oxidation.
Carbon fixation is a common trait among most Aigarchaeota
genomes by employing either the roTCA cycle (the four genomes
in this study) or the 3-hydroxypropionate/4-hydroxybutyrate
pathway to fix carbon dioxide8. However, the two anaerobes
lack this capability due to the absence of key enzymes. Mostly,
rTCA or roTCA cycle are only found in anaerobic organisms,
however, some studies show that at least rTCA is functional in
microaerobic or aerobic microbes such as “Candidatus Nitrospira
defluvii” and Leptospirillum genomes43,44. In “Candidatus
Nitrospira defluvii” genome, near complete complex I-V path-
ways were identified, indicating the aerobic lifestyle of this
microbe. Comparative genomics shows that several Aigarchaeota
genomes including “Candidatus Caldiarchaeum subterraneum”,
“Aigarchaeota archaeon OS1”, and the four genomes in this study
have the ability to employ sqr to oxidize reduced sulfide as an
electron donor for chemolithotrophy. Other Aigarchaeota lack
this capability due to the missing of sqr gene. Closely related
neighbors JZ bin_15 and Aigarchaeota archaeon JGI 0000106-J15
were the only two genomes possessing dsrAB genes with high
sequence identity (>90%), indicating they inherited sulfite
reduction ability vertically, following earlier HGT transfer from
Firmicutes.

Eukaryotic signatures in Aigarchaeota genomes. Several
eukaryotic signature proteins (ESPs) were identified in Aigarch-
aeota genomes as described before7 (Supplementary Fig. 12;
Supplementary Table 3). All the six genomes harbor an ubiquitin
modifier system consisting of Ub-like, E1-like, E2-like, E3-like,
and Dub-like proteins, which could be used to degrade or recycle
damaged proteins45 (Fig. 2; Supplementary Fig. 13). The whole
reaction might be quite similar to the canonical eukaryotic ubi-
quitylation process. First, pro-ubiquitin could be cleaved by
the Rpn11 metalloprotease homolog (IPR000555), leading to

the exposure of the di-glycine motif of the modifier at the
C-terminus. E1-like enzyme (IPR000594) could subsequently be
used to adenylate the residue of the di-glycine motif. The acti-
vated modifier could then be transferred to the catalytic cysteine
of the E1-like enzyme, forming a covalent thioester intermediate.
Next, the transfer of ubiquitin from E1 to the active site cysteine
of the E2 could then be triggered by the E2-like conjugating
enzyme (IPR000608) via a trans-thioesterification reaction.
Finally, E3-like enzymes could catalyze the aminolysis-based
transfer of the ubiquitin from the E2-like protein onto a specific
target protein, which ultimately results in the covalent attachment
of a small ubiquitin modifier to a substrate and further degra-
dation through the proteasomal degradation pathways45. More-
over, a total of 64 ribosomal proteins (RP) were observed among
the six genome bins. Over half were identified as eukaryotic-like
RPs, including RP-S19e and RP-L30e, which were previously only
reported to be present in eukaryotes46 (Supplementary Table 3).
RP-L13e and RP-S26e were found in Aigarchaeota, consistent
with previous studies suggesting that these two RPs are present in
TACK superphylum47. In addition, a wide variety of GTPases
were identified among Aigarchaeota (Supplementary Data 1).
One genomic bin may encode a member of the Rab family of
small GTPases, an enzyme thought to predate the origin of
Eukaryotes, and generally presumed to be involved in membrane
biogenesis by interacting with proteins48. Like Crenarchaeota,
all genomes encode homologs of ESCRT-III and Vps4 compo-
nents49. Those genes were proposed to play a pivotal role in cell
division, and the inactivation of Vps4 leads to the accumulation
of enlarged cells50. However, the key genes cdvB and cdvC are
present, but a gene for cdvA is absent among all the genomes.
Both CdvB and CdvC show low similarity to proteins identified
in Eukarya (average ~26% and ~32% identity to the best hits
in Eukarya based on the RPS-BLAST). Overall, we found that
these archaea are of particular interest because they contain a
surprising mixture of bacterial and eukaryotic features. For
instance, the sulfite reduction ability in JZ bin_15 is derived from
Firmicutes and several genes involved in the roTCA cycle show
high amino acid identity to those of the genus Thermus. From
Bacteria, they can acquire the abilities related to central meta-
bolism through HGT. Otherwise, they share common ancestry
and mechanistic similarities to the functions related to cell
division, DNA replication, and transcription in Eukaryotes.

The evolutionary history of Aigarchaeota. The Aigarchaeota
represents an evolutionarily diverse group of microbes, which
are mainly found in high temperature environments including
geothermal springs, the deep subsurface, marine sediments, and
marine hydrothermal vents5,6,8,9,51–53. It is not yet confirmed
whether Aigarchaeota represents a new phylum or represents a
deeply branch within the Thaumarchaeota16. To better under-
stand the relationship between the two groups, we carefully
selected 94 genomes including 14 Aigarchaeota and 80 Thau-
marchaeota from public databases including IMG-M and NCBI
(see Methods for the selection criteria), and built phylogenetic
and phylogenomic trees (Supplementary Fig. 14; Supplementary
Data 2). A 16S rRNA-based phylogenetic tree places Aigarchaeota
as the nearest neighbor to Crenarchaeota (Supplementary Fig. 2),
consistent with a previous study54, suggesting that Aigarchaeota
may represent a new phylum compared to Thaumarchaeota. The
phylogenomic tree based on the concatenated alignment of 16
ribosomal proteins shows that Aigarchaeota and Thaumarchaeota
come from divergent groups with convincing bootstrap support
at the parental node of two lineages, providing further compelling
evidence that they are different phyla. However, uncertainties are
observed for the affiliation of Aigarchaeota archaeon JGI MDM2
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JNZ-1-N15 and Aigarchaeota archaeon JGI MDM2 JNZ-1-K18
due to their uncertain relationship to other Aigarchaeota. Revi-
siting the phylogenetic placement of these two phyla in an RNA
polymerase-based tree even put them into Thaumarchaeota with
high bootstrap confidence (>70%; Supplementary Fig. 15).
However, we still consider them as Aigarchaeota because they
group with Aigarchaeota based on the functional similarity based
on KO or COG annotation (Supplementary Fig. 16). To our
surprise, we found that one lineage comprised of six genomes
(hereafter, we refer to them as “transitional genomes”) has
a closer relationship to Aigarchaeota based on KEGG and
eggNOG functional annotations, but both the phylogenetic
and phylogenomic trees suggest that they represent members of
the Thaumarchaeota (Supplementary Fig. 16). In particular,
DRTY7 bin_36, which generated in this study, might be the first
genome of deep-branching pSL12 group (Supplementary Fig. 2).
Principal coordinates analyses (PCoA) based on COGs (KOs)
were conducted to visualize the relationship among different
members of the Aigarchaeota and Thaumarchaeota. From
the PCoA plot, genomes in these two phyla appear to cluster
based on their habitat rather than their taxonomic assignment.
One lineage consists mainly of Thaumarchaeota genomes
inhabiting cold or ambient temperature environments such as
marine or soil. The other cluster is mainly composed of the
Aigarchaeota and the “transitional genomes”, which are mainly
found in high-temperature ecosystems such as terrestrial hot
springs (Supplementary Fig. 16). Besides the six transitional
genomes, the remaining 71 Thaumarchaeota genomes are all
ammonia oxidizers, with six being possible exceptions, possibly
because of genome incompleteness (average <62%). Most of
them are mesophiles, with only a few from high-temperature

environments. “Candidatus Nitrososphaera gargensis” Ga9.2 was
proposed to be the first thermophilic ammonium oxidizer,
found in the moderate thermal spring in Russia14. The following
reported deep-branching AOAs including “Candidatus Nitroso-
caldus yellowstonii”, “Candidatus Nitrosocaldus islandicus” iso-
late 3F, and “Candidatus Nitrosocaldus cavascurensis” strain
SCU2 show adaptation to even higher temperature55–57. Based on
this observation, we propose that the last common ancestor of
Aigarchaeota and Thaumarchaeota were thermophiles, and the
marine Thaumarchaeota are the descendants of the thermophiles.
The detected crenarchaeol, a diagnostic membrane lipid, in
“Candidatus Nitrosocaldus yellowstonii” also supports the hot-
origin of Thaumarchaeota55. This evolutionary scenario is con-
sistent with the evolution of the destabilizing cyclohexyl ring of
crenarchaeol/thaumarchaeol to allow niche invasion of thermo-
philes into cold environments. Dispersal into cooler habitats
would also trigger evolution of the transitional genomes described
here. The later genetic interactions with the community members
driven by the environmental selection lead to the loss or acqui-
sition of specific genes from organisms in the new microbial
communities (e.g., the derived feature of ammonia oxidation) to
make them better adapted to the new habitats (Supplementary
Fig. 17).

To decipher the evolutionary histories of the Aigarchaeota and
Thaumarchaeota, gene gain and loss events were predicted by
mapping the inferred orthology of genes to the Bayesian tree. The
Bayesian tree is quite robust with all the nodes showing high
posterior probability (Supplementary Fig. 18). The Aigarchaeota
and Thaumarchaeota are monophyletic and share over 1000
orthologous genes for their common ancestor (Fig. 3). Several
terminal oxidases were gained at node 1 (Supplementary Data 1),
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in the tree. A list of gained and lost genes for the fours key nodes were shown in Supplementary Data 3
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indicating the ancestor of these two lineages were aerobes.
Aigarchaeota are reported to be hyperthermophiles or moderate
thermophiles, and are widely distributed in different thermal
habitats including terrestrial, marine, and subsurface environ-
ments9. Hence, it appears to be reasonable that the ancestor of the
Thaumarchaeota likely also originated from high-temperature
habitats because little has been changed as revealed by comparing
the lineage represented by transitional genomes and the parental
nodes of Aigarchaeota (Fig. 3). The evolutionary scenario was
also strengthened by a previous study about the “hot” origin of
Thaumarchaeota58. Then, we assume that niche invasion from
thermal to moderate temperature habitats might have selected for
transitional genomes and subsequently canonical Thaumarch-
aeota. New resources after the colonization of these new habitats
might have triggered adaptive radiations, forming the largest
branch of the Thaumarchaeota. This finding was further
supported by the observation that a large number of gene gain
events occurred at nodes 10 and 11 of the tree, taking up ~23 and
24% of gene families at corresponding nodes (Fig. 3). These two
steps of gene acquisition largely expanded the genetic diversity of
marine Thaumarchaeota, leading to the functional divergence
from ancestral thermophilic Thaumarchaeota and Aigarchaeota.
Of the total 806 gained genes at nodes 10 and 11 (Supplementary
Data 3), further analysis showed that 213 (~62%) and 296 (~64%)
of them were identified as hypothetical proteins based on
comparison to nogSTRING databases (Fig. 3). In comparison,
most of the lost genes at nodes 10 and 11 are related to
basic metabolism, including transporters and dehydrogenases
(Supplementary Data 3). Additionally, several genes related to
nitrogen metabolism including ureABCDEF and amoABC
operons were acquired at node 10, indicating that ammonia
oxidation is a derived feature of Thaumarchaeota. The amoABC
genes in “Candidatus Nitrosocaldus islandicus” 3F and “Candi-
datus Nitrosocaldus cavascurensis” SCU2 suggest AOAs might
originate from thermal habitats, which was also supported by
previous findings7,59,60. The inherited ammonia oxidation ability
could sustain their growth in nutrient-depleted marine and
terrestrial environments with low concentrations of ammonia,
allowing them to compete for ammonia as an electron donor and
providing a selective advantage relative to AOB, heterotrophs,
and phytoplankton61. Urea assimilation is employed by most
AOA to supply sufficient ammonia by catalyzing conversion of
the urea molecule to two ammonia molecules and one carbon
dioxide molecule. Besides the large genetic investment in nitrogen
metabolisms, several genes involved in cobalamin (B12) synthesis
were observed at node 10, which is necessary to catalyze methyl
transfer reactions in amino acid and DNA synthesis62. Previous
study revealed a common phenomenon that the B12 biosynthesis
pathway was widely distributed among oceanic Thaumarchaeota
genomes63, serving as a potential source of multiple B vitamins
required by other community members64. However, based on
our observation, they might be also inherited from thermophilic
AOAs (Fig. 3).

We estimated that the ancestor of the Aigarchaeota possessed
more gene families than the extant organisms. As time
went on, gene loss events occurred frequently in all lineages. To
gain a better understanding of this process, we investigated
variants of the six genomes to obtain detailed insight into the
influence of environmental selection on genomic evolution.
Single nucleotide polymorphism (SNP) calling was conducted
as described in Materials and Methods. The detected SNPs in
the six genomes are comparable except JZ bin_10, which has the
smallest genome size, and the most SNPs (23321; Supplementary
Table 4). In contrast, GMQ bin_10, the closest neighbor to
JZ bin_10 (97% AAI), has a larger genome but fewer SNPs
(2386; Supplementary Table 4). More than half of the SNPs in

almost all the genomes are synonymous mutations, illustrating
that in most cases, those mutations had no effect on their growth
in extreme thermal habitats. Almost all the dN/dS values were <1,
indicating that purifying selection was acting to remove
deleterious mutations.

Genome expansion through HGT. HGT is in important evolu-
tionary process in prokaryotes that has great impact on the
diversity of gene repertoires, especially for those microbes in
extreme habitats35,65. Putative HGT events have contributed
substantially to genome contents of Aigarchaeota (Supplementary
Table 4). The transferred genes comprise predominantly basic
metabolic functions, with amino acid transport and metabolism
(~18.5% of the total HGTs), energy production and conversion
(~15.6%), carbohydrate transport and metabolism (~9%),
nucleotide transport and metabolism (~5.5%), lipid transport and
metabolism (~4.8%), inorganic ion transport and metabolism
(~6.7%), secondary metabolites biosynthesis, transport, and cat-
abolism (~2.9%), and coenzyme transport and metabolism
(~6.1%) being significantly enriched in this eight functional
classifications (Two-tailed Fisher’s exact test with confidence
intervals at 99%, P < 0.05; P values were adjusted with the “BH”

criteria) (Supplementary Fig. 19). As is typical, informational
proteins (e.g., ribosomal proteins, DNA polymerases) underwent
fewer HGTs than other gene families (Supplementary Fig. 19).
Among the identified potential HGTs, most appear to be acquired
from the same domain, including Crenarchaeota and Eur-
yarchaeota (Fig. 4). Bacteria also contributed substantially to
generating genetic diversity through HGT, and several genes were
transferred from Firmicutes and Proteobacteria (Fig. 4). These
results might seem inconsistent with previous studies showing
that closely related organisms engage in more frequent genetic
exchange than distantly related ones66. However, interdomain
gene transfer is highly asymmetric in that Archaea acquire
genes much easier from bacteria than vice versa67. Gene acqui-
sition from bacteria appears to have provided the key innovations
for Aigarchaeota, facilitating their access to new niches. For
example, several CODHs and hydrogenases were identified as
HGTs with bacteria serving as donors (Supplementary Data 4).
As reported, carbon monoxide and hydrogen are ubiquitous and
are believed to be primary substrates and energy provider in
hydrothermal habitats68. For most members of Aigarchaeota
in this study, they are able to grow via the oxidation of carbon
monoxide coupling with oxygen reduction. Several genes related
to oxidative phosphorylation in GMQ bin_10 and JZ bin_10 were
found in large gene clusters, indicating they were likely acquired
in a single event (Supplementary Data 4). The associated genes
may be donated by Firmicutes through HGT. This finding pro-
vides important clues about the origin of aerobic Aigarchaeota.
Firmicutes also endowed JZ bin_15 with sulfite reducing cap-
ability with strong evidence as described above (Supplementary
Fig. 8a). The roTCA cycle might be a derived feature for most
bins except GMQ bin_10 and JZ bin_10. The key enzyme citrate
synthase was identified to be imported from Euryarchaeota or
Deinococcus–Thermus (Supplementary Data 4). Hence, HGT
might be the main driver to provide genetic variability that allows
different types of Aigarchaeota to occupy distinct niches, resulting
in the functional partitioning and ecological divergence within
the same habitat.

Conclusions
Aigarchaeota poorly understood but important lineage that is
abundant and widely distributed in thermal habitats. The high-
quality genomes described here are diverse both in metabolic
pathways and ecological roles, suggesting functional partitioning
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and ecological divergence within a single geothermal region. To
avoid competition among closely related microbes, HGT con-
tributes a lot to their genome innovations and allows them to
utilize different kind of substrates. Intriguingly, several of the
acquisitions are imported from Bacteria, indicating inter-domain
genetic interactions play a key role in shaping the genetic diver-
sity of Aigarchaeota. From the evolutionary perspective, our
research supports the hypothesis that the last common ancestor
of Aigarchaeota and Thaumarchaeota have a large genome size
and both of them are originated from thermal habitats. Overall,
this discovery is expected to have a substantial impact on our
understanding of their roles in biogeochemical cycling and the
evolutionary history of the important but poorly understood
phylum Aigarchaeota.

Methods
Sample acquisition, DNA extraction, and metagenomic sequencing. Two hot
spring sediment samples including JZ and GMQ were obtained from Tengchong,
Yunnan, China. Detailed site description as following: (1) GMQ: A small source
pool with a high flow rate (10.4 L/S), with length, width and depth around 98, 79,
and 9.5 cm, respectively. Spring water is clear, and silicate sand sediment could be
seen at bottom. The spring is surrounded by bush and grass. Leaf litter and other
debris were observed in this spring. (2) JZ: Man-made cubic well with side length
400 cm, and depth 150 cm, covered with a ceiling. Water is not clear, bottom is not
visible. Mineral deposition was observed on the well walls. The GPS coordinates of
the locations from which samples were listed in Fig. 1. Both samples were collected
using sterile spatulas and spoons and stored in liquid nitrogen before transporting
to the lab. Community genomic DNA was extracted from approximately 20 g
of sediment material using PowerSoil DNA Isolation kit (MoBio). DNA
concentrations of the extract and constructed libraries (with insert size of 350 bp)
were measured with a Qubit fluorometer. Metagenomic sequence data for the two
samples are generated using Illumina Hiseq 4000 instruments at Beijing Novogene
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Fig. 4 Extensive horizontal gene transfer events detected in Aigarchaeota. The maximum likelihood tree was pruned and redrawn at the phylum level

according to the tree of life published by Hug et al.79. Green edges represent potential gene flows from the corresponding phylum involving ≥10 genes,

and gray lines are the ones with <10 genes. Edge thickness is proportional to the number of putatively transferred genes. The sizes of red circles are

proportional to the number of reference genomes collected for that phylum
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Bioinformatics Technology Co., Ltd (Beijing, China). The amount of raw sequence
data was ~30 Gbp (2 × 150 bp) for each sample.

Metagenome assembly and genome binning. Preprocessing of raw data was
carried out as described previously69. The quality metagenomic sequences for each
sample were de novo assembled separately using SPAdes (version 3.9.0)70 with the
following parameters: −k 33,55,77,99,111-meta. Then, GapCloser (version 1.12;
http://soap.genomics.org.cn/) was used with default parameters to fill a proportion
of gaps of the assembled scaffolds. Genome binning of the metagenomic assemblies
was conducted with a combination of emergent self-organizing maps (ESOM)71

and MetaBAT72. In brief, scaffolds with length <2500 bp in each assembly were
removed from the further analysis. Qualified metagenomic data from samples was
mapped to each assembly to compute the coverage information using BBMap
(version 38.85; http://sourceforge.net/projects/bbmap/) with the parameter as: k=
15 minid= 0.9 build= 1. Then coverage information of the scaffolds and tetra-
nucleotide frequency (TNF) were used to perform the genome binning which
conducted by MetaBAT72. All bins were subjected to manual examination to
remove contaminations. Specifically, genome bins were sheared into short frag-
ments (5 to 10 kb) and clustered based on the TNF using ESOM71. Then the
generated clusters were visualized to judge the situations that if one genome bin has
been split into sub-blocks or sub-blocks could be merged into one single bin
(Supplementary Fig. 1). To improve the accuracy of genome bins, the obvious
discordant points were deleted manually from the clusters. The completeness,
contamination and strain heterogeneity of each bin were evaluated using CheckM
(version 1.0.5)10. To get the optimal quality of genome bins, clean reads for each
genome bin were recruited using BBMap with the parameters listed above. Then,
genome bins were reassembled by SPAdes (version 3.9.0)70 with the following
parameters: --careful -k 21,33,55,77,99,127. Finally, six genome bins belonging to
Aigarchaeota were retained for the further analysis. The subsequent functional
annotation, phylogenetic and phylogenomic inference and metabolic pathway
reconstruction were conducted as detailed described in the Supplementary
Notes 1, 2.

Comparative genomics. All genomes classified under Aigarchaeota or Thau-
marchaeota were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) and
IMG-M (https://img.jgi.doe.gov/cgi-bin/m/main.cgi) databases. CheckM10 was
used to check the genome quality. Genomes with redundancy and completeness <
50% were removed for the further analysis. Finally, a total of 94 draft genomes were
taken into comparison. Seven were from our study including six and one belonged
to Aigarchaeota and Thaumarchaeota, respectively. The remaining 87 genomes
from the public databases include eight aigarchaeal and 79 thaumarchaeal genomes
(Supplementary Data 2). To compute the amino acid identity (AAI) of each pair of
genomes, orthologous genes were identified based on reciprocal best BLAST hits
(E-value < 1e−5) based on their predicted amino acid sequences. AAI was calcu-
lated as the mean similarity of all orthologous genes.

For the further comparative analysis, only genomes with completeness >80%
were taken into consideration, respectively, which lead to the filtration of extra 38
genomes (Nitrosopumilus sp. AR was also removed due to the high contamination
estimated by CheckM). Clusters of homologous protein were reconstructed for the
remaining 56 genomes. An all-against-all genomes BLAST were conducted using
the thresholds E-value <1e-10 and sequence identity ≥30%. MCL (−I 1.4)73 was
used to reconstruct protein clusters based on the reciprocal best BLAST hits
(rBBHs). This yielded a total of 18,894 protein families with 12,198 were classified
as singletons. To address the evolution of life histories of the two phyla, ancestral
family sizes were inferred using the program COUNT74 with Dollo parsimony.
This approach strictly prohibits multiple gains of genes and allows reconstructing
gene gain and loss events at both observed species and potential ancestors (leaves
and nodes on the phylogenetic tree).

Putative HGTs were inferred using HGTector75. Homologs of predicted genes
were retrieved from the NCBI-nr database using BLASTp as implemented in NCBI
BLAST +2.2.28. Quality cutoffs for valid hits were E-value ≤1e−20, sequence
identity ≥30%, and coverage of query sequence ≥50%. Putatively HGT-derived
genes were defined as those with hits from within the Thaumarchaeota (NCBI
TaxID 651137, which includes Aigarchaeota) significantly underweighted, and with
hits outside the phylum not underweighted.

SNP detection and dN/dS calculation. The quality reads were mapped to the
corresponding genomes using BBMap (minid= 0.97). GATK76 was then used to
generate the primary high-quality variant calls including SNPs and InDels. Custom
Perl scripts were developed to identify and classify all the SNPs as intergenic,
intragenic, synonymous (dS) or non-synonymous (dN). Calculation of dN and dS
values between GMQ bin_10 and JZ bin_10 were performed using the yn00 pro-
gram in the PAML package (version 4.9)77. Both the Nei-Gojobori and Yang and
Nielsen methods were used. To remove the bias caused by too few dS, genes with
dN/dS ratio higher than 5 were excluded from further analysis.

Data availability. The genome bins described in this study have been deposited at
JGI IMG-MER under the Study ID Gs0127627 and WGS accessions Ga0180324
(Unclassified Aigarchaeota GMQ bin_10), Ga0180307 (Unclassified Aigarchaeota

JZ bin_10), Ga0180308 (Unclassified Aigarchaeota JZ bin_15), Ga0177927
(Unclassified Aigarchaeota JZ bin_19), Ga0180309 (Unclassified Aigarchaeota JZ
bin_28), Ga0180310 (Unclassified Aigarchaeota JZ bin_40) and Ga0181444
(Unclassified Thaumarchaeota DRTY7 bin_36). The datasets generated during
and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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