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Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently

impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens,

HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The

heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated

(HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and

alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by

The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize

HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential

biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example,

HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies

CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC

expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1.

Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of

HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to

identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant

to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation

of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly

associated with smoking, have also been identified, and are less well understood mechanistically. Application of

sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and

gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify

patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.
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Background

Head and neck squamous cell carcinoma (HNSCC) is

the sixth most common cancer, with annual incidence of

600,000 cases worldwide [1]. Anatomically, head and

neck cancer regions include the oral cavity, the pharynx

(nasopharynx—behind the nose; oropharynx—soft pal-

ate, base of the tongue and the tonsils; hypophar-

ynx—the lowest part of the pharynx), the larynx, the

paranasal sinuses, the nasal cavity and the salivary glands

[2]. Beyond distinction by anatomic sites, HNSCC is di-

vided into two broad classes: human papillomavirus

(HPV)-associated (HPV+) and HPV-negative (HPV-)

disease. The majority of HPV-negative HNSCC arises

from the larynx and oral cavity [3, 4], although a small

fraction of cases originates in the oro- and hypopharynx.

HPV+ disease is typically found in the oropharynx, with

a minority of cases detected in the larynx and oral cavity

[5]. As of 2016, the majority of HNSCC is HPV- disease,

and is most commonly associated with tobacco use and

heavy alcohol consumption [6]. The exception is oropha-

ryngeal HNSCC, 60-70 % of which is HPV+ in North

America and Europe (significant geographic variation
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exists in the prevalence of HPV+ disease worldwide

[3, 5, 7]). Over 150 types of HPV have been identified,

with HPV subtype 16 (HPV–16) identified as the most

oncogenic, detected in over 90 % of HPV+ oropharyn-

geal cancers [8]. HPV+ HNSCC is typically diagnosed in

a younger patient population (6th decade of life; [5, 9])

and its prevalence has dramatically increased since the

1980’s (then only detected in 16 % of oropharyngeal can-

cer; [7, 9]). HPV- HNSCC is generally diagnosed in an

older patient population (7th decade of life), often pre-

sents with locally advanced or metastatic features, and

has a relatively poor prognosis compared to HPV+ tu-

mors [5, 10].

Both HPV+ and HPV- HNSCC are treated with a

combination of surgery, radiation and adjuvant chemo-

therapy. Treatment specifics vary depending on ana-

tomic site and disease stage. In general, low stage

tumors are treated with surgery, followed by radiation if

positive surgery margins are detected. For more ad-

vanced cases treatment includes surgery, if possible,

followed by radiation with or without adjuvant chemo-

therapy [1, 9, 11]. In spite of significant improvements,

including the introduction of targeted and immunother-

apies (most prominently, immune checkpoint inhibitors

targeting cytotoxic T-lymphocyte-associated antigen 4

(CTLA-4) and programmed cell death protein 1 (PD-1)

[12]), as of 2015 the relative 5-year survival rate is only

approximately 25–40 % for HPV- and 70–80 % for HPV

+ HNSCC [1, 13, 14]. To fully capture the diversity of

HNSCC and to gain clinically meaningful insights that

can improve treatment, it seems critical to define the full

spectrum of molecular alterations and the heterogeneity

associated with this pathology.

At no prior point in time has it been possible to de-

scribe the molecular landscape of the various, mostly

anatomically defined cancers with as much detail and

precision as is possible today [15–17], based on con-

certed efforts to uncover the genomic (most advanced),

epigenomic, proteomic and transcriptomic changes that

occur as healthy tissue turns malignant, metastatic and

resistant to treatment [18]. The Cancer Genome Atlas

(TCGA) network and others have periodically published

datasets on many cancers [15, 17], including extensive

analyses of HPV- and to a lesser degree HPV+ HNSCC

(Table 1; [17, 19–24]). Amongst non-lung and non-skin

tumor types, head and neck cancer has one of the high-

est rates of non-synonymous mutations and a high de-

gree of genomic instability [15, 16, 25, 26], which

contribute to the enormous heterogeneity of HNSCC

[19, 24]. Since large-scale datasets began to appear in

2011 [20, 22], a number of groups have performed inte-

grated bioinformatics, translational, and clinical analyses

that leverage the genomic resources, suggesting new re-

search directions. This review summarizes and highlights

potential therapeutic opportunities in HPV- and HPV+

HNSCC based on the analysis of high throughput data

published by the TCGA network and others.

Foundational genomic datasets

The pathophysiological differences between HPV+ and

HPV- HNSCC necessitate that genomic analyses apply

rigorous classification methods for HPV dependence in

clinical samples [10, 22, 27]. HPV status is most com-

monly determined by polymerase chain reaction (PCR)

or in situ hybridization (ISH) to detect HPV genetic ma-

terial, or by immunohistochemical (IHC) staining for the

tumor suppressor p16 (CDKN2A), which is induced as a

consequence of HPV-associated transformation [28]. p16

IHC staining is greatly increased as a result of HPV in-

fection, and is a reliable proxy for positive HPV status in

primary tumors of the oropharynx [28]. Virally encoded

proteins target the cell cycle regulator retinoblastoma 1

gene (RB1), providing one potential feedback mecha-

nisms for enhancing expression of p16 ([29], and dis-

cussed further below). Alternatively, it has been shown

that upregulation of p16 can also occur as a cellular re-

sponse to the infection itself, through induction of the

histone 3 lysine-27 (H3K27) specific demethylases

KDM6A and KDM6B [30–32]. For other anatomic sites,

the true positive rate for p16 IHC staining falls below

50 %, reflecting the rarity of HPV-associated tumors out-

side of the oropharynx [28, 33]. High p16 expression

also occurs in about 5 % of HPV- cases, for reasons that

are at present unclear [28]. For these reasons, the TCGA

network took extensive measures to ensure proper HPV

classification of each tumor: in addition to p16 staining

and ISH, whole HPV genome sequencing as well as HPV

RNA-Seq was performed. HPV positive cases were clas-

sified as such if > 1000 RNA-Seq reads aligned to viral

genes E6 and E7 [19].

The TCGA network analyzed 243 HPV-negative and

36 HPV-positive tumors using multiple platforms (RNA

sequencing, DNA sequencing, reverse phase protein

array (RPPA), DNA methylation profiling and miRNA

sequencing) to define the molecular landscape of this

malignancy [19, 34]. Most of the patients in the TCGA

cohort were male (~70 %) and heavy smokers (51 mean

pack years; [19]), closely resembling the general HPV-

HNSCC patient population [1, 11]. Tumors predomin-

antly originated from the oral cavity (n = 172; 62 %; 160/

172 HPV- and 12/172 HPV+) and the larynx (n = 72;

26 %; 71/72 HPV- and 1/72 HPV+), with only a few

cases originating from the oropharynx (n = 33; 12 %; 11/

33 HPV- and 22/33 HPV+) and only two from the hypo-

pharynx (1/2 HPV+ and 1/2 HPV-).

Beyond the work of the TCGA network, additional

genomic sequencing studies (Table 1) were performed

by Stransky et al. (53 HPV- and 11 HPV+; [22]), Agrawal
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et al. (28 HPV- and 4 HPV+; [20]), Pickering et al. (40

oral squamous cell carcinoma; likely HPV-negative;

[35]), Seiwert et al. (69 HPV- and 51 HPV+; [21]), and

Pickering et al. (34 squamous cell carcinoma of the oral

tongue; likely HPV-negative; [36]). These predominantly

relied on a single platform (exome/massively parallel se-

quencing) for data acquisition. In addition, Lin et al.

have sequenced 128 cases of nasopharyngeal carcinomas

(NPC; likely HPV-; [37]).

The TCGA dataset [19] is conveniently accessible

through cBioportal [38, 39], as are the datasets from

Stransky et al., Agrawal et al. [20, 22], and the NPC

study [37]. The 279 patient TCGA dataset provides the

most extensive tumor profiles, including mutational data

from whole exome sequencing, identification of somatic

copy number alterations using the GISTIC algorithm

[40], mRNA expression data (RNA-Seq V2 RSEM), and

protein expression data for a total of 165 combined

Table 1 High-throughput genomic studies of HNSCC. The most frequently altered genes described in seven studies are shown,

separated by HPV status when possible

TCGA
(2015; [19])a

Seiwert et al.
(2015; [21])

Lin et al.
(2014; [37])a

Pickering et al.
(2014; [36])b

Pickering et al.
(2013; [35])

Stransky et al.
(2011; [22])a

Agrawal et al.
(2011; [20])a

HPV- HPV- N/A (NPC) N/A (Tongue) N/A (OSCC) HPV- N/A

n = 243 n = 69 n = 128 n = 34 (YT 16, OT 28) n = 35-40 n = 63 n = 28

TP53 (84 %, M) TP53 (81 %, M) TP53 (17 %, M/D) TP53 (94 %, 57 %, M) CDKN2A
(74 %, D)

TP53 (73 %, M) TP53 (79 %, M)

CDKN2A
(57 %, M/D)

CDKN2A (33, M/D) CDKN2A/B
(13 %, M/D)

CSMD1
(25 %, 75 %, D)

TP53 (66 %, M) CDKN2A
(25 %, M/Dc)

NOTCH1 (14 %, M)

let-7c (40 %, miRNA) MDM2 (16 %, A) ARID1A
(11 %, M/D)

PIK3CA (0 %, 11 %, M);
(30 %, 70 %, A)

FAT1 (46 %, M/D) SYNE1 (22 %, M) RELN (14 %, M)

PIK3CA (34 %, M/A) MLL2 (16 %, M) SYNE1 (8 %, M) CDKN2A (6 %, 4 %, M);
(55 %, 65 %, D)

TP63 (26 %, A) CCND1 (22 %, Ac) SYNE1 (14 %, M)

FADD (32 %, A) NOTCH 1
(16 %, M)

ATG13 (6 %, M/D) FADD/CCND1
(40 %, 65 %, A)

CCND1 (23 %, A) MUC16 (19 %, M) EPHA7 (11 %, M)

FAT1 (32 %, M/D) CCND1 (13 %, A) MLL2 (6 %, M) FAT1 (6 %, 25 %, M);
(50 %, 35 %, D)

MAML1 (23 %, D) USH2A (18 %, M) FLG (11 %, M)

CCND1 (31 %, A) PIK3CA (13 %, M) PIK3CA (6 %, M/A) EGFR (20 %, 50 %, A) EGFR (17 %, A) FAT1 (14 %, M) HRAS (11 %, M)

NOTCH1/2/3
(29 %, M/D)

PIK3CB (13 %, M/A) CCND1 (4 %, A) NOTCH1
(25 %, 18 %, M)

TNK2 (17 %, A) LRP1B (14 %, M) PIK3AP1 (11 %, M)

TP63 (19 %, A) UBR5 (13 %, M/D) NOTCH3
(4 %, M)

HLA-A (0 %, 14 %, M) AKT1 (14 %, A) ZFHX4 (14 %, M) RIMBP2 (11 %, M)

EGFR (15 %, M/A) EGFR (12 %, A) FGFR2 (4 %, M) CASP8 (6 %, 11 %, M) SRC (14 %, A) NOTCH1 (13 %, M) SI (11 %, M)

HPV+ HPV+ HPV+ HPV+

n = 36 n = 51 n = 11 n = 4

E6/7 (100 %) E6/7 (100 %) E6/E7 (100 %) E6/E7 (100 %)

PIK3CA (56 %, M/A) PIK3CA (22 %, M) PIK3CA (27 %, M) EPHB3 (25 %, M)

TP63 (28 %, A) TP63 (16 %, M/A) RUFY1 (18 %, M) UNC5D (25 %, M)

TRAF3 (22 %, M/D) PIK3CB (13 %, M/A) EZH2 (18 %, M) NLRP12 (25 %, M)

E2F1 (19 %, A) FGFR3 (14 %, M) CDH10 (18 %, M) PIK3CA (25 %, M)

let-7c (17 %, miRNA) NF1/2 (12 %, M) THSD7A (18 %, M) TM7SF3 (25 %, M)

NOTCH1/3 (17 %, M) SOX2 (12 %, A) FAT4 (18 %, M) ENPP1 (25 %, M)

FGFR3 (11 %, F/M) ATM (10 %, D) KMT2D (18 %, M) NRXN3 (25 %, M)

HLA-A/B (11 %, M/D) FLG (12 %, M) ZNF676 (18 %, M) MICAL2 (25 %, M)

EGFR (6 %, M) MLL3 (10 %, M) MUC16 (18 %, M)

N/A HPV status not available, NPC nasopharyngeal cancer, YT young tongue, OT old tongue, OSCC oral squamous cell carcinoma, M mutation, A amplification, D

deletion, F fusion
aData was accessed using cBioportal [38, 39]
bvalues for A and D are approximations
cpercentages are not based on the 63 cases, because CNAs were not analyzed for all cases
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phosophoproteins and proteins (reverse-phase protein

array/microarray; [38, 39, 41]). The other three datasets

accessible through cBioPortal predominantly cover som-

atic mutations. The dataset for Pickering et al. [35] is

available through Gene Expression Omnibus (GEO;

[42]); the remaining studies provide access to datasets

via links provided in the original publications. Table 1

summarizes the top alterations detected in each study

for HPV- and, if available, HPV+ cases. Certain alter-

ations were detected across several studies; whereas, a

significant number of alterations were not uniformly

detected, potentially due to the variation in detection

platforms, disease heterogeneity and significant demo-

graphic differences.

Common genomic defects: HPV+ and HPV-

Copy number alterations (CNA) are frequent in HNSCC

[26] and are highly concordant across most of the gen-

ome for HPV- and HPV+ cases [19, 43]. One of the

most frequently amplified regions (in approximately 15–

30 % of cases [19]) is on chromosome 3q and includes

the anti-apoptotic kinase protein kinase C (PIK3CA),

and the transcription factors TP63 and SOX2 [44].

Additional amplifications found in both the HPV+ and

HPV- disease subtypes include chromosomes 5p and 8q

[19, 43], which encompass telomerase TERT (5p) and

the oncogene MYC (8q). Commonly seen deletions

prominently cover parts of chromosome 3p and 8p,

impacting two tumor suppressor genes: FHIT (3p; ex-

pression loss is associated with worse survival in

HNSCC [45]) and CSMD1 (8p; [19, 46, 47]). Losses in

3p and 8p and gains in 3q, 5p and 8q are also frequently

seen in squamous cell carcinomas (SQCC) of the lung

[48], highlighting important genomic similarities be-

tween SQCC and HNSCC [19, 43, 48].

The microRNA let-7c, a cell cycle regulator, is fre-

quently inactivated in both HPV- and HPV+ HNSCC in

the TCGA cohort (Fig. 1a and b). Depressed expression

of let7-c is associated with increased expression of

CDK4, CDK6, E2F1 and PLK1, kinases and translational

regulators important for progression through the cell

cycle [19, 49]. In depth analysis of TCGA microRNA

data has been used to test the hypothesis that expression

of 28 microRNAs selected based on in vitro experiments

Fig. 1 The genomic profile of HNSCC. a Percent alteration for each listed gene in HPV+ and HPV- tumors (x = 0 % of cases); dominant alterations

in b cell cycle, c RTK/RAS/PI(3)K signaling, and d differentiation associated genes. Percentages are based on the The Cancer Genome Atlas

Network dataset [19]. Diff. = differentiation; RTK = receptor tyrosine kinase
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could predict response to radiotherapy [50]. Patients

from the TCGA cohort with complete clinical annota-

tions were divided into three groups: radiation with

complete response (radiosensitive), radiation with tumor

progression (radioresistant), and not irradiated. This

analysis suggested that upregulation of miR-016, miR-29,

miR-150, miR-1254 and downregulation of let-7e corre-

lated with complete response to radiotherapy. Effects

were linked to ATM expression. Higher levels of ATM

correlated with increased radio-resistance, based on

RPPA data also provided by the TCGA [50]. These inter-

esting findings necessitate validation using additional

cohorts, but clearly indicate the potential value of ana-

lyzing microRNA expression in HNSCC.

One of the most commonly activated (mutationally or

due to amplification of the 3q chromosomal region)

genes in both HPV+ and HPV- cases in the TCGA

cohorts (56 and 34 %, respectively) and other studies

(Table 1; [21–23]) is PIK3CA, encoding the p110α cata-

lytic subunit of phosphinositol-3-kinase (Fig. 1; [19]). In

this regard, HNSCC is similar to many other cancers in

which PIK3CA is amongst the most commonly mutated

genes [18]. PIK3CA encodes a lipid kinase that regulates

signal propagation from multiple input sources [51],

including many of the receptor tyrosine kinases (RTKs)

relevant to HNSCC (Fig. 1c; [19, 52, 53]). Functionally,

PIK3CA regulates phosphorylation of AKT1, and mu-

tated PIK3CA has been shown to attenuate apoptotic

signals and support tumor invasion [54]. Additionally,

mutationally activated PIK3CA has been shown to sup-

port cyclin D activity [55]; thus, further emphasizing the

tremendous relevance of cell cycle dysregulation in head

and neck cancers [43, 56].

Lui et al. performed a focused whole-exome analysis of

151 HNSCC tumors (datasets from Stransky et al. and

Agrawal et al., plus 45 additional cases [20, 22]), specific-

ally exploring PI3K pathway mutations for therapeutic

opportunities [23], This analysis (which did not assess

CNAs) indicated the PI3K pathway was the most fre-

quently mutated oncogenic pathway (30.5 % of tumors,

46/151 [23]). PIK3CA in particular was mutated in

12.6 % of cases (19/151; [23]), which is substantially less

than the number of cases with mutated PIK3CA (21 %,

58/279) reported by the TCGA [19]. Nevertheless, as-

sessment of patient derived xenografts expressing wild

type PI3KCA or mutant PI3KCA and treated with ve-

hicle or the mTOR/PI3K inhibitor BEZ-235 [57] indi-

cated tumors with mutated PI3KCA were exquisitely

sensitive to the small molecule inhibitor, whereas tumors

without the mutation did not respond to the treatment

[23]. Several studies using pre-clinical models also demon-

strated that HNSCC with wild type PI3KCA is sensitive to

PI3K/mTOR inhibitors, particularly in combination with a

MEK inhibitor or in combination with radiation in the

context of wild type p53 [58, 59]. Development of a large

number of PI(3)K inhibitors is ongoing, with several

promising compounds currently being tested in clinical

trials [60].

Another commonly altered gene in HNSCC is NOTCH1.

NOTCH1 is a transmembrane kinase frequently mutation-

ally inactivated (most commonly via missense or truncating

mutation) in both HPV+ and HPV- cases (13–26 % and 8–

17 %, respectively [19, 21]; Table 1). The role of the

NOTCH pathway is complicated and depends on the over-

all organization of the broader signaling network and on

the specific tissue type [61]. Exome sequencing of HNSCC

strongly implicated NOTCH1 as a tumor suppressor in this

malignancy, as close to 40 % (11/28) of NOTCH1 muta-

tions were truncating mutations predicted to be inactivating

[20]. This conclusion was supported by the observation that

NOTCH1 knockout mice developed tumors due to in-

creased oncogenic CTNNB1 signaling [62]. Additional

work in tongue carcinoma cells observed robust down-

regulation of CTNNB1 in the background of stable expres-

sion of NOTCH1 [63]. Another important feature of

NOTCH1 is its participation in reciprocal negative regula-

tion with p63 [64], a member of the p53 family found to be

activated with high frequency in HNSCC (19 and 28 % in

HPV- and HPV+ cases respectively, mostly due to amplifi-

cation [19]). In keratinocytes, overexpression of p63 in-

duced cell growth in part by suppression of p21 and thus

directly counteracting the growth suppressive input from

NOTCH1 [65]. The TCGA data supports this NOTCH1-

p63 paradigm in HNSCC, given the high incident of

NOTCH1 inactivating mutations and the significant inci-

dent of p63 activation. Of note, p63 is transcriptionally acti-

vated by two distinct promoters [66]; one of the two

resulting p63 variants contains an N-terminal transactiva-

tion domain (TAp63), whereas, the other transcript lacks

the N-terminal domain and is termed ΔNp63 [66]. The two

p63 isoforms are functionally distinct [67], with ΔNp63

acting as a dominant negative regulator of p53 and with

TAp63 opposing cell cycle arrest and apoptosis [66, 68].

ΔNp63 is highly expressed in HNSCC [69] and indeed

inhibits NOTCH1 activity [65, 70].

HPV-Negative HNSCC

Well prior to the advent of high throughput sequencing,

alterations in several genes, including inactivation or de-

letion of the tumor suppressors CDKN2A (p16; [71])

and TP53 (p53; [72]), and overexpression (via amplifica-

tion and elevated transcription) of the epidermal growth

factor receptor EGFR [73] had been identified as rele-

vant to the pathogenesis of HPV-negative HNSCC.

Based on TCGA analysis of genomic-scale data, the two

most commonly inactivated genes in HPV- tumors were

confirmed as TP53 (84 % of cases [19]; a percentage

Beck and Golemis Cancers of the Head & Neck  (2016) 1:1 Page 5 of 17



similar to the one reported by Seiwert et al. (81 % of 69

HPV- tumors; [21]) and Stransky et al. (73 % of 63 HPV-

tumors; [22])) and CDKN2A (4–74 % of cases Fig. 1a

and b and Table 1; [19, 21, 22]; the broad range is in part

due to the lack of CNA data for several of the studies

and the difficulties associated with sequencing of GC-

rich regions, which are found in CDKN2A [74, 75]).

Due to the high frequency of mutations in TP53

(Table 1), significant effort has been focused on elucidat-

ing the prognostic potential of this gene. Some work

suggests improved overall survival for patients with wild

type TP53 compared to patients with TP53 mutations

predicted to be functionally disruptive (i.e., nonsense

mutations or missense mutations disruptive to the L2 or

L3 DNA-binding domains [76]). Other reports indicated

that TP53 status is of low prognostic value when consid-

ered independently from other variables [77]. A multi-

tiered genomic analysis of 250 HPV-negative tumors in

2014 (TCGA dataset; approximately corresponding to

the cohort described above) confirmed that disruptive

TP53 mutations correlated with reduced survival; how-

ever, in this analysis, cases with TP53 mutations pre-

dicted to be non-disruptive also had significantly worse

survival outcomes compared to cases with wild type

TP53 [78]. Strikingly, this study identified TP53 muta-

tions as frequently co-occurring with deletions of

chromosomal region 3p (179 out of 250 cases), with the

combination associated with significantly worse survival

than was predicted for TP53 mutations or 3p deletions

considered independently [78]. Further stratification of

the 179 TP53-3p cases showed that elevated expression

of miR-548k (a microRNA encoded by a gene proximal

to cyclin D1 (CCND1) and the death receptor FADD at

11q13 and described as oncogenic in esophageal squa-

mous cell cancer [79]) predicted further reduction in

survival [78].

Efforts to elucidate the prognostic value of different

TP53 mutations have also led to the development of a

novel computation approach termed the Evolutionary

Action score of TP53-coding variants (EAp53; [80–82]).

EAp53 stratifies HNSCC patients with tumors harboring

TP53 missense mutations based on an estimated degree

of risk assigned to each mutation. The foundational

principles of this approach are based on previously iden-

tified TP53 “gain of function” mutations that enhanced

cell transformation and chemotherapy resistance [83].

EAp53 assigns functional sensitivity to sequence varia-

tions based on evolutionary substitutions for every

sequence position and calculates if substitutions correl-

ate with larger or smaller phylogenetic divergences to

determine “risk” [80, 82, 84]. HNSCC patients with p53

mutations classified using EAp53 as high-risk had

significantly worse survival outcomes and reduced

periods until distant metastases developed [80], as well

as increased resistance to chemotherapy [81]. As larger

datasets with clinical annotations become available, it

will be critical to refine and validate these models, and

to determine if and how TP53 status is suitable to pre-

dict efficacy of different therapeutic interventions.

CDKN2A regulates cell cycle progression by blocking

the activity of CCND1 (cyclin D1) and its associated ki-

nases, CDK6 and CDK4, which phosphorylate and in-

activate the tumor suppressor RB1 (Fig. 1b; [56, 85, 86]).

Inactivation of the CDKN2A gene was found in 57 % of

HPV- cases in the TCGA cohort [19]; however, other

studies produced discordant values for genomic alterations

of CDKN2A (ranging from 4 to 74 %; [20–22, 35, 36];

Table 1). Evaluation of CDKN2A status is somewhat com-

plicated by the fact that the gene is GC-rich (> 60 % of

bases are cytosine or guanine; [87]). Sequencing GC-rich

regions can be problematic because of their higher melting

temperature compared to GC-low regions, which is due to

base stacking and more stable secondary structure [74, 75].

Methylation-associated inactivation of CDKN2A (further

discussed below) is another important factor potentially

complicating assessment of the function status of this gene

[88–91]. Direct comparison of cases in the TCGA cohort

with homozygous deletions or predicted inactivating muta-

tions in CDKN2A versus wild type CDKN2A did not indi-

cate a survival difference. However, as with TP53,

subsequent refined analysis of CDKN2A status emphasized

that the patient cohort with low mRNA expression of

CDKN2A (RNA-seq: z < 3-fold) did have reduced survival

(p = 0.037; [56]). This observation is in accordance with

other work that indicated improved survival for patients

with p16-positive non-oropharyngeal squamous cell carcin-

oma [92]. Further emphasizing the importance of this

signaling axis is the fact that CCND1 is the most fre-

quently amplified gene in the TCGA cohort of HPV-

HNSCC cases, detected in 31 % of cases (confirming

earlier studies [19, 21, 22, 56]). Beck et al. reported that

high RNA expression of CCND1 (z > 2-fold) not only

correlated with reduced survival in the TCGA dataset

[19, 56], but also co-occurred frequently with CDKN2A

deletions (co-occurrence ratio: 0.817). Cases harboring

both, amplified CCND1 and deleted CDK2N2A had

much worse prognosis than cases without these alter-

ations [56].

In the TCGA cohort, EGFR was amplified in 12 % of

HPV- cases [19], the same % of cases with EGFR ampli-

fication was reported by Seiwert et al. [21]. Seiwert et al.

did not report significant incidence of alteration in

HER2 (also known as ERBB2), ERBB3 and ERBB4 and

the TCGA also only detected alterations of those genes

in a small number of cases (4–6 %; [19]). Nevertheless,

alterations in ERBB2 or ERBB3 have been directly linked

to resistance to EGFR-targeted therapy and are thus of

therapeutic relevance [93]. Mining of TCGA data
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highlighted that RPPA expression of pHER2 correlated

with expression of HER2, and both, pHER2 and HER2

expression correlated with protein expression of EGFR

[93], providing some patient data in support of in vivo

results in which dual kinase inhibition of EGFR and

HER2 enhances response to cetuximab [94]. In addition,

the RTKs FGFR1 and IGF1R were identified with acti-

vating mutations in 10 and 4 % of HPV- HNSCC,

respectively, while no mutations of these kinases were

identified in HPV+ HNSCC tumors (Fig. 1a and c).

FGFR1 and IGFR1 participate in a signaling network

that includes EGFR and other ERBB family members

(Fig. 1c), and both can contribute to resistance to EGFR-

targeted therapeutics, the only type of targeted therapy

approved for HNSCC [73, 95, 96]. Functioning down-

stream of these RTKs, the GTPase HRAS was almost

exclusively altered in HPV- HNSCC (5 %), propagates

pro-proliferation and pro-survival signaling via the

BRAF-MEK-ERK axis, and provides alternative input to

activate PI3K (Fig. 1c; [97–99]).

For two additional genes, AJUBA and FAT1, almost all

detected alterations were found in HPV- tumors (Fig. 1a

and d). Both genes are involved in differentiation and

are linked to the NOTCH/CTNNB1 signaling pathway

as negative regulators [19, 100, 101]. The scaffolding

protein AJUBA, inactivated in 7 % of HPV- cases (0 % of

HPV+ tumors), has also been implicated in interactions

with Aurora-A kinase (AURKA), a critical regulator of

mitosis [102]. AURKA is overexpressed in a significant

percentage (7 %) of HNSCC cases and correlated with

diminished survival in an analysis of provisional TCGA

data (significant overlap with the published TCGA data-

set; [19, 103]). FAT1 is a member of the cadherin-like

protein family and has been described as a suppressor of

cancer cell growth based on a role in binding to and an-

tagonizing CTNNB1 [100]. FAT1 had previously been

shown to be mutated in roughly 7 % of 60 head and

neck tumors [100], but was detected to be inactivated

(missense/truncating mutations and homozygous dele-

tions) in a much greater percentage of HPV- cases (32 %;

versus inactivated in only 3 % of HPV+ cases; Fig. 1a and

d) analyzed by the TCGA network [19]. The discrepancy

may be due to a number of reasons, including differences

in sample processing, determination of HPV status, demo-

graphic factors, different acquisition platforms, and differ-

ently constructed analytical pipelines.

The TCGA analysis also identified a set of less well

studied alterations associated with oxidative stress, spe-

cifically involving CUL3, KEAP1 and NFE2L2 [19].

KEAP1 and NFE2L2 were exclusively altered in HPV-

HNSCC (Fig. 1a). KEAP1 was inactivated in 5 % of

cases and NFE2L2 was activated in 14 % of cases. Func-

tionally, NFE2L2 is a transcription factor that regulates

antioxidant and stress-responsive genes [104]. KEAP1

complexes with the E3 ligase CUL3 (inactivated in 6 %

of HPV- cases) to polyubiquitinate NFE2L2 [105]; thus,

disruption of canonical KEAP1-CUL3 function promotes

NFE2L2 activity [19]. Intriguingly, in lung cancer, a

NFE2L2-centric gene signature has been proposed as

a valuable prognostic biomarker [106]. This may be

relevant because significant molecular similarities be-

tween HNSCC and lung squamous cell cancers

(SQCC) exist [19, 43, 48, 107], including shared dys-

regulation of KEAP1 and NFE2L2. Secondary analysis of

the TCGA dataset indeed revealed that DNA level

alterations of any member of the KEAP1/CUL3/RBX1

complex correlated with significantly reduced survival

(median survival of ~35 months versus ~72 months; [108]).

Lastly, the TCGA network detected co-amplification

of chromosome regions 11q13 and 11q22. Found within

region 11q22, an amplicon previously described in lung,

esophageal and cervical cancer [109–111], are the coding

sequences for BIRC2 and YAP1. BIRC2 encodes c-IAP1

and is a member of the inhibitor-of-apoptosis family

[112]. Functionally, BIRC2 inhibits caspase activity, in-

cluding the activity of CASP8 [112], and it has been

shown that BIRC2 plays an important role in the ubiqui-

tination and degradation of TRAF3 (tumor necrotizing

factor receptor-associated factor 3), a negative regulator

of NF-kB activity [113]. BIRC2 is more commonly

altered in HPV- HNSCC (7 % of cases versus 3 % of

cases in HPV+ HNSCC) and, as would have been predi-

cated based on functionality, CASP8 was also frequently

detected as inactivated through mutations or homozy-

gous deletion (11 % of HPV- cases; Fig. 1a). YAP1 is a

proto-oncogenic transcription factor downstream of

BIRC2 and associated with the Hippo pathway [114].

Amongst cancers analyzed by the TCGA, HNSCC had

the fifth highest incident of amplified YAP1 (6.3 % of

cases). Interestingly, a recent study found that YAP1

amplification strongly correlated with resistance to

cetuximab in vitro [115], which may reflect YAP1 associ-

ated upregulation of the EGFR ligand amphiregulin; fur-

ther investigations are needed to fully uncover the

precise mechanism of this type of resistance [115, 116].

Amplification of region 11q13 includes the region en-

coding the Fas-associated death domain gene (FADD;

established as frequently overexpressed in HNSCC [117]

and found to be amplified in 32 % of HPV- cases ana-

lyzed by the TCGA [19]). Importantly, FADD has been

implicated in increased lymph node metastasis in

HNSCC [117].

HPV-Positive HNSCC

At the molecular level, HPV+ carcinomas significantly

differ from HPV- cases, highlighted in great detail by the

TCGA network and others [10, 19, 21, 27, 92]. A signifi-

cant limitation of the TCGA study is the fact that only
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36 HPV+ cases were analyzed [19], a limitation partially

compensated for by the work of other groups (Table 1;

[21, 23, 34, 118]). Further analysis of additional tumors

is clearly needed; however, some conclusions can be

made in spite of the limited numbers of cases.

HPV+ HNSCC is defined by infection of tumor cells

with HPV. HPV DNA can exist either integrated into

the human genome or in a nonintegrated form [34, 119].

Upon infection, the HPV genome (8 kb) is first amplified

as extrachromosomal circular elements (episomes), some

of which may subsequently integrate into one or more

location within the host genome [119]. It has been re-

ported that HPV integration sites are randomly distrib-

uted throughout the genome [120]. In one study,

analysis of 35 of the 36 HPV+ TCGA HNSCC cases

identified HPV integration in 25 cases and uncovered

distinct gene expression and methylation patterns for

HPV integrated versus non-integrated HNSCC, suggest-

ing different pathogenic mechanisms [34]. Another study

published similar results for essentially the same group

of patients (36 HPV+ HNSCC), and detected HPV DNA

integration in 24/36 cases [119]. The general observation

regarding HPV integration is not unique to HNSCC, as

HPV+ cervical cancers include HPV integrated and non-

integrated cases [121]. Compared to episomal HPV

DNA, transcripts derived from integrated viral DNA

have been shown to be more stable and more strongly

associated with increased proliferative capacity of af-

fected cells [122]. It is likely that HPV integration, particu-

larly if within or proximal to key cancer related genes, is

important but not essential for the oncogenicity of HPV:

the better understood oncogenic contribution of the virus

is the production of different oncoproteins [34].

HPV oncoproteins include E6 and E7 (Fig. 1b; [122]),

which perform complementary actions in eliminating

negative regulators of the cell cycle. E6 binds p53 and

targets this tumor suppressor for proteosomal degrad-

ation [123]. Tumor suppressor RB1 interacts with E7,

which targets RB1 for degradation through association

with the cullin 2-ubiquitin-ligase complex [124–126]. As

E6 and E7 function through cell cycle dysregulation by

eliminating RB1 and TP53, very few alterations in add-

itional cell cycle regulators occur in HPV+ disease: in-

activation of CDKN2A, or TP53, or overexpression of

CDK6 or CCND1, occur seldom in HPV+ HNSCC. One

exception is the transcription factor E2F1, which is nor-

mally inhibited by RB1 (Fig. 1b; [56]); it is the only cell

cycle regulator identifier by the TCGA study as being

predominantly altered in HPV+ cases (19 % activated via

amplification of chromosome 20q11, seen in only in 2 %

of HPV- HNSCC; Fig. 1a and b).

Also associated with HPV+ disease is the RTK FGFR3,

which is activated in 11 % of cases through either muta-

tion or a gene fusion event, and the aforementioned

TNF receptor associated factor TRAF3, inactivated in

22 % of cases (versus 1 % in HPV- disease). The FGFR3

fusion partner is TACC3, a protein critical for nucleation

of microtubules at the centrosome [127], aberrantly

expressed in some cancers and potentially targetable

with small molecules [128]. A FGFR3-TACC3 fusion was

first described in glioblastoma [129] and subsequently

detected in nasopharyngeal carcinoma and other HNSCCs

[130, 131]. This fusion event was detected in two of the 36

HPV+ and zero of the HPV- HNSCC TCGA cases [19].

Constitutive kinase activity of the FGFR3-TACC3 onco-

gene induces loss of mitotic fidelity and leads to aneu-

ploidy [129, 131]. In cases where present, FGFR3-TACC3

appears to be tumor driving and patients are likely to dis-

proportionally benefit from FGFR3 targeting therapy

[131]. TRAF3 has mostly been studied in immunological

processes and one of its main functions is regulation of

NFkB activity [132]. In subsequent studies in HNSCC,

functional analysis of TRAF3 has suggested a tumor sup-

pressive role of the gene when overexpressed, and in-

creased cell proliferation in the context of depleted

TRAF3 [133].

Tumor heterogeneity

HPV- and HPV+ HNSCC share one particularly challen-

ging feature: tumor heterogeneity [24]. This aspect of

tumor biology has garnered significant attention in re-

cent years because of the immense clinical implications

in terms of prognosis, drug resistance and precision

medicine [134–136]. Extensive analysis of TCGA data

indicates that it is of high relevance in HNSCC [24, 137].

One approach to study HNSCC heterogeneity is based on

whole-exome sequencing (WES), which can be used to

determine the fraction of total sequenced DNA that con-

tains a given mutant allele: termed mutant-allele fraction

(MAF). The width of MAF distribution, normalized to the

median MAF value, constitutes the quantitative value of

intra-tumor heterogeneity, and has been termed mutant-

allele tumor heterogeneity (MATH; [137, 138]). Earlier

work indicated that HPV- tumors had significantly higher

heterogeneity than HPV+ tumors (though substantial even

for HPV+ cases; [137]), which would be predicated based

on the frequency of and genomic instability associated

with TP53 mutations, increased age and continuous

tobacco use [24].

Provocatively, in a ten-variable multivariate analysis of

TCGA HNSCC data incorporating MATH scores, no

prognostic significance of HPV status, N classification or

TP53 mutational status was determined [138]. While the

lack of significance in the multivariate analysis does not

suggest irrelevance of the three parameters, it strongly

suggests that further work is needed to unravel these

variables and to determine how much each parameter
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truly impacts disease progression and survival in the

context of appreciated heterogeneity. For example, dis-

ruptive TP53 mutations [78] are strongly associated with

higher intra-tumor heterogeneity as calculated by

MATH (i.e., high MATH scores), and both TP53 muta-

tional status and high MATH scores, based on univariate

analysis, indicated reduced survival [78, 137].

Additional innovative and detailed analysis by McGra-

nahan et al. utilized TCGA datasets for nine tumor types,

including HNSCC, to highlight important aspects of can-

cer evolution and clonality [24]. In order to determine if

specific alterations were clonal (present in most/all tumor

cells sequenced and therefore considered “early” muta-

tions) or subclonal (present in a small fraction of cells and

considered “late” mutations) McGranahan et al. used

exome sequencing data and single-nucleotide polymorph-

ism arrays to calculate the confidence interval of the can-

cer cell fraction (CCF; proportion of cancer cells

harboring a given mutation; [139–141]) for a given

mutation. A 95 % confidence interval of ≥ 1 was used to

define clonal (“early”) mutations, and mutations with a

confidence interval of less than 1 were defined as subclo-

nal (“late”) mutations [24, 140–142]. In HNSCC, the ma-

jority of driver mutations were clonal, and CDKN2A and

TP53 were identified as almost exclusively clonal. Based

on the proportion of mutations, three mutational signa-

tures (previously defined [25]) were identified for HNSCC:

1) a signature with C > T transitions at CpG sites associ-

ated with spontaneous deamination of methylated cyto-

sines that strongly correlated with patient age at diagnosis

and was most prevalently linked to “early” mutations; 2) a

signature indicative of up-regulation of APOBEC cytosine

deaminases [143], seen in both “early” and “late” muta-

tions, although with significant prominence in “late” mu-

tations; and 3) a signature associated with smoking

induced mutations, seen predominantly with “early” muta-

tions [24]. McGranahan et al. did not differentiate be-

tween HPV+ and HPV- cases, which future studies should

do, particularly given that previous analysis of TCGA data

detected evidence that HPV infection was strongly associ-

ated with APOBEC-mediated mutagenesis in HNSCC

[144]. Furthermore, the same study suggested that

APOEC-mediated mutagenesis significantly contributes to

helical domain E545K and E542K gain of function muta-

tions in PIK3CA, one of the most frequently altered genes

in HNSCC (32 out of 58 PIK3CA mutations in the TCGA

cohort are E545K/E542K mutations; [19, 21, 144, 145]).

As an emerging concept for this disease, consideration

of germline variants may be relevant to fully appreciate

tumor heterogeneity. Recent analysis of TCGA data sug-

gested that 15 % (44 out of 291 cases; incompletely con-

gruent with the published TCGA dataset [19]) of

HNSCC cases have rare germline truncations, including

truncations in several genes important in the Fanconi

Anemia Pathway, specifically FANCA and FANCM,

which are involved in DNA repair [146, 147]. FANCM

mutations significantly correlated with increased somatic

mutational frequency in the complete HNSCC cohort

(mean age was 60.9 +/− 12.4 years; based on personal

correspondence with authors), whereas, FANCA had a

similar correlation with the frequency of somatic muta-

tions, but specific in cases defined as younger age (mean

age was 46.3 +/− 7.0 years) of onset (no indication re-

garding HPV status; [146]). Recent studies using murine

models have implicated MYH9 as a gene that induces

oral squamous cell carcinoma in the context of germline

mutations or knockout [148, 149]. MYH9 encodes for

non-muscle myosin II-A (NM II-A), best known for its

roles as a cytoskeletal protein and during embryonic

development [150]. Intriguingly, MYH9 may also acts as

a tumor suppressor, by regulating stabilization and nu-

clear retention of p53 [149]. MYH9 and MYH10 were

mutated in 4 and 5 % of cases, respectively within the

TCGA cohort of 279 patients [148]. No correlation with

HPV status was detected. Success of future clinical

efforts, particularly for targeted therapeutics, will likely

heavily depend on consideration of heterogeneity and

cancer evolution, guided by studies of spatio-temporal

differences in genomic alterations, including presence or

absence of germline mutations [134, 151].

Therapeutic insights

The majority of patients with HNSCC are treated with

surgery and/or radiation and in some cases adjuvant

chemotherapy [1, 3, 11, 27]. Treatment approaches for

HPV- and HPV+ cases remain very similar [1]. However,

because of the better prognosis and the younger age of

onset associated with HPV+ disease, therapeutic de-

intensification, currently only available as part of clinical

trials, for the treatment of patients with HPV+ HNSCC

is being actively explored [27, 152]. Thus far, the only

targeted therapeutic approved to treat HNSCC is the

monoclonal antibody cetuximab, designed to target the

extracellular region of EGFR (Fig. 2; [153]). The clinical

impact of cetuximab has been significant in some pa-

tients [154], but relatively modest overall [2, 73, 155].

Several small molecules, for example lapatinib (targeting

EGFR and HER2; [156]), afatinib (targeting EGFR and

HER2; [157]) and others (reviewed in [153]), have shown

some promise in the treatment of HNSCC. Inter- and

intra-disease heterogeneity are likely determining factors

that have thus far held back greater success of available

therapeutics, and represents one of the key challenges to

overcome [19, 24, 151]. Consideration of a single gene,

based on a single biopsy, does not seem sufficient to

maximize therapeutic interventions [73]. For example,

consideration of EGFR expression and/or amplification

does not correspond with response to EGFR inhibitors
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[107]. Data provided by the TCGA and others suggest

that targeting EGFR may not be efficacious in the con-

text of extensively altered parallel or downstream signal-

ing components, including cell cycle regulators, due to

overlapping functional contributions [73, 158].

Figure 2 summarizes potentially promising targets

other than EGFR, based on available genomics data. The

drugs shown in Fig. 2 are examples of drugs currently in

clinical development for the treatment of HNSCC; re-

cent reviews provide more complete lists of available

drugs for each target [3, 159–161]. The near universality

of cell cycle dysregulation in HNSCC strongly recom-

mends investigation of CDK inhibitors [19, 56]. HPV-

HNSCC with functional CDKN2A and high levels of

phosphorylated RB1 may present the ideal molecular

background for effective treatment with CDK4/6 inhibi-

tors (Fig. 2; [56]). Furthermore, therapeutic targeting of

aberrant cell cycle activity may partially circumvent the

challenge presented by heterogeneity, given that clonal

status analysis of the TCGA HNSCC cohort indicated

that genes associated with cyclin-dependent kinases have

0 % of mutations arise in subclonal populations [24],

which suggests that cell cycle alterations arise early dur-

ing tumor development and are present in most if not

all tumor cells. A large number of CDK inhibitors are

currently in development [162] and the possibility of

RB1 phosphorylation status as a response predictive bio-

marker is encouraging [56]. PI3K [NCT01816984], FGFR

[NCT02558387], BRAF [NCT01286753], MEK [NCT01

553851], AKT [NCT01349933] and mTOR [NCT010

51791] are further targets of potential therapeutic rele-

vance (Fig. 2b; [102, 103, 163, 164]). Additional promising

pre-clinical work has explored Second Mitochondria-

derived Activator of Caspases (SMAC)-mimetics, antago-

nists of inhibitors of apoptosis, which seem particularly

effective against HNSCC models with FADD/BIRC2 alter-

ations [165, 166]; particularly meaningful considering the

aforementioned high incident of FADD/BIRC2 alterations

in HNSCC (Table 1).

The perhaps most exciting recent development in the

treatment of cancer is immunotherapy [167]. Immuno-

therapy, specifically checkpoint blockade, has been tre-

mendously successful in some cases of non-small cell

lung cancer [168, 169], malignant melanoma [170] and

other cancers [171, 172]. Checkpoint inhibitors seem to

be particularly effective against tumors with high rates

of mutation, which suggests that a subpopulation of pa-

tients with HNSCC would benefit form this type of

therapy. Furthermore, HNSCC appears to be an

immunosuppressive disease commonly associated with

lymphopenia [173, 174] and in a few cases (7 % of HPV-

and 11 % of HPV+ HNSCC in the TCGA cohort) pre-

senting with specific mutations in HLA alleles and the

antigen processing machinery to reduce tumor immuno-

detection [19]. A substantial number of clinical trials are

currently exploring the applicability of immunotherapy

for the treatment of HNSCC, with primary focus on

immune checkpoint blockade via CTLA-4 and PD1 [12].

In brief, CTLA-4 and PD1 are expressed by T-cells and

function as negative regulators of T-cell activity, a

Fig. 2 Potential therapeutic intervention based on genomic alterations. Therapeutics targeting of a cell cycle and b RTK/RAS/PI(3)K signaling

associated elements. Percentages are based on the The Cancer Genome Atlas Network report [19]. RTK = receptor tyrosine kinase
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process required for normal immunologic homeostasis.

Tumor cells frequently engage CTLA-4 or PD1 to

modulate T-cell activity and escape immunodetection

[172, 175]. Immune checkpoint blockade inhibits inter-

action of tumor cells with CTLA-4 or PD1; thus, block-

ing inactivation of T-cells [175]. Regarding HNSCC,

several phase III studies are currently exploring the util-

ity of checkpoint inhibitors; specifically, the humanized

monoclonal PD-1 specific antibody pembrolizumab

[NCT02564263, NCT02358031, NCT02252042], re-

cently approved for the treatment of melanoma and lung

cancer (two cancer types with high mutational burden;

[25, 26, 176–178]) and tremelimumab (fully human anti-

body against CTLA-4) with or without durvalumab (Fc

optimized monoclonal antibody against the PD1 ligand

1; NCT02551159). Initial results are expected to be pub-

lished in the near future [12]. It will be important to

determine if distinct molecular lesions found in HNSCC,

as summarized above, are prognostic for response to

these new treatments. In the case of immunotherapy,

considerations beyond the tumor may also be particu-

larly important; for example, early laboratory studies

have shown that the composition of the intestinal micro-

biota significantly impacts the efficacy of CTLA-4/PD-1

inhibitors [179, 180].

Methylation in HNSCC

Future endeavors are likely to include more extensive

elucidation of the role of DNA methylation in HNSCC,

in part to substantiate publications based on the TCGA

dataset. DNA methylation is important in the regulation

of gene expression, and aberrant methylation has been

described for essentially all cancer types and as a critical

aspect of cancer genomics [181, 182]. Previously pub-

lished work suggests that HPV+ HNSCC has signifi-

cantly differentiated CpG island methylation compared

to HPV- cases, reflecting the notion that HPV+ and

HPV- HNSCC are distinct diseases on the genomic,

transcriptomic and methylomic level [183–185]. Com-

parative analyses of available HPV+ TCGA cases re-

vealed specific hypermethylated regions downstream of

CDKN2A, which correlated with increased transcription

of CDKN2A variant p14 (ARF; [184]). CDKN2A is also

frequently methylated (23–67 % of cases; [91]) to silence

expression of this tumor suppressor [88, 90, 186]; al-

though, degree of methylation and expression changes

can vary significantly among individual tumors [187].

The mechanistic and clinical ramifications of this obser-

vation are not yet understood. Another study of HPV+

HNSCC reported that a promoter methylation signature

of 5 genes, three with high methylation (GATA4, GRIA4,

IRX4) and two with low methylation (ALDH1A2 and

OSR2), correlated strongly with improved survival [188].

The signature was validated across multiple cohorts.

Methylation patters in HPV+ HNSCC are significantly

distinct for cases with integrated HPV DNA and epi-

somal DNA [34, 119], a potentially important factor not

always considered.

Interestingly, prominent differential methylation of

three members of the zinc finger gene family, ZNF14,

ZNF160 and ZNF420, has been identified as suitable to

detect HNSCC with 100 % specificity in primary tissue

and saliva samples; subsequently, the three ZNF methyla-

tion signature was validated using the 273 TCGA cohort

[185]. For most of the methylomics driven studies of

HNSCC [183, 185, 188, 189], few cases were analyzed

(particularly for HPV+ cases) and additional work is

needed to better understanding and interpret the various

methylation patterns. How methylomics data is going to

be integrated into clinical practice for HNSCC remains

to be seen, although prognostic and diagnostic potential

of such information is apparent in some cancer types

[181, 185, 190]. No DNA methylation markers for HNSCC

have been accepted for clinical use to date [185].

Conclusions

Detailed profiling of HNSCC by the TCGA network and

other research groups has greatly enhanced our under-

standing of this malignancy. First and foremost, the

composite results have highlighted the tremendous in-

ter- and intra-tumor heterogeneity, complicated by the

increasing incidence of HPV-associated tumors. Efforts

have started to focus on classifying tumors based on mo-

lecular profiles [191–193]; however, inroads in terms of

improved survival have not substantially materialized

yet. The next phase is likely to require multi-platform

analysis of many more HPV- and HPV+ tumors, ideally

sufficient to cover each anatomic site to enable action-

able conclusions. In parallel, laboratory research and

clinical trials have to continue to provide data that can

guide therapeutic strategies based on molecularly de-

fined parameters and higher-order interactions. Progress

continues to be made and the status quo for patients

with HNSCC is likely to continue to improve over the

next decade.

The greatest potential therapeutic advantage to come

from the detailed parsing of HNSCC heterogeneity is

advanced and eventually precise treatment with im-

munotherapy. For example, consistent identification of

tumors with highly immunogenic alterations would sig-

nificantly help guide therapeutic decision-making [194].

Immunotherapy has been remarkably successful against

many types of cancer, with particularly striking successes

against other carcinogen-associated cancers, such as

lung cancer [169, 195] and melanoma [170, 196]. High

mutation burden, common for many sub-types of

HNSCC [19, 24, 25], and carcinogen-associated genomic
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profiles seems to correlate with higher efficacy of im-

munotherapy [194, 197]. Leveraging and advancing

current knowledge to optimize selection of HNSCC

cases for treatment with immunotherapy should be a

top priority and could greatly enhance the many ongoing

clinical trials [12]. The perhaps most promising ap-

proach to eradicate HPV+ HNSCC is extended use of

the available vaccine, which currently appears to be suc-

cessful in reducing rates of cervical cancer [198, 199]

and would presumably be as successful in reducing the

rate of HPV+ HNSCC.
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theonine kinases; located at 7q34; C > T transition: a point mutation that

changes the pyrimidine thymine to the pyrimidine cytosine; CASP8: caspase

8, apoptosis-related cysteine peptidase; involved in programmed cell death;

located at 2q33-q34; CCF: cancer cell fraction; used to infer the size of a

subpopulation affected by somatic mutations from genomic data;

CCND1: cyclin D1; member of the cyclin family associated with the

regulation of CDKs; located at 11q13; CDK4: cyclin-dependent kinase 4;

catalytic subunit of the protein kinase complex required for G1 cell cycle

progression; located at 12q14; CDK6: cyclin-dependent kinase 6; catalytic

subunit of the protein kinase complex required for G1 cell cycle progression;

located at 7q21–q22; CDKN2A: cyclin-dependent kinase inhibitor 2A; codes

for p16; inhibitor of CDK4; at least three alternatively spliced protein coding

variants have been reported; located at 9p21; chromosome p: petit; shorter

arm of the chromosome; chromosome q: longer arm of the chromosome;

CNA: copy number alteration; gains or losses of large segments of the

genome; CpG: cytosine and guanine separated by exactly one phosphate;

amiable to methylation; CSMD1: CUB and Sushi multiple domains 1; located

at 8p23.2; CTLA4: cytotoxic T-lymphocyte-associated protein 4;

immunoglobulin; transmits inhibitory signal to T-cells; located at 2q33;

CTNNB1: catenin beta 1; part of adherens junctions and signaling; located

at 3p21; CUL3: cullin 3; component of an E3 ubiquitin ligase complex;

located at 2q36.2; DNA: deoxyribonucleic acid; E2F1: E2F transcription

factor 1; involved in cell cycle control; located at 20q11.2; E6: transforming

protein; targeted p53; associated with human papillomavirus infection;

E7: transforming protein; targets RB1; associated with human papillomavirus

infection; EAp53: Evolutionary Action score of TP53-coding variants;

computational approach to estimate the risk of various TP53 mutations in

order to predict survival and treatment response; EGFR: epidermal growth

factor receptor; member of the ERBB family of receptor tyrosine kinases;

located at 7p12; EML4-ALK: fusion gene composed of echinoderm

microtubule-associated protein-like 4 and anaplastic lymphoma kinase;

chromosome 2p inversion; ERBB2: erb-b2 receptor tyrosine kinase 2; also

known as HER2 or NEU; no lignd-binding domain; located 17q12; ERBB3:

erb-b2 receptor tyrosine kinase 3; also known as HER3; no active kinase

domain; located at 12q13; ERBB4: erb-b2 receptor tyrosine kinase 4; also

known as HER4; located at 2q33.3-q34; ERK: officially known as MAPK1;

mitogen-activated protein kinase 1; member of the MAP kinase family;

located at 22q11.21; FADD: Fas associated via death domain; adaptor protein

that interacts with surface receptors to mediate apoptosis; located at

11q13.3; FAT1: FAT atypical cadherin 1; member of the cadherin superfamily;

located at 4q35; FGFR1: fibroblast growth factor receptor 1; receptor tyrosine

kinase; located at 8p11.23-p11.22; FGFR3: fibroblast growth factor receptor 3;

receptor tyrosine kinase; located at 4p16.3; FHIT: fragile histidine triad; codes

for triphospate hydrolase required for purine metabolism; located at 3q14.2;

G1: gap 1 phase; first phase of the cell cycle and part of interphase;

GATA4: GATA binding protein 4; member of the GATA family of zinc-finger

transcription factors; located at 8p23.1-p22; GEO: Gene Expression Omnibus;

public genomic data repository; GISTIC: Genomic Identification of Significant

Targets in Cancer; algorithm designed to identify likely driver somatic

copy-number alterations by evaluating the amplitude and frequency of

events; GRIA4: glutamate receptor, ionotropic, AMPA 4; AMPA (alpha-amino-

3-hydroxy-5-methyl-4-isoxazole propionate sensitive glutamate receptor;

subject to RNA editing; located at 11q22; GTPase: family of enzymes that

hydrolyze guanosine triphosphate (GTP); important for signal transduction in

cancer cells; HLA: human leukocyte antigen; encode proteins essential to the

immune system; chromosome 6; HNSCC: head and neck squamous cell

carcinoma; HPV: human papillomavirus; DNA virus; HPV subtype 16 is most

commonly associated with HNSCC; HPV-16: high-risk human papillomavirus

subtype and the subtype most commonly associated with cervical, anal and

oropharyngeal cancer; HRAS: Harvey rat sarcoma viral oncogenes homolog;

member of the Ras oncogenes family with intrinsic GTPase activity; located

at 11p15.5; IGF1R: insulin like growth factor 1 receptor; tyrosine kinase

receptor; located at 11q26.3; IHC: immunohistochemistry; antibody-based

tissue staining; IRX4: Iroquois homeobox 4; located at 5p15.3; ISH: in situ

hybridization; uses labeled complementary DNA or RNA to localize specific

DNA or RNA in tissue; KEAP1: kelch like ECH associated protein 1; interacts

with NFE2L2 in a redox-sensitive manner; located at 19p13.2; let-

7c: MIRLET7C also known as microRNA let-7c; short non-coding RNA

involved in post-translational regulation of genes; located at 21q21.1;

MAF: mutant-allele fraction; fractional of total sequenced DNA with a given

mutant allele based on whole-exome sequencing; MATH: mutant-allele

tumor heterogeneity; width of the mutant-allele fraction distribution

normalized to the median MAF value; MEK: mitogen-activated protein kinase

kinase; group of kinases also known as MAP2K; MAPKK or MKK; miRNA: micro

RNA; small non-coding RNA molecule; mRNA: messenger ribonucleic acid;

mTOR: mechanistic target of rapamycin; serine/threonine

phosphatidylinositol kinase-related kinase; located at 1p36.2; MYC: v-myc

avian myelocytomatosis viral oncogenes homolog; nuclear phosphoprotein

and transcription factor; located at 8q24.21; MYH9: Nonmuscle Myosin Heavy

Chain II-A (also known as NMHC-II-A); cytoskeleton protein; N

classification: part of the TNM classification of malignant tumours staging

notation system; describes cancer positive regional lymph nodes; ranges

from N0 (tumor cells absent from regional lymph nodes) to N3 (tumor cells

detected in distant lymph nodes); NFE2L2: transcription factor; regulates

expression of genes with antioxidant response elements; located at 2q31;

NFkB: NFKB1; nuclear factor of kappa light polypeptide gene enhancer in

B-cells 1; transcription regulator; located at 4q24; NOTCH: highly conserved
signaling pathway; may also refer to NOTCH1; a type 1 single pass
transmembrane receptor; located at 9q34.3; NPC: nasopharyngeal cancer;

originates in the upper part of the throat behind the nose and near the base

of the skull; OSCC: oral squamous cell carcinoma; OSR2: odd-skipped related

transcription factor 2; located at 8q22.2; p14(ARF): alternative reading frame

protein product of the CDKN2A locus; inhibits the E3 ubiquitin protein ligase

MDM2 (p53 degradation); PCR: polymerase chain reaction; PD-1: PDCD1;

programmed cell death 1; member of the immunoglobulin superfamily

expressed on pro-B and T cells; located at 2q37.3;

PI(3)K: phosphatidylinositol-4,5-bisphosphate 3-kinase; family of intracellular

enzymes; PI3KCA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic

subunit alpha; codes for p110α; the catalytic subunit; located at 3q26.3;

PLK1: polo-like kinase 1; serine/threonine kinase; highly expressed during

mitosis; located at 16p12.2; RB1: retinoblastoma 1; negative regulator of the

cell cycle; located at 13q14.2; RNA-Seq: RNA sequencing; next-generation

sequencing to detect and quantify RNA; RPPA: reverse phase protein array;

high-throughput antibody-based protein detection technique; RTK: receptor

tyrosine kinases; large family of transmembrane tyrosine kinases; S: synthesis

phase; phase of the cell cycle during which DNA is replicated; follows G1

and precedes G2; SOX2: SRY-box 2; transcription factor; located at 3q26.3-

q27; SQCC: squamous cell carcinomas; TACC3: transforming, acidic coiled-coil

containing protein 3; motor spindle protein; located at 4p16.3; TCGA: the

Cancer Genome Atlas; TERT: telomerase reverse transcriptase;

ribonucleoprotein polymerase; maintains telomere ends; located at 5p15.33;

TP53: tumor protein p53; transcription factor and tumor suppressor; located

at 17p13.1; TP63: tumor protein p63; p53 family transcription factor; located

at 3q28; TP73: tumor protein p73; member of the p53 family of transcription
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factors; located at 1p36.3; TRAF3: TNF receptor associated factor 3; member

of the TNF receptor associated factor protein family; located at 14q32.32;

WES: whole exome sequencing; technique for sequencing protein-coding

genes; YAP1: Yes associated protein 1; nuclear effector of the Hippo

pathway; located at 11q13; ZNF14: zinc finger protein 14; located at

19p13.11; ZNF160: zinc finger protein 160; located at 19q13.42; ZNF420:

zinc finger protein 420; located at 19q13.12; ΔNp63α: isoform of the p53

homologue TP63 that lacks (ΔN) the transactivation domain.
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