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This study was designed to determine the plant growth promoting (PGP) potential

of members of the genus Frankia. To this end, the genomes of 21 representative

strains were examined for genes associated directly or indirectly with plant growth.

All of the Frankia genomes contained genes that encoded for products associated

with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate

phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)],

cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster),

siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as

genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl

hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes

were associated with strains assigned to one or more of four host-specific clusters.

The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate

transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1

genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline

phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster

1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases

were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax,

F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an

insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is

the first study designed to establish the underlying genetic basis of cytokinin production

in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster

involved in cytokinin production opens up the prospect that Frankia may have novel

molecular mechanisms for cytokinin biosynthesis.
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INTRODUCTION

Actinobacteria classified in the genus Frankia (Brunchorst, 1886)
are well known for their ability to induce nitrogen-fixing nodules
in over 200 species of dicotyledonous (actinorhizal) plants
representing eight angiosperm families (Normand et al., 2014).
Mutualistic associations with Frankia strains allow actinorhizal
plants to colonize extreme habitats, such as arid, nutritionally
poor saline soils (Karthikeyan et al., 2009; Ngom et al., 2016b;
Oshone et al., 2017). Until recently, the prospect of selecting
Frankia strains for targeted growth promotion of actinorhizal
plants in marginal soils was bedeviled by the difficulty of
growing these slow-growing bacteria and by the poor state of
their systematics. These obstacles have been addressed by the
application of better methods for cultivating Frankia strains and
by marked improvements in their systematics, mainly due to
the application of genome sequence-based taxonomic procedures
(Nouioui et al., 2016). The genus currently encompasses 11
validly named species: Frankia alni (Nouioui et al., 2016), the
type species, Frankia asymbiotica (Nouioui et al., 2017c), Frankia
canadensis (Normand et al., 2018), Frankia casuarinae (Nouioui
et al., 2016), Frankia coriariae (Gtari et al., 2015; Nouioui
et al., 2017a), Frankia discariae (Nouioui et al., 2017d), Frankia
elaeagni (Gtari et al., 2004; Nouioui et al., 2016), Frankia inefficax
(Nouioui et al., 2017a), Frankia irregularis (Nouioui et al., 2018b),
Frankia saprophytica (Nouioui et al., 2018a), and Frankia torreyi
(Nouioui et al., 2019), with the prospect of more to come in the
near future (Tisa et al., 2016).

Frankia type strains can be assigned to four clusters
with distinct host ranges (Normand et al., 2007; Tisa et al.,
2013). Cluster 1 strains nodulate host plants classified in the
families Betulaceae, Casuarinaceae (apart from Gymnostoma),
andMyricaceae and can be further divided into three subgroups;
those assigned to subcluster 1a infect Alnus–Myrica species,
subcluster 1b strains, such as strain ARgP5 (Normand et al.,
2018), infect Alnus and Myricaceae species while subcluster 1c
includes Frankia strains that infect Allocasuarina and Casuarina
species (Normand et al., 1996). In turn, cluster 2 strains are
associated with plants classified in the families Coriariaceae,
Datiscaceae, and Rosaceae and the type genus Ceanothus of
the family Rhamnaceae while those in cluster 3 infect host
plants belonging to the families Elaeagnaceae, Myricaceae, and
Rhamnaceae (except Ceanothus); the genus Gymnostoma and
occasionally Alnus species. The fourth cluster encompasses
strains isolated from actinorhizal nodules that are unable to either
infect or re-establish effective nodulation in the plant from which
they were isolated.

Frankia genome sequences generated from representatives
of the four clusters are providing valuable insights into
the biological properties of members of the genus Frankia
(Tisa et al., 2013, 2016), including their potential as a
source of novel bioactive compounds (Udwary et al., 2011;
Ogasawara et al., 2015) and as biocontrol agents (Gopinathan,
1995). It is particularly interesting that the sizes of Frankia
genomes correlate with both host specificity and biogeographic
distribution (Normand et al., 2007; Tisa et al., 2013). Further
improvements in Frankia systematics and the use of genomic data
open up the prospect of selecting specific mutualistic associations

between Frankia strains and their hosts for bioremediation
(Richards et al., 2002; Diagne et al., 2013, 2015; Rehan et al.,
2014a,b, 2015; Baker et al., 2015; Furnholm et al., 2017), notably
for saline soils (Sasakawa, 2003; Ngom et al., 2016a; Oshone et al.,
2017) and in enhancing the fertility of marginal land (Schwencke
and Carú, 2001; Benson and Dawson, 2007; Ngom et al., 2016b).

Plant-growth-promoting bacteria (PGPB) are of interest in
sustainable agricultural research and their beneficial effects on
plants have been commercially exploited (Gonzalez et al., 2015).
In contrast, relatively little is known about the plant growth
promoting (PGP) properties of Frankia strains though some
have been found to solubilize inorganic phosphate (Sayed et al.,
2002) and to synthesize plant hormones (Hirsch et al., 1997;
Péret et al., 2007) and siderophores (Boyer et al., 1999; Haansuu
et al., 1999; Tisa et al., 2016). However, the improvements in
Frankia systematics and the availability of full-genome sequences
provide an opportunity to establish the distribution of PGP genes
within the genomes of members of the genus and thereby their
prospective roles in bioremediation. In the present study, the
distribution of PGP genes within the genomes of representative
Frankia strains was undertaken with particular reference to those
associated with the synthesis of plant hormones, siderophores,
and the regulation of phosphate metabolism.

MATERIALS AND METHODS

Genome Sequences
Table 1 lists the source, host plant specificity, and genome
accession numbers of 21 representative Frankia strains,
including the type strains of F. alni, F. asymbiotica, F casuarinae,
F. coriariae, F discariae, F. elaeagni, F. inefficax, F. irregularis,
F. saprophytica, and F. torryei. The following seven type
strains were included as outgroups: Acidothermus cellulolyticus
11BT, Blastococcus saxobsidens DD2T, Geodermatophilus
obscurus G-20T, Kineococcus radiotolerans ATCC BAA-149T,
Modestobacter marinus BC501, Nakamurella multipartita
DSM 44233T, and Sporichthya polymorpha DSM 43042T.
All of the genome sequences of these strains were
obtained from GenBank (accession numbers: CP000481,
FO117623, CP001867, CP000750, FO203431, CP001737, and
AQZX00000000, respectively).

In silico Screening of PGP Genes
The genomes of the 21 Frankia strains were annotated using the
Rapid Annotation Subsystem Technology server (RAST) (Aziz
et al., 2008, 2012). The distribution of PGP genes in the genomes
was determined using the SEED server (Overbeek et al., 2014)
with a focus on genes encoding for nitrogen fixation, phosphate
solubilization, plant hormones, siderophores, lytic enzymes, and
those modulating the effect of environmental stress. The gene
clusters of the nitrogenase complex (nif ) and cytokinins were
manually mapped and annotated using ARTEMIS (Berriman and
Rutherford, 2003). Each ORF was screened based on an analysis
of the GC frame plot of the reading-frames for each of the
protein coding sequences (Bibb et al., 1984) and protein domains
confirmed after comparisonwith those available in the Conserved
Domains Database (CDD) of NCBI (Marchler-Bauer et al., 2015).
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Phylogenomic Analyses
The core genome of the Frankia strains was calculated
using the default setting of BPGA 1.3 (Chaudhari et al.,
2016) which identified 279 genes. The concatenated protein
sequences of the core genes were aligned using MAFFT
v7.300b (Katoh and Standley, 2013) and poorly aligned regions
and missing data from the concatenated protein sequence
alignments were removed using GBLOCKS (Castresana, 2000).
The best-fit substitution model, LG+F+I+G4 was identified
by ModelFinder (Kalyaanamoorthy et al., 2017) within the
IQ-Tree algorithm (Nguyen et al., 2015), which was used

to construct a maximum-likelihood dendrogram with 100,000
ultrafast bootstrap iterations and SH-like approximate likelihood
ratio tests (Minh et al., 2013) from the resulting alignment.

RESULTS AND DISCUSSION

Phylogenomic Diversity
The Frankia strains were assigned to four distinct clusters that
were sharply separated from representatives of the seven related
genera (Figure 1). Strains assigned to clusters 1 and 3 were

TABLE 1 | Origin of Frankia strains and their genomic features.

Strains Origin of isolation Genome accession

number

Genome size Total gene

number

Percentage of

genes∗

References

Cluster 1

Sub-cluster 1a

Frankia alni ACN14aT Alnus crispa CT573213 7.497934 6338 4.4 Nouioui et al., 2016

Frankia torreyi CpI1T Comptonia peregrina JYFN00000000 7.61955 6449 4.3 Nouioui et al., 2019

Frankia. torreyi

ACN1AG

A. crispa LJPA00000000 7.52105 6287 4.4 Baker et al., 1979;

Lalonde et al., 1981

Frankia. sp. QA3 Alnus nitida CM001489 7.59085 6366 4.4 Hafeez et al., 1984

Sub-cluster 1c

Frankia casuarinae

CcI3

Casuarina

cunninghamiana

CP000249 5.433628 5060 5.5 Nouioui et al., 2016

F. casuarinae Allo2 Allocasuarina JPHT00000000 5.35211 4738 5.8 Girgis and Schwencke,

1993

F. casuarinae

BMG5.23

Casuarina glauca NZ_JDWE00000000 5.26596 4608 6.0 Ghodhbane-Gtari et al.,

2010

F. casuarinae CcI6 C. cunninghamiana AYTZ00000000 5.57578 4780 5.8 Mansour and Moussa,

2005

F. casuarinae CeD Casuarina equisetifolia JPGU00000000 5.0046 4350 6.4 Diem and

Dommergues, 1983

F. casuarinae Thr C. cunninghamiana JENI00000000 5.309833 4931 5.6 Girgis et al., 1990

Cluster 2

Frankia coriariae

BMG5.1T

Coriaria myrtifolia JWIO00000000 5.795263 5403 5.1 Gtari et al., 2015;

Nouioui et al., 2017b

Candidatus Frankia

datiscae Dg1

Datisca glomerata CP002801 5.323186 4799 5.8 Persson et al., 2011

Cluster 3

Frankia elaeagni

BMG5.12T

Elaeagnus angustifolia ARFH00000000 7.589313 6386 4.3 Gtari et al., 2004;

Nouioui et al., 2013,

2016

Frankia discariae

BCU110501T

Discaria trinervis ARDT00000000 7.891711 6845 4.0 Nouioui et al., 2017d

Frankia sp. EUN1f Elaeagnus umbellata ADGX00000000 9.35274 7942 3.5 Lalonde et al., 1981

Frankia sp. EAN1pec E. angustifolia CP000820 8.98204 7542 3.6

Frankia irregularis DSM

45899T

C. equisetifolia FAOZ00000000 9.537992 8018 3.4 Nouioui et al., 2018b

Frankia sp. R43 C. cunninghamiana LFCW00000000 10.4489 8464 3.3 Zhang et al., 1984;

Lechevalier, 1986

Cluster 4

Frankia saprophytica

CN3T

Coriaria nepalensis AGJN00000000 9.978592 8452 3.3 Nouioui et al., 2018a

Frankia inefficax EuI1cT E. umbellata CP002299 8.815781 7376 3.7 Nouioui et al., 2017a

Frankia sp. DC12 Datisca cannabina LANG00000000 6.88434 5743 4.8 Hafeez, 1983; Hameed

et al., 1994

∗Percentage of genes used for dendrogram construction.
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FIGURE 1 | Maximum-likelihood dendrogram, based on 279 core proteins found among these genomes, with 100,000 ultrafast bootstrap iterations showing

relationships between Frankia strains assigned to clusters.

found to have high genetic variability. Cluster 1 encompasses ten
strains six of which were assigned to subcluster 1c, belonged to F.
casuarinae (Gtari et al., 2019) while subcluster 1a was composed
of four strains associated with Alnus–Comptonia–Myrica; the
latter were assigned to three subgroups which enclosed F. alni

ACN14aT, Frankia sp. QA3, and strains of F. torreyi. In turn,
Frankia strain ACN1AG has been classified as F. torreyi (Gtari
et al., 2019). The topology of subclusters 1a and 1c is in line with
that of the MLSA phylogenetic tree of Pozzi et al. (2018) where
members of subcluster 1c, which show low genetic diversity,
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diverge from those of subcluster 1a while those a cluster 2
form a deep rooted evolutionary group. Cluster 3 strains were
assigned to four subgroups containing (a) Frankia sp. EAN1pec
and F. discariae BCU110501T; (b) F. elaeagni BMG5.12T; (c)
Frankia sp. EUN1f; and (d) F. irregularis DSM 45899T and
Frankia sp. R43; all of the strains within this cluster form distinct
species (Gtari et al., 2019). The overall group structures are highly
supported and consistent with those represented by Pozzi et al.
(2018). Minor differences in the topology of clusters 1 and 2
compared to the phylogenomic tree provided by Tisa et al. (2016),
which was based on 1421 genes, are due to the diversity added by
addition of more Frankia genomes and those of the related genera
which reduced the core genome to 279 genes.

The Frankia strains classified in subclusters 1a and 1c showed
genome sizes of 5–7.6 Mb and 5.0–5.4 Mb with gene numbers of
6287–6449 and 4350–5060, respectively. In turn, clusters 2 and 3
had genome sizes of 5.0–5.8Mb and 7.5–10.4Mbwith 4799–5403
and 6845–8464 coding sequences, respectively. Frankia strains
associated with cluster 4 had genome sizes within the range of
6.8–9.9 Mb with total gene numbers of 5743–8452 (Table 1). The
genome sizes were found to be related to host specificity, found
in previous studies (Normand et al., 2007; Tisa et al., 2016).

Direct Mechanisms

Free-living and symbiotic bacteria use direct and indirect
mechanisms to promote and protect plant growth. The beneficial
effect of Frankia strains in promoting plant growth has been the
subject of several studies (Prat, 1989; Steele et al., 1989). Direct
mechanisms include nitrogen fixation, phosphate solubilization,
enhancement of mineral uptake, and phytohormone production.

Resource acquisition

Nitrogen fixation. Nitrogen is an essential element of most
biomolecules that are crucial for life. It is available in the
atmosphere as dinitrogen (N2) and can be converted into a plant-
usable form through the activities of free-living diazotrophic
microorganisms and mutualistic bacteria (Cleveland et al., 1999;
Reed et al., 2011). These processes have important ecological and
economical roles in sustainable agriculture.

The oxygen-labile enzyme, nitrogenase, converts atmospheric
N2 into NH3. Microbes have developed different strategies to
protect nitrogenase enzymes from oxygen inactivation. Free-
living Frankia strains are able to fix atmospheric nitrogen
independent of their host plant in specific cell structures named
vesicles (Berry et al., 1993). Frankia vesicles, which contain
nitrogenases, are surrounded by a lipid barrier that allows
the enzyme to reduce dinitrogen (N2) to ammonium (NH+

4 )
(Berry et al., 1993). Frankia strains in mutualistic associations
with host plants are able to fix up to 300 N2 kg/hectare/year
(Shantharam and Mattoo, 1997).

Nitrogenase complexes are composed of two major
components: the first, the catalytic part of nitrogenase contains
a Fe–Mo cofactor and P clusters (two iron-sulfur clusters)
which are encoded by the structural genes nifD and nifK while
component II is a nitrogenase reductase that comprises a Fe–S
protein encoded by nifH (Dean et al., 1993; Hu et al., 2008). The
nif operons consist of three structural genes (nifH, nifD, and

nifK) and several accessorial genes such as nifV, nifE, nifN, nifX,
nifW, nifZ, nifB, nifU, and nif S (Oh et al., 2003). Accessory
genes have different roles in the maturation of inactive products,
molecular scaffolds, and electron transport systems within
nitrogenase complexes (Dos Santos et al., 2004). Three additional
genes have been found within nitrogenase complexes: orA and
orB genes encode for ferredoxin oxidoreductase alpha and beta
units, respectively, while fdxI encodes for a ferredoxin (Souza
et al., 2010). However, little is known about the distribution
and organization of genes in the nif operons of Frankia strains
(Oh et al., 2012).

In the present study, nif operons were found in the
genomes of Frankia strains classified in clusters 1, 2, and 3
(Figure 1 and Supplementary Table S1). All of the accessory
nif genes mentioned above, including nifHDK, were present
in the genomes of F. alni ACN14aT, F. casuarinae CCI3T,
F. coriariae BMG5.1T, and F. elaeagni BMG5.12T (Figure 1).
In addition, nifV genes were found in all of the Frankia
genomes though in the case of F. elaeagni BMG5.12T it was
located 4.4 Mb downstream from the nif operon (Figure 2).
In turn, nifV genes are considered to be essential for the
activity of nitrogenase complexes because they encode for a
homocitrate synthase that catalyzes the condensation of acetyl-
CoA and α-ketoglutarate to homocitrate which is used as an
organic component of the FeMo cofactor (Oh et al., 2003).
However, the homocitrate synthase amino acid sequences of
Frankia cluster 1 strains (26%), 2 (29%), and 3 (29%) are
not closely related to those involved in the lysine biosynthesis
pathways of yeasts and fungi. The alignment of homocitrate
synthase amino acid sequences of Frankia strains with those of
Saccharomyces cerevisiae showed low identity values between 26
and 29%. It is also interesting that nifENX genes were clustered
within the nif operon without any intergenic space (Figure 2).
In addition, two orfs (1 and 2), which encode for the protein
domains DUF269 and DUF68 with unknown function, were
located between the nifX and nifW genes in all of the Frankia
genomes (Figure 2). Finally, orA, orB, and fdxI genes were
found in the genomes of all of the Frankia strains, as shown
in Figure 2. However, the location of these genes was found to
vary in the nif operon of F. coriariae BMG5.1T, here the orAB
genes were located at the beginning of the operon upstream of
nifV while fdxI was located approximately 0.9 Mb downstream
of nif S (Figure 2).

Phosphate solubilization. Phosphorus (P) is an essential element
in many biological processes including plant growth and, after
nitrogen, is considered to be one of the most important elements
limiting crop growth (Tak et al., 2012). Phosphate solubilizing
microorganisms (PSM) are able to increase the bioavailability
of P for plants by solubilizing inorganic phosphate (Zhu et al.,
2011). To this end, microorganisms can release P from organic
compounds either enzymatically (Rossolini et al., 1998) or by
producing molecules, such as hydroxyl ions, CO2, organic acids,
protons, and siderophores that solubilize inorganic phosphate
(Rodriguez and Fraga, 1999; Sharma et al., 2013). The most
effective PSM belong to the genera Bacillus, Enterobacter,
Flavobacterium, Micrococcus, and Rhizobium and to the fungal
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FIGURE 2 | Genome mapping and comparative analysis of nif operons in strains representing Frankia subclusters 1a, 1c, 2, and 3. The nif operons are mainly

composed of 18 well-conserved genes which enclose the structural nifHDK genes. The operon also contains the accessory genes, nifV, nifE, nifN, nifX, nifW, nifZ,

nifB, nifU, and nifS.

taxa Aspergillus and Penicillium (Whitelaw, 2000). In contrast,
little is known about the ability of representative Frankia strains
to solubilize inorganic phosphate.

In the present study, the genomes of most of the Frankia
strains were shown to contain an alkaline phosphatase
gene (Supplementary Table S2) known to hydrolyze
phosphomonoesters and catalyze the transfer of phosphoryl
groups to alcohol in the presence of certain phosphate acceptors
(Coleman, 1992). It seems likely that this gene is involved in
mutualistic relationships between Frankia strains and their host
plants by exchanging nutrients in a similar way to that suggested
for arbuscular mycorrhizal associations (Aono et al., 2004). In
addition, low-affinity inorganic phosphate transporter genes
were found in the genomes of the Frankia strains belonging to
cluster 1 and F. asymbiotica M16386T (cluster 4). The alignment
of amino acid sequences of the low-affinity inorganic phosphate
transporter genes of Frankia showed identity values between 90.0
and 99.7% between Frankia strains of cluster 1 and 82.0% with
strain M16386T. BLAST results of the alignment of amino acid
sequences of low-affinity inorganic phosphate transporter genes
of Frankia showed that they are closely related to those found in
the genome sequences of other actinobacteria.

Phytohormones

Phytohormones have a crucial role in the growth,
development, and the differentiation of plant tissues
(Carro and Nouioui, 2017). The best-known ones are

indole-3-acetic acid (IAA), cytokinins, ethylene (ET), and
gibberellins; the levels of these hormones in plants can be
regulated directly by soil microorganisms that synthesize
these compounds.

IAA

It has been shown that PGP bacteria may have more than one
biosynthetic pathway for the synthesis of hormones such as
IAA (Mano and Nemoto, 2012). The latter can be synthesized
via indole-3-acetamide (IAM) in phytopathogenic bacteria; the
overproduction of IAA leads to the formation of plant tumors
(Jameson, 2000). IAA can also be synthesized through the indole-
3-pyruvic acid (IPA) pathway, directly by tryptophane (Trp)
side chain oxidase (TSO) or through the indole-3-acetonitrile
(IAN)/indole-3-acetaldoxime (IAOx) pathway (Glick, 2015). It is
likely that L-tryptophan can be converted to IAM by tryptophan-
2-monooxygenase that is encoded by the aux1 gene, IAM is then
transformed to IAA by IAM hydrolase following the expression
of the aux2 gene (Mano and Nemoto, 2012).

Several Frankia strains have been shown to produce auxins
(Wheeler et al., 1984; Perrine-Walker et al., 2010) that
are involved in Frankia–host plant interactions; decreased
concentrations of auxins were found to have a negative effect on
root nodule formation in Casuarina glauca (Hammad et al., 2003;
Péret et al., 2007). The genomes of the type strains of F. alni,
F. casuarinae, and F. elaeagni contain genes that have been seen
to be involved in the IPA and phenyl pyruvate IAA biosynthetic
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pathways (Perrine-Walker et al., 2010) while the type strain of
F. discariae has been found to produce IAA and gibberellins
in vitro analyses (Solans et al., 2011).

In the present study, the genomes of all of the Frankia
strains were shown to have genes that encode for indole-3-
glycerol phosphate synthase which is considered to be a branch
point of IAA in the tryptophan biosynthetic pathway in plants
(Ouyang et al., 2000; Supplementary Table S3). This pathway
requires the involvement of the gene products anthranilate
phosphoribosyltransferase (trpD), anthranilate synthase, and
aminase component (trpA and B) (Lambrecht and Downs, 2013)
all of which were detected in the Frankia genomes.

Cytokinins

Cytokinins promote cell division and have growth regulatory
functions in plants (Skoog and Armstrong, 1970). In general, they
are formed by an adenine nucleotide together with an isoprene,
modified isoprene, or aromatic side chain linked to a N6 amino
group of adenine (Wong et al., 2015). These chemical structures
are precursors to five types of cytokinins: trans-zeatin (tz), kinetin
(K), N6-[2-isopentyl]adenine (iP), N6-benzyladenine (BA), and
N6-isopentyladenosine (iPR) (Pertry et al., 2009).

The biosynthesis of cytokinins in plants and bacteria
starts with the key intermediary dimethylallyl pyrophosphate
(DMAPP), this isomerized form of isopentenyl pyrophosphate
(IPP) is synthesized in the last step of the mevalonate
pathway by isopentenyl-diphosphate delta isomerase (IDI)
(Nett et al., 2017). In plants, an isopentenyl group from
DMAPP is transferred to the N6 of ATP/ADP (Kakimoto,
2001) while bacteria start off with AMP, which is converted
to an intermediary N6-isopentenyladenosine monophosphate
(i6AMP) by isopentenyltransferase (ipt). i6AMP is the main
enzyme responsible for the synthesis and expression of
different variants of cytokinins (Kamínek et al., 1997); it is
dephosphorylated to N6-iPR, the first active cytokinin, and is
subsequently transformed to the second active cytokine, N6-
iP, following an additional deribosylation step. In addition,
i6AMP can be hydroxylated to generate the intermediary trans-
zeatin riboside-5′-monophosphate (tZMP) which is subsequently
dephosphorylated to produce trans-zeatin riboside (tZR) that
undergoes deribosylation to yield the active cytokinin tz (Haberer
and Kieber, 2002; Kakimoto, 2003; Sakakibara, 2006; Tarkowski
et al., 2009; Frébort et al., 2011).

The ipt gene is common in the genomes of plant symbiotic
bacteria, as exemplified by Agrobacterium tumefaciens where it
is found in the T-region of the “Ti” plasmid which mediates
infection in host plants while the homologous gene “tzs” is found
near the vir-region on the same plasmid (Mok et al., 2000).
Similarly, in Rhodococcus fascians D188T, a homologous gene
fasD has been detected in the fas operon located on the pFiD188
plasmid which is involved in cytokinin biosynthesis and infection
(Pertry et al., 2009, 2010).

Little is known about the ability of Frankia strains to
produce cytokinins though Frankia strain HFPArI3 synthesizes
iPR (Stevens and Berry, 1988). However, there is no clear
evidence of the genetic mechanisms involved in the biosynthesis
of cytokinins within Frankia strains. In the present study, genome

mapping of cytokinin gene clusters in the nine strains that
represented the Frankia clusters showed that they were composed
of 11 highly conserved genes (Figure 3). Two of the genes
were associated with the production of ipt and (dimethylallyl)
adenosine tRNA methylthiotransferase (damt) (Figure 3) which
are involved in the catalysis of the 2-methylthiolated derivative
2-methylthio-isopentenyladenosine (2MeSiPR) (Pertry et al.,
2009). An additional gene in this putative cytokinin biosynthetic
cluster encodes for a protein domain corresponding to
a phosphodiesterase (PDE) that may be involved in the
dephosphorylation of i6AMP to iPR. Most of the putative
cytokinin biosynthetic gene clusters displayed two genes that
encode for recombinase A (recA) and its regulator (RecX) which
are involved in DNA exchange and homologous recombination
(Roca and Cox, 1990; Kowalczykowski et al., 1994). A third
gene located at the end of the gene clusters (Figure 3) encodes
for a lysine-motif (LysM), a small protein domain found in
bacteria and eukaryotes that is involved in signaling functions for
plant–bacteria recognition during bacterial infections (Willmann
and Nurnberger, 2012). These preliminary results not only
provide a starting point for understanding cytokinin biosynthetic
mechanisms in representatives of the genus Frankia but may
also provide an insight into the process by which frankiae
infect host plants.

Other genes observed in the putative cytokinin biosynthetic
cluster encode for protein domains corresponding to genes
that express for pimeloyl-ACP methyl ester carboxylesterase
(ABHYD), a cyclic diguanylate phosphodiesterase (EAL); a
GTPase protein domain (HflX); an extradiol dioxygenase (ED)
class III protein domain; a PDE that may be involved in the
dephosphorylation of i6AMP to form iPR (Levy et al., 2011);
and a diaminopimelate epimerase (DapF) (Figure 3). At present,
these are insufficient data to confirm the function of these genes
in cytokinin biosynthesis. Clearly, further studies are required to
determine the roles of these genes and the molecular mechanisms
involved in cytokinin biosynthesis.

Ethylene

The positive effect of this gaseous hormone on plant growth
(e.g., seed germination, formation of leaves, flowers, and fruits)
is well known (Abeles et al., 1992; Bleecker and Kende,
2000). An increase in the production of ET in plants is a
sign of biotic and abiotic stress (e.g., high salinity, increased
temperature, insect predation, drought, flooding, presence of
toxic compounds) which may lead to enhanced survival of
plants or may trigger senescence when the stress persists and
ethylene (ET) production is high (Glick, 2012). Methionine is
the starting point for ET biosynthesis in plants via S-adenosyl-L-
methionine (SAM) which is converted to 1-aminocyclopropane-
1-carboxylic acid (ACC) in the presence of ACC synthase
(ACS); ACC oxidase (ACCO) has a role in releasing ET
and cyanide (converted to β-cyanoalanine to avoid toxicity
in plants) (Yang and Hoffman, 1984). In diverse bacteria
and fungi (e.g., Escherichia coli, Cryptococcus albidus), ET is
synthesized through the oxidation of a transaminated derivative
of methionine namely 2-keto-methylthiobutyric acid (KMBA)
as well as by a lack of ammonia. In Pseudomonas syringae
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FIGURE 3 | Genome mapping and comparative analysis of the putative cytokinin biosynthetic gene cluster for nine representative strains classified in the genus

Frankia. Eleven well-conserved genes encode for: ispentenyltransferase (ipt); (dimethylallyl) adenosine tRNA methylthiotransferase (DAMT); phosphodiesterase (PDE);

recombinase A (RecA) and its regulator (RecX); a lysin-motif (LysM); a pimeloyl-ACP methyl ester carboxylesterase (ABHYD); a cyclic diguanylate phosphodiesterase

(EAL), a GTPase protein domain (HflX), an extradiol dioxygenase class III protein domain (ED), and a diaminopimelate epimerase (dapF).

and Penicillium digitatum, the ET biosynthesis pathway calls
for two substrates α-ketoglutarate and arginine which are
calalyzed by an ET-forming enzyme (Eckert et al., 2014). In
PGP rhizobacteria, ACC deaminase inhibits toxicity caused
by high levels of ET in plants, it regulates ET levels by
converting ACC produced by the plant to ammonia and
α-ketobutyrate (Glick, 1995; GLick et al., 1998). Moreover, it
has been shown that ACC deaminase has a significant role
in the stimulation of the elongation of plant roots by PGP
rhizobacteria. In this context, it is interesting that the genomes
of all of the Frankia strains, apart from the F. casuarinae
strains, contained genes associated with ACC deaminase
(Supplementary Table S3).

Indirect Mechanisms

Plant growth promotingmicroorganisms also support the growth
of plants by modulating environmental biotic and abiotic stress.
They are able to either decrease, neutralize, or prevent infection of
plants by phytopathogenic bacteria and fungi either by producing

lytic enzymes or antibiotics (Singh and Jha, 2015; Gouda et al.,
2018). These processes also support the growth of the plants
under abiotic stress caused by drought, salinity, and extreme
temperature (Akhgar et al., 2014).

Lytic enzymes

One of the defense strategies bacteria use against
phytopathogenic fungi involves the production of hydrolytic
enzymes such as cellulases, chitinases, glucanases, lipases,
lysozymes, and proteases (Neeraja et al., 2010; Maksimov
et al., 2011), as well as by other lytic compounds such as lactic
acid. The most abundant insoluble polymer in nature, after
cellulose, is chitin which can be hydrolyzed by chitinases ChiA,
ChiB, and ChiC to N-N′-diacetylchitobiose which is converted
to N-acetylglucosamine by N-acetylglucosaminidases. The
genomes of F. casuarinae CcI3T, F. inefficax EuI1cT, F. irregularis
DSM 45899T, and F. saprophytica CN3T were found to contain
genes which encode for chitinases whereas genes associated
with cellulase production were only detected in the genomes of
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the type strains of F. alni, F. torreyi, and Frankia sp. ACN1AG

(Supplementary Table S4).
Three types of cellulases, endoglucanases (EC3.2.1.4),

exoglucanases (EC3.2.1.91), and β-glucosidases (EC3.2.1.21),
belonging to the glycosyl hydrolase family have been described.
These enzymes, which are present in microorganisms isolated
from diverse ecological niches (Lynd et al., 2002), transform
cellulose to glucose. They are also active against phytopathogenic
fungi since they hydrolyze β-1,3-glucan, the principal component
of fungal cell walls, and indirectly stimulate plant defenses by
releasing immune elicitors from the cell walls (Lynd et al., 2002).

The genomes for all of the Frankia strains, apart from
those of the type strains of F. casuarinae, F. inefficax and
F. irregularis, were shown to contain a gene encoding for
an endoglucanase that has an important role in initiating
cellulose hydrolysis (Supplementary Table S4; Cohen et al.,
2005). In addition, the cluster 3 strains and the type strain
of F. saprophytica (cluster 4) were found to have the capacity
to produce an extracellular endoglucanase which has been
detected in Paenibacillus polymyxa BEb-40 (Gastelum-Arellanez
et al., 2014) and used in industry to breakdown lignocellulose
(Supplementary Table S4). Furthermore, a gene encoding for the
type III effector hrpW hairpin, known to induce hypersensitivity
responses in plants (Charkowski et al., 1998) and previously
detected in plant-related actinobacteria (Carro et al., 2018),
was detected in the genomes of F. elaeagni BMG5.12T and
F. saprophytica CN3T (Supplementary Table S4). Gene pl, which
encodes for pectate lyase (PL), was detected in the genomes of
F. saprophytica CN3T and Frankia strains assigned to cluster
3. This gene has been found in pathogenic bacteria and is
known to degrade host tissues, a process in line with its role
in the maceration and soft rotting of plant tissues (Marín-
Rodríguez et al., 2002). Since the gene hrpW is associated with PA
production, it seems likely that genes hrpW and pa are involved
in the initiation of Frankia–host plant interactions.

Siderophores

Iron is an essential element for all organisms, including
microorganisms. Bacteria and fungi produce siderophores in
response to iron limitation (Saha et al., 2016). Consequently,
these Fe3+ chelators have an important role in the survival of
bacteria, including pathogens, by scavenging iron from iron-
binding proteins produced by their hosts (Wandersman and
Delepelaire, 2004). The genomes of the F. casuarina strains
were shown to harbor a gene that encodes for 2-amino-
3,7-dideoxy-D-threo-hept-6-ulosonate synthase (aroA′) which
is involved in the shikimate pathway (Supplementary Table

S3). Chorismate synthase (CS), chorismate mutase (CM), and
shikimate synthase are known to be fundamental in catalyzing
the aromatic amino acid (AAA) biosynthetic pathway which is
necessary for the production of specialized metabolites essential
for plant growth (Helmstaedt et al., 2001; Sasso et al., 2004).
The AAA, chorismate, is considered to be an intermediate
compound from which catecholate siderophore is synthesized,
a reaction that involves a series of enzymes (Walsh et al.,
1990). The expression of siderophore genes is regulated by an
iron-binding repressor protein, a ferric uptake regulator (Fur)

(Escolar et al., 1999), which is common in Gram-negative
and AT-rich Gram-positive bacteria; the genome of the GC-
rich actinobacterium, Corynebacterium diphtheriae, contains
a diphtheria toxin repressor (dtxR) which is essential for
siderophore-dependant iron uptake (Qian et al., 2002). Several
siderophores have been described in actinobacteria, such as
desferrioxamine (G, B, and E), tsukubachelin, and oxachelin,
which are characteristic of Streptomyces species (Challis and
Hopwood, 2003). In addition, catecholic and hydroxamate
moieties have been detected in 44% of soil actinobacteria
(Nakouti et al., 2012) while heterobactin has only been reported
from Nocardia and Rhodococcus strains (Lee et al., 2012;
Wang et al., 2014).

The genomes of all of the Frankia strains showed some
variation in the distribution of genes involved in the production
of siderophores though siderophore biosynthesis non-ribosomal
peptide synthetase modules were found in all of the Frankia
genomes; siderophore biosynthesis proteins, related to a
monooxygenase and to diaminobutyrate–2-oxoglutarate amino
transferase, were present in all of the Frankia genomes except
those of the cluster 4 strains (Supplementary Table S5).

Stress genes

Bacteria have developed several ways of coping with
environmental stress. In this context, they produce three
types of hemoglobin proteins: truncated hemoglobins (trHbo),
hemoglobins (Hbos), and flavohemoglobins (flavoHbo), in
response to oxygen limitation, oxidative and nitrosative stress.
Frankia strains produce two of these hemoglobins: Hbo and
flavoHbo. There are two types of trHbo, namely HboO and
HboN, which act as scavengers of O2 and NO, respectively (Frey
and Kallio, 2003; Supplementary Table S6) while flavoHbo
is involved in the nitric dioxygenase reaction by detoxifying
NO and protects bacteria from several noxious nitrogen
compounds (Frey and Kallio, 2003). The genomes of several
Frankia strains express for trHBo- and flavoHbo-associated
products that may protect them from nitrosative stress and
increase their respiration rates in low-oxygen environments
(Beckwith et al., 2002; Tjepkema et al., 2002; Niemann et al.,
2005; Niemann and Tisa, 2008). These genes are expressed when
host plants are infected followed by the liberation of free radical
oxygen and nitric oxide which act as plant defense mechanisms
(Niemann and Tisa, 2008).

In this present investigation, the genomes of Frankia strains
classified in subcluster 1a and some representatives of subcluster
1c (strains CcI3, CeD, and BMG5.23) and cluster 3 (strains
EUN1f and R43) were shown to carry the hmpX gene which
encodes for a flavohemoglobin involved in nitrosative stress
(Supplementary Table S6). In addition, hboN and hboO
genes were detected in the genomes of F. alni ACN14aT,
F. torreyi CpI1T (subcluster 1a), F. casuarinae CcI3T (subcluster
1c), F. discariae BCU110501T, F. elaeagni BMG5.12T (cluster
3), and F. inefficax Eul1CT (cluster 4). Interestingly, only
the genomes of F. coriariae BMG5.1T, candidatus Frankia
datiscae Dg1 (cluster 2), and F. saprophytica CN3T (cluster 4)
contained the hboO gene which is involved in hypoxic stress.
All of these results are in good agreement with those from
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previous studies (Beckwith et al., 2002; Niemann et al., 2005;
Niemann and Tisa, 2008).

The presence of such putative stress genes in Frankia
strains was expected since they are known for their ability
to survive in harsh environments, including nutrient poor
soils (Karthikeyan et al., 2009; Oshone et al., 2017). Further,
the genomes of all of the Frankia strains carried a common
set of genes, notably ones associated with the production
of alkyl hydroperoxide reductase (ahp) which is involved
in hydrogen peroxide stress (Bsat et al., 1996) and in
the defense of DNA against oxidative damage (Jacobson
et al., 1989); the peroxide stress regulator perR, which is
related to the FUR family; redox-sensitive transcriptional
regulators (rex and sox) (Wietzke and Bahl, 2012) that
have a role in oxidative stress protection; rubrerythrin (rbr),
which encodes for a peroxidase and has a role in the
protection of nitrogenase from oxygen in cyanobacteria (Zhao
et al., 2007); aquaporin Z (aqpZ), which is associated with
drought stress and cold (cspA and C) and heat shock (grpE)
and chaperon proteins (dnaJ and K) that are involved in
heat shock responses (Paek and Walker, 1987; Ellis and
Hemmingsen, 1989) and the zinc uptake regulator protein
(zur) which helps to protect bacteria against oxidative stress
(Smith et al., 2009).

Genes encoding for L-proline glycine betaine binding ABC
transporter proteins (proX and V) play a crucial role in
resistance to osmotic stress in Gram-negative bacteria, such as
Sinorhizobium meliloti (Le Rudulier and Bernard, 1986) were
found in all of the Frankia genomes, apart from those of
subcluster1c and cluster 2 strains (Supplementary Table S6).
This finding is consistent with the observation of Oshone et al.
(2017) who noted the absence of sarcosine oxidase (SO) genes in
F. casuarinae strains.

All of the Frankia genomes were found to contain
a range of genes associated with DNA repair systems,
as exemplified by exconuclease ABC (uvr operon) and
formamidopyrimidine-DNA glycosylase (Gly1) which
are responsible for the oxidation of purines of damaged
DNA (Supplementary Table S6). Similarly, all of the
genomes harbored genes that encode for enzymes involved
in photosynthesis, such as phytoene synthase (crtB) and
octaprenyl diphosphate synthase (ispB) (Supplementary

Table S6). Genes associated with carotenoid biosynthesis
(e.g., β-carotene ketolase) were detected in the genomes
of some of the Frankia strains belonging to clusters 1 and
4 (Supplementary Table S6). Carotenoids have a crucial
role in preventing photooxidative damage (Howitt and
Pogson, 2006) and are considered to be precursors of
abscisic acid, a phytohormone involved in the control of
water retention and some other stress responses (Koornneef,
1986). Further, the genomes of the F. casuarinae strains
and those of the representatives of cluster 4 contained the
NAD(P) transhydrogenase gene (Supplementary Table

S6), which is involved in the reduction of glutathione, an
antioxidant that has an important role in preventing damage
to cellular components caused by reactive oxygen species
(Pompella et al., 2003).

In addition to the ability of Frankia strains to solubilize
and convert insoluble phosphate to bioavailable forms, some
of them are able to modulate the lack of phosphate in natural
environments. In this context, several genes that encode for
inducible phosphate starvation (psi), and which belong to the
PHO regulon (Hsieh and Wanner, 2010), are involved in organic
phosphate solubilization and uptake by either enhancing the
ability of cells to efficiently use limited sources of phosphate or to
provide access to other sources of phosphate (Antelmann et al.,
2000). The genomes of all of the Frankia strains were found to
contain phoA, phoB, phoH, phoR, phoU, phy (phytase), tag, ushA
(nucleotidase), and ptsABCS genes (Supplementary Table S2).
The phoA and phoB genes encode for alkaline phosphatase while
phoD expresses for PDE/alkaline phosphatase D which has a role
in teichoic acid turnover in the cell wall in Bacillus subtilis (Eder
et al., 1996); the pstS gene belongs to the pstSACB1B2 operon
which is involved in phosphate transport (Eymann et al., 1996;
Qi et al., 1997).

The alkaline phosphatase genes identified in Frankia
strains have amino acid sequence similarities of 53–58%
and are similar to those found in some actinobacterial
species. However, the alignment and comparison of alkaline
phosphatase of Frankia strains to PhoA, PhoC, and PhoD
proteins of Streptomyces coelicolor showed identity values
between 41.9–47, 41.9–54.8, and 26.5–28.5%, respectively,
and 35.0–46.4% with the phoA gene from Streptomyces
griseus. The alkaline phosphatase of F. elaeagni BMG5.12T

showed an amino acid sequence identify value of 58.3%
with the phoC gene. These results show that the alkaline
phosphatases of Frankia strains are quite specific and are
not closely related to the well-studied ones of the cited
Streptomyces species.

Overview, Significance, and Future
Studies
Frankia strains are well known for their ability to form
nitrogen-fixing nodules in actinorhizal plants and to promote
plant growth. Genome mining of representative Frankia strains
representing the four host infection groups not only show
that the genetic machinery of their nitrogenase complexes are
conserved but also highlighted the presence of 11 conserved
genes (ipt, damt, recA, recX, lysM, eal, hflX, ed, dapF, pde,
and abhyd) in the putative cytokinin biosynthetic gene cluster;
the presence of the LysM domain and recombinase genes
indicates that the cytokinin cluster may also be involved
in the ability of Frankia strains to infect their hosts plant.
In addition, the genomes of all of the Frankia strains
were shown to be equipped with genes associated with the
synthesis and production of phytohormones and contained
genes functionally linked to inorganic phosphate solubilization
and siderophore production. Moreover, the genomes of all
the representative strains carried a set of universal genes the
products of which are involved in modulating the effects
of abiotic and biotic environmental stress. Consequently,
it can be concluded that Frankia strains should be seen
as potential substitutes for chemical fertilizers and thereby
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may prove to have an important role in the improving ecosystem
quality. However, further work is required to understand the PGP
mechanisms of frankiae before they can be developed for use in
sustainable agriculture.
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