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Abstract Induced pluripotent stem cells (iPSCs) are a
type of pluripotent stem cells generated directly from
mature cells through the introduction of key transcription
factors. iPSCs can be propagated and differentiated into
many cell types in the human body, holding enormous
potential in the field of regenerative medicine. However,
genomic instability of iPSCs has been reported with the
advent of high-throughput technologies such as next-
generation sequencing. The presence of genetic varia-
tions in iPSCs has raised serious safety concerns, ham-
pering the advancement of iPSC-based novel therapies.
Here we summarize our current knowledge on genomic
instability of iPSCs, with a particular focus on types of
genetic variations and their origins. Importantly, it re-
mains elusive whether genetic variations in iPSCs can
be an actual risk factor for adverse effects including ma-
lignant outgrowth. Furthermore, we discuss novel ap-
proaches to generate iPSCs with fewer genetic variations.
Lastly, we outline the safety issues and monitoring strat-
egies of iPSCs in clinical settings.

Keywords iPSCs . Genomic instability .Mutation .

Regenerativemedicine . Clinical application

Introduction

Induced pluripotent stem cells (iPSCs) can be generated di-
rectly from patient-derived somatic cells by introducing de-
fined sets of key transcription factors [1–3]. iPSCs can be
potentially differentiated into many cell types in our body.
Thus, iPSCs can be used as a powerful tool for disease model-
ing, pharmacological screening, and regenerativemedicine for
a wide range of diseases (see Avior et al. [4] and Robinton &
Daley [5] for review). There are several advantages to iPSCs
over pre-existing pluripotent stem cells. Importantly, iPSCs
have solved the ethical issue of embryonic stem cells (ESCs)
because iPSCs can be generated without destructing pre-
implantation stage embryos. Furthermore, iPSC technologies
have made it feasible to create patient-matched pluripotent
stem cells. Differentiated cells derived from iPSCs are unlike-
ly to cause immune rejection after transplantation [6, 7].

In 2014, the first-in-human clinical trial of iPSC-based cell
therapy was conducted. A Japanese woman with exudative
age-related macular degeneration (AMD) was implanted with
a retinal pigment epithelial cell (RPE) sheet, which was dif-
ferentiated from iPSCs generated from her own skin fibro-
blasts [8, 9]. Clinical application of iPSC-based novel thera-
pies will give hope to patients suffering from intractable
diseases.

However, recent reports on genomic instability of iPSCs
have raised serious safety concerns with respect to tumorige-
nicity. In fact, genetic mutations were identified in the iPSCs
which were supposed to be used in the second human clinical
trial of iPSC-based therapy in 2015 [9, 10]. Even though there
was no clear evidence that these mutations could directly lead
to adverse effects, the planned transplantation surgery of
iPSC-derived RPE sheet was cancelled [9, 10].

To facilitate the advancement of iPSC-based novel thera-
pies, it is important to gain a deeper understanding of how and
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when these mutations occur. Furthermore, it is crucial to elu-
cidate whether these mutations could actually confer harmful
effects.

Here we summarize current understanding on the genomic
instability of iPSCs. We discuss the characteristics of genetic
variations in iPSCs, particularly focusing on their origins and
their functional consequences. Finally, we outline the safety
issues of iPSC-based cell therapies, and further discuss how to
monitor and reduce genomic instability of iPSCs.

Genomic Instability in iPSCs

In this section, we first introduce methods to detect genomic
instability of iPSCs, and then describe each type of genetic
variations identified in iPSCs using these methods.

Methods for Detection of Genomic Instability

A number of technologies have been developed to detect ge-
nomic aberrations or mutations on a genome-wide scale. One
of the most conventional methods is Giemsa (G)-banding,
which can detect numerical (aneuploidy and polyploidy) or
large structural chromosomal changes including transloca-
tions and inversions [11]. G-banding is readily applicable
and is most widely used for genetic evaluation [12]. To
achieve higher resolution, array-based technologies such as
comparative genomic hybridization (CGH) [13] and single
nucleotide polymorphism (SNP) arrays [14] have been
adopted. These technologies allow us to investigate copy
number variations (CNVs) (i.e., duplications and deletions)
across the whole genome at kilobase resolution (for review
see Le Scouarnec & Gribble [15]). However, these array-
based methods cannot accurately detect balanced transloca-
tions and inversions [16]. Recently, the advent of next-
generation sequencing (NGS) has enabled us to detect (i) ge-
netic variations across the entire genome at single nucleotide
resolution [17] and (ii) low frequency variations which could
not be identified by conventional methods [18], revolutioniz-
ing the field of genomic research including genomic studies of
iPSCs.

Chromosomal Aberration

Chromosomal instability of human iPSCs was first re-
ported in 2010 [19]. A large-scale study [20] as well as
several individual studies [19, 21, 22] have investigated
chromosomal aberrations in both human ESCs and hu-
man iPSCs, and reported that trisomy 12 is most recur-
rently observed in both cell types. Because chromosome
12 contains cell cycle-related genes and harbors
pluripotency-associated gene NANOG [19], trisomy 12
might contr ibute to the select ive advantage of

proliferation and reprogramming in pluripotent stem
cells. Mayshar et al. also reported that a gain of the
12p region was caused by prolonged culture [19].
Interestingly, the gain of 12p is a hallmark of testicular
germ cell tumors [23, 24]. Other frequently recurrent
aneuploidies in both cell types are amplifications of
chromosome 8 and X [20]. In addition, frequencies of
chromosomal aberrations were not remarkably different
between human iPSCs and ESCs [20]. Although many
common chromosomal aberrations are reported, different
types of chromosomal aberrations are also identified [19,
20]. The reason for these differences remains to be elu-
cidated (for review see Lund et al. [25]).

Copy Number Variation

The first CNV analysis of human iPSCs was conducted by
Chin et al. using array CGH [26]. Chin et al. found a few
CNVs in each iPSC line, but none of the CNVs were shared
between iPSC lines [26]. Several larger-scale studies later
identified an amplification of 20q11.21 as the most recurrent
CNV hotspot [21, 22, 27]. This CNVwas also found in human
ESCs [21, 22, 27]. Duplication of 20q11 is also frequently
found in several cancer types [28, 29]. This region is enriched
with genes associated with pluripotency and anti-apoptosis,
such as DNA methyltransferase 3B (DNMT3B), inhibitor of
DNA binding 1 (ID1), and BCL2-like1 (BCL2L1).

Furthermore, Laurent et al. [22] and Hussein et al.
[30] analyzed the dynamic changes of CNVs during hu-
man iPSC passages using SNP array, and identified a
large number of CNVs in early passage iPSCs [22, 30].
Interestingly, the number of CNVs decreased during cell
passages [30]. These observations imply that CNVs are
generated during reprogramming and that the mosaicism
is gradually lost during cell passaging as a result of se-
lective pressure. Most CNVs observed in early passage
were deletions, which might be disadvantageous to cell
growth or survival [30]. Laurent et al. reported that de-
letions of tumor-suppressor genes are frequently ob-
served in early-passage human iPSCs but that duplica-
tions of oncogenic genes increase during cell passages
[22].

A more recent whole genome sequencing (WGS) anal-
ysis reported that at least half of the CNVs observed in
iPSCs are derived from low frequency somatic variants
in the parental skin fibroblasts [31]. This discrepancy
might be due to the limited dynamic range of array-
based detection of low frequency CNVs in parental so-
matic cells (see review by Liang & Zhang [32]). NGS
technologies have enabled us to detect such low frequen-
cy variations at single nucleotide resolution, providing
deeper insights into the origin of genomic instability.
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Single Nucleotide Variant

Single nucleotide variants (SNVs) in iPSCs have been investi-
gated by high-throughput NGS analysis such as WGS or whole
exome sequencing (WES). These studies identified an average of
~10 protein-coding mutations per human iPSC line [33–37]. So
far, recurrent SNVs have been rarely reported, but larger studies
are still needed for comprehensive profiling of SNVs in iPSCs.

Because NGS can call genetic variations with their allele
frequencies, several studies have attempted to elucidate the
origin of these variations in iPSCs (Fig. 1). In the following
section, we describe the origin of genetic variations in iPSCs.

Origin of Genomic Instability in iPSCs

As mentioned earlier, genetic variations of iPSCs have at least
three origins: (i) pre-existing variations in parental somatic cells,

which can be manifested by cloning procedure during iPSC
generation, (ii) reprogramming-induced mutations which occur
during the reprogramming process, and (iii) passage-induced
mutations which arise during the prolonged culture (Fig. 1).

Pre-existing Variations in Parental Somatic Cells

Several studies employing NGS showed that a fraction of
genetic variations found in iPSCs are present as pre-existing
variations in parental somatic cells [31, 33, 34, 38, 39], and are
fixed as a consequence of cloning process during iPSC gen-
eration. These studies performed sequencing analysis of
iPSCs and their matched parental somatic cells to determine
whether genetic variations originated from somatic cells.
Furthermore, in another WGS study on mouse iPSCs, 157
shared SNVs were identified in four iPSC clones established
from the same mouse embryonic fibroblasts (MEFs), which
strongly suggests that these SNVs are most likely derived
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Fig. 1 Origin of genetic variations in iPSCs. (a) Genetic variations of
iPSCs have at least three origins: (i) pre-existingvariations in parental
somatic cells, which can be manifested by a cloning procedure during
iPSC generation, (ii) reprogramming-induced mutations which occur
during the reprogramming process, and (iii) passage-induced mutations
which arise during the prolonged culture. (b) (Left) Pre-existing
variations (square) that exist in a minority of parental cells are expanded
and become detectable as a consequence of iPSC generation (orange
square). These variations are present in one allele of all the resulting

iPSCs. Thus, their allele frequencies are expected to be ~50 % in
iPSCs. (Middle) iPSC reprogramming per se introduces point mutations
(star). These reprogramming-induced mutations can occur immediately
after the onset of iPSC reprogramming (yellow star), which exhibit ~50%
allele frequencies. Furthermore, these mutations can occur after first- (red
star) or second-cell division (green star) during iPSC reprogramming,
which are expected to be observed at ~25 % or ~12.5 % allele frequen-
cies, respectively. (Right) Mutations can arise during the prolonged cul-
ture (magenta circle), which can be observed at low allele frequencies
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from their parental cells [40]. However, identification of pre-
existing mutations is accompanied by technical difficulties as
follows. Ultra-deep sequencing can be applied to search for
pre-existing variations which exist at low frequencies in pa-
rental somatic cells [31, 34]. However, even when they are
undetectable, it does not exclude the possibility that pre-
existing variations might still exist at undetectably low fre-
quencies. In addition, although NGS has the ability to detect
low frequency variants, it is sometimes difficult to distinguish
low frequency genuine biological variations from sequencing
errors.

Two possible scenarios can be assumed with respect to pre-
existing variations [32]. First, pre-existing variations are just
randomly captured and expanded during the iPSC generation.
Second, certain pre-existing variations can facilitate the
reprogramming or proliferation of iPSCs, which could be
preferentially propagated by selective advantage.

Reprogramming-Induced Mutations

Ji et al. argued that 74 % of the point mutations were acquired
during human iPSC reprogramming [35]. More recently,
Sugiura et al. generated iPSC clones fromMEFs prepared from
embryo to minimize pre-existing mutations, and performed
WGS analysis to reveal that hundreds of point mutations occur
immediately after the onset of iPSC reprogramming. They also
established subclones from an iPSC clone and confirmed the
heterogeneity of point mutations within a single iPS clone,
which indicated that these mutations were not derived from a
parental cell. Furthermore, they established ESCs and iPSCs
under nearly identical conditions and compared the point mu-
tations profiles to demonstrate that the rate of point mutations in
iPSCs were much higher than that in ESCs. This implicates that
point mutations were introduced during reprogramming [41].

It is important to note the technical difficulties of
distinguishing pre-existing variations and reprogramming-
induced mutations. As shown in Fig. 1, pre-existing variations
exist at ~50 % allele frequencies because they are present in
one allele of all the iPSCs originated from a single parental
cell. Meanwhile, as shown by Sugiura et al., reprogramming-
induced mutations occur immediately after the onset of iPSC
reprogramming (i.e., even before the first cell division or after
the first-/second-cell division during iPSC reprogramming).
Accordingly, these mutations can be observed at ~50 %,
~25 %, and ~12.5 % allele frequencies (Fig. 1) [41]. This
indicates that SNVs with allele frequencies of ~50 % cannot
be distinguished whether they are pre-existing variants or
reprogramming-induced mutations solely based on allele fre-
quencies. Interestingly, Sugiura et al. discovered that
reprogramming-induced point mutations exhibit a
transversion-dominant pattern, whereas pre-existing varia-
tions and passage-induced mutations exhibit a transition-
dominant pattern [41]. The molecular mechanism by which

reprogramming-induced mutations are introduced remains to
be elucidated.

Passage-Induced Mutations

Gore et al. applied WES for one human iPSC line at early and
late passages, and demonstrated that four additional point mu-
tations arose during the prolonged culture [34]. These muta-
tions happen stochastically among cell population and are
expected to exhibit lower allele frequencies (Fig. 1).

Effects of Mutations on the Phenotype of iPSCs

Towards clinical applications, it is crucial to assess whether
genetic variations in iPSCs can lead to unfavorable outcomes
such as malignant outgrowth.

NGS technologies have enabled us to yield an unprecedent-
ed amount of information regarding cancer mutations [42, 43].
Exploration of cancer genomic data might provide an insight
into the effect of genetic variations observed in iPSCs. Gore
et al. pointed out that a majority of protein-coding mutations in
iPSCs are nonsynonymous, nonsense, or splice variants, and
are enriched in cancer-associated genes listed in the Catalogue
of Somatic Mutations in Cancer (COSMIC) database [34, 44].
In contrast, a more recent study demonstrated that SNVs were
not enriched in cancer-associated genes [33]. Importantly, Ruiz
et al. assessed the functional effect of several protein-coding
mutations identified in iPSCs on reprogramming efficiency by
generating iPSCs that carry these mutations, and found that
these mutations do not provide a selective advantage for
reprogramming [36]. These two studies indicate that SNVs in
iPSCs do not confer functional advantage by themselves.

The functional consequences of genetic variations need to
be carefully interpreted. It is still difficult to distinguish
Bdriver^ mutations which confer a proliferative advantage
contributing to cancer development from Bpassenger^ muta-
tions which have virtually no effect on the fitness of a cancer
clone [45]. Hence, even when cancer mutations are found in
iPSCs, it does not directly mean that these mutations lead to
tumorigenesis. Validation experiments are a powerful method
to confirm the functional effects of these mutations, but we
have to bear in mind that a fraction of them are cell-type
dependent (see Meyerson et al. [46] and Watson et al. [47]
for review) Tumorigenic potential might also differ depending
on the environment [48] surrounding the transplanted cells.
Moreover, combination of mutation might lead to tumorigenic
potential, as illustrated by multiple-hit hypothesis [49, 50].
Therefore, the phenotypic impact of genetic variations is
sometimes hard to assess. However, it is noteworthy that
donor-derived hematopoietic stem cells (HSCs) that harbored
mutations in cancer-related IDH2 andDNMT3A led to leukemia
about two years after the transplantation [51]. Further studies are
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needed to investigate which genetic variations could confer
harmful effects.

WGS analyses allow us to investigate mutations identified
in non-coding regions in addition to coding mutations.
Importantly, non-coding regions constitute around 98 % of
the genome and contain a large number of cis-regulatory ele-
ments critical for regulation of gene expression [52]. Recently,
cancer mutations have been identified in non-coding regula-
tory regions such as promoters and enhancers by WGS anal-
yses [53–55]. Furthermore, disease-causative SNPs have been
found to be overrepresented in non-coding enhancer regions
[56] (for review see Murakawa et al. [57]), which highlights
the importance of exploring mutations in non-coding regions.
A recent WGS study of human iPSCs identified hundreds of
mutations distributed throughout the genome [58]. These mu-
tations were considered to be generally benign [58]. Further
studies are need to better characterize non-coding mutations.

Improvement of iPSC Generation Methods
to Reduce Genomic Instability

Since the establishment of human iPSCs in 2007 [2, 3], many
attempts have been made to produce iPSCs more efficiently
and safely. Here we review recent papers with a particular
emphasis on genomic instability.

Starting Cell Source

It is important to consider the original source of somatic cells
for iPSC generation. The first human iPSCs were generated
from skin fibroblasts [2, 3], and since, skin-derived fibroblasts
have been commonly used as a starting cell source. Although
skin cells can be obtained more easily compared to other or-
gan tissues, skin biopsies are still invasive. Meanwhile, a larg-
er quantity of peripheral blood cells can be readily harvested.
Peripheral blood mononuclear cells (PBMCs), as well as
HSCs [59, 60], can be reprogrammed to iPSCs with high
efficiency [61–63]. PBMC-derived iPSCs can be differentiat-
ed into mesenchymal stem cells, hepatocytes, and
cardiomyocytes [64]. In addition, iPSCs can also be generated
from cells isolated from urine [65], hair keratinocyte [66],
mesenchymal stromal cells derived from wisdom teeth [67].
In the context of genomic instability, it was shown that
protein-coding mutations were identified to a similar extent
in human iPSCs derived from BJ fibroblasts, keratinocytes,
mesenchymal stem cells, neural stem cells, and human umbil-
ical vein endothelial cells [36].

Given that aging is associated with increased DNA damage
[68], iPSCs derived from elderly patients might possess larger
number of mutations. In fact, noncancerous skin cells from
elderly subjects harbored a comparable number of somatic
mutations to that in skin cancer cells and a fraction of these

mutations were identified in cancer-associated genes [69].
Somatic mutations, including cancer driver mutations, have
been shown to accumulate in blood cells with increasing age
[70, 71]. More recently, it was demonstrated that mitochon-
drial DNA (mtDNA) mutations in human iPSCs increased
with age, which compromised the metabolic function in
iPSCs [72]. It was also reported that iPSCs derived from older
mice exhibi ted lower prol i fe ra t ive ac t iv i ty and
reprogramming efficiency [73]. These findings suggest that
cells from younger donors may be advantageous.

Umbilical cord blood cells can be collected non-invasively
from the umbilical cord at the time of birth. Umbilical cord
blood cells contain hematopoietic stem and progenitor cells,
and are banked together with immunological information for
the treatment of hematological malignancies [74]. In addition,
iPSCs have been successfully generated from umbilical cord
blood cells [63, 75, 76]. Notably, a WES study revealed that
umbilical cord blood-derived iPSCs harbored remarkably
lower point mutations than fibroblast-derived iPSCs [77].

These days iPSC-based cell therapies are switching from au-
tologous transplantation to allogeneic transplantation [78].
Although immune rejection can be avoided in autologous trans-
plantation of patient-matched iPSCs [6, 7], generation of patient-
derived iPSCs is a time-consuming and expensive processes
[79]. Thus, autologous transplantation cannot be readily applica-
ble for acute progressive disorders. Importantly, a small number
of homozygous human leukocyte antigen (HLA) types could
cover a large portion of populations [80, 81], making them ideal
biological resources for allogeneic transplantation [79].
Considering the lower mutational load in umbilical cord blood
cells and the availability of immunological information, HLA-
matched umbilical cord blood-derived iPSCs are potentially ideal
cell sources for allogenic iPSC-based cell therapies [82]. It would
be important to bank iPSCs together with their genomic data [79,
83] because the data can be used to study the effect of genetic
variations on clinical outcome of iPSC-based transplantation and
help formulate evidence-based criteria for clinical applications.

Delivery Method

A number of studies have aimed to improve the efficiency and
safety of iPSC reprogramming. Originally, iPSCs were gener-
ated using retroviruses [1–3]. However, integrated viral ge-
nome could produce insertional mutations and reactivate
transgenes after reprogramming [84], which might play a role
in tumorigenesis. Indeed, reactivation of c-Myc transgene
caused tumors in mouse iPSCs [85]. To circumvent this prob-
lem, integration-free vectors such as expression plasmids [86],
Sendai virus vectors [87], and episomal plasmid vectors [88,
89] have been developed. In addition, several DNA-free
reprogramming methods such as protein-based methods [90,
91] or mRNA-based methods [92] have also been developed.
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Several studies have compared genomic instabilities in
iPSCs generated via different methods. Gore et al. [34] and
Bhutani et al. [58] have demonstrated that the numbers of
SNVs were comparable between different reprogramming
methods. However, Sugiura et al. showed that retrovirally
transduced iPSCs harbored about twice as many mutations
as integration-free iPSCs [41]. Cheng et al. reported that inci-
dence of genetic variations were low in human iPSCs gener-
ated by nonintegrating plasmid expressionmethod [33]. These
two studies conclude that integration-free deliverymethods are
currently most effective and might be ideal for clinical
applications.

Reprogramming Factor

In addition to delivery methods, reprogramming factors have
been explored to generate safer iPSCs more effectively.
Recently, NuRD (nucleosome remodeling and deacetylation)
component Mbd3 has been identified as a major
reprogramming barrier during iPSC induction [93]. In fact, de-
pletion of Mbd3 significantly increased the efficiency of iPSC
reprogramming [93]. Moreover, oocyte factor Zspan4 im-
proves not only reprogramming efficiency but also genomic
stability during mouse iPSC reprogramming [94]. A more
recent study revealed that reduction of replication stress dur-
ing reprogramming by overexpressing checkpoint kinase 1
(CHK1) increases the iPSC reprogramming efficiency and
genomic stability in both mouse and human [95].

Reprogramming factors which are currently used, such as
OCT4, SOX2, KLF4, c-MYC, NANOG and LIN28, are re-
ported to have oncogenic potential [96–102]. Given that such
pluripotency-associated genes can lead to tumorigenesis,
chemical induction might help reduce the risk of tumorigene-
sis. Notably, Hou et al. succeeded in generating iPSCs with a
combination of seven small-molecule compounds [103].

Alternative Reprogramming Method

Back in 1962, Gurdon succeeded in generating cloned frogs
by transferring the nucleus of a differentiated tadpole's somat-
ic cell into an oocyte [104]. This method is referred to as
somatic cell nuclear transfer (SCNT). Recently, human
SCNT-ESCs were successfully generated from adult somatic
cells [105], and several genome-wide analyses have been per-
formed for iPSCs and SCNT-ESCs derived from the geneti-
cally matched somatic cells [37, 106]. Reprogramming pro-
cess has been reported to be immediate in human SCNT-ESCs
but gradual in human iPSCs [107], suggesting that mutational
processes might be distinct. However, human SCNT-ESCs
and iPSCs contained similar levels of CNVs [106] and
protein-coding mutations [37]. Meanwhile, a potential advan-
tage of SCNT-ESCs is that SCNT technology can rescue the
mtDNA mutations by replacing old somatic mitochondria

with oocyte mitochondria [72]. However, SCNT-ESCs are
technically challenging and pose several ethical issues.

Cell Passage

As we described earlier, deleterious CNVs which occurr at
earlier passages could be negatively selected and lost during
subsequent passages [30]. However, several studies reported
that aneuploidies [19, 108], CNVs [22, 108], and point muta-
tions [34] accumulate at later passages. Further studies are
required to determine the optimal passage number for clinical
use.

Concluding Remarks and Future Directions

Genomic instability can occur at any stage of iPSC generation.
Mutations could also arise during differentiation of iPSCs to
final cell products to be used for transplantation. Taking into
account genomic instability, malignant outgrowth can be of
serious concern. Therefore, careful monitoring is crucial to
ensure iPSC safety prior to clinical applications [34].
However, even though NGS technologies have significantly
reduced in cost [109], extensive genome-wide analysis on a
routine basis is still financially inefficient. Large-scale WGS
studies of iPSCs might lead to the identification of genetic
variations which are relevant to clinical outcome, resulting
in cost-effective and target-specific analysis. Considering the
current limitations of comprehensive genetic testing, tumor
formation assay might be one way of assessing the tumorigen-
ic potential of iPSC-derived products [110]. However, there
are currently no evidence-based guidelines for tumorigenicity
testing of iPSC-derived cell products. Recently, it has been
reported that human iPSC-derived neurospheres formed tu-
mors in a mouse model after long-term observation [111],
indicating the importance of long-term follow up. In the case
of iPSC-derived RPE cell transplantation, ocular fundus can
be observed noninvasively [10], and morphological changes
of transplanted RPE can be monitored at cellular levels using
optical coherence tomography [112, 113]. In addition to ge-
nomic instability, contamination of residual undifferentiated
iPSCs or residual exogenous genes could play a role in tumor-
igenesis after transplantation [114]. Several strategies have
been developed to prevent teratoma formation. Residual cells
can be eliminated by immunodepletion using antibodies
against stage-specific embryonic antigen-5 (SSEA-5) and
two additional surface proteins related to pluripotency [115],
or through small chemical molecules [114].

Here we reviewed recent works describing genomic insta-
bility in iPSCs in the context of clinical applications.
Currently only a limited number of genome-wide studies of
iPSCs have been conducted as described here. In the near
future, iPSC-based cell therapies can be expected to be applied
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to many diseases involving other organs such as liver [116],
kidney [117], and cornea [118] (for review see Okano &
Yamanaka [119]). To ensure the safety of forthcoming iPSC-
derived novel therapies, a more comprehensive understanding
of genetic variations in the genome of iPSCs is important, and
validation experiments are necessary to identify functional
consequence of genetic variations. Moreover, so far there
has been only one clinical trial of iPSC-based therapy [8],
which limits the assessment of safety issues.

Since the first establishment of human iPSCs in 2007, many
improvements have been made to increase the safety and effi-
ciency of iPSCs. Genomic and functional evaluation of iPSCs
would be important with the advent of newer iPSC generation
protocols. Furthermore, better understanding of the mechanism
underlying genetic variations in iPSCs will help to reduce ge-
netic variations in iPSCs. Epigenomic instability could also be
considered (see Lund et al. [25] and Liang & Zhang [32] for
review). In summary, better characterization of iPSCs will pave
the way for clinical applications of iPSC-based cell therapies.
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